EP1963812B1 - Method and device for analysing the imaging behaviour of an optical imaging element - Google Patents
Method and device for analysing the imaging behaviour of an optical imaging element Download PDFInfo
- Publication number
- EP1963812B1 EP1963812B1 EP06829651A EP06829651A EP1963812B1 EP 1963812 B1 EP1963812 B1 EP 1963812B1 EP 06829651 A EP06829651 A EP 06829651A EP 06829651 A EP06829651 A EP 06829651A EP 1963812 B1 EP1963812 B1 EP 1963812B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- image
- property
- images
- emulation
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000003384 imaging method Methods 0.000 title claims description 84
- 238000012634 optical imaging Methods 0.000 title 1
- 238000000206 photolithography Methods 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 21
- 230000010287 polarization Effects 0.000 description 40
- 230000006870 function Effects 0.000 description 16
- 230000006399 behavior Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0285—Testing optical properties by measuring material or chromatic transmission properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/705—Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70566—Polarisation control
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70591—Testing optical components
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7085—Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
Definitions
- the invention relates to a method for investigating the imaging behavior of a first imaging optical system, in which an object is imaged by a second imaging optical system in an image plane and light is detected spatially resolved in pixels in the image plane, wherein the first and second imaging optics differ in at least one imaging property, wherein for each pixel, values for the intensity are determined as a first property of the light and stored in pixels, and wherein a series of images are generated.
- the invention also relates to a device for examining the imaging behavior of a first imaging optics.
- a device for examining the imaging behavior of a first imaging optics.
- Such a device comprises a second imaging optics, by means of which an object is imaged into an image plane and which differs from the first imaging optics in at least one imaging property, a spatially resolving detector with pixels, with which light in the image plane is detected in the pixels, as well a memory module in which spatially resolved intensity values are stored as pixels in a first property of the light, the device generating a series of images.
- the invention relates to the problem that in the prior art dependencies on a second property of the light - which may be, for example, the color or polarization - in the emulation only incomplete, for example, can be considered summarily.
- the emulation of the imaging properties of optical systems can lead to inaccuracies in the emulation. For example, some errors are particularly noticeable when emulating high-aperture imaging optics with low-aperture imaging optics.
- polarizing elements such as polarizers or gratings have been substantially examined and evaluated for their integral effect.
- the determination of local optical properties is becoming more and more important for the further development and improvement of manufacturing processes and to ensure product quality.
- DOE diffractive optical element
- the optical effect of this DOE arises on the webs, which are arranged concentrically around the optical axis.
- the distance between two webs is not constant, but varies depending on the radius.
- the object of this element is a dispersively imaging color compensation within the objective, wherein the optical quality of the objective results from the interaction between the refractive lenses and the DOE.
- the introduction of the DOE usually requires an adaptation of the beam path, both imaging optics differ at least in it.
- the second imaging optics can also be designed such that it images the object relative to the objective magnified or reduced.
- a method and a device are known with which aberrations such as the aberrations of a first imaging optics-for example a projection objective for photolithography-can be measured.
- the imaging optics is introduced into a second optical system, which has inter alia a lighting device, a second imaging optics and a spatially resolving detector.
- a grid is introduced in the beam path.
- the grids point to each other adapted structures in the form of sublattices with line patterns.
- the object-side lattice is imaged onto the image-side lattice, so that the images of the lattices overlap on the detector and produce moire patterns.
- the grids are mounted rotatable and / or displaceable. The disturbances can be determined by taking and evaluating series of images with different positions of the grids.
- the object of the present invention is therefore to further develop a method and a device of the type described at the outset such that optical properties and factors which influence the imaging behavior of a first imaging optical system to be examined are better taken into account.
- This object is achieved in a method of the type described above according to claim 1, characterized in that for each pixel values for at least one further, second property of the light is determined and stored in pixels, the series of images is generated by (a) a range of values (b) an image is assigned to each subarea, and (c) the corresponding stored intensity value is assigned to the pixels of each image if the value of the second characteristic associated with the pixel is in the subarea associated with the respective image falls, and otherwise a predetermined intensity value is assigned to them. Then the stored values are processed in an emulation step by converting the series of images into a series of intermediate images, with a constant value of the second characteristic in the emulation for each of the intermediate images received.
- the constant value of the second property comes from the respective subarea and is different from the values of the second property for the other intermediate images.
- an emulation image is generated by combining the intermediate images, which emulates an image of the object with the first imaging optics, taking into account the imaging property and the influence of the second property on the imaging behavior.
- a further property for example the color or the polarization effect, is determined for each pixel, for which purpose methods known in the prior art can be used.
- the value of the second property will usually vary depending on the location.
- subregions can be selected adjacent to each other, however, for processing and the reference to practice, it is advantageous to choose each other at least partially overlapping subregions, preferably only adjacent subregions overlap.
- a division into For example, subregions can be done using trigonometric functions - the transmittance of a color filter or polarizer, for example, is described by the square of a sine function.
- the predetermined intensity value it is preferable to select 0, i. as soon as the value of the second property no longer falls in the partial area assigned to an intermediate image, the intensity value for this intermediate image and the relevant pixel is set to zero. It is expedient if images, intermediate images and the emulation image each have the same size, since the processing is easier. Each image, intermediate image and the emulation image thus preferably have the same number of pixels or pixel rows and columns. Of course, you can also use different sizes, if a corresponding adjustment is made.
- the wavelength and / or the color saturation degree are preferably determined and stored for each pixel. This can be achieved, for example, by independently detecting the colors in each pixel, for example by using a wavelength-selective detector with corresponding upstream optics, which detects separately for each color range - red, green and blue. Another possibility is to produce the series of individual images with the aid of color filters which are introduced into the beam path.
- a particularly preferred choice of the second property is the polarization state, which gains influence, for example, in the emulation of high-aperture optics. Since this is not detectable as the intensity directly on a CCD, the polarization degree and / or the direction of polarization must be determined and stored for each pixel by measurement.
- the Stokes parameters which characterize the polarizing optical element can be determined spatially resolved. This method is for example of HW Berry et al. in Applied Optics 16, 3200 (1977 ). Subsequently, the series of images can be computationally generated based on the stored values.
- Another possibility is to generate the series of images by passing the light through a polarizer prior to detection, the subregions being determined by the different positions of the polarizer.
- a polarizer In such a polarizer, a natural weighting function is already incorporated, which corresponds essentially to the square of a sine function. The subregions are therefore usually quite large and overlap.
- a combination of polarizer and computational generation of the images is also possible.
- the intensity values become, for example, a function C ⁇ ⁇ - ⁇ weighted when the polarization angle ⁇ associated with a pixel falls within the subrange, where C is a constant and ⁇ the polarization angle at the center of the corresponding subrange. If the polarization angle associated with a pixel is outside the subarea, then the pixel is given the predetermined intensity value, that is to say zero, for example.
- a weighting can be achieved such that the polarization can be assumed to be substantially homogeneous for each image.
- the higher the number of subareas the higher the accuracy, but the number of subareas must be matched with the duration of the emulation, since the number of images increases as the emulation step takes longer.
- a choice of 6, 8 or 12 sub-areas has been found.
- the number of subareas is freely selectable.
- it can also be folded, for example, with a smoothing function, so that it becomes continuously differentiable at least once.
- Another possibility is to weight the intensity values with the function C ⁇ cos 2 ⁇ ⁇ - ⁇ . when the polarization angle ⁇ associated with a pixel falls within the subrange, where C is a constant and ⁇ the polarization angle at the center of the corresponding subrange.
- This function corresponds to an adapted choice of the constants substantially a rounded triangle function.
- the polarization over the image field is approximately constant.
- the images can then be processed substantially error-free in the evaluation process or in the emulation step, where a location-dependence of the polarization is not taken into account.
- unpolarized light which should also include circularly polarized light
- unpolarized light is also taken into account. This is achieved by assigning one of the partial regions exclusively the degree of polarization zero and assigning to the image associated with this partial region the intensity values of detected, unpolarized light.
- the intensity values associated with the zero polarization image may then be split into other images and added to the corresponding intensity values. The division is preferably uniform. Alternatively, this image can also be processed separately, either as a whole or in turn divided into different images.
- a photolithography scanner is used as the first imaging optics, and emulation imaging optics for emulation of the photolithography scanner are used as the second imaging optics.
- the photolithography scanner is an imaging optic with a very high numerical aperture, while emulation imaging optics is a low numerical aperture optic.
- the invention also relates to a device for examining the imaging behavior of a first imaging optics.
- the object according to claim 17 is achieved by storing in the memory module spatially resolved values for at least one further, second property of the light in pixels and the device generating the series of images by (a ) a range of values of the second property is divided into subregions, (b) an image is assigned to each subarea, and (c) the respective stored intensity value is assigned to the pixels of each image if the value of the second characteristic associated with the pixel is that of the respective one Image associated with the sub-area falls, and otherwise a predetermined intensity value is assigned to them.
- the apparatus also includes an emulation module, which then converts the series of images into a series of intermediate images, with a constant value of the second characteristic being included in the emulation for each of the intermediate images.
- the constant value of the second property comes from the respective subarea and is different from the values of the second property for the respective intermediate images.
- the emulation module generates an emulation image by combining the intermediate images. In this way, the influence of the second property on the imaging behavior in the emulation image can be considered spatially resolved.
- the predetermined intensity value is zero, which simplifies the evaluation. It is also expedient if the subregions partially overlap, depending on which weighting function the device uses.
- the device Preferably, the device generates a series of images and a series of intermediate images of the same size, since this considerably simplifies the handling and no difficulties arise in the distribution of the intensity values on the images or intermediate images. Of course, it is also possible with appropriate adjustment to use different image sizes.
- the device preferably adds the intensity values of the intermediate images for each pixel and thus generates the emulation image. This is the simplest method for considering the location dependence of the second variable or its variability over the image field in the emulation image.
- the device can also form for each pixel the mean value of the intensity values of the intermediate images and in this way generate the emulation image.
- the device preferably weights the intensity values in the association with an image of the series, which is particularly advantageous when the subregions overlap and an intensity value can be assigned to a plurality of subregions.
- the second property is the color, wherein the wavelength and / or the color saturation level are stored in the memory module for each pixel.
- This property can be detected relatively easily with the aid of modern detectors on CCD or CMOS basis, it being possible, for example, to detect for each pixel the color ranges red, green and blue individually on a respective CCD with the aid of corresponding optics.
- the color is not the only choice for the second property. Also other properties that are not necessarily must be visible immediately, come into question.
- the polarization degree and / or polarization direction is stored in the memory module for each pixel.
- a polarizer can be provided in the device through which the light is passed before detection. The subregions are determined by different positions of the polarizer. In this way, the series of images can be generated directly.
- Another possibility is to computationally generate the series of images based on the stored values.
- the polarization degree and / or direction are stored for each pixel at the beginning. A combination of polarizer and computational evaluation is possible.
- the device also assigns one of the subregions exclusively the degree of polarization zero. The image assigned to this subarea is then assigned the intensity values of detected, unpolarized light.
- a photolithography scanner is provided in the device as the first imaging optics and an emulation imaging optics for emulation of the photolithography scanner as the second imaging optics.
- the emulation imaging optics can be used to emulate the polarization properties of the photolithography scanner with spatial resolution, although the underlying emulation method implemented in the emulation module can not take this local dependency into account.
- a device is shown as it can be used to investigate the imaging behavior of a (not shown) first imaging optics.
- a light source 1 light is fed into a second imaging optics 2.
- the second imaging optics 2 focuses the light onto a spatial resolution detector 3 with pixels.
- the light is detected in the image plane in the pixels.
- the intensity is detected directly in the pixels.
- the values for the intensity are stored in a memory module 4 in association with the pixels.
- a second property of the light is stored in the memory module 4. This can be for example the color, or else the polarization. In the latter case, for example, a rotatable polarizer 5 which can be inserted into the beam path in front of the detector can be provided.
- the second imaging optics 2 forms an object 6 on the detector 3.
- the object 6 is introduced at the appropriate location in the second imaging optics 2, so that an image of the object 6 is generated on the detector 3.
- the object 6 may be, for example, a simple or non-linear color filter, a polarizer or a diffractive optical element. In the latter case may have the setting of the second Imaging optics are adapted to the imaging properties of the object 6.
- object 6 may also be a mask as used in photolithography.
- the light source 1 in this case is preferably a source which emits only one wavelength. If the second property to be registered is the polarization or not directly visible properties, then further devices are necessary, which are not shown here and serve to detect and determine these properties. The values of these properties are then also stored in association with the pixels in the memory module 4.
- the values stored for the intensity and the second property, for example the polarization, are then processed by an emulation module 7.
- an emulation image is generated, which is displayed on a screen 8.
- the image can also be saved or / and printed out.
- the generation of the emulation image is in Fig.2 outlined.
- ie polarization degree and / or direction are stored. These data form the so-called input image data record. From this input image data set, a series of images is generated. In this case, first the minimum and the maximum of the second property can be determined so as to determine the range of values of this property. This value range is then decomposed into subareas, the unpolarized portion of the intensity in the example being a separate subarea is assigned with the degree of polarization zero. This subregion also contains the intensity values of the circularly polarized portion of the light. Of course, the assignment to a separate sub-area is not mandatory.
- the unpolarized portion for example, can also be divided among the other subareas - this corresponds to a uniform distribution among the individual images.
- the other subareas are divided according to polarization angles in a value range from 0 ° to 180 °.
- the polarization angle ⁇ in the center of the corresponding subarea is specified for each image.
- the subregions can be selected as overlapping or non-overlapping in coordination with the weighting function to be used. In this example, eight sections are selected.
- the images are then processed in the emulation step. In this case, an image of the object 6 with the first imaging optics is emulated taking into account the imaging property and the influence of the polarization on the imaging behavior.
- the unpolarized intensity can be treated separately, but does not have to.
- a division into the polarized images is possible, for example.
- the object 6 is, for example, a mask
- an image of this mask can be emulated with a photolithography scanner as the first imaging optics.
- the second imaging optics 2 is in this case an emulation imaging optics.
- the imaging characteristics in which both optics differ are the magnification and the numerical aperture.
- intermediate images are generated for each polarization angle ⁇ , wherein in the emulation step, the polarization for the respective image as was constantly accepted. This is due to technical reasons since the methods available in the prior art for emulating or taking account of the polarization can only take constant polarizations into account.
- the intermediate images are added pixel-by-pixel to the emulation image.
- the location dependency in the polarization can be taken into account in the emulation of a photolithography scanner, although the available emulation method according to the prior art actually does not allow this or leads to larger errors.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Untersuchung des Abbildungsverhaltens einer ersten Abbildungsoptik, bei dem ein Objekt durch eine zweite Abbildungsoptik in eine Bildebene abgebildet wird und Licht in der Bildebene in Pixeln ortsaufgelöst detektiert wird, wobei sich die erste und zweite Abbildungsoptik in mindestens einer Abbildungseigenschaft unterscheiden, wobei für jedes Pixel Werte für die Intensität als eine erste Eigenschaft des Lichts bestimmt und in Bildpunkten gespeichert werden, und wobei eine Serie von Bildern erzeugt wird.The invention relates to a method for investigating the imaging behavior of a first imaging optical system, in which an object is imaged by a second imaging optical system in an image plane and light is detected spatially resolved in pixels in the image plane, wherein the first and second imaging optics differ in at least one imaging property, wherein for each pixel, values for the intensity are determined as a first property of the light and stored in pixels, and wherein a series of images are generated.
Die Erfindung betrifft auch eine Vorrichtung zur Untersuchung des Abbildungsverhaltens einer ersten Abbildungsoptik. Eine solche Vorrichtung umfaßt eine zweite Abbildungsoptik, durch die ein Objekt in eine Bildebene abgebildet wird, und die sich von der ersten Abbildungsoptik in mindestens einer Abbildungseigenschaft unterscheidet, einen ortsauflösenden Detektor mit Pixeln, mit dem Licht in der Bildebene in den Pixeln detektiert wird, sowie ein Speichermodul, in welchem ortsaufgelöst Werte für die Intensität als eine erste Eigenschaft des Lichts in Bildpunkten gespeichert werden, wobei die Vorrichtung eine Serie von Bilder erzeugt. Die Erfindung bezieht sich auf das Problem, daß im Stand der Technik Abhängigkeiten von einer zweiten Eigenschaft des Lichts - bei der es sich beispielsweise um die Farbe oder die Polarisation handeln kann - bei der Emulation nur unvollständig, beispielsweise summarisch berücksichtigt werden können.The invention also relates to a device for examining the imaging behavior of a first imaging optics. Such a device comprises a second imaging optics, by means of which an object is imaged into an image plane and which differs from the first imaging optics in at least one imaging property, a spatially resolving detector with pixels, with which light in the image plane is detected in the pixels, as well a memory module in which spatially resolved intensity values are stored as pixels in a first property of the light, the device generating a series of images. The invention relates to the problem that in the prior art dependencies on a second property of the light - which may be, for example, the color or polarization - in the emulation only incomplete, for example, can be considered summarily.
Bei der Emulation der Abbildungseigenschaften optischer Systeme kann es dabei zu Ungenauigkeiten in der Emulation kommen. Einige Fehler machen sich beispielsweise besonders bemerkbar, wenn man mit einer niederaperturigen Abbildungsoptik eine hochaperturige Abbildungsoptik emuliert. Bisher wurden beispielsweise polarisierende Elemente wie Polarisatoren oder Gitter im wesentlichen anhand ihrer integralen Wirkung untersucht und bewertet. Mit der Entwicklung von mikro- oder nanostrukturierten optischen Bauelementen gewinnt jedoch die Bestimmung der lokalen optischen Eigenschaften immer mehr an Bedeutung für die Weiterentwicklung und Verbesserung von Fertigungsprozessen und der Gewährleistung der Produktqualität. Als Beispiel für solche optischen Bauelemente sei hier ein diffraktiv optisches Element (DOE) erwähnt, wie es beispielsweise im in der
Ein anderes Beispiel für solche Bauelemente sind klassische lineare Beugungsgitter. Bei den beispielsweise in der Telekommunikation eingesetzten Gittern wird mit steigender Anzahl von Linienpaaren pro Flächeneinheit der Energieanteil und somit die Effizienz in der nullten Beugungsordnung erhöht. Mit steigender Linienzahl, d.h. kleineren Strukturgrößen, steigt beim Gitter die polarisierende Wirkung.Another example of such devices are classic linear diffraction gratings. In the lattice used for example in telecommunications is increased with increasing number of line pairs per unit area of energy and thus the efficiency in the zeroth diffraction order. With increasing number of lines, i. smaller structure sizes, the grating increases the polarizing effect.
Auch bei Photolithographie-Scannern, bei denen der Trend zu immer höhern numerischen Aperturen und immer kleineren Maskenstrukturen geht, spielen Polarisationseffekte eine immer größere Rolle. Mit den bisher im Stand der Technik bekannten Emulationsabbildungsverfahren und -systemen lassen sich solche Polarisationseffekte jedoch nur unvollständig beschreiben, da die Polarisationswirkung nur summarisch, d.h. über die Bildfläche integriert, berücksichtigt wird.Also in photolithography scanners, where the trend towards ever higher numerical apertures and ever smaller mask structures, polarization effects play an increasingly important role. However, with the emulation imaging techniques and systems heretofore known in the art, such polarization effects can only be described incompletely, since the polarization effect is only summarily, i. integrated over the image area.
Aus der
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Vorrichtung der eingangs beschriebenen Art dahingehend weiterzuentwickeln, daß optische Eigenschaften und Faktoren, die das Abbildungsverhalten einer zu untersuchenden ersten Abbildungsoptik beeinflussen, besser berücksichtigt werden.The object of the present invention is therefore to further develop a method and a device of the type described at the outset such that optical properties and factors which influence the imaging behavior of a first imaging optical system to be examined are better taken into account.
Diese Aufgabe wird bei einem Verfahren der eingangs beschriebenen Art gemäß Anspruch 1 dadurch gelöst, daß für jedes Pixel Werte für mindestens eine weitere, zweite Eigenschaft des Lichts bestimmt und in Bildpunkten gespeichert wird, die Serie von Bilder erzeugt wird, indem (a) ein Wertebereich der zweiten Eigenschaft in Teilbereiche zerlegt wird, (b) jedem Teilbereich ein Bild zugeordnet wird, und (c) den Bildpunkten jedes Bildes der entsprechende, gespeicherte Intensitätswert zugeordnet wird, falls der dem Bildpunkt zugeordnete Wert der zweiten Eigenschaft in den dem jeweiligen Bild zugeordneten Teilbereich fällt, und ihnen andernfalls ein vorgegebener Intensitätswert zugeordnet wird. Dann werden die gespeicherten Werte in einem Emulationsschritt verarbeitet, indem die Serie von Bildern in eine Serie von Zwischenbildern umgewandelt wird, wobei für jedes der Zwischenbilder ein konstanter Wert der zweiten Eigenschaft in die Emulation eingeht. Der konstante Wert der zweiten Eigenschaft stammt aus dem jeweiligen Teilbereich und ist von den Werten der zweiten Eigenschaft für die jeweils anderen Zwischenbilder verschieden. Anschließend wird durch Kombination der Zwischenbilder ein Emulationsbild erzeugt, welches eine Abbildung des Objektes mit der ersten Abbildungsoptik unter Berücksichtigung der Abbildungseigenschaft und des Einflusses der zweiten Eigenschaft auf das Abbildungsverhalten emuliert.This object is achieved in a method of the type described above according to
Bei der Erzeugung einer Abbildung mit einem zu untersuchenden optischen Bauelement wird neben der Intensität noch eine weitere Eigenschaft, beispielsweise die Farbe oder die Polarisationswirkung für jedem Bildpunkt bestimmt, wozu im Stand der Technik bekannte Verfahren verwendet werden können. Wie auch die Intensität, so wird auch der Wert der zweiten Eigenschaft in der Regel in Abhängigkeit vom Ort variieren. Die Zerlegung in einzelne Bilder, für die der Wert der zweiten Eigenschaft, der in das Auswerteverfahren bzw. den Emulationsschritt als Parameter eingeht, jeweils konstant ist, ermöglicht es, den Fehler, der gegenüber einer Auswertung bzw. Emulation - wie sie dem Stand der Technik entspricht - mit einem über das gesamte Bild gemittelten Wert für die zweite Eigenschaft gemacht worden wäre, zu verringern. Je mehr und je engere Teilbereiche erzeugt werden, desto geringer wird der Fehler.When generating an image with an optical component to be examined, in addition to the intensity, a further property, for example the color or the polarization effect, is determined for each pixel, for which purpose methods known in the prior art can be used. As well as the intensity, the value of the second property will usually vary depending on the location. The decomposition into individual images, for which the value of the second property, which enters into the evaluation method or the emulation step as a parameter, is constant in each case, makes it possible to compare the error with respect to an evaluation or emulation - as in the prior art corresponds - with a value averaged over the entire image for the second property would have been made to decrease. The more and the narrower parts are created, the lower the error becomes.
Die Teilbereiche können dabei aneinander angrenzend gewählt werden, für die Verarbeitung und den Bezug zur Praxis ist es jedoch vorteilhaft, einander zumindest teilweise überlappende Teilbereiche zu wählen, wobei sich bevorzugt nur benachbarte Teilbereiche überlappen. Eine Aufteilung in Teilbereiche kann auf diese Weise beispielsweise mit Hilfe von trigonometrischer Funktionen erfolgen - die Durchlässigkeit eines Farbfilters oder Polarisators zum Beispiel wird durch das Quadrat einer Sinusfunktion beschrieben.The subregions can be selected adjacent to each other, however, for processing and the reference to practice, it is advantageous to choose each other at least partially overlapping subregions, preferably only adjacent subregions overlap. A division into For example, subregions can be done using trigonometric functions - the transmittance of a color filter or polarizer, for example, is described by the square of a sine function.
Als vorgegebenen Intensitätswert wählt man vorzugsweise 0, d.h. sobald der Wert der zweiten Eigenschaft nicht mehr in den einem Zwischenbild zugeordneten Teilbereich fällt, wird der Intensitätswert für dieses Zwischenbild und den betreffenden Bildpunkt zu Null gesetzt. Dabei ist es zweckmäßig, wenn Bilder, Zwischenbilder und das Emulationsbild jeweils die gleiche Größe aufweisen, da so die Verarbeitung erleichtert wird. Jedes Bild, Zwischenbild und das Emulationsbild verfügen also bevorzugt über die gleiche Anzahl von Bildpunkten bzw. Bildpunktzeilen und -spalten. Selbstverständlich lassen sich auch verschiedene Größen verwenden, wenn eine entsprechende Anpassung erfolgt.As the predetermined intensity value, it is preferable to select 0, i. as soon as the value of the second property no longer falls in the partial area assigned to an intermediate image, the intensity value for this intermediate image and the relevant pixel is set to zero. It is expedient if images, intermediate images and the emulation image each have the same size, since the processing is easier. Each image, intermediate image and the emulation image thus preferably have the same number of pixels or pixel rows and columns. Of course, you can also use different sizes, if a corresponding adjustment is made.
Zur Kombination der Zwischenbilder zum Emulationsbild gibt es verschiedene Möglichkeiten. Eine besonders einfache besteht darin, die Zwischenbilder für jeden Bildpunkt zu addieren. Eine andere, ebenfalls einfach zu realisierende Möglichkeit besteht darin, für jeden Bildpunkt den Mittelwert der Intensitätswerte der Zwischenbilder zu bilden und so das Emulationsbild zu erzeugen.There are various possibilities for combining the intermediate images with the emulation image. A particularly simple is to add the intermediate images for each pixel. Another possibility, which is likewise easy to implement, is to form for each pixel the mean value of the intensity values of the intermediate images and thus to generate the emulation image.
Insbesondere dann, wenn die Teilbereiche einander überlappen, ist es vorteilhaft, die Intensitätswerte bei der Zuordnung zu einem Bild der Serie zu wichten. Bevorzugt erfolgt diese Wichtung so, daß die Summe der für einen Bildpunkt gewichteten Intensitätswerte bei Zuordnung zu mehreren Teilbereichen den ursprünglichen Intensitätswerten des Bildpunktes entspricht.In particular, when the subregions overlap one another, it is advantageous to weight the intensity values when assigned to an image of the series. This weighting preferably takes place in such a way that the sum of the intensity values weighted for a pixel when assigned to several Subareas corresponds to the original intensity values of the pixel.
Als zweite Eigenschaft kommen verschiedene Eigenschaften des zu detektierenden Lichtes in Frage, eine wichtige Eigenschaft ist beispielsweise die Farbe. Hier bestimmt und speichert man für jeden Bildpunkt vorzugsweise die Wellenlänge und/oder den Farbsättigungsgrad. Dies läßt sich beispielsweise erzielen, indem in jedem Bildpunkt die Farben unabhängig voneinander detektiert werden, indem beispielsweise ein wellenlängenselektiver Detektor mit entsprechend vorgeschalteter Optik verwendet wird, der für jeden Farbbereich - Rot, Grün und Blau - getrennt detektiert. Eine andere Möglichkeit besteht darin, die Serie von Einzelbildern mit Hilfe von Farbfiltern, die in den Strahlengang eingebracht werden, zu erzeugen.As a second property, various properties of the light to be detected come into question, an important property is, for example, the color. Here, the wavelength and / or the color saturation degree are preferably determined and stored for each pixel. This can be achieved, for example, by independently detecting the colors in each pixel, for example by using a wavelength-selective detector with corresponding upstream optics, which detects separately for each color range - red, green and blue. Another possibility is to produce the series of individual images with the aid of color filters which are introduced into the beam path.
Eine besonders bevorzugte Wahl der zweiten Eigenschaft ist der Polarisationszustand, der z.B. bei der Emulation hochaperturiger Optiken an Einfluß gewinnt. Da dieser nicht wie die Intensität direkt auf einer CCD detektierbar ist, müssen für jeden Bildpunkt der Polarisationsgrad und/oder die Polarisationsrichtung durch Messung bestimmt und gespeichert werden. Zur ortsaufgelösten Bestimmung der Polarisation können beispielsweise ortsaufgelöst die Stokes-Parameter, die das polarisierende optische Element charakterisieren, bestimmt werden. Diese Methode ist beispielsweise von
Eine andere Möglichkeit besteht darin, die Serie von Bildern zu erzeugen, indem das Licht vor der Detektion durch einen Polarisator geleitet wird, wobei die Teilbereiche durch die verschiedenen Stellungen des Polarisators festgelegt werden. In einem solchen Polarisator ist bereits eine natürliche Wichtungsfunktion inkorporiert, die im wesentlichen dem Quadrat einer Sinusfunktion entspricht. Die Teilbereiche sind daher in der Regel recht groß und überlappen sich. Auch eine Kombination von Polarisator und rechnerischer Erzeugung der Bilder ist möglich.Another possibility is to generate the series of images by passing the light through a polarizer prior to detection, the subregions being determined by the different positions of the polarizer. In such a polarizer, a natural weighting function is already incorporated, which corresponds essentially to the square of a sine function. The subregions are therefore usually quite large and overlap. A combination of polarizer and computational generation of the images is also possible.
Erzeugt man die Serie von Bildern rechnerisch anhand der gespeicherten Werte, so läßt sich diese natürliche Wichtungsfunktion ebenfalls verwenden, es stehen jedoch noch eine große Anzahl und in der Regel günstigere Wichtungsfunktionen zur Verfügung. In einer vorteilhaften Ausgestaltung des Verfahrens werden die Intensitätswerte beispielsweise mit einer Funktion
Eine andere Möglichkeit besteht in der Wichtung der Intensitätswerte mit der Funktion
Für die mit diesen Funktionen erzeugten Bilder der Serie ist die Polarisation über das Bildfeld näherungsweise konstant. Die Bilder können dann im Auswerteverfahren bzw. im Emulationsschritt, wo eine Ortsabhängigkeit der Polarisation nicht berücksichtigt wird, im wesentlichen fehlerfrei verarbeitet werden.For the images of the series generated with these functions, the polarization over the image field is approximately constant. The images can then be processed substantially error-free in the evaluation process or in the emulation step, where a location-dependence of the polarization is not taken into account.
In einer bevorzugten Ausgestaltung der Erfindung wird unpolarisiertes Licht, zu dem auch zirkular polarisiertes Licht zählen soll, ebenfalls berücksichtigt. Dies wird erreicht, indem einem der Teilbereiche ausschließlich der Polarisationsgrad Null zugeordnet wird und dem diesem Teilbereich zugeordneten Bild die Intensitätswerte von detektiertem, unpolarisierten Licht zugeordnet werden. Die dem Bild mit dem Polarisationsgrad Null zuordneten Intensitätswerte können dann auf andere Bilder aufgeteilt und zu den entsprechenden Intensitätswerten addiert werden. Die Aufteilung erfolgt dabei bevorzugt gleichmäßig. Alternativ kann dieses Bild auch getrennt verarbeitet werden, entweder als Ganzes oder indem es seinerseits wiederum auf verschiedene Bilder aufgeteilt wird.In a preferred embodiment of the invention, unpolarized light, which should also include circularly polarized light, is also taken into account. This is achieved by assigning one of the partial regions exclusively the degree of polarization zero and assigning to the image associated with this partial region the intensity values of detected, unpolarized light. The intensity values associated with the zero polarization image may then be split into other images and added to the corresponding intensity values. The division is preferably uniform. Alternatively, this image can also be processed separately, either as a whole or in turn divided into different images.
In einer besonders bevorzugten Ausgestaltung der Erfindung wird als erste Abbildungsoptik ein Photolithographie-Scanner und als zweite Abbildungsoptik eine Emulationsabbildungsoptik zur Emulation des Photolithographie-Scanners verwendet. Bei dem Photolithographie-Scanner handelt es sich um eine Abbildungsoptik mit einer sehr hohen numerischen Apertur, während es sich bei der Emulationsabbildungsoptik um eine Optik mit einer niedrigen numerischen Apertur handelt. Mit der vorangehend beschriebenen Erfindung lassen sich auf diese Weise im Emulationsschritt beispielsweise Verfahren zur Emulation von abbildungsoptischen Effekten bei hohen numerischen Aperturen, wie sie in der deutschen Patentanmeldung
Die Erfindung betrifft auch eine Vorrichtung zur Untersuchung des Abbildungsverhaltens einer ersten Abbildungsoptik. Bei einer solchen Vorrichtung, wie sie oben beschrieben wurde, wird die Aufgabe gemäß Auspruch 17 dadurch gelöst, daß im Speichermodul ortsaufgelöst Werte für mindestens eine weitere, zweite Eigenschaft des Lichts in Bildpunkten gespeichert werden und die Vorrichtung die Serie von Bilder erzeugt, indem (a) ein Wertebereich der zweiten Eigenschaft in Teilbereiche aufgeteilt wird, (b) jedem Teilbereich ein Bild zugeordnet wird, und (c) den Bildpunkten jedes Bildes der entsprechende, gespeicherte Intensitätswert zugeordnet wird, falls der dem Bildpunkt zugeordnete Wert der zweiten Eigenschaft in den dem jeweiligen Bild zugeordneten Teilbereich fällt, und ihnen anderenfalls ein vorgegebener Intensitätswert zugeordnet wird. Die Vorrichtung umfaßt außerdem ein Emulationsmodul, dieses wandelt dann die Serie von Bildern in eine Serie von Zwischenbildern um, wobei für jedes der Zwischenbilder ein konstanter Wert der zweiten Eigenschaft in die Emulation eingeht. Der konstante Wert der zweiten Eigenschaft stammt aus dem jeweiligen Teilbereich und ist von den Werten der zweiten Eigenschaft für die jeweils Zwischenbilder verschieden. Anschließend erzeugt das Emulationsmodul durch Kombination der Zwischenbilder ein Emulationsbild. Auf diese Weise läßt sich der Einfluß der zweiten Eigenschaft auf das Abbildungsverhalten im Emulationsbild ortsaufgelöst berücksichtigen.The invention also relates to a device for examining the imaging behavior of a first imaging optics. In such a device as described above, the object according to claim 17 is achieved by storing in the memory module spatially resolved values for at least one further, second property of the light in pixels and the device generating the series of images by (a ) a range of values of the second property is divided into subregions, (b) an image is assigned to each subarea, and (c) the respective stored intensity value is assigned to the pixels of each image if the value of the second characteristic associated with the pixel is that of the respective one Image associated with the sub-area falls, and otherwise a predetermined intensity value is assigned to them. The apparatus also includes an emulation module, which then converts the series of images into a series of intermediate images, with a constant value of the second characteristic being included in the emulation for each of the intermediate images. The constant value of the second property comes from the respective subarea and is different from the values of the second property for the respective intermediate images. Subsequently, the emulation module generates an emulation image by combining the intermediate images. In this way, the influence of the second property on the imaging behavior in the emulation image can be considered spatially resolved.
Bevorzugt ist der vorgegebene Intensitätswert Null, was die Auswertung vereinfacht. Auch ist es zweckmäßig, wenn sich die Teilbereiche teilweise überlappen, je nach dem welche Wichtungsfunktion die Vorrichtung verwendet.Preferably, the predetermined intensity value is zero, which simplifies the evaluation. It is also expedient if the subregions partially overlap, depending on which weighting function the device uses.
Bevorzugt erzeugt die Vorrichtung eine Serie von Bildern und eine Serie von Zwischenbildern jeweils gleicher Größe, da dies die Handhabbarkeit erheblich vereinfacht und keine Schwierigkeiten bei der Aufteilung der Intensitätswerte auf die Bilder bzw. Zwischenbilder entstehen. Selbstverständlich ist es bei entsprechender Anpassung auch möglich, verschiedene Bildgrößen zu verwenden. Bevorzugt addiert die Vorrichtung die Intensitätswerte der Zwischenbilder für jeden Bildpunkt und erzeugt so das Emulationsbild. Dies ist die einfachste Methode, um die Ortsabhängigkeit der zweiten Größe bzw. deren Variabilität über das Bildfeld im Emulationsbild zu berücksichtigen. Alternativ kann die Vorrichtung auch für jeden Bildpunkt den Mittelwert der Intensitätswerte der Zwischenbilder bilden und auf diese Weise das Emulationsbild erzeugen. Bevorzugt wichtet die Vorrichtung dabei die Intensitätswerte bei der Zuordnung zu einem Bild der Serie, was insbesondere dann von Vorteil ist, wenn sich die Teilbereiche überlappen und ein Intensitätswert mehreren Teilbereichen zugeordnet werden kann.Preferably, the device generates a series of images and a series of intermediate images of the same size, since this considerably simplifies the handling and no difficulties arise in the distribution of the intensity values on the images or intermediate images. Of course, it is also possible with appropriate adjustment to use different image sizes. The device preferably adds the intensity values of the intermediate images for each pixel and thus generates the emulation image. This is the simplest method for considering the location dependence of the second variable or its variability over the image field in the emulation image. Alternatively, the device can also form for each pixel the mean value of the intensity values of the intermediate images and in this way generate the emulation image. In this case, the device preferably weights the intensity values in the association with an image of the series, which is particularly advantageous when the subregions overlap and an intensity value can be assigned to a plurality of subregions.
In einer bevorzugten Ausgestaltung der Vorrichtung ist die zweite Eigenschaft die Farbe, wobei im Speichermodul für jeden Bildpunkt die Wellenlänge und/oder der Farbsättigungsgrad gespeichert werden. Diese Eigenschaft läßt sich mit Hilfe moderner Detektoren auf CCD- oder CMOS-Basis relativ leicht detektieren, wobei beispielsweise vorgesehen sein kann, für jeden Bildpunkt die Farbbereiche Rot, Grün und Blau einzeln auf je einer CCD mit Hilfe entsprechender Optiken zu detektieren.In a preferred embodiment of the device, the second property is the color, wherein the wavelength and / or the color saturation level are stored in the memory module for each pixel. This property can be detected relatively easily with the aid of modern detectors on CCD or CMOS basis, it being possible, for example, to detect for each pixel the color ranges red, green and blue individually on a respective CCD with the aid of corresponding optics.
Die Farbe ist jedoch nicht die einzige Wahl für die zweite Eigenschaft. Auch andere Eigenschaften, die nicht notwendigerweise sofort sichtbar sein müssen, kommen in Frage. Eine wichtige zweite Eigenschaft, insbesondere im Hinblick auf die Emulation hochaperturiger Abbildungsoptiken mit niederaperturigen Abbildungsoptiken, ist der Polarisationszustand. Hier wird im Speichermodul für jeden Bildpunkt der Polarisationsgrad und/oder Polarisationsrichtung gespeichert. Dabei kann bei der Vorrichtung ein Polarisator vorgesehen sein, durch den das Licht vor Detektion geleitet wird. Die Teilbereiche werden dabei durch verschiedene Stellungen des Polarisators festgelegt. Auf diese Weise kann die Serie von Bildern direkt erzeugt werden. Eine andere Möglichkeit besteht darin, die Serie von Bildern rechnerisch anhand der gespeicherten Werte zu erzeugen. Hierbei werden für jeden Bildpunkt am Anfang Polarisationsgrad und/oder -richtung gespeichert. Auch eine Kombination von Polarisator und rechnerischer Auswertung ist möglich. Bevorzugt ordnet die Vorrichtung außerdem einem der Teilbereiche ausschließlich den Polarisationsgrad Null zu. Dem diesen Teilbereich zugeordneten Bild ordnet sich dann die Intensitätswerte von detektiertem, unpolarisiertem Licht zu.However, the color is not the only choice for the second property. Also other properties that are not necessarily must be visible immediately, come into question. An important second property, in particular with regard to the emulation of high-aperture imaging optics with low-aperture imaging optics, is the polarization state. Here, the polarization degree and / or polarization direction is stored in the memory module for each pixel. In this case, a polarizer can be provided in the device through which the light is passed before detection. The subregions are determined by different positions of the polarizer. In this way, the series of images can be generated directly. Another possibility is to computationally generate the series of images based on the stored values. Here, the polarization degree and / or direction are stored for each pixel at the beginning. A combination of polarizer and computational evaluation is possible. Preferably, the device also assigns one of the subregions exclusively the degree of polarization zero. The image assigned to this subarea is then assigned the intensity values of detected, unpolarized light.
In einer besonders bevorzugten Ausgestaltung der Erfindung ist bei der Vorrichtung als erste Abbildungsoptik ein Photolithographie-Scanner und als zweite Abbildungsoptik eine Emulationsabbildungsoptik zur Emulation des Photolithographie-Scanners vorgesehen. Auf diese Weise lassen sich mit der Emulationsabbildungsoptik die Polarisationseigenschaften des Photolithographie-Scanners ortsaufgelöst emulieren, obwohl das zugrundeliegende, im Emulationsmodul implementierte Emulationsverfahren diese Ortsabhängigkeit nicht berücksichtigen kann.In a particularly preferred embodiment of the invention, a photolithography scanner is provided in the device as the first imaging optics and an emulation imaging optics for emulation of the photolithography scanner as the second imaging optics. In this way, the emulation imaging optics can be used to emulate the polarization properties of the photolithography scanner with spatial resolution, although the underlying emulation method implemented in the emulation module can not take this local dependency into account.
Die Erfindung soll im folgenden anhand eines Ausführungsbeispiels näher erläutert werden.The invention will be explained in more detail below with reference to an embodiment.
In den dazugehörigen Zeichnungen zeigt
- Fig.1
- eine beispielhafte Vorrichtung und
- Fig.2
- den Ablauf des Verfahrens.
- Fig.1
- an exemplary device and
- Fig.2
- the procedure of the procedure.
In
Die für die Intensität und die zweite Eigenschaft, beispielsweise die Polarisation, gespeicherten Werte werden anschließend von einem Emulationsmodul 7 verarbeitet. Im Emulationsmodul 7 wird ein Emulationsbild erzeugt, welches auf einen Bildschirm 8 dargestellt wird. Zusätzlich kann das Bild auch gespeichert werden oder/und ausgedruckt werden.The values stored for the intensity and the second property, for example the polarization, are then processed by an
Die Erzeugung des Emulationsbildes ist in
- 11
- Lichtquellelight source
- 22
- zweite Abbildungsoptiksecond imaging optics
- 33
- Detektordetector
- 44
- Speichermodulmemory module
- 55
- Polarisatorpolarizer
- 66
- Objektobject
- 77
- Emulationsmodulemulation module
- 88th
- Bildschirmscreen
Claims (29)
- Method for studying the imaging behaviour of first imaging optics, in which an object (6) is imaged by second imaging optics (2) into an image plane and light in the image plane is detected with spatial resolution in pixels, the first and second imaging optics (2) differing in at least one imaging property,- values of the intensity as a first property of the light being determined for each pixel and stored in image points, and- a series of images being produced,- characterised in that- values of at least one further second property of the light are determined for each pixel and stored in image points,- the series of images is produced bya. decomposing a value range of the second property into subranges,b. assigning an image to each subrange, andc. assigning the corresponding stored intensity value to the image points of each image if the value of the second property, assigned to the image point, falls within the subrange assigned to the respective image, and otherwise assigning a predetermined intensity value to them,- the stored values are processed in an emulation step by converting the series of images into a series of intermediate images, the emulation being provided with a constant value of the second property for each of the intermediate images, which is taken from the respective subrange and is different from the values of the second property for the respective other intermediate images, and- subsequently, by combination of the intermediate images, an emulation image is produced which emulates imaging of the object (6) by the first imaging optics while taking into account the imaging property and the effect of the second property on the imaging behaviour.
- Method according to Claim 1, characterised in that the subranges partially overlap.
- Method according to Claim 1 or 2, characterised in that the predetermined intensity value is zero.
- Method according to one of the preceding claims, characterised in that both the images and the intermediate images respectively have the same size.
- Method according to Claim 4, characterised in that the intensity values of the intermediate images are added for each image point, and the emulation image is produced in this way.
- Method according to Claim 4, characterised in that the average value of the intensity values of the intermediate images is formed for each image point, and the emulation image is produced in this way.
- Method according to one of the preceding claims, characterised in that the intensity values are weighted for the assignment to an image of the series.
- Method according to one of the preceding claims, characterised in that the second property is the polarisation state, the degree of polarisation and/or the polarisation direction being stored for each image point.
- Method according to Claim 8, characterised in that the series of images is produced by sending the light through a polariser (5) before the detection, the subranges being established by different settings of the polariser (5).
- Method according to Claim 8, characterised in that the series of images is produced computationally with the aid of the stored values.
- Method according to one of Claims 8 to 12, characterised in that exclusively the degree of polarisation zero is assigned to one of the subranges, and the intensity values of detected unpolarised light are assigned to the image assigned to this subrange.
- Method according to Claim 13, characterised in that the intensity values assigned to the image with the degree of polarisation zero are distributed between other images and added to the corresponding intensity values, the distribution preferably being carried out uniformly.
- Method according to one of Claims 1 to 7, characterised in that the second property is the colour, and the wavelength and/or the degree of colour saturation are stored for each image point.
- Method according to one of the preceding claims, characterised in that a photolithography scanner is used as the first imaging optics and emulation imaging optics for emulating the photolithography scanner are used as the second imaging optics (2).
- Device for studying the imaging behaviour of first imaging optics, comprising- second imaging optics (2), by which an object (6) is imaged into an image plane and which differs from the first imaging optics in at least one imaging property,- a spatially resolving detector (3), which has pixels and by which light in the image plane is detected in the pixels,- a storage module (4), in which the values of the intensity as a first property of the light are stored with spatial resolution in image points,- the device producing a series of images,- characterised in that- values of at least one further second property of the light are stored with spatial resolution in image points in the storage module (4),- the device produces a series of images bya. decomposing a value range of the second property into subranges,b. assigning an image to each subrange, andc. assigning the corresponding stored intensity value to the image points of each image if the value of the second property, assigned to the image point, falls within the subrange assigned to the respective image, and otherwise assigning a predetermined intensity value to them,- the device furthermore comprises an emulation module (7) which converts the series of images into a series of intermediate images, the emulation being provided with a constant value of the second property for each of the intermediate images, which is taken from the respective subrange and is different from the values of the second property for the respective other intermediate images, and- by combination of the intermediate images, the emulation module (7) produces an emulation image which emulates imaging of the object (6) by the first imaging optics while taking into account the imaging property and the effect of the second property on the imaging behaviour.
- Device according to Claim 17, characterised in that the subranges partially overlap.
- Device according to Claim 17 or 18, characterised in that the predetermined intensity value is zero.
- Device according to one of Claims 17 to 19, characterised in that it produces a series of images and a series of intermediate images respectively of the same size.
- Device according to one of Claims 17 to 20, characterised in that it adds the intensity values of the intermediate images for each image point, and produces the emulation image in this way.
- Device according to one of Claims 17 to 20, characterised in that it forms the average value of the intensity values of the intermediate images for each image point, and produces the emulation image in this way.
- Device according to one of Claims 17 to 22, characterised in that it weights the intensity values for the assignment to an image of the series.
- Device according to one of Claims 17 to 23, characterised in that the second property is the polarisation state, the degree of polarisation and/or the polarisation direction being stored in the storage module for each image point.
- Device according to Claim 24, characterised in that a polariser (5) is provided, through which the light is sent before the detection, the subranges being established by different settings of the polariser (5).
- Device according to Claim 24, characterised in that it produces the images computationally with the aid of the stored values.
- Device according to one of Claims 24 to 26, characterised in that it assigns exclusively the degree of polarisation zero to one of the subranges, and it assigns the intensity values of detected unpolarised light to the image assigned to this subrange.
- Device according to one of Claims 17 to 23, characterised in that the second property is the colour, and the wavelength and/or the degree of colour saturation are stored in the storage module (4) for each image point.
- Device according to one of Claims 17 to 28, characterised in that a photolithography scanner is provided as the first imaging optics and emulation imaging optics for emulating the photolithography scanner are provided as the second imaging optics (2).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005062237A DE102005062237A1 (en) | 2005-12-22 | 2005-12-22 | Process to evaluate the optical characteristics of a lens system as employed e.g. in stereolithography by comparison of two lens systems |
PCT/EP2006/012103 WO2007079904A1 (en) | 2005-12-22 | 2006-12-15 | Method and device for analysing the imaging behaviour of an optical imaging element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1963812A1 EP1963812A1 (en) | 2008-09-03 |
EP1963812B1 true EP1963812B1 (en) | 2011-11-30 |
Family
ID=37714671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06829651A Not-in-force EP1963812B1 (en) | 2005-12-22 | 2006-12-15 | Method and device for analysing the imaging behaviour of an optical imaging element |
Country Status (7)
Country | Link |
---|---|
US (1) | US7626689B2 (en) |
EP (1) | EP1963812B1 (en) |
JP (1) | JP5226532B2 (en) |
KR (1) | KR101286788B1 (en) |
AT (1) | ATE535793T1 (en) |
DE (1) | DE102005062237A1 (en) |
WO (1) | WO2007079904A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI583194B (en) * | 2016-06-02 | 2017-05-11 | 宏碁股份有限公司 | Auxiliary control method and device for polarizer |
DE102016218977B4 (en) | 2016-09-30 | 2020-11-12 | Carl Zeiss Smt Gmbh | Procedure for determining an OPC model |
DE102017115262B9 (en) | 2017-07-07 | 2021-05-27 | Carl Zeiss Smt Gmbh | Method for characterizing a mask for microlithography |
DE102018221647B3 (en) | 2018-12-13 | 2020-06-04 | Carl Zeiss Smt Gmbh | Detection device for detecting a structure on a surface section of a lithography mask and device and method with such a detection device |
DE102019123741B4 (en) | 2019-09-04 | 2024-10-17 | Carl Zeiss Smt Gmbh | Device and method for characterizing a mask for microlithography |
DE102020123615B9 (en) | 2020-09-10 | 2022-04-28 | Carl Zeiss Smt Gmbh | Method for characterizing a mask for microlithography |
CN117008428B (en) * | 2023-09-26 | 2024-01-26 | 全芯智造技术有限公司 | Lithographic simulation method, apparatus and medium |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8701521D0 (en) * | 1987-01-23 | 1993-12-01 | British Aerospace | Multi-parameter imaging polarimeter |
US5298972A (en) * | 1990-01-22 | 1994-03-29 | Hewlett-Packard Company | Method and apparatus for measuring polarization sensitivity of optical devices |
US5731916A (en) * | 1991-01-16 | 1998-03-24 | Olympus Optical Co., Ltd. | Image Transmitting optical system |
US5631731A (en) * | 1994-03-09 | 1997-05-20 | Nikon Precision, Inc. | Method and apparatus for aerial image analyzer |
US5828500A (en) * | 1995-10-11 | 1998-10-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Optical element inspecting apparatus |
CN1272622C (en) * | 1998-04-22 | 2006-08-30 | 株式会社理光 | Double refraction detecting method and device |
JP2001228034A (en) * | 2000-02-14 | 2001-08-24 | Fuji Electric Co Ltd | Measurement method for internal stress condition of disk board |
US6693704B1 (en) * | 2000-09-26 | 2004-02-17 | Nikon Corporation | Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method |
DE10130212A1 (en) * | 2001-06-22 | 2003-01-02 | Zeiss Carl Jena Gmbh | lens |
DE10154125A1 (en) * | 2001-10-25 | 2003-05-22 | Zeiss Carl Semiconductor Mfg | System for determination of the imaging quality of an optical imaging system has an electronic object pattern generating device such as a projector or monitor that is used to generate an electronically controllable pattern |
WO2003076891A2 (en) | 2002-03-08 | 2003-09-18 | Carl Zeiss Smt Ag | Moiré method and measuring system for measuring the distortion of an optical imaging system |
JP2004061515A (en) * | 2002-07-29 | 2004-02-26 | Cark Zeiss Smt Ag | Method and device for determining influence onto polarization state by optical system, and analyzer |
JP2006511069A (en) * | 2002-12-19 | 2006-03-30 | カール・ツァイス・エスエムティー・アーゲー | Measuring method and measuring system for measuring imaging quality of an optical imaging system |
AU2003304304A1 (en) * | 2003-07-05 | 2005-01-21 | Carl Zeiss Smt Ag | Device for the polarization-specific examination of an optical system |
SG112969A1 (en) * | 2003-12-22 | 2005-07-28 | Asml Netherlands Bv | Lithographic apparatus and methods for use thereof |
JP2007535135A (en) * | 2004-04-20 | 2007-11-29 | ライテル・インストルメンツ | An emulation method for lithographic projection tools. |
DE102004033603A1 (en) * | 2004-07-08 | 2006-02-16 | Carl Zeiss Sms Gmbh | Microscopic imaging system and method for emulating a high-aperture imaging system, in particular for mask inspection |
-
2005
- 2005-12-22 DE DE102005062237A patent/DE102005062237A1/en not_active Withdrawn
-
2006
- 2006-12-15 KR KR1020087014933A patent/KR101286788B1/en active IP Right Grant
- 2006-12-15 EP EP06829651A patent/EP1963812B1/en not_active Not-in-force
- 2006-12-15 US US12/158,403 patent/US7626689B2/en active Active
- 2006-12-15 WO PCT/EP2006/012103 patent/WO2007079904A1/en active Application Filing
- 2006-12-15 JP JP2008546211A patent/JP5226532B2/en active Active
- 2006-12-15 AT AT06829651T patent/ATE535793T1/en active
Also Published As
Publication number | Publication date |
---|---|
EP1963812A1 (en) | 2008-09-03 |
WO2007079904A1 (en) | 2007-07-19 |
US20080297775A1 (en) | 2008-12-04 |
ATE535793T1 (en) | 2011-12-15 |
DE102005062237A1 (en) | 2007-07-05 |
KR20080080564A (en) | 2008-09-04 |
JP2009521107A (en) | 2009-05-28 |
KR101286788B1 (en) | 2013-07-17 |
JP5226532B2 (en) | 2013-07-03 |
US7626689B2 (en) | 2009-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1963812B1 (en) | Method and device for analysing the imaging behaviour of an optical imaging element | |
DE69225303T2 (en) | Imaging device | |
DE10314071B3 (en) | Procedure for the qualitative assessment of a material with at least one identifier | |
DE102012106584B4 (en) | Method and device for image reconstruction | |
DE102007009661A1 (en) | Method and device for the spatially resolved determination of the phase and amplitude of the electromagnetic field in the image plane of an image of an object | |
WO2016041944A1 (en) | Method for generating a result image and optical device | |
DE102013204466A1 (en) | Measurement of an optical symmetry property on a projection exposure apparatus | |
EP0475897A1 (en) | Method for producing photographic colour copies | |
DE102010007730A1 (en) | Method and device for setting a suitable evaluation parameter for a fluorescence microscope | |
DE102019208114A1 (en) | Device for 3D measurement of object coordinates | |
DE2653590A1 (en) | DEVICE FOR DETECTING DEFECTS IN FLAT PATTERNS, IN PARTICULAR IN PHOTOMASKS | |
EP1291179A2 (en) | Test means and method for controlling offset and digital printing | |
CH697319B1 (en) | Method and apparatus for geometric calibration of optoelectronic measuring cameras. | |
DE69331569T2 (en) | Method for assigning a color indication to picture elements in a color production system | |
EP1644775A2 (en) | Method for analysing objects in microlithography | |
DE212022000122U1 (en) | Stereoscopic display device based on a beam splitting device and test device | |
DE102018122816A1 (en) | Method and device for determining a property of an object | |
DE102018217115A1 (en) | Method for checking components and optical arrangement for this | |
DE69626928T2 (en) | Device for checking the color of printed matter | |
DE102015112769B4 (en) | Device and method for optical sample examination | |
EP2656327A1 (en) | Method and device for examining the optical state of value documents | |
DE102013204015A1 (en) | Spectral decomposition for Mikrospiegelkippwinkelbestimmung | |
DE102022204000A1 (en) | Method for measuring the illumination pupil in a scanner taking into account a measuring reticle | |
DE102020101994B4 (en) | Method and device for lensless imaging using Fourier transform holography | |
DE10319946A1 (en) | Classification of image object areas obtained using a confocal scanning microscope by use of detection channels to detect light of different intensities originating from object markers and by classification based on signal ratios |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080315 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20081104 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006010672 Country of ref document: DE Effective date: 20120209 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20111130 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120330 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120301 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 |
|
BERE | Be: lapsed |
Owner name: CARL ZEISS SMS G.M.B.H. Effective date: 20111231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120229 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 |
|
26N | No opposition filed |
Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006010672 Country of ref document: DE Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 535793 Country of ref document: AT Kind code of ref document: T Effective date: 20111215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111130 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120311 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006010672 Country of ref document: DE Representative=s name: GEYER, FEHNERS & PARTNER (G.B.R.), DE Ref country code: DE Ref legal event code: R081 Ref document number: 502006010672 Country of ref document: DE Owner name: CARL ZEISS SMT GMBH, DE Free format text: FORMER OWNER: CARL ZEISS SMS GMBH, 07745 JENA, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502006010672 Country of ref document: DE Representative=s name: PATENTANWAELTE GEYER, FEHNERS & PARTNER MBB, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R083 Ref document number: 502006010672 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R083 Ref document number: 502006010672 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: CARL ZEISS SMT GMBH, DE Effective date: 20161019 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170202 AND 20170208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20201223 Year of fee payment: 15 Ref country code: GB Payment date: 20201223 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20221213 Year of fee payment: 17 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006010672 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240702 |