EP1963812B1 - Method and device for analysing the imaging behaviour of an optical imaging element - Google Patents

Method and device for analysing the imaging behaviour of an optical imaging element Download PDF

Info

Publication number
EP1963812B1
EP1963812B1 EP06829651A EP06829651A EP1963812B1 EP 1963812 B1 EP1963812 B1 EP 1963812B1 EP 06829651 A EP06829651 A EP 06829651A EP 06829651 A EP06829651 A EP 06829651A EP 1963812 B1 EP1963812 B1 EP 1963812B1
Authority
EP
European Patent Office
Prior art keywords
image
property
images
emulation
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06829651A
Other languages
German (de)
French (fr)
Other versions
EP1963812A1 (en
Inventor
Jörn Greif-Wüstenbecker
Ulrich Strössner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMS GmbH
Original Assignee
Carl Zeiss SMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMS GmbH filed Critical Carl Zeiss SMS GmbH
Publication of EP1963812A1 publication Critical patent/EP1963812A1/en
Application granted granted Critical
Publication of EP1963812B1 publication Critical patent/EP1963812B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0285Testing optical properties by measuring material or chromatic transmission properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Definitions

  • the invention relates to a method for investigating the imaging behavior of a first imaging optical system, in which an object is imaged by a second imaging optical system in an image plane and light is detected spatially resolved in pixels in the image plane, wherein the first and second imaging optics differ in at least one imaging property, wherein for each pixel, values for the intensity are determined as a first property of the light and stored in pixels, and wherein a series of images are generated.
  • the invention also relates to a device for examining the imaging behavior of a first imaging optics.
  • a device for examining the imaging behavior of a first imaging optics.
  • Such a device comprises a second imaging optics, by means of which an object is imaged into an image plane and which differs from the first imaging optics in at least one imaging property, a spatially resolving detector with pixels, with which light in the image plane is detected in the pixels, as well a memory module in which spatially resolved intensity values are stored as pixels in a first property of the light, the device generating a series of images.
  • the invention relates to the problem that in the prior art dependencies on a second property of the light - which may be, for example, the color or polarization - in the emulation only incomplete, for example, can be considered summarily.
  • the emulation of the imaging properties of optical systems can lead to inaccuracies in the emulation. For example, some errors are particularly noticeable when emulating high-aperture imaging optics with low-aperture imaging optics.
  • polarizing elements such as polarizers or gratings have been substantially examined and evaluated for their integral effect.
  • the determination of local optical properties is becoming more and more important for the further development and improvement of manufacturing processes and to ensure product quality.
  • DOE diffractive optical element
  • the optical effect of this DOE arises on the webs, which are arranged concentrically around the optical axis.
  • the distance between two webs is not constant, but varies depending on the radius.
  • the object of this element is a dispersively imaging color compensation within the objective, wherein the optical quality of the objective results from the interaction between the refractive lenses and the DOE.
  • the introduction of the DOE usually requires an adaptation of the beam path, both imaging optics differ at least in it.
  • the second imaging optics can also be designed such that it images the object relative to the objective magnified or reduced.
  • a method and a device are known with which aberrations such as the aberrations of a first imaging optics-for example a projection objective for photolithography-can be measured.
  • the imaging optics is introduced into a second optical system, which has inter alia a lighting device, a second imaging optics and a spatially resolving detector.
  • a grid is introduced in the beam path.
  • the grids point to each other adapted structures in the form of sublattices with line patterns.
  • the object-side lattice is imaged onto the image-side lattice, so that the images of the lattices overlap on the detector and produce moire patterns.
  • the grids are mounted rotatable and / or displaceable. The disturbances can be determined by taking and evaluating series of images with different positions of the grids.
  • the object of the present invention is therefore to further develop a method and a device of the type described at the outset such that optical properties and factors which influence the imaging behavior of a first imaging optical system to be examined are better taken into account.
  • This object is achieved in a method of the type described above according to claim 1, characterized in that for each pixel values for at least one further, second property of the light is determined and stored in pixels, the series of images is generated by (a) a range of values (b) an image is assigned to each subarea, and (c) the corresponding stored intensity value is assigned to the pixels of each image if the value of the second characteristic associated with the pixel is in the subarea associated with the respective image falls, and otherwise a predetermined intensity value is assigned to them. Then the stored values are processed in an emulation step by converting the series of images into a series of intermediate images, with a constant value of the second characteristic in the emulation for each of the intermediate images received.
  • the constant value of the second property comes from the respective subarea and is different from the values of the second property for the other intermediate images.
  • an emulation image is generated by combining the intermediate images, which emulates an image of the object with the first imaging optics, taking into account the imaging property and the influence of the second property on the imaging behavior.
  • a further property for example the color or the polarization effect, is determined for each pixel, for which purpose methods known in the prior art can be used.
  • the value of the second property will usually vary depending on the location.
  • subregions can be selected adjacent to each other, however, for processing and the reference to practice, it is advantageous to choose each other at least partially overlapping subregions, preferably only adjacent subregions overlap.
  • a division into For example, subregions can be done using trigonometric functions - the transmittance of a color filter or polarizer, for example, is described by the square of a sine function.
  • the predetermined intensity value it is preferable to select 0, i. as soon as the value of the second property no longer falls in the partial area assigned to an intermediate image, the intensity value for this intermediate image and the relevant pixel is set to zero. It is expedient if images, intermediate images and the emulation image each have the same size, since the processing is easier. Each image, intermediate image and the emulation image thus preferably have the same number of pixels or pixel rows and columns. Of course, you can also use different sizes, if a corresponding adjustment is made.
  • the wavelength and / or the color saturation degree are preferably determined and stored for each pixel. This can be achieved, for example, by independently detecting the colors in each pixel, for example by using a wavelength-selective detector with corresponding upstream optics, which detects separately for each color range - red, green and blue. Another possibility is to produce the series of individual images with the aid of color filters which are introduced into the beam path.
  • a particularly preferred choice of the second property is the polarization state, which gains influence, for example, in the emulation of high-aperture optics. Since this is not detectable as the intensity directly on a CCD, the polarization degree and / or the direction of polarization must be determined and stored for each pixel by measurement.
  • the Stokes parameters which characterize the polarizing optical element can be determined spatially resolved. This method is for example of HW Berry et al. in Applied Optics 16, 3200 (1977 ). Subsequently, the series of images can be computationally generated based on the stored values.
  • Another possibility is to generate the series of images by passing the light through a polarizer prior to detection, the subregions being determined by the different positions of the polarizer.
  • a polarizer In such a polarizer, a natural weighting function is already incorporated, which corresponds essentially to the square of a sine function. The subregions are therefore usually quite large and overlap.
  • a combination of polarizer and computational generation of the images is also possible.
  • the intensity values become, for example, a function C ⁇ ⁇ - ⁇ weighted when the polarization angle ⁇ associated with a pixel falls within the subrange, where C is a constant and ⁇ the polarization angle at the center of the corresponding subrange. If the polarization angle associated with a pixel is outside the subarea, then the pixel is given the predetermined intensity value, that is to say zero, for example.
  • a weighting can be achieved such that the polarization can be assumed to be substantially homogeneous for each image.
  • the higher the number of subareas the higher the accuracy, but the number of subareas must be matched with the duration of the emulation, since the number of images increases as the emulation step takes longer.
  • a choice of 6, 8 or 12 sub-areas has been found.
  • the number of subareas is freely selectable.
  • it can also be folded, for example, with a smoothing function, so that it becomes continuously differentiable at least once.
  • Another possibility is to weight the intensity values with the function C ⁇ cos 2 ⁇ ⁇ - ⁇ . when the polarization angle ⁇ associated with a pixel falls within the subrange, where C is a constant and ⁇ the polarization angle at the center of the corresponding subrange.
  • This function corresponds to an adapted choice of the constants substantially a rounded triangle function.
  • the polarization over the image field is approximately constant.
  • the images can then be processed substantially error-free in the evaluation process or in the emulation step, where a location-dependence of the polarization is not taken into account.
  • unpolarized light which should also include circularly polarized light
  • unpolarized light is also taken into account. This is achieved by assigning one of the partial regions exclusively the degree of polarization zero and assigning to the image associated with this partial region the intensity values of detected, unpolarized light.
  • the intensity values associated with the zero polarization image may then be split into other images and added to the corresponding intensity values. The division is preferably uniform. Alternatively, this image can also be processed separately, either as a whole or in turn divided into different images.
  • a photolithography scanner is used as the first imaging optics, and emulation imaging optics for emulation of the photolithography scanner are used as the second imaging optics.
  • the photolithography scanner is an imaging optic with a very high numerical aperture, while emulation imaging optics is a low numerical aperture optic.
  • the invention also relates to a device for examining the imaging behavior of a first imaging optics.
  • the object according to claim 17 is achieved by storing in the memory module spatially resolved values for at least one further, second property of the light in pixels and the device generating the series of images by (a ) a range of values of the second property is divided into subregions, (b) an image is assigned to each subarea, and (c) the respective stored intensity value is assigned to the pixels of each image if the value of the second characteristic associated with the pixel is that of the respective one Image associated with the sub-area falls, and otherwise a predetermined intensity value is assigned to them.
  • the apparatus also includes an emulation module, which then converts the series of images into a series of intermediate images, with a constant value of the second characteristic being included in the emulation for each of the intermediate images.
  • the constant value of the second property comes from the respective subarea and is different from the values of the second property for the respective intermediate images.
  • the emulation module generates an emulation image by combining the intermediate images. In this way, the influence of the second property on the imaging behavior in the emulation image can be considered spatially resolved.
  • the predetermined intensity value is zero, which simplifies the evaluation. It is also expedient if the subregions partially overlap, depending on which weighting function the device uses.
  • the device Preferably, the device generates a series of images and a series of intermediate images of the same size, since this considerably simplifies the handling and no difficulties arise in the distribution of the intensity values on the images or intermediate images. Of course, it is also possible with appropriate adjustment to use different image sizes.
  • the device preferably adds the intensity values of the intermediate images for each pixel and thus generates the emulation image. This is the simplest method for considering the location dependence of the second variable or its variability over the image field in the emulation image.
  • the device can also form for each pixel the mean value of the intensity values of the intermediate images and in this way generate the emulation image.
  • the device preferably weights the intensity values in the association with an image of the series, which is particularly advantageous when the subregions overlap and an intensity value can be assigned to a plurality of subregions.
  • the second property is the color, wherein the wavelength and / or the color saturation level are stored in the memory module for each pixel.
  • This property can be detected relatively easily with the aid of modern detectors on CCD or CMOS basis, it being possible, for example, to detect for each pixel the color ranges red, green and blue individually on a respective CCD with the aid of corresponding optics.
  • the color is not the only choice for the second property. Also other properties that are not necessarily must be visible immediately, come into question.
  • the polarization degree and / or polarization direction is stored in the memory module for each pixel.
  • a polarizer can be provided in the device through which the light is passed before detection. The subregions are determined by different positions of the polarizer. In this way, the series of images can be generated directly.
  • Another possibility is to computationally generate the series of images based on the stored values.
  • the polarization degree and / or direction are stored for each pixel at the beginning. A combination of polarizer and computational evaluation is possible.
  • the device also assigns one of the subregions exclusively the degree of polarization zero. The image assigned to this subarea is then assigned the intensity values of detected, unpolarized light.
  • a photolithography scanner is provided in the device as the first imaging optics and an emulation imaging optics for emulation of the photolithography scanner as the second imaging optics.
  • the emulation imaging optics can be used to emulate the polarization properties of the photolithography scanner with spatial resolution, although the underlying emulation method implemented in the emulation module can not take this local dependency into account.
  • a device is shown as it can be used to investigate the imaging behavior of a (not shown) first imaging optics.
  • a light source 1 light is fed into a second imaging optics 2.
  • the second imaging optics 2 focuses the light onto a spatial resolution detector 3 with pixels.
  • the light is detected in the image plane in the pixels.
  • the intensity is detected directly in the pixels.
  • the values for the intensity are stored in a memory module 4 in association with the pixels.
  • a second property of the light is stored in the memory module 4. This can be for example the color, or else the polarization. In the latter case, for example, a rotatable polarizer 5 which can be inserted into the beam path in front of the detector can be provided.
  • the second imaging optics 2 forms an object 6 on the detector 3.
  • the object 6 is introduced at the appropriate location in the second imaging optics 2, so that an image of the object 6 is generated on the detector 3.
  • the object 6 may be, for example, a simple or non-linear color filter, a polarizer or a diffractive optical element. In the latter case may have the setting of the second Imaging optics are adapted to the imaging properties of the object 6.
  • object 6 may also be a mask as used in photolithography.
  • the light source 1 in this case is preferably a source which emits only one wavelength. If the second property to be registered is the polarization or not directly visible properties, then further devices are necessary, which are not shown here and serve to detect and determine these properties. The values of these properties are then also stored in association with the pixels in the memory module 4.
  • the values stored for the intensity and the second property, for example the polarization, are then processed by an emulation module 7.
  • an emulation image is generated, which is displayed on a screen 8.
  • the image can also be saved or / and printed out.
  • the generation of the emulation image is in Fig.2 outlined.
  • ie polarization degree and / or direction are stored. These data form the so-called input image data record. From this input image data set, a series of images is generated. In this case, first the minimum and the maximum of the second property can be determined so as to determine the range of values of this property. This value range is then decomposed into subareas, the unpolarized portion of the intensity in the example being a separate subarea is assigned with the degree of polarization zero. This subregion also contains the intensity values of the circularly polarized portion of the light. Of course, the assignment to a separate sub-area is not mandatory.
  • the unpolarized portion for example, can also be divided among the other subareas - this corresponds to a uniform distribution among the individual images.
  • the other subareas are divided according to polarization angles in a value range from 0 ° to 180 °.
  • the polarization angle ⁇ in the center of the corresponding subarea is specified for each image.
  • the subregions can be selected as overlapping or non-overlapping in coordination with the weighting function to be used. In this example, eight sections are selected.
  • the images are then processed in the emulation step. In this case, an image of the object 6 with the first imaging optics is emulated taking into account the imaging property and the influence of the polarization on the imaging behavior.
  • the unpolarized intensity can be treated separately, but does not have to.
  • a division into the polarized images is possible, for example.
  • the object 6 is, for example, a mask
  • an image of this mask can be emulated with a photolithography scanner as the first imaging optics.
  • the second imaging optics 2 is in this case an emulation imaging optics.
  • the imaging characteristics in which both optics differ are the magnification and the numerical aperture.
  • intermediate images are generated for each polarization angle ⁇ , wherein in the emulation step, the polarization for the respective image as was constantly accepted. This is due to technical reasons since the methods available in the prior art for emulating or taking account of the polarization can only take constant polarizations into account.
  • the intermediate images are added pixel-by-pixel to the emulation image.
  • the location dependency in the polarization can be taken into account in the emulation of a photolithography scanner, although the available emulation method according to the prior art actually does not allow this or leads to larger errors.

Abstract

In a process to evaluate the optical characteristics of a lens system, two properties are defined using first and second lens systems. Selecting the second property, a selected zone is broken down into smaller zones and an image allocated to each smaller zone and the image point intensity measured. The series of images in an emulation stage is converted into a series of intermediate images that are finally converted into an emulation image. The second set of images is compared to images defined by the first system.

Description

Die Erfindung betrifft ein Verfahren zur Untersuchung des Abbildungsverhaltens einer ersten Abbildungsoptik, bei dem ein Objekt durch eine zweite Abbildungsoptik in eine Bildebene abgebildet wird und Licht in der Bildebene in Pixeln ortsaufgelöst detektiert wird, wobei sich die erste und zweite Abbildungsoptik in mindestens einer Abbildungseigenschaft unterscheiden, wobei für jedes Pixel Werte für die Intensität als eine erste Eigenschaft des Lichts bestimmt und in Bildpunkten gespeichert werden, und wobei eine Serie von Bildern erzeugt wird.The invention relates to a method for investigating the imaging behavior of a first imaging optical system, in which an object is imaged by a second imaging optical system in an image plane and light is detected spatially resolved in pixels in the image plane, wherein the first and second imaging optics differ in at least one imaging property, wherein for each pixel, values for the intensity are determined as a first property of the light and stored in pixels, and wherein a series of images are generated.

Die Erfindung betrifft auch eine Vorrichtung zur Untersuchung des Abbildungsverhaltens einer ersten Abbildungsoptik. Eine solche Vorrichtung umfaßt eine zweite Abbildungsoptik, durch die ein Objekt in eine Bildebene abgebildet wird, und die sich von der ersten Abbildungsoptik in mindestens einer Abbildungseigenschaft unterscheidet, einen ortsauflösenden Detektor mit Pixeln, mit dem Licht in der Bildebene in den Pixeln detektiert wird, sowie ein Speichermodul, in welchem ortsaufgelöst Werte für die Intensität als eine erste Eigenschaft des Lichts in Bildpunkten gespeichert werden, wobei die Vorrichtung eine Serie von Bilder erzeugt. Die Erfindung bezieht sich auf das Problem, daß im Stand der Technik Abhängigkeiten von einer zweiten Eigenschaft des Lichts - bei der es sich beispielsweise um die Farbe oder die Polarisation handeln kann - bei der Emulation nur unvollständig, beispielsweise summarisch berücksichtigt werden können.The invention also relates to a device for examining the imaging behavior of a first imaging optics. Such a device comprises a second imaging optics, by means of which an object is imaged into an image plane and which differs from the first imaging optics in at least one imaging property, a spatially resolving detector with pixels, with which light in the image plane is detected in the pixels, as well a memory module in which spatially resolved intensity values are stored as pixels in a first property of the light, the device generating a series of images. The invention relates to the problem that in the prior art dependencies on a second property of the light - which may be, for example, the color or polarization - in the emulation only incomplete, for example, can be considered summarily.

Bei der Emulation der Abbildungseigenschaften optischer Systeme kann es dabei zu Ungenauigkeiten in der Emulation kommen. Einige Fehler machen sich beispielsweise besonders bemerkbar, wenn man mit einer niederaperturigen Abbildungsoptik eine hochaperturige Abbildungsoptik emuliert. Bisher wurden beispielsweise polarisierende Elemente wie Polarisatoren oder Gitter im wesentlichen anhand ihrer integralen Wirkung untersucht und bewertet. Mit der Entwicklung von mikro- oder nanostrukturierten optischen Bauelementen gewinnt jedoch die Bestimmung der lokalen optischen Eigenschaften immer mehr an Bedeutung für die Weiterentwicklung und Verbesserung von Fertigungsprozessen und der Gewährleistung der Produktqualität. Als Beispiel für solche optischen Bauelemente sei hier ein diffraktiv optisches Element (DOE) erwähnt, wie es beispielsweise im in der WO 03/001272 A3 beschriebenen Hybridobjektiv verwendet wird. Die optische Wirkung dieses DOE entsteht an den Stegen, die konzentrisch um die optische Achse angeordnet sind. Dabei ist der Abstand zwischen zwei Stegen nicht konstant, sondern variiert in Abhängigkeit vom Radius. Die Aufgabe dieses Elements ist eine dispersiv abbildende Farbkompensation innerhalb des Objektivs, wobei sich die optische Güte des Objektivs aus dem Zusammenwirken zwischen den refraktiven Linsen und dem DOE ergibt. Um nicht erst bei der Endmontage des Objektivs die optischen Eigenschaften des DOE beurteilen zu können, ist es wünschenswert, die optische Wirkung vorab im Detail zu studieren. Dies kann unabhängig von dem Objektiv erfolgen, oder aber auch durch Einbringen in den Strahlengang einer abbildenden Optik, z.B. einem Emulationsabbildungssystem als zweiter Abbildungsoptik zur Emulation des betreffenden Objektivs, der ersten Abbildungsoptik. Das Einbringen des DOE erfordert in der Regel eine Anpassung des Strahlengangs, beide Abbildungsoptiken unterscheiden sich zumindest darin. Außerdem kann die zweite Abbildungsoptik auch so ausgestaltet sein, daß sie das Objekt gegenüber dem Objektiv vergrößert oder verkleinert abbildet.The emulation of the imaging properties of optical systems can lead to inaccuracies in the emulation. For example, some errors are particularly noticeable when emulating high-aperture imaging optics with low-aperture imaging optics. Heretofore, for example, polarizing elements such as polarizers or gratings have been substantially examined and evaluated for their integral effect. However, with the development of micro- or nanostructured optical devices, the determination of local optical properties is becoming more and more important for the further development and improvement of manufacturing processes and to ensure product quality. As an example of such optical components is here a diffractive optical element (DOE) mentioned, as for example in the in WO 03/001272 A3 described hybrid lens is used. The optical effect of this DOE arises on the webs, which are arranged concentrically around the optical axis. The distance between two webs is not constant, but varies depending on the radius. The object of this element is a dispersively imaging color compensation within the objective, wherein the optical quality of the objective results from the interaction between the refractive lenses and the DOE. In order not to be able to judge the optical properties of the DOE until final assembly of the objective, it is desirable to study the optical effect in detail in advance. This can be done independently of the objective, or else by introducing it into the beam path of an imaging optical system, for example an emulation imaging system as a second imaging optical unit for emulating the relevant objective, the first imaging optics. The introduction of the DOE usually requires an adaptation of the beam path, both imaging optics differ at least in it. In addition, the second imaging optics can also be designed such that it images the object relative to the objective magnified or reduced.

Ein anderes Beispiel für solche Bauelemente sind klassische lineare Beugungsgitter. Bei den beispielsweise in der Telekommunikation eingesetzten Gittern wird mit steigender Anzahl von Linienpaaren pro Flächeneinheit der Energieanteil und somit die Effizienz in der nullten Beugungsordnung erhöht. Mit steigender Linienzahl, d.h. kleineren Strukturgrößen, steigt beim Gitter die polarisierende Wirkung.Another example of such devices are classic linear diffraction gratings. In the lattice used for example in telecommunications is increased with increasing number of line pairs per unit area of energy and thus the efficiency in the zeroth diffraction order. With increasing number of lines, i. smaller structure sizes, the grating increases the polarizing effect.

Auch bei Photolithographie-Scannern, bei denen der Trend zu immer höhern numerischen Aperturen und immer kleineren Maskenstrukturen geht, spielen Polarisationseffekte eine immer größere Rolle. Mit den bisher im Stand der Technik bekannten Emulationsabbildungsverfahren und -systemen lassen sich solche Polarisationseffekte jedoch nur unvollständig beschreiben, da die Polarisationswirkung nur summarisch, d.h. über die Bildfläche integriert, berücksichtigt wird.Also in photolithography scanners, where the trend towards ever higher numerical apertures and ever smaller mask structures, polarization effects play an increasingly important role. However, with the emulation imaging techniques and systems heretofore known in the art, such polarization effects can only be described incompletely, since the polarization effect is only summarily, i. integrated over the image area.

Aus der WO 03/76891 sind ein Verfahren und eine Vorrichtung bekannt, mit denen Abbildungsfehler wie die Aberrationen einer ersten Abbildungsoptik - beispielsweise eines Projektionsobjektivs für die Photolithographie - vermessen werden können. Die Abbildungsoptik wird in ein zweites optisches System eingebracht, welches unter anderem über eine Beleuchtungseinrichtung, eine zweite Abbildungsoptik und einen ortsauflösenden Detektor verfügt. In den Strahlengang wird sowohl objektseitig als auch bildseitig gleichzeitig jeweils ein Gitter eingebracht. Die Gitter weisen aneinander angepaßte Strukturen in Form von Untergittern mit Strichmustern auf. Das objektseitig gelegene Gitter wird auf das bildseitige Gitter abgebildet, so daß die Abbildungen der Gitter sich auf dem Detektor überlagern und Moire-Muster erzeugen. Die Gitter sind rotier- und / oder verschiebbar gelagert. Die Störungen lassen sich bestimmen, indem Serien von Bildern mit verschiedenen Stellungen der Gitter aufgenommen und ausgewertet werden.From the WO 03/76891 For example, a method and a device are known with which aberrations such as the aberrations of a first imaging optics-for example a projection objective for photolithography-can be measured. The imaging optics is introduced into a second optical system, which has inter alia a lighting device, a second imaging optics and a spatially resolving detector. In the beam path, both on the object side as well as on the image side simultaneously a grid is introduced. The grids point to each other adapted structures in the form of sublattices with line patterns. The object-side lattice is imaged onto the image-side lattice, so that the images of the lattices overlap on the detector and produce moire patterns. The grids are mounted rotatable and / or displaceable. The disturbances can be determined by taking and evaluating series of images with different positions of the grids.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Vorrichtung der eingangs beschriebenen Art dahingehend weiterzuentwickeln, daß optische Eigenschaften und Faktoren, die das Abbildungsverhalten einer zu untersuchenden ersten Abbildungsoptik beeinflussen, besser berücksichtigt werden.The object of the present invention is therefore to further develop a method and a device of the type described at the outset such that optical properties and factors which influence the imaging behavior of a first imaging optical system to be examined are better taken into account.

Diese Aufgabe wird bei einem Verfahren der eingangs beschriebenen Art gemäß Anspruch 1 dadurch gelöst, daß für jedes Pixel Werte für mindestens eine weitere, zweite Eigenschaft des Lichts bestimmt und in Bildpunkten gespeichert wird, die Serie von Bilder erzeugt wird, indem (a) ein Wertebereich der zweiten Eigenschaft in Teilbereiche zerlegt wird, (b) jedem Teilbereich ein Bild zugeordnet wird, und (c) den Bildpunkten jedes Bildes der entsprechende, gespeicherte Intensitätswert zugeordnet wird, falls der dem Bildpunkt zugeordnete Wert der zweiten Eigenschaft in den dem jeweiligen Bild zugeordneten Teilbereich fällt, und ihnen andernfalls ein vorgegebener Intensitätswert zugeordnet wird. Dann werden die gespeicherten Werte in einem Emulationsschritt verarbeitet, indem die Serie von Bildern in eine Serie von Zwischenbildern umgewandelt wird, wobei für jedes der Zwischenbilder ein konstanter Wert der zweiten Eigenschaft in die Emulation eingeht. Der konstante Wert der zweiten Eigenschaft stammt aus dem jeweiligen Teilbereich und ist von den Werten der zweiten Eigenschaft für die jeweils anderen Zwischenbilder verschieden. Anschließend wird durch Kombination der Zwischenbilder ein Emulationsbild erzeugt, welches eine Abbildung des Objektes mit der ersten Abbildungsoptik unter Berücksichtigung der Abbildungseigenschaft und des Einflusses der zweiten Eigenschaft auf das Abbildungsverhalten emuliert.This object is achieved in a method of the type described above according to claim 1, characterized in that for each pixel values for at least one further, second property of the light is determined and stored in pixels, the series of images is generated by (a) a range of values (b) an image is assigned to each subarea, and (c) the corresponding stored intensity value is assigned to the pixels of each image if the value of the second characteristic associated with the pixel is in the subarea associated with the respective image falls, and otherwise a predetermined intensity value is assigned to them. Then the stored values are processed in an emulation step by converting the series of images into a series of intermediate images, with a constant value of the second characteristic in the emulation for each of the intermediate images received. The constant value of the second property comes from the respective subarea and is different from the values of the second property for the other intermediate images. Subsequently, an emulation image is generated by combining the intermediate images, which emulates an image of the object with the first imaging optics, taking into account the imaging property and the influence of the second property on the imaging behavior.

Bei der Erzeugung einer Abbildung mit einem zu untersuchenden optischen Bauelement wird neben der Intensität noch eine weitere Eigenschaft, beispielsweise die Farbe oder die Polarisationswirkung für jedem Bildpunkt bestimmt, wozu im Stand der Technik bekannte Verfahren verwendet werden können. Wie auch die Intensität, so wird auch der Wert der zweiten Eigenschaft in der Regel in Abhängigkeit vom Ort variieren. Die Zerlegung in einzelne Bilder, für die der Wert der zweiten Eigenschaft, der in das Auswerteverfahren bzw. den Emulationsschritt als Parameter eingeht, jeweils konstant ist, ermöglicht es, den Fehler, der gegenüber einer Auswertung bzw. Emulation - wie sie dem Stand der Technik entspricht - mit einem über das gesamte Bild gemittelten Wert für die zweite Eigenschaft gemacht worden wäre, zu verringern. Je mehr und je engere Teilbereiche erzeugt werden, desto geringer wird der Fehler.When generating an image with an optical component to be examined, in addition to the intensity, a further property, for example the color or the polarization effect, is determined for each pixel, for which purpose methods known in the prior art can be used. As well as the intensity, the value of the second property will usually vary depending on the location. The decomposition into individual images, for which the value of the second property, which enters into the evaluation method or the emulation step as a parameter, is constant in each case, makes it possible to compare the error with respect to an evaluation or emulation - as in the prior art corresponds - with a value averaged over the entire image for the second property would have been made to decrease. The more and the narrower parts are created, the lower the error becomes.

Die Teilbereiche können dabei aneinander angrenzend gewählt werden, für die Verarbeitung und den Bezug zur Praxis ist es jedoch vorteilhaft, einander zumindest teilweise überlappende Teilbereiche zu wählen, wobei sich bevorzugt nur benachbarte Teilbereiche überlappen. Eine Aufteilung in Teilbereiche kann auf diese Weise beispielsweise mit Hilfe von trigonometrischer Funktionen erfolgen - die Durchlässigkeit eines Farbfilters oder Polarisators zum Beispiel wird durch das Quadrat einer Sinusfunktion beschrieben.The subregions can be selected adjacent to each other, however, for processing and the reference to practice, it is advantageous to choose each other at least partially overlapping subregions, preferably only adjacent subregions overlap. A division into For example, subregions can be done using trigonometric functions - the transmittance of a color filter or polarizer, for example, is described by the square of a sine function.

Als vorgegebenen Intensitätswert wählt man vorzugsweise 0, d.h. sobald der Wert der zweiten Eigenschaft nicht mehr in den einem Zwischenbild zugeordneten Teilbereich fällt, wird der Intensitätswert für dieses Zwischenbild und den betreffenden Bildpunkt zu Null gesetzt. Dabei ist es zweckmäßig, wenn Bilder, Zwischenbilder und das Emulationsbild jeweils die gleiche Größe aufweisen, da so die Verarbeitung erleichtert wird. Jedes Bild, Zwischenbild und das Emulationsbild verfügen also bevorzugt über die gleiche Anzahl von Bildpunkten bzw. Bildpunktzeilen und -spalten. Selbstverständlich lassen sich auch verschiedene Größen verwenden, wenn eine entsprechende Anpassung erfolgt.As the predetermined intensity value, it is preferable to select 0, i. as soon as the value of the second property no longer falls in the partial area assigned to an intermediate image, the intensity value for this intermediate image and the relevant pixel is set to zero. It is expedient if images, intermediate images and the emulation image each have the same size, since the processing is easier. Each image, intermediate image and the emulation image thus preferably have the same number of pixels or pixel rows and columns. Of course, you can also use different sizes, if a corresponding adjustment is made.

Zur Kombination der Zwischenbilder zum Emulationsbild gibt es verschiedene Möglichkeiten. Eine besonders einfache besteht darin, die Zwischenbilder für jeden Bildpunkt zu addieren. Eine andere, ebenfalls einfach zu realisierende Möglichkeit besteht darin, für jeden Bildpunkt den Mittelwert der Intensitätswerte der Zwischenbilder zu bilden und so das Emulationsbild zu erzeugen.There are various possibilities for combining the intermediate images with the emulation image. A particularly simple is to add the intermediate images for each pixel. Another possibility, which is likewise easy to implement, is to form for each pixel the mean value of the intensity values of the intermediate images and thus to generate the emulation image.

Insbesondere dann, wenn die Teilbereiche einander überlappen, ist es vorteilhaft, die Intensitätswerte bei der Zuordnung zu einem Bild der Serie zu wichten. Bevorzugt erfolgt diese Wichtung so, daß die Summe der für einen Bildpunkt gewichteten Intensitätswerte bei Zuordnung zu mehreren Teilbereichen den ursprünglichen Intensitätswerten des Bildpunktes entspricht.In particular, when the subregions overlap one another, it is advantageous to weight the intensity values when assigned to an image of the series. This weighting preferably takes place in such a way that the sum of the intensity values weighted for a pixel when assigned to several Subareas corresponds to the original intensity values of the pixel.

Als zweite Eigenschaft kommen verschiedene Eigenschaften des zu detektierenden Lichtes in Frage, eine wichtige Eigenschaft ist beispielsweise die Farbe. Hier bestimmt und speichert man für jeden Bildpunkt vorzugsweise die Wellenlänge und/oder den Farbsättigungsgrad. Dies läßt sich beispielsweise erzielen, indem in jedem Bildpunkt die Farben unabhängig voneinander detektiert werden, indem beispielsweise ein wellenlängenselektiver Detektor mit entsprechend vorgeschalteter Optik verwendet wird, der für jeden Farbbereich - Rot, Grün und Blau - getrennt detektiert. Eine andere Möglichkeit besteht darin, die Serie von Einzelbildern mit Hilfe von Farbfiltern, die in den Strahlengang eingebracht werden, zu erzeugen.As a second property, various properties of the light to be detected come into question, an important property is, for example, the color. Here, the wavelength and / or the color saturation degree are preferably determined and stored for each pixel. This can be achieved, for example, by independently detecting the colors in each pixel, for example by using a wavelength-selective detector with corresponding upstream optics, which detects separately for each color range - red, green and blue. Another possibility is to produce the series of individual images with the aid of color filters which are introduced into the beam path.

Eine besonders bevorzugte Wahl der zweiten Eigenschaft ist der Polarisationszustand, der z.B. bei der Emulation hochaperturiger Optiken an Einfluß gewinnt. Da dieser nicht wie die Intensität direkt auf einer CCD detektierbar ist, müssen für jeden Bildpunkt der Polarisationsgrad und/oder die Polarisationsrichtung durch Messung bestimmt und gespeichert werden. Zur ortsaufgelösten Bestimmung der Polarisation können beispielsweise ortsaufgelöst die Stokes-Parameter, die das polarisierende optische Element charakterisieren, bestimmt werden. Diese Methode ist beispielsweise von H. W. Berry et al. in Applied Optics 16, 3200 (1977 ) beschrieben. Anschließend kann die Serie von Bildern rechnerisch anhand der gespeicherten Werte erzeugt werden.A particularly preferred choice of the second property is the polarization state, which gains influence, for example, in the emulation of high-aperture optics. Since this is not detectable as the intensity directly on a CCD, the polarization degree and / or the direction of polarization must be determined and stored for each pixel by measurement. For spatially resolved determination of the polarization, for example, the Stokes parameters which characterize the polarizing optical element can be determined spatially resolved. This method is for example of HW Berry et al. in Applied Optics 16, 3200 (1977 ). Subsequently, the series of images can be computationally generated based on the stored values.

Eine andere Möglichkeit besteht darin, die Serie von Bildern zu erzeugen, indem das Licht vor der Detektion durch einen Polarisator geleitet wird, wobei die Teilbereiche durch die verschiedenen Stellungen des Polarisators festgelegt werden. In einem solchen Polarisator ist bereits eine natürliche Wichtungsfunktion inkorporiert, die im wesentlichen dem Quadrat einer Sinusfunktion entspricht. Die Teilbereiche sind daher in der Regel recht groß und überlappen sich. Auch eine Kombination von Polarisator und rechnerischer Erzeugung der Bilder ist möglich.Another possibility is to generate the series of images by passing the light through a polarizer prior to detection, the subregions being determined by the different positions of the polarizer. In such a polarizer, a natural weighting function is already incorporated, which corresponds essentially to the square of a sine function. The subregions are therefore usually quite large and overlap. A combination of polarizer and computational generation of the images is also possible.

Erzeugt man die Serie von Bildern rechnerisch anhand der gespeicherten Werte, so läßt sich diese natürliche Wichtungsfunktion ebenfalls verwenden, es stehen jedoch noch eine große Anzahl und in der Regel günstigere Wichtungsfunktionen zur Verfügung. In einer vorteilhaften Ausgestaltung des Verfahrens werden die Intensitätswerte beispielsweise mit einer Funktion C ϕ - θ

Figure imgb0001
gewichtet, wenn der einem Bildpunkt zugeordnete Polarisationswinkel θ in den Teilbereich fällt, wobei C eine Konstante und ϕ der Polarisationwinkel im Zentrum des entsprechenden Teilbereichs ist. Liegt der einem Bildpunkt zugeordnete Polarisationswinkel außerhalb des Teilbereichs, so wird dementsprechend einem Bildpunkt der vorgegebene Intensitätswert, also beispielsweise Null, zugeordnet. Mit dieser Dreiecksfunktion, deren Steigung durch eine entsprechende Wahl der Konstante beeinflußt werden kann, läßt sich eine Wichtung derart erzielen, daß für jedes Bild die Polarisation als im Wesentlichen homogen angenommen werden kann. Dabei ist die Genauigkeit um so höher, je höher die Anzahl der Teilbereiche gewählt wird, wobei jedoch die Anzahl der Teilbereiche mit der Dauer der Emulation abgestimmt werden muß, da mit steigender Anzahl von Bildern der Emulationsschritt länger dauert. Als guter Kompromiß hat sich beispielsweise eine Wahl von 6, 8 oder 12 Teilbereichen herausgestellt. Grundsätzlich ist die Zahl der Teilbereiche frei wählbar. Um die eben beschriebene Dreiecksfunktion im Auswerteverfahren bzw. Emulationsschritt besser handhabbar zu machen, kann sie außerdem beispielsweise mit einer Glättungsfunktion gefaltet werden, so daß sie mindestens einmal stetig differenzierbar wird.If one constructs the series of images mathematically on the basis of the stored values, then this natural weighting function can likewise be used, but there are still a large number and generally more favorable weighting functions available. In an advantageous embodiment of the method, the intensity values become, for example, a function C φ - θ
Figure imgb0001
weighted when the polarization angle θ associated with a pixel falls within the subrange, where C is a constant and φ the polarization angle at the center of the corresponding subrange. If the polarization angle associated with a pixel is outside the subarea, then the pixel is given the predetermined intensity value, that is to say zero, for example. With this triangular function, the slope of which can be influenced by an appropriate choice of the constant, a weighting can be achieved such that the polarization can be assumed to be substantially homogeneous for each image. In this case, the higher the number of subareas, the higher the accuracy, but the number of subareas must be matched with the duration of the emulation, since the number of images increases as the emulation step takes longer. As a good compromise, for example, a choice of 6, 8 or 12 sub-areas has been found. Basically, the number of subareas is freely selectable. In order to make the triangular function described in the evaluation method or emulation step easier to handle, it can also be folded, for example, with a smoothing function, so that it becomes continuously differentiable at least once.

Eine andere Möglichkeit besteht in der Wichtung der Intensitätswerte mit der Funktion C cos 2 ϕ - θ ,

Figure imgb0002
wenn der einem Bildpunkt zugeordnete Polarisationswinkel θ in den Teilbereich fällt, wobei C eine Konstante und θ der Polarisationswinkel im Zentrum des entsprechenden Teilbereichs ist. Diese Funktion entspricht bei angepaßter Wahl der Konstanten im wesentlichen einer gerundeten Dreiecksfunktion.Another possibility is to weight the intensity values with the function C cos 2 φ - θ .
Figure imgb0002
when the polarization angle θ associated with a pixel falls within the subrange, where C is a constant and θ the polarization angle at the center of the corresponding subrange. This function corresponds to an adapted choice of the constants substantially a rounded triangle function.

Für die mit diesen Funktionen erzeugten Bilder der Serie ist die Polarisation über das Bildfeld näherungsweise konstant. Die Bilder können dann im Auswerteverfahren bzw. im Emulationsschritt, wo eine Ortsabhängigkeit der Polarisation nicht berücksichtigt wird, im wesentlichen fehlerfrei verarbeitet werden.For the images of the series generated with these functions, the polarization over the image field is approximately constant. The images can then be processed substantially error-free in the evaluation process or in the emulation step, where a location-dependence of the polarization is not taken into account.

In einer bevorzugten Ausgestaltung der Erfindung wird unpolarisiertes Licht, zu dem auch zirkular polarisiertes Licht zählen soll, ebenfalls berücksichtigt. Dies wird erreicht, indem einem der Teilbereiche ausschließlich der Polarisationsgrad Null zugeordnet wird und dem diesem Teilbereich zugeordneten Bild die Intensitätswerte von detektiertem, unpolarisierten Licht zugeordnet werden. Die dem Bild mit dem Polarisationsgrad Null zuordneten Intensitätswerte können dann auf andere Bilder aufgeteilt und zu den entsprechenden Intensitätswerten addiert werden. Die Aufteilung erfolgt dabei bevorzugt gleichmäßig. Alternativ kann dieses Bild auch getrennt verarbeitet werden, entweder als Ganzes oder indem es seinerseits wiederum auf verschiedene Bilder aufgeteilt wird.In a preferred embodiment of the invention, unpolarized light, which should also include circularly polarized light, is also taken into account. This is achieved by assigning one of the partial regions exclusively the degree of polarization zero and assigning to the image associated with this partial region the intensity values of detected, unpolarized light. The intensity values associated with the zero polarization image may then be split into other images and added to the corresponding intensity values. The division is preferably uniform. Alternatively, this image can also be processed separately, either as a whole or in turn divided into different images.

In einer besonders bevorzugten Ausgestaltung der Erfindung wird als erste Abbildungsoptik ein Photolithographie-Scanner und als zweite Abbildungsoptik eine Emulationsabbildungsoptik zur Emulation des Photolithographie-Scanners verwendet. Bei dem Photolithographie-Scanner handelt es sich um eine Abbildungsoptik mit einer sehr hohen numerischen Apertur, während es sich bei der Emulationsabbildungsoptik um eine Optik mit einer niedrigen numerischen Apertur handelt. Mit der vorangehend beschriebenen Erfindung lassen sich auf diese Weise im Emulationsschritt beispielsweise Verfahren zur Emulation von abbildungsoptischen Effekten bei hohen numerischen Aperturen, wie sie in der deutschen Patentanmeldung 10 2004 033 603.2 beschrieben sind, ortsaufgelöst emulieren, obwohl die dort beschriebenen Verfahren eine Ortsabhängigkeit der Polarisation nicht berücksichtigen.In a particularly preferred embodiment of the invention, a photolithography scanner is used as the first imaging optics, and emulation imaging optics for emulation of the photolithography scanner are used as the second imaging optics. The photolithography scanner is an imaging optic with a very high numerical aperture, while emulation imaging optics is a low numerical aperture optic. With the invention described above, in this way, for example, in the emulation step, methods for emulating image-optical effects at high numerical apertures, as described in the German patent application 10 2004 033 603.2 are emulated in a spatially resolved manner, although the methods described there do not take into account a location dependency of the polarization.

Die Erfindung betrifft auch eine Vorrichtung zur Untersuchung des Abbildungsverhaltens einer ersten Abbildungsoptik. Bei einer solchen Vorrichtung, wie sie oben beschrieben wurde, wird die Aufgabe gemäß Auspruch 17 dadurch gelöst, daß im Speichermodul ortsaufgelöst Werte für mindestens eine weitere, zweite Eigenschaft des Lichts in Bildpunkten gespeichert werden und die Vorrichtung die Serie von Bilder erzeugt, indem (a) ein Wertebereich der zweiten Eigenschaft in Teilbereiche aufgeteilt wird, (b) jedem Teilbereich ein Bild zugeordnet wird, und (c) den Bildpunkten jedes Bildes der entsprechende, gespeicherte Intensitätswert zugeordnet wird, falls der dem Bildpunkt zugeordnete Wert der zweiten Eigenschaft in den dem jeweiligen Bild zugeordneten Teilbereich fällt, und ihnen anderenfalls ein vorgegebener Intensitätswert zugeordnet wird. Die Vorrichtung umfaßt außerdem ein Emulationsmodul, dieses wandelt dann die Serie von Bildern in eine Serie von Zwischenbildern um, wobei für jedes der Zwischenbilder ein konstanter Wert der zweiten Eigenschaft in die Emulation eingeht. Der konstante Wert der zweiten Eigenschaft stammt aus dem jeweiligen Teilbereich und ist von den Werten der zweiten Eigenschaft für die jeweils Zwischenbilder verschieden. Anschließend erzeugt das Emulationsmodul durch Kombination der Zwischenbilder ein Emulationsbild. Auf diese Weise läßt sich der Einfluß der zweiten Eigenschaft auf das Abbildungsverhalten im Emulationsbild ortsaufgelöst berücksichtigen.The invention also relates to a device for examining the imaging behavior of a first imaging optics. In such a device as described above, the object according to claim 17 is achieved by storing in the memory module spatially resolved values for at least one further, second property of the light in pixels and the device generating the series of images by (a ) a range of values of the second property is divided into subregions, (b) an image is assigned to each subarea, and (c) the respective stored intensity value is assigned to the pixels of each image if the value of the second characteristic associated with the pixel is that of the respective one Image associated with the sub-area falls, and otherwise a predetermined intensity value is assigned to them. The apparatus also includes an emulation module, which then converts the series of images into a series of intermediate images, with a constant value of the second characteristic being included in the emulation for each of the intermediate images. The constant value of the second property comes from the respective subarea and is different from the values of the second property for the respective intermediate images. Subsequently, the emulation module generates an emulation image by combining the intermediate images. In this way, the influence of the second property on the imaging behavior in the emulation image can be considered spatially resolved.

Bevorzugt ist der vorgegebene Intensitätswert Null, was die Auswertung vereinfacht. Auch ist es zweckmäßig, wenn sich die Teilbereiche teilweise überlappen, je nach dem welche Wichtungsfunktion die Vorrichtung verwendet.Preferably, the predetermined intensity value is zero, which simplifies the evaluation. It is also expedient if the subregions partially overlap, depending on which weighting function the device uses.

Bevorzugt erzeugt die Vorrichtung eine Serie von Bildern und eine Serie von Zwischenbildern jeweils gleicher Größe, da dies die Handhabbarkeit erheblich vereinfacht und keine Schwierigkeiten bei der Aufteilung der Intensitätswerte auf die Bilder bzw. Zwischenbilder entstehen. Selbstverständlich ist es bei entsprechender Anpassung auch möglich, verschiedene Bildgrößen zu verwenden. Bevorzugt addiert die Vorrichtung die Intensitätswerte der Zwischenbilder für jeden Bildpunkt und erzeugt so das Emulationsbild. Dies ist die einfachste Methode, um die Ortsabhängigkeit der zweiten Größe bzw. deren Variabilität über das Bildfeld im Emulationsbild zu berücksichtigen. Alternativ kann die Vorrichtung auch für jeden Bildpunkt den Mittelwert der Intensitätswerte der Zwischenbilder bilden und auf diese Weise das Emulationsbild erzeugen. Bevorzugt wichtet die Vorrichtung dabei die Intensitätswerte bei der Zuordnung zu einem Bild der Serie, was insbesondere dann von Vorteil ist, wenn sich die Teilbereiche überlappen und ein Intensitätswert mehreren Teilbereichen zugeordnet werden kann.Preferably, the device generates a series of images and a series of intermediate images of the same size, since this considerably simplifies the handling and no difficulties arise in the distribution of the intensity values on the images or intermediate images. Of course, it is also possible with appropriate adjustment to use different image sizes. The device preferably adds the intensity values of the intermediate images for each pixel and thus generates the emulation image. This is the simplest method for considering the location dependence of the second variable or its variability over the image field in the emulation image. Alternatively, the device can also form for each pixel the mean value of the intensity values of the intermediate images and in this way generate the emulation image. In this case, the device preferably weights the intensity values in the association with an image of the series, which is particularly advantageous when the subregions overlap and an intensity value can be assigned to a plurality of subregions.

In einer bevorzugten Ausgestaltung der Vorrichtung ist die zweite Eigenschaft die Farbe, wobei im Speichermodul für jeden Bildpunkt die Wellenlänge und/oder der Farbsättigungsgrad gespeichert werden. Diese Eigenschaft läßt sich mit Hilfe moderner Detektoren auf CCD- oder CMOS-Basis relativ leicht detektieren, wobei beispielsweise vorgesehen sein kann, für jeden Bildpunkt die Farbbereiche Rot, Grün und Blau einzeln auf je einer CCD mit Hilfe entsprechender Optiken zu detektieren.In a preferred embodiment of the device, the second property is the color, wherein the wavelength and / or the color saturation level are stored in the memory module for each pixel. This property can be detected relatively easily with the aid of modern detectors on CCD or CMOS basis, it being possible, for example, to detect for each pixel the color ranges red, green and blue individually on a respective CCD with the aid of corresponding optics.

Die Farbe ist jedoch nicht die einzige Wahl für die zweite Eigenschaft. Auch andere Eigenschaften, die nicht notwendigerweise sofort sichtbar sein müssen, kommen in Frage. Eine wichtige zweite Eigenschaft, insbesondere im Hinblick auf die Emulation hochaperturiger Abbildungsoptiken mit niederaperturigen Abbildungsoptiken, ist der Polarisationszustand. Hier wird im Speichermodul für jeden Bildpunkt der Polarisationsgrad und/oder Polarisationsrichtung gespeichert. Dabei kann bei der Vorrichtung ein Polarisator vorgesehen sein, durch den das Licht vor Detektion geleitet wird. Die Teilbereiche werden dabei durch verschiedene Stellungen des Polarisators festgelegt. Auf diese Weise kann die Serie von Bildern direkt erzeugt werden. Eine andere Möglichkeit besteht darin, die Serie von Bildern rechnerisch anhand der gespeicherten Werte zu erzeugen. Hierbei werden für jeden Bildpunkt am Anfang Polarisationsgrad und/oder -richtung gespeichert. Auch eine Kombination von Polarisator und rechnerischer Auswertung ist möglich. Bevorzugt ordnet die Vorrichtung außerdem einem der Teilbereiche ausschließlich den Polarisationsgrad Null zu. Dem diesen Teilbereich zugeordneten Bild ordnet sich dann die Intensitätswerte von detektiertem, unpolarisiertem Licht zu.However, the color is not the only choice for the second property. Also other properties that are not necessarily must be visible immediately, come into question. An important second property, in particular with regard to the emulation of high-aperture imaging optics with low-aperture imaging optics, is the polarization state. Here, the polarization degree and / or polarization direction is stored in the memory module for each pixel. In this case, a polarizer can be provided in the device through which the light is passed before detection. The subregions are determined by different positions of the polarizer. In this way, the series of images can be generated directly. Another possibility is to computationally generate the series of images based on the stored values. Here, the polarization degree and / or direction are stored for each pixel at the beginning. A combination of polarizer and computational evaluation is possible. Preferably, the device also assigns one of the subregions exclusively the degree of polarization zero. The image assigned to this subarea is then assigned the intensity values of detected, unpolarized light.

In einer besonders bevorzugten Ausgestaltung der Erfindung ist bei der Vorrichtung als erste Abbildungsoptik ein Photolithographie-Scanner und als zweite Abbildungsoptik eine Emulationsabbildungsoptik zur Emulation des Photolithographie-Scanners vorgesehen. Auf diese Weise lassen sich mit der Emulationsabbildungsoptik die Polarisationseigenschaften des Photolithographie-Scanners ortsaufgelöst emulieren, obwohl das zugrundeliegende, im Emulationsmodul implementierte Emulationsverfahren diese Ortsabhängigkeit nicht berücksichtigen kann.In a particularly preferred embodiment of the invention, a photolithography scanner is provided in the device as the first imaging optics and an emulation imaging optics for emulation of the photolithography scanner as the second imaging optics. In this way, the emulation imaging optics can be used to emulate the polarization properties of the photolithography scanner with spatial resolution, although the underlying emulation method implemented in the emulation module can not take this local dependency into account.

Die Erfindung soll im folgenden anhand eines Ausführungsbeispiels näher erläutert werden.The invention will be explained in more detail below with reference to an embodiment.

In den dazugehörigen Zeichnungen zeigt

Fig.1
eine beispielhafte Vorrichtung und
Fig.2
den Ablauf des Verfahrens.
In the accompanying drawings shows
Fig.1
an exemplary device and
Fig.2
the procedure of the procedure.

In Fig.1 ist eine Vorrichtung gezeigt, wie sie zur Untersuchung des Abbildungsverhaltens einer - nichtgezeigten - ersten Abbildungsoptik verwendet werden kann. Von einer Lichtquelle 1 wird Licht in eine zweite Abbildungsoptik 2 eingespeist. Die zweite Abbildungsoptik 2 fokussiert das Licht auf einen ortauflösenden Detektor 3 mit Pixeln. Das Licht wird in der Bildebene in den Pixeln detektiert. In den Pixeln direkt detektiert wird die Intensität. Die Werte für die Intensität werden in einem Speichermodul 4 in Zuordnung zu den Bildpunkten gespeichert. Außerdem wird in dem Speichermodul 4 noch eine zweite Eigenschaft des Lichts gespeichert. Dies kann beispielsweise die Farbe sein, oder aber auch die Polarisation. Im letzteren Fall kann beispielsweise ein in den Strahlengang vor den Detektor einschiebbarer, drehbarer Polarisator 5 vorgesehen sein. Die zweite Abbildungsoptik 2 bildet dabei ein Objekt 6 auf den Detektor 3 ab. Dazu wird das Objekt 6 an entsprechender Stelle in die zweite Abbildungsoptik 2 eingebracht, so daß ein Bild des Objektes 6 auf dem Detektor 3 erzeugt wird. Bei dem Objekt 6 kann es sich beispielsweise um einen einfachen oder nichtlinearen Farbfilter, einen Polarisator oder ein diffraktives optisches Element handeln. Im letzteren Fall muß unter Umständen die Einstellung der zweiten Abbildungsoptik an die Abbildungseigenschaften des Objektes 6 angepaßt werden. Schließlich kann es sich bei dem Objekt 6 auch um eine Maske handeln, wie sie in der Photolithographie verwendet wird. Bei der Lichtquelle 1 handelt es sich in diesem Fall bevorzugt um eine Quelle, die nur eine Wellenlänge aussendet. Falls es sich bei der zweiten Eigenschaft, die registriert werden soll, um die Polarisation oder nicht direkt sichtbare Eigenschaften handelt, so sind weitere Einrichtungen notwendig, die hier nicht gezeigt sind und der Detektion und Bestimmung dieser Eigenschaften dienen. Die Werte dieser Eigenschaften werden dann ebenfalls in Zuordnung zu den Bildpunkten im Speichermodul 4 gespeichert.In Fig.1 a device is shown as it can be used to investigate the imaging behavior of a (not shown) first imaging optics. From a light source 1, light is fed into a second imaging optics 2. The second imaging optics 2 focuses the light onto a spatial resolution detector 3 with pixels. The light is detected in the image plane in the pixels. The intensity is detected directly in the pixels. The values for the intensity are stored in a memory module 4 in association with the pixels. In addition, a second property of the light is stored in the memory module 4. This can be for example the color, or else the polarization. In the latter case, for example, a rotatable polarizer 5 which can be inserted into the beam path in front of the detector can be provided. The second imaging optics 2 forms an object 6 on the detector 3. For this purpose, the object 6 is introduced at the appropriate location in the second imaging optics 2, so that an image of the object 6 is generated on the detector 3. The object 6 may be, for example, a simple or non-linear color filter, a polarizer or a diffractive optical element. In the latter case may have the setting of the second Imaging optics are adapted to the imaging properties of the object 6. Finally, object 6 may also be a mask as used in photolithography. The light source 1 in this case is preferably a source which emits only one wavelength. If the second property to be registered is the polarization or not directly visible properties, then further devices are necessary, which are not shown here and serve to detect and determine these properties. The values of these properties are then also stored in association with the pixels in the memory module 4.

Die für die Intensität und die zweite Eigenschaft, beispielsweise die Polarisation, gespeicherten Werte werden anschließend von einem Emulationsmodul 7 verarbeitet. Im Emulationsmodul 7 wird ein Emulationsbild erzeugt, welches auf einen Bildschirm 8 dargestellt wird. Zusätzlich kann das Bild auch gespeichert werden oder/und ausgedruckt werden.The values stored for the intensity and the second property, for example the polarization, are then processed by an emulation module 7. In the emulation module 7, an emulation image is generated, which is displayed on a screen 8. In addition, the image can also be saved or / and printed out.

Die Erzeugung des Emulationsbildes ist in Fig.2 skizziert. Für jeden Bildpunkt sind Intensität und Polarisation, d.h. Polarisationsgrad und/oder -richtung gespeichert. Diese Daten bilden den sogenannten Eingangsbilddatensatz. Aus diesem Eingangsbilddatensatz wird eine Serie von Bildern erzeugt. Dabei kann zunächst das Minimum und das Maximum der zweiten Eigenschaft bestimmt werden, um so den Wertebereich dieser Eigenschaft festzulegen. Dieser Wertebereich wird dann in Teilbereiche zerlegt, wobei der unpolarisierte Anteil der Intensität im Beispiel einem gesonderten Teilbereich mit dem Polarisationsgrad Null zugeordnet wird. Dieser Teilbereich enthält auch die Intensitätswerte des zirkular polarisierten Anteils des Lichts. Selbstverständlich ist die Zuordnung zu einem eigenen Teilbereich nicht zwingend. Der unpolarisierte Anteil kann beispielsweise auch auf die anderen Teilbereiche aufgeteilt werden - dies entspricht einer gleichmäßigen Aufteilung auf die einzelnen Bilder. Die weiteren Teilbereiche werden, nach Polarisationswinkeln in einem Wertebereich von 0° bis 180° aufgeteilt. Im vorliegenden Beispiel ist zu jedem Bild der Polarisationswinkel φ im Zentrum des entsprechenden Teilbereichs angegeben. Die Teilbereiche können dabei überlappend oder nichtüberlappend in Abstimmung mit der zu verwendenden Wichtungsfunktion gewählt werden. Im vorliegenden Beispiel werden acht Teilbereiche gewählt. Die Bilder werden anschließend im Emulationsschritt verarbeitet. Dabei wird eine Abbildung des Objektes 6 mit der ersten Abbildungsoptik unter Berücksichtigung der Abbildungseigenschaft und des Einflusses der Polarisation auf das Abbildungsverhalten emuliert. Die unpolarisierte Intensität kann dabei gesondert behandelt werden, muß aber nicht. Auch eine Aufteilung auf die polarisierten Bilder ist beispielsweise möglich. Handelt es sich bei dem Objekt 6 beispielsweise um eine Maske, so läßt sich eine Abbildung dieser Maske mit einem Photolithographiescanner als erster Abbildungsoptik emulieren. Bei der zweiten Abbildungsoptik 2 handelt es sich in diesem Fall um eine Emulationsabbildungsoptik. Die Abbildungseigenschaften, in denen sich beide Optiken unterscheiden, sind die Vergrößerung und die numerische Apertur. Bei der Verarbeitung im Emulationsschritt werden für jeden Polarisationswinkel φ Zwischenbilder erzeugt, wobei im Emulationsschritt die Polarisation für das jeweilige Bild als konstant angenommen wurde. Dies ist technisch bedingt, da die im Stand der Technik zur Verfügung stehenden Verfahren zur Emulation bzw. Berücksichtigung der Polarisation nur konstante Polarisationen berücksichtigen können. Zum Schluß werden die Zwischenbilder im vorliegenden Beispiel zum Emulationsbild bildpunktweise addiert. Auf diese Weise kann die Ortsabhängigkeit in der Polarisation bei der Emulation eines Photolithographiescanners berücksichtigt werden, obwohl das zur Verfügung stehende Emulationsverfahren nach dem Stand der Technik dies eigentlich nicht gestattet bzw. zu größeren Fehlern führt.The generation of the emulation image is in Fig.2 outlined. For each pixel intensity and polarization, ie polarization degree and / or direction are stored. These data form the so-called input image data record. From this input image data set, a series of images is generated. In this case, first the minimum and the maximum of the second property can be determined so as to determine the range of values of this property. This value range is then decomposed into subareas, the unpolarized portion of the intensity in the example being a separate subarea is assigned with the degree of polarization zero. This subregion also contains the intensity values of the circularly polarized portion of the light. Of course, the assignment to a separate sub-area is not mandatory. The unpolarized portion, for example, can also be divided among the other subareas - this corresponds to a uniform distribution among the individual images. The other subareas are divided according to polarization angles in a value range from 0 ° to 180 °. In the present example, the polarization angle φ in the center of the corresponding subarea is specified for each image. The subregions can be selected as overlapping or non-overlapping in coordination with the weighting function to be used. In this example, eight sections are selected. The images are then processed in the emulation step. In this case, an image of the object 6 with the first imaging optics is emulated taking into account the imaging property and the influence of the polarization on the imaging behavior. The unpolarized intensity can be treated separately, but does not have to. A division into the polarized images is possible, for example. If the object 6 is, for example, a mask, an image of this mask can be emulated with a photolithography scanner as the first imaging optics. In the second imaging optics 2 is in this case an emulation imaging optics. The imaging characteristics in which both optics differ are the magnification and the numerical aperture. During the processing in the emulation step, intermediate images are generated for each polarization angle φ, wherein in the emulation step, the polarization for the respective image as was constantly accepted. This is due to technical reasons since the methods available in the prior art for emulating or taking account of the polarization can only take constant polarizations into account. Finally, in the present example, the intermediate images are added pixel-by-pixel to the emulation image. In this way, the location dependency in the polarization can be taken into account in the emulation of a photolithography scanner, although the available emulation method according to the prior art actually does not allow this or leads to larger errors.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Lichtquellelight source
22
zweite Abbildungsoptiksecond imaging optics
33
Detektordetector
44
Speichermodulmemory module
55
Polarisatorpolarizer
66
Objektobject
77
Emulationsmodulemulation module
88th
Bildschirmscreen

Claims (29)

  1. Method for studying the imaging behaviour of first imaging optics, in which an object (6) is imaged by second imaging optics (2) into an image plane and light in the image plane is detected with spatial resolution in pixels, the first and second imaging optics (2) differing in at least one imaging property,
    - values of the intensity as a first property of the light being determined for each pixel and stored in image points, and
    - a series of images being produced,
    - characterised in that
    - values of at least one further second property of the light are determined for each pixel and stored in image points,
    - the series of images is produced by
    a. decomposing a value range of the second property into subranges,
    b. assigning an image to each subrange, and
    c. assigning the corresponding stored intensity value to the image points of each image if the value of the second property, assigned to the image point, falls within the subrange assigned to the respective image, and otherwise assigning a predetermined intensity value to them,
    - the stored values are processed in an emulation step by converting the series of images into a series of intermediate images, the emulation being provided with a constant value of the second property for each of the intermediate images, which is taken from the respective subrange and is different from the values of the second property for the respective other intermediate images, and
    - subsequently, by combination of the intermediate images, an emulation image is produced which emulates imaging of the object (6) by the first imaging optics while taking into account the imaging property and the effect of the second property on the imaging behaviour.
  2. Method according to Claim 1, characterised in that the subranges partially overlap.
  3. Method according to Claim 1 or 2, characterised in that the predetermined intensity value is zero.
  4. Method according to one of the preceding claims, characterised in that both the images and the intermediate images respectively have the same size.
  5. Method according to Claim 4, characterised in that the intensity values of the intermediate images are added for each image point, and the emulation image is produced in this way.
  6. Method according to Claim 4, characterised in that the average value of the intensity values of the intermediate images is formed for each image point, and the emulation image is produced in this way.
  7. Method according to one of the preceding claims, characterised in that the intensity values are weighted for the assignment to an image of the series.
  8. Method according to one of the preceding claims, characterised in that the second property is the polarisation state, the degree of polarisation and/or the polarisation direction being stored for each image point.
  9. Method according to Claim 8, characterised in that the series of images is produced by sending the light through a polariser (5) before the detection, the subranges being established by different settings of the polariser (5).
  10. Method according to Claim 8, characterised in that the series of images is produced computationally with the aid of the stored values.
  11. Method according to Claim 10, characterised in that the intensity values are weighted with a function C ϕ - θ ,
    Figure imgb0005

    when the polarisation angle θ assigned to an image point falls within the subrange, where C is a constant and θ is the polarisation angle at the centre of the corresponding subrange.
  12. Method according to Claim 10, characterised in that the intensity values are weighted with the function C cos 2 ϕ - θ ,
    Figure imgb0006

    when the polarisation angle θ assigned to an image point falls within the subrange, where C is a constant and ϕ is the polarisation angle at the centre of the corresponding subrange.
  13. Method according to one of Claims 8 to 12, characterised in that exclusively the degree of polarisation zero is assigned to one of the subranges, and the intensity values of detected unpolarised light are assigned to the image assigned to this subrange.
  14. Method according to Claim 13, characterised in that the intensity values assigned to the image with the degree of polarisation zero are distributed between other images and added to the corresponding intensity values, the distribution preferably being carried out uniformly.
  15. Method according to one of Claims 1 to 7, characterised in that the second property is the colour, and the wavelength and/or the degree of colour saturation are stored for each image point.
  16. Method according to one of the preceding claims, characterised in that a photolithography scanner is used as the first imaging optics and emulation imaging optics for emulating the photolithography scanner are used as the second imaging optics (2).
  17. Device for studying the imaging behaviour of first imaging optics, comprising
    - second imaging optics (2), by which an object (6) is imaged into an image plane and which differs from the first imaging optics in at least one imaging property,
    - a spatially resolving detector (3), which has pixels and by which light in the image plane is detected in the pixels,
    - a storage module (4), in which the values of the intensity as a first property of the light are stored with spatial resolution in image points,
    - the device producing a series of images,
    - characterised in that
    - values of at least one further second property of the light are stored with spatial resolution in image points in the storage module (4),
    - the device produces a series of images by
    a. decomposing a value range of the second property into subranges,
    b. assigning an image to each subrange, and
    c. assigning the corresponding stored intensity value to the image points of each image if the value of the second property, assigned to the image point, falls within the subrange assigned to the respective image, and otherwise assigning a predetermined intensity value to them,
    - the device furthermore comprises an emulation module (7) which converts the series of images into a series of intermediate images, the emulation being provided with a constant value of the second property for each of the intermediate images, which is taken from the respective subrange and is different from the values of the second property for the respective other intermediate images, and
    - by combination of the intermediate images, the emulation module (7) produces an emulation image which emulates imaging of the object (6) by the first imaging optics while taking into account the imaging property and the effect of the second property on the imaging behaviour.
  18. Device according to Claim 17, characterised in that the subranges partially overlap.
  19. Device according to Claim 17 or 18, characterised in that the predetermined intensity value is zero.
  20. Device according to one of Claims 17 to 19, characterised in that it produces a series of images and a series of intermediate images respectively of the same size.
  21. Device according to one of Claims 17 to 20, characterised in that it adds the intensity values of the intermediate images for each image point, and produces the emulation image in this way.
  22. Device according to one of Claims 17 to 20, characterised in that it forms the average value of the intensity values of the intermediate images for each image point, and produces the emulation image in this way.
  23. Device according to one of Claims 17 to 22, characterised in that it weights the intensity values for the assignment to an image of the series.
  24. Device according to one of Claims 17 to 23, characterised in that the second property is the polarisation state, the degree of polarisation and/or the polarisation direction being stored in the storage module for each image point.
  25. Device according to Claim 24, characterised in that a polariser (5) is provided, through which the light is sent before the detection, the subranges being established by different settings of the polariser (5).
  26. Device according to Claim 24, characterised in that it produces the images computationally with the aid of the stored values.
  27. Device according to one of Claims 24 to 26, characterised in that it assigns exclusively the degree of polarisation zero to one of the subranges, and it assigns the intensity values of detected unpolarised light to the image assigned to this subrange.
  28. Device according to one of Claims 17 to 23, characterised in that the second property is the colour, and the wavelength and/or the degree of colour saturation are stored in the storage module (4) for each image point.
  29. Device according to one of Claims 17 to 28, characterised in that a photolithography scanner is provided as the first imaging optics and emulation imaging optics for emulating the photolithography scanner are provided as the second imaging optics (2).
EP06829651A 2005-12-22 2006-12-15 Method and device for analysing the imaging behaviour of an optical imaging element Active EP1963812B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005062237A DE102005062237A1 (en) 2005-12-22 2005-12-22 Process to evaluate the optical characteristics of a lens system as employed e.g. in stereolithography by comparison of two lens systems
PCT/EP2006/012103 WO2007079904A1 (en) 2005-12-22 2006-12-15 Method and device for analysing the imaging behaviour of an optical imaging element

Publications (2)

Publication Number Publication Date
EP1963812A1 EP1963812A1 (en) 2008-09-03
EP1963812B1 true EP1963812B1 (en) 2011-11-30

Family

ID=37714671

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06829651A Active EP1963812B1 (en) 2005-12-22 2006-12-15 Method and device for analysing the imaging behaviour of an optical imaging element

Country Status (7)

Country Link
US (1) US7626689B2 (en)
EP (1) EP1963812B1 (en)
JP (1) JP5226532B2 (en)
KR (1) KR101286788B1 (en)
AT (1) ATE535793T1 (en)
DE (1) DE102005062237A1 (en)
WO (1) WO2007079904A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583194B (en) * 2016-06-02 2017-05-11 宏碁股份有限公司 Auxiliary control method and device for polarizer
DE102016218977B4 (en) 2016-09-30 2020-11-12 Carl Zeiss Smt Gmbh Procedure for determining an OPC model
DE102017115262B9 (en) 2017-07-07 2021-05-27 Carl Zeiss Smt Gmbh Method for characterizing a mask for microlithography
DE102018221647B3 (en) 2018-12-13 2020-06-04 Carl Zeiss Smt Gmbh Detection device for detecting a structure on a surface section of a lithography mask and device and method with such a detection device
DE102019123741A1 (en) 2019-09-04 2021-03-04 Carl Zeiss Smt Gmbh Device and method for characterizing a mask for microlithography
DE102020123615B9 (en) 2020-09-10 2022-04-28 Carl Zeiss Smt Gmbh Method for characterizing a mask for microlithography
CN117008428B (en) * 2023-09-26 2024-01-26 全芯智造技术有限公司 Lithographic simulation method, apparatus and medium

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8701521D0 (en) * 1987-01-23 1993-12-01 British Aerospace Multi-parameter imaging polarimeter
US5298972A (en) * 1990-01-22 1994-03-29 Hewlett-Packard Company Method and apparatus for measuring polarization sensitivity of optical devices
US5731916A (en) * 1991-01-16 1998-03-24 Olympus Optical Co., Ltd. Image Transmitting optical system
US5631731A (en) * 1994-03-09 1997-05-20 Nikon Precision, Inc. Method and apparatus for aerial image analyzer
US5828500A (en) * 1995-10-11 1998-10-27 Asahi Kogaku Kogyo Kabushiki Kaisha Optical element inspecting apparatus
CN1272622C (en) * 1998-04-22 2006-08-30 株式会社理光 Double refraction detecting method and device
JP2001228034A (en) * 2000-02-14 2001-08-24 Fuji Electric Co Ltd Measurement method for internal stress condition of disk board
US6693704B1 (en) * 2000-09-26 2004-02-17 Nikon Corporation Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method
DE10130212A1 (en) * 2001-06-22 2003-01-02 Zeiss Carl Jena Gmbh lens
DE10154125A1 (en) * 2001-10-25 2003-05-22 Zeiss Carl Semiconductor Mfg System for determination of the imaging quality of an optical imaging system has an electronic object pattern generating device such as a projector or monitor that is used to generate an electronically controllable pattern
EP1483559A2 (en) * 2002-03-08 2004-12-08 Carl Zeiss SMT AG Moir method and measuring system for measuring the distortion of an optical imaging system
JP2004061515A (en) * 2002-07-29 2004-02-26 Cark Zeiss Smt Ag Method and device for determining influence onto polarization state by optical system, and analyzer
EP1573401A1 (en) * 2002-12-19 2005-09-14 Carl Zeiss SMT AG Method and system for measuring the reproduction quality of an optical reproduction system
WO2005003862A1 (en) * 2003-07-05 2005-01-13 Carl Zeiss Smt Ag Device for the polarization-specific examination of an optical system
SG112969A1 (en) * 2003-12-22 2005-07-28 Asml Netherlands Bv Lithographic apparatus and methods for use thereof
US20050240895A1 (en) * 2004-04-20 2005-10-27 Smith Adlai H Method of emulation of lithographic projection tools
DE102004033603A1 (en) * 2004-07-08 2006-02-16 Carl Zeiss Sms Gmbh Microscopic imaging system and method for emulating a high-aperture imaging system, in particular for mask inspection

Also Published As

Publication number Publication date
JP5226532B2 (en) 2013-07-03
KR101286788B1 (en) 2013-07-17
US7626689B2 (en) 2009-12-01
WO2007079904A1 (en) 2007-07-19
DE102005062237A1 (en) 2007-07-05
KR20080080564A (en) 2008-09-04
EP1963812A1 (en) 2008-09-03
US20080297775A1 (en) 2008-12-04
ATE535793T1 (en) 2011-12-15
JP2009521107A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
EP1963812B1 (en) Method and device for analysing the imaging behaviour of an optical imaging element
DE10314071B3 (en) Procedure for the qualitative assessment of a material with at least one identifier
DE102012106584B4 (en) Method and device for image reconstruction
DE102007009661A1 (en) Method and device for the spatially resolved determination of the phase and amplitude of the electromagnetic field in the image plane of an image of an object
WO2016041944A1 (en) Method for generating a result image and optical device
DE102013204466A1 (en) Measurement of an optical symmetry property on a projection exposure apparatus
EP0475897A1 (en) Method for producing photographic colour copies
DE102010007730A1 (en) Method and device for setting a suitable evaluation parameter for a fluorescence microscope
DE102008056868B3 (en) Laser detection device and laser detection method
DE2653590A1 (en) DEVICE FOR DETECTING DEFECTS IN FLAT PATTERNS, IN PARTICULAR IN PHOTOMASKS
EP1291179A2 (en) Test means and method for controlling offset and digital printing
CH697319B1 (en) Method and apparatus for geometric calibration of optoelectronic measuring cameras.
DE102019208114A1 (en) Device for 3D measurement of object coordinates
WO2005008335A2 (en) Method for analysing objects in microlithography
DE212022000122U1 (en) Stereoscopic display device based on a beam splitting device and test device
DE102018122816A1 (en) Method and device for determining a property of an object
DE69626928T2 (en) Device for checking the color of printed matter
DE102015112769B4 (en) Device and method for optical sample examination
EP2656327A1 (en) Method and device for examining the optical state of value documents
DE102013204015A1 (en) Spectral decomposition for Mikrospiegelkippwinkelbestimmung
DE102018217115A1 (en) Method for checking components and optical arrangement for this
DE102022204000A1 (en) Method for measuring the illumination pupil in a scanner taking into account a measuring reticle
DE102020101994B4 (en) Method and device for lensless imaging using Fourier transform holography
DE10319946A1 (en) Classification of image object areas obtained using a confocal scanning microscope by use of detection channels to detect light of different intensities originating from object markers and by classification based on signal ratios
EP0617815B1 (en) Automatic object recognition process and device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006010672

Country of ref document: DE

Effective date: 20120209

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111130

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

BERE Be: lapsed

Owner name: CARL ZEISS SMS G.M.B.H.

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

26N No opposition filed

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006010672

Country of ref document: DE

Effective date: 20120831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 535793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120311

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006010672

Country of ref document: DE

Representative=s name: GEYER, FEHNERS & PARTNER (G.B.R.), DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010672

Country of ref document: DE

Owner name: CARL ZEISS SMT GMBH, DE

Free format text: FORMER OWNER: CARL ZEISS SMS GMBH, 07745 JENA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006010672

Country of ref document: DE

Representative=s name: PATENTANWAELTE GEYER, FEHNERS & PARTNER MBB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R083

Ref document number: 502006010672

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R083

Ref document number: 502006010672

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: CARL ZEISS SMT GMBH, DE

Effective date: 20161019

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170202 AND 20170208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201223

Year of fee payment: 15

Ref country code: GB

Payment date: 20201223

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221213

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525