EP1959026B1 - Method for formation of an aluminium diffusion layer form oxidation protection - Google Patents

Method for formation of an aluminium diffusion layer form oxidation protection Download PDF

Info

Publication number
EP1959026B1
EP1959026B1 EP08101026.6A EP08101026A EP1959026B1 EP 1959026 B1 EP1959026 B1 EP 1959026B1 EP 08101026 A EP08101026 A EP 08101026A EP 1959026 B1 EP1959026 B1 EP 1959026B1
Authority
EP
European Patent Office
Prior art keywords
component
aluminum
masking
accordance
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP08101026.6A
Other languages
German (de)
French (fr)
Other versions
EP1959026A3 (en
EP1959026A2 (en
Inventor
Dan Roth-Fagaraseanu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1959026A2 publication Critical patent/EP1959026A2/en
Publication of EP1959026A3 publication Critical patent/EP1959026A3/en
Application granted granted Critical
Publication of EP1959026B1 publication Critical patent/EP1959026B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/04Diffusion into selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/20Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
    • C23C10/24Salt bath containing the element to be diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment

Definitions

  • the invention relates to a method for forming an aluminum diffusion layer for the oxidation protection of metallic components, in particular consisting of a nickel-based alloy components of an aircraft gas turbine.
  • Certain engine components such as the hot gas flow nickel-base alloy rotor and stator blades of the turbine, are significantly attacked during operation by oxidation processes, so that the life of the blades is reduced and the blades must be replaced or repaired ,
  • a known oxidation protection principle for such components is that by accumulating aluminum in a near-surface region of the base material on the component surface to be protected by aluminum diffusing to the surface, an aluminum oxide protective layer is formed, which is intended to prevent further oxidation.
  • the known diffusion methods are on the one hand in terms of cost disadvantageous, and indeed insofar as obtained in the diffusion from the aluminum powder in the pack-Alit Schl in large quantities of aluminum scrap and on the other hand, the diffusion in vacuum according to the CVD method is complex in terms of equipment and handling.
  • EP-A-1 013 787 describes a method for coating a metallic surface in which a masking for removing an oxidation layer takes place.
  • EP-A-0 843 026 discloses a method for plating a coating on a component of a gas turbine, in which a temporary masking of Cooling channels before applying an aluminum layer by vapor diffusion takes place. During heating, temperatures of 815 to 1100 ° C occur.
  • the document EP-A-0 908 538 describes a method in which a turbine component consisting of a nickel-based alloy is masked, first a galvanic layer is formed on the free portions of the masked component, and then the mask is removed from the component to subsequently heat-treat the component ,
  • the invention has for its object to provide a method for forming an aluminum diffusion layer in metallic components, which requires a reduced effort and ensures a high component quality.
  • the basic idea of the invention is that on the free sections of the masked components in an aprotic solution, ie in a water- and oxygen-free electrolyte with an aluminum anode and the (n) component (s) as the cathode, first an aluminum layer of a certain thickness is trained and the Masking is then removed from the components to then subject the components after a certain temperature-time profile of a heat treatment under inert gas or in a vacuum, wherein the aluminum diffuses into the component and, conversely, alloy components of the component diffuse into the aluminum layer and thereby in the coated sections, an aluminum diffusion layer is formed for later oxidation protection.
  • the aluminum coating under the masking takes place in a first method step at low temperature, while after the removal of the masking carried out in a second method step in a third method step, the unmasked component for forming an aluminum diffusion layer of a heat treatment at elevated Temperature is subjected.
  • the temperature-time profile, in which the diffusion of aluminum into the component alloy and of alloy constituents in the aluminum layer, is such that the components - after heating to about 400 - 700 ° C and a holding time of up to 2 hours - according to the invention about one hour at about 1100 ° C and then heat treated at about 1030 ° C for about five hours and then cooled in still air.
  • the component sections to be coated are cleaned prior to electroplating and treated with an activating agent, preferably nickel chloride.
  • the blade roots of the turbine blades exposed by the attachment to the rotor disk of a high mechanical load are covered with metal strips and thus masked against external influences in the further treatment.
  • the blade feet can also be arranged in a box or coated with an adhesive.
  • an activating agent for example NiCl (or a fluoride, preferably potassium aluminum fluoride), to effect better adhesion of the later electrodeposited aluminum layer.
  • the prepared turbine blades are now (preferably within an oxygen-encapsulated Appendix) in an aprotic solution, that is introduced into a water and oxygen-free organic electrolyte with soluble aluminum anodes present therein and galvanically coated in the region of the uncovered blades with pure aluminum in a layer thickness of 5 to 10 .mu.m.
  • the masking is exposed in the galvanic coating only very low temperatures (about 300 ° C), so that the cost of the masking and the masking material and the subsequent unmasking is low and the comparatively low temperatures cause no reaction between masking material and base material and by the Masking caused consequential damage in the masked material area can not occur.
  • the turbine blades in an oven, in an inert gas atmosphere or in a vacuum, after a heating phase in which the blades are heated to about 600 ° C and held for 1.5 hours at this temperature, initially at 1100 ° for one hour C and then subjected to a heat treatment at 1030 ° C for five hours, in which the aluminum diffused from the electrodeposited aluminum layer in the nickel-based alloy and vice versa, the nickel in the aluminum layer. Thereafter, the blades are cooled in static air in less than 10 minutes.
  • the aluminum present on the surface of the thus produced Ni-Al diffusion layer of the airfoil forms an aluminum oxide layer in an oxygen atmosphere, which prevents further oxidation of the blade material under operating conditions of the blades in the engine.

Description

Die Erfindung betrifft ein Verfahren zur Ausbildung einer Aluminium-Diffusionsschicht zum Oxidationsschutz von metallischen Bauteilen, insbesondere von aus einer Nickel-Basis-Legierung bestehenden Bauteilen einer Fluggasturbine.The invention relates to a method for forming an aluminum diffusion layer for the oxidation protection of metallic components, in particular consisting of a nickel-based alloy components of an aircraft gas turbine.

Bestimmte Triebwerksbauteile, wie die mit dem Heißgasstrom beaufschlagten, aus einer Nickelbasis-Legierung bestehenden Rotor- und Statorschaufeln der Turbine, werden während des Betriebes in erheblichem Umfang durch Oxidationsprozesse angegriffen, so dass die Lebensdauer der Schaufeln verringert wird und die Schaufeln ausgetauscht oder repariert werden müssen.Certain engine components, such as the hot gas flow nickel-base alloy rotor and stator blades of the turbine, are significantly attacked during operation by oxidation processes, so that the life of the blades is reduced and the blades must be replaced or repaired ,

Ein bekanntes Oxidationsschutzprinzip für derartige Bauteile besteht darin, dass durch Anreichern von Aluminium in einem oberflächennahen Bereich des Grundwerkstoffs an der zu schützenden Bauteiloberfläche durch zur Oberfläche diffundierendes Aluminium eine Aluminiumoxid-Schutzschicht gebildet wird, die eine weitere Oxidation verhindern soll.A known oxidation protection principle for such components is that by accumulating aluminum in a near-surface region of the base material on the component surface to be protected by aluminum diffusing to the surface, an aluminum oxide protective layer is formed, which is intended to prevent further oxidation.

Bei den bekannten Verfahren zur Erzeugung der Aluminium-Diffusionsschicht wird ein begrenzter, im Triebwerksbetrieb dem Heißgasstrom ausgesetzter Abschnitt des betreffenden Bauteils beim sogenannten "Pack-Alitieren" in Aluminiumpulver und bei der chemischen Gasphasen-Abscheidung (CVD-Verfahren, chemical vapour deposition) im Vakuum in ein aluminiumreiches gasförmiges Medium eingebracht, wobei das Aluminium bei Temperaturen im Bereich zwischen 900 und 1100°C in das Metall diffundiert.In the known processes for producing the aluminum diffusion layer, a limited section of the relevant component exposed to the hot gas flow in engine operation is vacuum-packed in so-called "pack-alitating" in aluminum powder and in chemical vapor deposition (CVD) introduced into an aluminum-rich gaseous medium, wherein the aluminum diffuses at temperatures in the range between 900 and 1100 ° C in the metal.

Anwendungsbedingt dürfen bestimmte, mechanisch hoch beanspruchte Abschnitte der Bauteile, wie zum Beispiel der Schaufelfuß einer Turbinenschaufel, nicht beschichtet werden und müssen daher während des Diffusionsvorgangs abgedeckt (maskiert) werden.Depending on the application, certain sections of the components that are subject to high mechanical stress, such as the blade root of a turbine blade, may not be coated and must therefore be masked during the diffusion process.

Die bekannten Diffusionsverfahren sind zum einen hinsichtlich des Kostenaufwandes nachteilig, und zwar insofern, als bei der Diffusion aus dem Aluminiumpulver beim Pack-Alitieren in großer Menge Aluminiumschrott anfällt und andererseits die Diffusion im Vakuum gemäß dem CVD-Verfahren apparativ und hinsichtlich des Handling aufwendig ist.The known diffusion methods are on the one hand in terms of cost disadvantageous, and indeed insofar as obtained in the diffusion from the aluminum powder in the pack-Alitieren in large quantities of aluminum scrap and on the other hand, the diffusion in vacuum according to the CVD method is complex in terms of equipment and handling.

Aufgrund der hohen Temperaturen während des Diffusionsvorgangs mit einem maskierten Bauteil ist die Maskierung mit einem hohen Aufwand verbunden. Zudem kann beim Maskieren mit einem Kleber aufgrund der hohen Temperaturen Kohlenstoff aus dem Kleber in das Bauteil diffundieren und dessen Festigkeitseigenschaften negativ beeinflussen.Due to the high temperatures during the diffusion process with a masked component masking is associated with a lot of effort. In addition, when masking with an adhesive due to the high temperatures carbon can diffuse from the adhesive into the component and adversely affect its strength properties.

Aus dem Dokument US-A-4 101 386 ist ein Verfahren zur Ausbildung einer Aluminium-Diffusionsschicht in metallischen Bauteilen durch Bildung einer Aluminiumoxid-Schutzschicht gemäß dem Oberbegriff des Anspruchs 1 bekannt.From the document US-A-4,101,386 For example, a method for forming an aluminum diffusion layer in metallic components by forming an aluminum oxide protective layer according to the preamble of claim 1 is known.

Das Dokument EP-A-1 013 787 beschreibt ein Verfahren zum Beschichten einer metallischen Oberfläche, bei dem eine Maskierung zum Entfernen einer Oxidationsschicht erfolgt.The document EP-A-1 013 787 describes a method for coating a metallic surface in which a masking for removing an oxidation layer takes place.

Das Dokument EP-A-0 843 026 offenbart ein Verfahren zum Plattieren einer Beschichtung auf ein Bauelement einer Gasturbine, bei dem eine vorübergehende Maskierung von Kühlkanälen vor dem Aufbringen einer Aluminiumschicht durch Dampfdiffusion erfolgt. Während des Aufheizens treten Temperaturen von 815 bis 1100 °C auf.The document EP-A-0 843 026 discloses a method for plating a coating on a component of a gas turbine, in which a temporary masking of Cooling channels before applying an aluminum layer by vapor diffusion takes place. During heating, temperatures of 815 to 1100 ° C occur.

Auch das Dokument US 2006/266285 A1 beschreibt ein Verfahren zur Maskierung von Kühlkanälen einer Gasturbine, es kommt hier jedoch keine Wärmebehandlung zum Einsatz.Also the document US 2006/266285 A1 describes a method for masking cooling ducts of a gas turbine, but no heat treatment is used here.

Das Dokument EP-A-0 908 538 beschreibt ein Verfahren, bei dem ein aus einer Nickel-Basis-Legierung bestehendes Turbinenbauteil maskiert wird, zunächst auf den freien Abschnitten des maskierten Bauteils eine galvanische Schicht ausgebildet wird und die Maskierung dann von dem Bauteil entfernt wird, um das Bauteil anschließend einer Wärmebehandlung zu unterziehen.The document EP-A-0 908 538 describes a method in which a turbine component consisting of a nickel-based alloy is masked, first a galvanic layer is formed on the free portions of the masked component, and then the mask is removed from the component to subsequently heat-treat the component ,

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Ausbildung einer Aluminium-Diffusionsschicht in metallischen Bauteilen anzugeben, das einen verringerten Aufwand erfordert und eine hohe Bauteilqualität gewährleistet.The invention has for its object to provide a method for forming an aluminum diffusion layer in metallic components, which requires a reduced effort and ensures a high component quality.

Erfindungsgemäß wird die Aufgabe mit einem Verfahren gemäß den Merkmalen des Patentanspruchs 1 gelöst. Weitere Merkmale zur vorteilhaften Weiterbildung oder zweckmäßigen Ausgestaltung des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen.According to the invention the object is achieved by a method according to the features of patent claim 1. Further features for advantageous development or expedient embodiment of the method according to the invention will become apparent from the dependent claims.

Der Grundgedanke der Erfindung besteht darin, dass auf den freien Abschnitten der maskierten Bauteile in einer aprotischen Lösung, das heißt in einem wasser- und sauerstofffreien Elektrolyten mit einer Aluminiumanode und dem(n) Bauteil(en) als Kathode, zunächst eine Aluminiumschicht von bestimmter Dicke ausgebildet wird und die Maskierung dann von den Bauteilen entfernt wird, um die Bauteile anschließend nach einem bestimmten Temperatur-Zeit-Profil einer Wärmebehandlung unter Schutzgas oder im Vakuum zu unterziehen, bei der Aluminium in das Bauteil diffundiert und umgekehrt Legierungsbestandteile des Bauteils in die Aluminiumschicht diffundieren und dabei in den beschichteten Abschnitten eine Aluminium-Diffusionsschicht für den späteren Oxidationsschutz ausgebildet wird. Im Unterschied zum Stand der Technik erfolgt die Aluminium-Beschichtung unter der Maskierung in einem ersten Verfahrensschritt bei niedriger Temperatur, während nach dem in einem zweiten Verfahrensschritt vorgenommenen Entfernen der Maskierung in einem dritten Verfahrensschritt das unmaskierte Bauteil zur Ausbildung einer Aluminium-Diffusionsschicht einer Wärmebehandlung bei erhöhter Temperatur unterzogen wird. Das Temperatur-ZeitProfil, bei dem die Diffusion von Aluminium in die Bauteillegierung und von Legierungsbestandteilen in die Aluminiumschicht erfolgt, ist derart, dass die Bauteile - nach einer Erwärmung auf ca. 400 - 700°C und einer Haltezeit von bis zu 2 Stunden - erfindungsgemäß etwa eine Stunde bei ca. 1100°C und anschließend etwa fünf Stunden bei ca. 1030°C wärmebehandelt werden und danach in ruhender Luft abgekühlt werden.The basic idea of the invention is that on the free sections of the masked components in an aprotic solution, ie in a water- and oxygen-free electrolyte with an aluminum anode and the (n) component (s) as the cathode, first an aluminum layer of a certain thickness is trained and the Masking is then removed from the components to then subject the components after a certain temperature-time profile of a heat treatment under inert gas or in a vacuum, wherein the aluminum diffuses into the component and, conversely, alloy components of the component diffuse into the aluminum layer and thereby in the coated sections, an aluminum diffusion layer is formed for later oxidation protection. In contrast to the prior art, the aluminum coating under the masking takes place in a first method step at low temperature, while after the removal of the masking carried out in a second method step in a third method step, the unmasked component for forming an aluminum diffusion layer of a heat treatment at elevated Temperature is subjected. The temperature-time profile, in which the diffusion of aluminum into the component alloy and of alloy constituents in the aluminum layer, is such that the components - after heating to about 400 - 700 ° C and a holding time of up to 2 hours - according to the invention about one hour at about 1100 ° C and then heat treated at about 1030 ° C for about five hours and then cooled in still air.

Aufgrund der in Beschichtungsstärke und -größe kontrollierten galvanischen Beschichtung ist auch eine definierte Ausbildung der Diffusionsschicht möglich, und zwar ohne Maskierung und ohne die Maskierung den für den Diffusionsvorgang erforderlichen hohen Wärmebehandlungstemperaturen aussetzen zu müssen. Die Anforderungen an die Art und Ausführung der bei der galvanischen Beschichtung nur geringen Temperaturen ausgesetzten Maskierung sind geringer als bei den während der Diffusion erforderlichen Maskierungen. Zudem werden auch Folgeschäden an den Bauteilen verhindert, die durch die Wirkung hoher Temperaturen auf das Material der Maskierung bedingt sind.Due to the coating thickness and size controlled galvanic coating and a defined formation of the diffusion layer is possible, without having to expose the masking and without the high heat treatment temperatures required for the diffusion process without masking. The requirements for the type and design of the masking which is exposed only to low temperatures during the galvanic coating are lower than for the maskings required during the diffusion. In addition, consequential damage to the components prevented by the effect of high temperatures on the material of the masking.

Für das Maskierungsmaterial ist lediglich eine Temperaturbeständigkeit bis ca. 400°C erforderlich.For the masking material only a temperature resistance to about 400 ° C is required.

Die zu beschichtenden Bauteilabschnitte werden vor dem Galvanisieren gereinigt und mit einem Aktivierungsmittel, vorzugsweise Nickelchlorid, behandelt.The component sections to be coated are cleaned prior to electroplating and treated with an activating agent, preferably nickel chloride.

Ein Ausführungsbeispiel der Erfindung wird im Folgenden am Beispiel einer aus einem Nickelbasis-Werkstoff bestehenden Turbinenschaufel eines Gasturbinentriebwerks, deren Schaufelblatt zum Schutz vor Oxidation durch die heißen Arbeitsgase eine Aluminiumoxid-Schutzschicht aufweisen soll und deren in Ausnehmungen der Rotorscheibe gehaltener Schaufelfuß frei bleiben muss, näher erläutert.An exemplary embodiment of the invention is explained in more detail below using the example of a turbine blade of a gas turbine engine consisting of a nickel-based material, the blade of which must have an aluminum oxide protective layer for protection against oxidation by the hot working gases and the blade root held in recesses of the rotor disk must remain free ,

Die durch die Befestigung an der Rotorscheibe einer hohen mechanischen Belastung ausgesetzten Schaufelfüße der Turbinenschaufeln werden mit Metallbändern beklebt und so gegenüber äußeren Einwirkungen bei der weiteren Behandlung maskiert. Zur Maskierung können die Schaufelfüße aber auch in einer Box angeordnet oder mit einem Kleber bestrichen sein. Anschließend werden die mechanisch bearbeiteten und gereinigten Turbinenschaufeln mit einem Aktivierungsmittel, beispielsweise NiCl (oder einem Fluorid, vorzugsweise Kalium-Aluminium-Fluorid) behandelt, um eine bessere Haftung der später galvanisch aufgebrachten Aluminiumschicht zu bewirken. Die so vorbereiteten Turbinenschaufeln werden nun (bevorzugt innerhalb einer sauerstoffgekapselten Anlage) in eine aprotische Lösung, das heißt in einen wasser- und sauerstofffreien organischen Elektrolyten mit in diesem befindlichen löslichen Aluminiumanoden eingebracht und im Bereich der nicht abgedeckten Schaufelblätter galvanisch mit Reinaluminium in einer Schichtdicke von 5 bis 10µm beschichtet. Die Maskierung ist bei der galvanischen Beschichtung nur sehr geringen Temperaturen (etwa 300°C) ausgesetzt, so dass der Aufwand für die Maskierung und das Maskierungsmaterial und die spätere Demaskierung gering ist und die vergleichsweise geringen Temperaturen keine Reaktion zwischen Maskierungsmaterial und Grundmaterial bewirken und durch die Maskierung bewirkte Folgeschäden in dem maskierten Werkstoffbereich nicht auftreten können.The blade roots of the turbine blades exposed by the attachment to the rotor disk of a high mechanical load are covered with metal strips and thus masked against external influences in the further treatment. For masking the blade feet can also be arranged in a box or coated with an adhesive. Subsequently, the mechanically machined and cleaned turbine blades are treated with an activating agent, for example NiCl (or a fluoride, preferably potassium aluminum fluoride), to effect better adhesion of the later electrodeposited aluminum layer. The prepared turbine blades are now (preferably within an oxygen-encapsulated Appendix) in an aprotic solution, that is introduced into a water and oxygen-free organic electrolyte with soluble aluminum anodes present therein and galvanically coated in the region of the uncovered blades with pure aluminum in a layer thickness of 5 to 10 .mu.m. The masking is exposed in the galvanic coating only very low temperatures (about 300 ° C), so that the cost of the masking and the masking material and the subsequent unmasking is low and the comparatively low temperatures cause no reaction between masking material and base material and by the Masking caused consequential damage in the masked material area can not occur.

Anschließend werden die Turbinenschaufeln in einem Ofen, und zwar in einer Schutzgasatmosphäre oder auch im Vakuum, nach einer Erwärmungsphase, in der die Schaufeln auf ca. 600°C erwärmt und 1,5 Stunden bei dieser Temperatur gehalten werden, zunächst eine Stunde bei 1100°C und danach fünf Stunden bei 1030°C einer Wärmebehandlung unterzogen, in der das Aluminium aus der galvanisch aufgebrachten Aluminiumschicht in die Nickel-Basis-Legierung und umgekehrt das Nickel in die Aluminiumschicht diffundiert. Danach werden die Schaufeln in weniger als 10 Minuten in ruhender Luft abgekühlt. Das an der Oberfläche der so erzeugten Ni-Al-Diffusionsschicht des Schaufelblatts befindliche Aluminium bildet in einer Sauerstoffatmosphäre eine Aluminiumoxidschicht, die unter Betriebsbedingungen der Schaufeln im Triebwerk eine weitere Oxidation des Schaufelmaterials verhindert.Subsequently, the turbine blades in an oven, in an inert gas atmosphere or in a vacuum, after a heating phase in which the blades are heated to about 600 ° C and held for 1.5 hours at this temperature, initially at 1100 ° for one hour C and then subjected to a heat treatment at 1030 ° C for five hours, in which the aluminum diffused from the electrodeposited aluminum layer in the nickel-based alloy and vice versa, the nickel in the aluminum layer. Thereafter, the blades are cooled in static air in less than 10 minutes. The aluminum present on the surface of the thus produced Ni-Al diffusion layer of the airfoil forms an aluminum oxide layer in an oxygen atmosphere, which prevents further oxidation of the blade material under operating conditions of the blades in the engine.

Claims (6)

  1. Method for the production of an aluminum diffusion coating for oxidation protection of metallic components, in particular of aircraft gas-turbine components made of a nickel-base alloy, by forming an aluminum-oxide protective coating, with the component being coated with pure aluminum in a water and oxygen-free organic electrolyte by electro-plating and the component being heat-treated according to a predetermined high-temperature - time graph, with the components for aluminum diffusion being first heated to approx. 400 to 700°C and held at this temperature for up to two hours, characterized in that certain portions of the component are first masked and that aluminum applied to the free surfaces of the component diffuses into surface-near zones of the component, with the component with masking being coated in a first process step with pure aluminum in the water and oxygen-free organic electrolyte by electro-plating, the masking being subsequently removed in a second process step and the unmasked component then being heat-treated in a third process step in an inert gas atmosphere or in vacuum according to the predetermined high-temperature - time graph, with the components being heat-treated for one hour at 1100°C and for 5 hours at 1030°C, followed by cooling in undisturbed air, with aluminum diffusing into the component and alloy elements of the component diffusing in opposite direction into the aluminum coating.
  2. Method in accordance with Claim 1, characterized in that the masking consists of below 400°C heat-resistant adhesives or synthetics or bonded metal tapes.
  3. Method in accordance with Claim 1, characterized in that the component portions to be coated are cleaned and treated with an activator prior to electro-plating.
  4. Method in accordance with Claim 3, characterized in that the activator is nickel chloride.
  5. Method in accordance with Claim 1, characterized in that the unmasked portions of the component are coated in the aprotic electrolyte to a coat thickness of 5 to 10 µm.
  6. Method in accordance with Claim 5, characterized in that the aluminum coating produced by electro-plating is subsequently treated in a pickling agent.
EP08101026.6A 2007-02-15 2008-01-29 Method for formation of an aluminium diffusion layer form oxidation protection Expired - Fee Related EP1959026B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007008011A DE102007008011A1 (en) 2007-02-15 2007-02-15 Process for forming an aluminum diffusion layer for oxidation protection

Publications (3)

Publication Number Publication Date
EP1959026A2 EP1959026A2 (en) 2008-08-20
EP1959026A3 EP1959026A3 (en) 2009-05-06
EP1959026B1 true EP1959026B1 (en) 2013-06-05

Family

ID=39202118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08101026.6A Expired - Fee Related EP1959026B1 (en) 2007-02-15 2008-01-29 Method for formation of an aluminium diffusion layer form oxidation protection

Country Status (3)

Country Link
US (1) US20080272004A1 (en)
EP (1) EP1959026B1 (en)
DE (1) DE102007008011A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118663A1 (en) * 2010-03-25 2011-09-29 株式会社Ihi Method for forming oxidation resistant coating layer
US8778164B2 (en) 2010-12-16 2014-07-15 Honeywell International Inc. Methods for producing a high temperature oxidation resistant coating on superalloy substrates and the coated superalloy substrates thereby produced
DE102011011200A1 (en) 2011-02-14 2012-08-16 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Producing a metal edge zone of a metal component enriched with at least one additional element comprises inward diffusion of the additional elements from a metal film in the metallic substrate, surrounding the component
US9771661B2 (en) 2012-02-06 2017-09-26 Honeywell International Inc. Methods for producing a high temperature oxidation resistant MCrAlX coating on superalloy substrates
US10087540B2 (en) 2015-02-17 2018-10-02 Honeywell International Inc. Surface modifiers for ionic liquid aluminum electroplating solutions, processes for electroplating aluminum therefrom, and methods for producing an aluminum coating using the same
CN108624839A (en) * 2018-06-22 2018-10-09 中国科学院上海应用物理研究所 A kind of preparation method of stainless steel aluminized coating
DE102018218062A1 (en) * 2018-10-22 2020-04-23 Heraeus Nexensos Gmbh Sleeve for covering a sensor, method for producing a sleeve for covering a sensor and a temperature measuring device with a sleeve for covering a sensor
US11661849B2 (en) * 2021-02-12 2023-05-30 Garrett Transportation I Inc. Turbocharger turbine wheels having an alpha-alumina coating and methods for manufacturing the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101386A (en) * 1971-05-07 1978-07-18 Siemens Aktiengesellschaft Methods of coating and surface finishing articles made of metals and their alloys
US3969195A (en) * 1971-05-07 1976-07-13 Siemens Aktiengesellschaft Methods of coating and surface finishing articles made of metals and their alloys
CH571212A5 (en) * 1973-08-15 1975-12-31 Dixi Sa
EP0148122B1 (en) * 1983-12-23 1988-04-27 Eltech Systems Corporation Coating for metallic substrates, method of production and use of the coating
EP0184985A3 (en) * 1984-12-12 1987-12-23 Eltech Systems Corporation Coating for metallic substrates, method of production and use of the coating
SU1615233A1 (en) * 1988-09-28 1990-12-23 Предприятие П/Я М-5612 Method of applying heat resistant coating
EP0504705A1 (en) * 1991-03-20 1992-09-23 Siemens Aktiengesellschaft Pretreatment of metallic material for the electrodeposition coating with metal
RU95110753A (en) * 1992-10-05 1997-01-27 Сименс АГ (DE) Protection against corrosive and erosive effects for substrate made of chromium steel at temperatures up to about 500 c
JP3471046B2 (en) * 1993-08-12 2003-11-25 富士通株式会社 Printed circuit board manufacturing method
JP3390776B2 (en) * 1995-03-20 2003-03-31 新次 辻 Surface modification method for steel using aluminum diffusion dilution
US5800695A (en) * 1996-10-16 1998-09-01 Chromalloy Gas Turbine Corporation Plating turbine engine components
US6022632A (en) * 1996-10-18 2000-02-08 United Technologies Low activity localized aluminide coating
US5985122A (en) * 1997-09-26 1999-11-16 General Electric Company Method for preventing plating of material in surface openings of turbine airfoils
US6203847B1 (en) * 1998-12-22 2001-03-20 General Electric Company Coating of a discrete selective surface of an article
DE10044067A1 (en) * 2000-09-07 2002-04-04 Ks Kolbenschmidt Gmbh Making wear- and heat- resistant, diffusion-inhibiting surface layer for ferrous metals, especially for use in casting, coats and anodizes aluminum layer
DE10149928C1 (en) * 2001-10-10 2002-12-12 Wkw Erbsloeh Automotive Gmbh Process for treating the surface of a workpiece made from aluminum or aluminum alloy used in the manufacture of car trims comprises polishing the workpiece in an aqueous electrolyte by applying an electrical direct voltage
EP1365039A1 (en) * 2002-05-24 2003-11-26 ALSTOM (Switzerland) Ltd Process of masking colling holes of a gas turbine component
US6652914B1 (en) * 2002-09-27 2003-11-25 General Electric Aviation Service Operation Pte. Ltd. Method for selective surface protection of a gas turbine blade which has previously been in service
DE10246614A1 (en) * 2002-10-07 2004-04-15 Benteler Automobiltechnik Gmbh Method of making vehicle component with metallic coating from steel sheet or strip, involves coating metal from non-aqueous organic solution before cold forming, hot forming and hardening
EP1688517B1 (en) * 2005-02-03 2011-01-12 Ford-Werke GmbH Process of manufacturing a metallic adhesive layer on a cast piece
US7597934B2 (en) * 2006-02-21 2009-10-06 General Electric Company Corrosion coating for turbine blade environmental protection
US7749570B2 (en) * 2006-12-20 2010-07-06 General Electric Company Method for depositing a platinum-group-containing layer on a substrate

Also Published As

Publication number Publication date
EP1959026A3 (en) 2009-05-06
DE102007008011A1 (en) 2008-08-21
EP1959026A2 (en) 2008-08-20
US20080272004A1 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
EP1959026B1 (en) Method for formation of an aluminium diffusion layer form oxidation protection
DE4303135C2 (en) Thermal insulation layer made of ceramic on metal components and process for their production
DE19807636C1 (en) Process for producing a corrosion and oxidation resistant slip layer
DE3535548A1 (en) METAL PROTECTIVE COATING
EP3015568B1 (en) Dross and method for producing an oxidation and corrosion resistant diffusion layer
EP2796588B1 (en) Method for producing a high temperature protective coating
DE102009031313A1 (en) Coating and method for coating a component
EP2695964B1 (en) Protective coating tailored to a component
EP0663964A1 (en) PROTECTION OF CHROMIUM-STEEL SUBSTRATES AGAINST CORROSIVE AND EROSIVE ATTACK AT TEMPERATURES UP TO ABOUT 500 oC.
DE2830851B2 (en) Process for the formation of metal diffusion protection coatings on workpieces made of metal or metal alloys
DE102012108057B4 (en) Method of manufacturing a last stage steam turbine blade
EP2851455B1 (en) Method of electroplating wear-resistant coating
EP1097249B1 (en) Method for producing a plating for a metal component
EP1432847B8 (en) Method for removing at least one area of a layer of a component consisting of metal or a metal compound
WO2008110161A1 (en) Layer system and method for the production thereof
DE3716937C1 (en) Process for the production of wear protection layers on surfaces of components made of titanium or titanium-based alloys
EP1088907B1 (en) Method for producing a plating for a metal component
EP1687458A1 (en) Method for producing a corrosion-resistant and oxidation-resistant coating and component comprising a coating of this type
DE602004001193T2 (en) A method of making a coated superalloy substrate stabilized against the formation of a secondary reaction zone
DE10336989B4 (en) Process for the preparation of hot gas corrosion protection coatings
EP1367144A1 (en) Process for removing portions of a metallic article
EP1230429B1 (en) Method for producing a component with layer
DE102007004744B4 (en) Method and device for partial coating of components
EP3608450A2 (en) Method for providing a metal surface with a chrome diffusion layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090623

17Q First examination report despatched

Effective date: 20091130

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008010064

Country of ref document: DE

Effective date: 20130801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008010064

Country of ref document: DE

Effective date: 20140306

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170227

Year of fee payment: 10

Ref country code: FR

Payment date: 20170223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170127

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008010064

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180129