EP1957792B1 - Propulseur a plasma electronegatif - Google Patents

Propulseur a plasma electronegatif Download PDF

Info

Publication number
EP1957792B1
EP1957792B1 EP06830423.7A EP06830423A EP1957792B1 EP 1957792 B1 EP1957792 B1 EP 1957792B1 EP 06830423 A EP06830423 A EP 06830423A EP 1957792 B1 EP1957792 B1 EP 1957792B1
Authority
EP
European Patent Office
Prior art keywords
ionization
plasma thruster
stage
thruster according
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06830423.7A
Other languages
German (de)
English (en)
Other versions
EP1957792A1 (fr
Inventor
Pascal Chabert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Original Assignee
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Ecole Polytechnique filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1957792A1 publication Critical patent/EP1957792A1/fr
Application granted granted Critical
Publication of EP1957792B1 publication Critical patent/EP1957792B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0025Neutralisers, i.e. means for keeping electrical neutrality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0043Electrostatic ion thrusters characterised by the acceleration grid

Definitions

  • the invention lies in the field of plasma thrusters. These thrusters may for example be used in satellites or in spacecraft whose propulsion requires low thrusts over long periods, such as probes.
  • Plasma thrusters achieve these high ejection speeds.
  • the principle of plasma thrusters described in the diagram illustrated in figure 1 is the following: the "fuel" (gas) X is first ionized in a plasma to form positive ions X + and e - electrons, then ejected by acceleration in an electric field E (often created by accelerating gates ), before being neutralized by a Fe - annex electron beam positioned downstream of the accelerating zone. Neutralization is essential to prevent the spacecraft from charging electrically.
  • the various prototypes of plasma propellants existing to date generally use an ionization stage to generate a source of positively charged material (positive ions), an acceleration stage and a neutralization structure. Sources of ionization, accelerating and neutralizing structures can be varied. But, all the propellers existing today use only the positively charged material (positive ions) for propulsion, the negative charge (the electrons) serving only for ionization and neutralization.
  • the main idea proposed in the present invention is to use a positive ion flux and a negative ion flux for the thrust.
  • an electronegative gas gas with high electron affinity
  • the thrust is ensured by the two types of ions, one of the types being positively charged and the other negatively.
  • These ion beams are neutralized (for example by recombination) downstream to form a beam of fast neutral molecules which makes it possible to dispense with a neutralization structure downstream of the acceleration.
  • the advantage of the invention lies in particular in the use of a single ionization stage and a single ionizable gas for delivering a flow of negative ions and a flow of positive ions of the same amplitude.
  • the plasma thruster according to the invention may further comprise means for filtering the electrons released in the ionization stage, during the ionization of the gas.
  • the plasma thruster may comprise ion flux extraction means comprising at least one polarized gate.
  • the plasma thruster may comprise means for creating an electric field comprising two conductive elements placed at the ends of the ionization stage for placing said stage under voltage, or comprising a coil supplied with a radiofrequency current.
  • the electronegative gas may be diiodine.
  • the electronegative gas can be oxygen.
  • the plasma thruster can comprise means for creating an alternating field generating a pulsed plasma (alternation of ON and OFF periods) allowing the extraction of the ion fluxes in the OFF period, during which the electrons have disappeared (temporal filter of electrons).
  • the plasma thruster may comprise means for generating a static magnetic field within the ionization stage so as to filter the electrons in stationary regime (spatial filter).
  • These means may be permanent magnets placed at the periphery of the ionization stage to create the magnetic field within said ionization stage.
  • the plasma thruster may comprise negative and positive ion flux extraction means in a direction perpendicular to the direction of the magnetic field applied at the level of the ionization stage.
  • the Plasma propellant may comprise a constituent cylinder of the ionization stage and at least one peripheral extraction stage mounted on said cylinder and equipped on the surface with polarized grids.
  • An electronegative gas flow A 2 is introduced into the ionization stage 1. Under the action of an electric field schematized by the arrow representative of the electric power Pe, the electronegative gas generates positive ions A + , ions Negatives A - and electrons e - .
  • the ionization stage is coupled to a filter stage 2 of the electrons so as to have in the extraction stage 3 a positive ion plasma and negative ions without electrons by means of filtering, which can be for example a static magnetic field. Plasma extraction is ensured in the case here schematized by two grids polarized negatively 4 and positively 5.
  • the thrust is therefore ensured by the two types of ions (the negative charge and the positive charge). Downstream neutralization is no longer necessary because the ion beams neutralize downstream (recombination) to form a beam of fast neutral molecules.
  • the ionization stage 1 may use any type of coupling of electrical energy to the plasma (for example: two plates that are continuously polarized, at low frequency or radiofrequency, a coil supplied with radiofrequency for coupling inductive, or a microwave source.
  • any type of coupling of electrical energy to the plasma for example: two plates that are continuously polarized, at low frequency or radiofrequency, a coil supplied with radiofrequency for coupling inductive, or a microwave source.
  • m e, i and u e, i are respectively the mass and velocity of the electrons or ions
  • e is the elementary charge
  • B is the amplitude of the magnetic field.
  • the extraction stage 3 may consist of accelerating grids whose dimensions are not necessarily similar to those of conventional grid thrusters, because the properties of the space charge sheaths are different in the absence of electrons.
  • the figure 3 illustrates an example of a possible prototype which is only an example among the possible prototypes.
  • the system comprises a horizontal cylinder: the ionization stage 1, where the dense plasma is generated by applying a radio frequency voltage at 13.56 MHz on a "helicon" type antenna, represented by the RF symbol.
  • Helicon sources are known to produce very efficient ionization.
  • This cylinder further comprises means 6 for introducing the ionizable gas into the ionization stage.
  • Diode 1 2 is used as fuel. It is a very electronegative gas that makes it possible to form a large amount of heavy negative ions (the higher the mass the higher the thrust, the mass of l 2 is 254 uma (atomic mass unit).
  • the threshold of ionization of the diode is low (10.5 eV to form l + ) which favors the formation of the positive ions with low energetic cost.
  • any electronegative gas can a priori be used (for example the oxygen).
  • static magnetic field B of an intensity of the order of 0.01-0.1 Tesla is applied in the source cylinder, to confine the electrons in the cylinder, as shown in the figure 3 . It can be generated by direct current flow in coils or by permanent magnets (positioned at the periphery of the cylinder and not shown).
  • stages can typically be equipped with polarized grids, as shown in FIG. figure 3 , on the one hand to generate a flow of negative ions l x - and a flow of positive ions l y + .
  • the positive and negative ions generated in the ionization stage diffuse radially in the extraction stages because, unlike the electrons, they are not magnetized (the magnetic field is quite weak and their mass is very high). , so that their Larmor radius is much greater than the radius of the cylinder).
  • the extraction stages 3 illustrated in perspective on the figure 4 can also work with pairs of grids 41 and 51, (the system shown in the figures has four pairs, two on each side); one is polarized negatively, to accelerate the positive ions, the other is polarized positively, to accelerate the negative ions.
  • the extraction zones can have different geometric shapes; any geometry is conceivable and will seek to maximize the extraction area.
  • the two extracted ion beams neutralize each other downstream (in space). Neutralization is therefore automatic and does not require additional electron beam.
  • the two beams can also recombine to form a beam of fast neutral molecules.
  • an acceleration voltage of 1000 V obtained by polarizing the extraction grids so as to optimize the ion optics
  • a density of ion current of 10 mA / cm 2 Taking the mass of iodine, this current corresponds to a mass flow of fuel ejected by 6.5 mg / s.
  • the ion ejection speed will be 40 km / s. Referring to the equations presented in the introduction, this mass flow rate and this ejection speed lead to the following performances: a thrust of 250 mN for a specific pulse of 4000s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Description

  • L'invention se situe dans le domaine des propulseurs à plasma. Ces propulseurs peuvent par exemple être utilisés dans les satellites ou bien dans les engins spatiaux dont la propulsion nécessite des poussées faibles sur des temps longs, comme par exemple les sondes.
  • La propulsion d'engins dans l'espace (où la gravitation terrestre devient négligeable) requiert de faibles poussées (faible flux de matière éjectée), mais de fortes vitesses d'éjection du « carburant » pour minimiser la masse embarquée. En effet, l'augmentation de vitesse Δu d'un engin spatial est reliée à la vitesse d'éjection des gaz ue et aux masses initiales m0 et finale mf de carburant par l'équation suivante dite « rocket equation »: Δu = u e ln m 0 m f
    Figure imgb0001
  • Une vitesse d'éjection des gaz importante est donc impérative si l'on veut économiser du carburant. Les propulseurs plasma permettent d'atteindre ces fortes vitesses d'éjection. Deux quantités sont utilisées pour caractériser un propulseur, l'impulsion spécifique : I s = u e g o
    Figure imgb0002
    exprimée en secondes, où g0 est la constante de gravité à la surface de la terre, et la poussée : T = m ˙ u e
    Figure imgb0003
    où m est le débit massique.
  • Le principe des propulseurs à plasma décrit sur le schéma illustré en figure 1, est le suivant : le « carburant » (gaz) X est d'abord ionisé dans un plasma pour former des ions positifs X+ et des électrons e-, puis éjecté par accélération dans un champ électrique E (souvent créé par des grilles accélératrices), avant d'être neutralisé par un faisceau d'électrons Fe- annexe positionné en aval de la zone accélératrice. La neutralisation est indispensable pour éviter que les engins spatiaux se chargent électriquement.
  • Les différents prototypes de propulseurs plasmas existant à ce jour, utilisent de manière générale un étage d'ionisation pour générer une source de matière chargée positivement (ions positifs), un étage d'accélération et une structure de neutralisation. Les sources d'ionisation, les structures accélératrices et neutralisatrices peuvent être variées. Mais, tous les propulseurs existant à ce jour n'utilisent que la matière chargée positivement (les ions positifs) pour la propulsion, la charge négative (les électrons) servant uniquement à l'ionisation et à la neutralisation.
  • L'article de J. SHIAO et al "The Dual-Plasma Jet Thrusters (with Electric Starters) by Using Dual-Plasma Fusion Fuel Cells as Their Power Source", AIAA 2005-5385, XP008069911, décrit un propulseur à plasma comprenant deux étages d'ionisation, des moyens d'alimentation en gaz ionisable électronégatif de l'un des deux étages d'ionisation, des moyens de création d'un champ électrique de manière à produire l'ionisation du gaz dans les deux étages d'ionisation, et des moyens d'extraction d'un flux d'ions négatifs et positifs, reliés respectivement aux deux étages d'ionisation et permettant l'extraction d'un flux d'ions positifs et l'extraction d'un flux d'ions négatifs assurant la neutralité électrique du propulseur.
  • Dans ce contexte, l'idée principale proposée dans la présente invention est d'utiliser un flux d'ions positifs et un flux d'ions négatifs pour la poussée. Pour cela, un gaz électronégatif (gaz à forte affinité électronique) est utilisé comme carburant.
  • La poussée est donc assurée par les deux types d'ions, l'un des types étant chargé positivement et l'autre négativement. Ces faisceaux d'ions se neutralisent (par exemple par recombinaison) en aval pour former un faisceau de molécules neutres rapides ce qui permet de s'affranchir d'une structure de neutralisation en aval de l'accélération.
  • Plus précisément la présente invention a pour objet un propulseur à plasma comprenant l'extraction d'un flux d'ions positifs caractérisé en ce qu'il comprend :
    • un unique étage d'ionisation,
    • des moyens d'alimentation en gaz électronégatif ionisable dudit étage d'ionisation,
    • des moyens de création d'un champ électrique de manière à produire l'ionisation du gaz dans l'étage d'ionisation,
    • des premiers moyens d'extraction d'un flux d'ions négatifs, des seconds moyens d'extraction d'un flux d'ions positifs, reliés à l'étage d'ionisation ;
    • l'extraction d'un flux d'ions positifs et l'extraction d'un flux d'ions négatifs de même amplitude assurant la neutralité électrique du propulseur.
  • L'intérêt de l'invention réside notamment dans l'utilisation d'un unique étage d'ionisation et d'un unique gaz ionisable permettant de délivrer un flux d'ions négatifs et un flux d'ions positifs de même amplitude.
  • Avantageusement le propulseur à plasma selon l'invention peut comporter en outre des moyens de filtrage des électrons libérés dans l'étage d'ionisation, lors de l'ionisation du gaz.
  • Avantageusement le propulseur à plasma peut comprendre des moyens d'extraction de flux d'ions comportant au moins une grille polarisée.
  • Avantageusement le propulseur à plasma peut comprendre des moyens pour créer un champ électrique comportant deux éléments conducteurs placés aux extrémités de l'étage d'ionisation pour placer ledit étage sous tension, ou comportant une bobine alimentée par un courant radiofréquence.
  • Les moyens pour créer un champ électrique peuvent aussi être de type antenne hélicon alimentée par un courant radio-fréquence
  • Selon une variante de l'invention, le gaz électronégatif peut être du diiode.
  • Selon une variante de l'invention, le gaz électronégatif peur être de l'oxygène.
  • Selon une variante de l'invention, le propulseur plasma peut comprendre des moyens pour créer un champ alternatif générant un plasma pulsé (alternance de périodes ON et OFF) permettant l'extraction des flux d'ions dans la période OFF, période durant laquelle les électrons ont disparus (filtre temporel des électrons).
  • Avantageusement, le propulseur plasma peut comprendre des moyens pour générer un champ magnétique statique au sein de l'étage d'ionisation de manière à filtrer les électrons en régime stationnaire (filtre spatial).
  • Ces moyens peuvent être des aimants permanents placés en périphérie de l'étage d'ionisation pour créer le champ magnétique au sein dudit étage d'ionisation.
  • Selon une variante de l'invention, le propulseur à plasma peut comprendre des moyens d'extraction de flux d'ions négatifs et positifs dans une direction perpendiculaire à la direction du champ magnétique appliqué au niveau de l'étage d'ionisation. Avantageusement, dans ce cas, le propulseur à plasma peut comprendre un cylindre constitutif de l'étage d'ionisation et au moins un étage périphérique d'extraction monté sur ledit cylindre et équipé en surface de grilles polarisées.
  • L'invention sera mieux comprise et d'autres détails apparaitront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :
    • la figure 1 schématise un propulseur plasma selon l'art antérieur comprenant la propulsion d'un gaz positif accompagné d'un neutraliseur.
    • la figure 2 schématise un exemple de propulseur selon l'invention comportant un gaz électronégatif pour générer simultanément un flux d'ions positifs et un flux d'ions négatifs
    • la figure 3 illustre un exemple de propulseur selon l'invention, présentant deux grilles d'extraction polarisées positivement et négativement
    • la figure 4 illustre une vue en perspective de variante d'étage d'extraction comprenant des paires de grilles polarisées positivement et négativement, selon un exemple de propulseur similaire à celui illustré en figure 3.
  • Dans l'exemple décrit ci-après, le propulseur selon l'invention comprend une structure alimentée en gaz électronégatif comme schématisée en figure 2 et comportant :
    • un étage d'ionisation 1
    • un étage de filtrage 2
    • un étage d'extraction 3.
  • Un flux de gaz électronégatif A2 est introduit dans l'étage d'ionisation 1. Sous l'action d'un champ électrique schématisé par la flèche représentative de la puissance électrique Pe, le gaz électronégatif génère des ions positifs A+, des ions négatifs A- et des électrons e-. L'étage d'ionisation est couplé à un étage de filtrage 2 des électrons de manière à disposer dans l'étage d'extraction 3 d'un plasma d'ions positifs et d'ions négatifs dépourvus d'électrons grâce à des moyens de filtrage, pouvant être par exemple un champ magnétique statique. L'extraction du plasma est assurée dans le cas ici schématisé par deux grilles polarisées négativement 4 et positivement 5.
  • La poussée est donc assurée par les deux types d'ions (la charge négative et la charge positive). La neutralisation en aval n'est plus nécessaire car les faisceaux d'ions se neutralisent en aval (recombinaison) pour former un faisceau de molécules neutres rapides.
  • L'étage d'ionisation 1, peut utiliser n'importe quel type de couplage de l'énergie électrique au plasma (citons par exemple : deux plaques polarisées en continu, à basse fréquence ou en radiofréquence, une bobine alimentée en radiofréquence pour un couplage inductif, ou une source microonde.
  • L'étage de filtrage 2, peut être réalisé de deux manières au moins :
    • (i) en modulant la création du plasma (plasmas pulsés : alternance ON-OFF de la puissance électrique) et en utilisant la période OFF pour l'extraction, période durant laquelle les électrons ont disparus par attachement sur les molécules. Selon cette configuration, les étages d'ionisation et de filtrage sont communs.
    • (ii) en utilisant un champ magnétique statique pour piéger les électrons qui ont un rayon de Larmor beaucoup plus faible en raison du rapport de leurs masses respectives. Le rayon de Larmor est proportionnel à la masse des particules, il s'écrit : R L = m e , i u e , i eB
      Figure imgb0004
  • Où me,i et ue,i sont respectivement la masse et la vitesse des électrons ou des ions, e est la charge élémentaire, et B l'amplitude du champ magnétique.
  • L'étage d'extraction 3 peut être constitué de grilles accélératrices dont les dimensions ne sont pas nécessairement similaires à celles des propulseurs à grille classique, car les propriétés des gaines de charge d'espace sont différentes en absence d'électrons.
  • La figure 3 illustre un exemple de prototype possible qui n'est qu'un exemple parmi les prototypes possibles.
  • Le système comprend un cylindre horizontal : l'étage d'ionisation 1, où le plasma dense est généré par application d'une tension radiofréquence à 13.56 MHz sur une antenne de type « hélicon », représenté par le sigle RF. Les sources hélicon sont connues pour produire une ionisation très efficace. Ce cylindre comporte en outre des moyens d'introduction 6 du gaz ionisable dans l'étage d'ionisation. Le diiode l2 est utilisé comme carburant. Il s'agit d'un gaz très électronégatif permettant de former une forte quantité d'ions négatifs lourds (plus la masse est élevée plus la poussée est importante ; la masse de l2 est 254 uma (unité de masse atomique). En outre, le seuil d'ionisation du diiode est bas (10.5 eV pour former l+) ce qui favorise la formation des ions positifs à faible coût énergétique. Cependant, tout gaz électronégatif peut a priori être utilisé (par exemple l'oxygène). Un champ magnétique statique B d'une intensité de l'ordre de 0.01-0.1 Tesla est appliqué dans le cylindre source, permettant de confiner les électrons dans le cylindre, comme représenté sur la figure 3. Il peut être généré par circulation de courant continu dans des bobines ou par des aimants permanents (positionnés en périphérie du cylindre et non-représentés).
  • Ce champ magnétique a deux fonctions :
    • (i) augmenter l'efficacité d'ionisation grâce à un meilleur confinement des électrons et un meilleur chauffage du plasma par l'onde hélicon,
    • (ii) créer le filtre magnétique pour les électrons, i.e. « magnétiser » les électrons, pour les empêcher de diffuser dans les étages d'extraction ionique 3.
  • Ces étages peuvent typiquement être équipés de grilles polarisées, comme représenté en figure 3, pour générer d'une part un flux d'ions négatifs lx - et un flux d'ions positifs ly +. Les ions positifs et négatifs générés dans l'étage d'ionisation (le cylindre horizontal) diffusent radialement dans les étages d'extraction car, contrairement aux électrons, ils ne sont pas magnétisés (le champ magnétique est assez faible et leur masse est très élevée, de sorte que leur rayon de Larmor est très supérieur au rayon du cylindre).
  • Selon une variante de l'invention, les étages d'extraction 3 illustrés en perspective sur la figure 4 peuvent également fonctionner avec des paires de grilles 41 et 51, (le système représenté sur les figures possède quatre paires, deux de chaque côté) ; l'une est polarisée négativement, pour accélérer les ions positifs, l'autre est polarisée positivement, pour accélérer les ions négatifs. Notons que les zones d'extraction peuvent avoir différentes formes géométriques ; toute géométrie est envisageable et cherchera à maximiser la surface d'extraction.
  • Finalement, les deux faisceaux d'ions extraits, de signes opposés, se neutralisent en aval (dans l'espace). La neutralisation est donc automatique et ne nécessite pas de faisceau additionnel d'électrons. Les deux faisceaux peuvent également se recombiner pour former un faisceau de molécules neutres rapides.
  • Typiquement avec un propulseur présentant une surface globale d'extraction d'environ 500 cm2, une tension d'accélération de 1000V (obtenue en polarisant les grilles d'extraction de manière à optimiser l'optique ionique), on peut atteindre une densité de courant ionique de 10 mA/cm2, et ainsi un courant total extrait de l'ordre de 5A. En prenant la masse de l'iode, ce courant correspond à un débit massique de carburant éjecté de 6.5 mg/s. En considérant une tension d'accélération de 1000 V, la vitesse d'éjection des ions sera de 40 km/s. En se référant aux équations présentées en introduction, ce débit massique et cette vitesse d'éjection conduisent aux performances suivantes : une poussée de 250 mN pour une impulsion spécifique de 4000s.

Claims (13)

  1. Propulseur à plasma comprenant l'extraction d'un flux d'ions positifs caractérisé en ce qu'il comprend :
    • un unique étage d'ionisation (1),
    • des moyens d'alimentation (6) en gaz électronégatif ionisable dudit étage d'ionisation,
    • des moyens de création d'un champ électrique de manière à produire l'ionisation du gaz dans l'étage d'ionisation,
    • des premiers moyens d'extraction d'un flux d'ions négatifs, des seconds moyens d'extraction d'un flux d'ions positifs, reliés à l'étage d'ionisation ;
    • l'extraction d'un flux d'ions positifs et l'extraction d'un flux d'ions négatifs de même amplitude assurant la neutralité électrique du propulseur.
  2. Propulseur à plasma selon la revendication 1, caractérisé en ce qu'il comporte en outre des moyens de filtrage des électrons (2) libérés dans l'étage d'ionisation, lors de l'ionisation du gaz.
  3. Propulseur à plasma selon l'une des revendications 1 ou 2, caractérisé en ce que les moyens d'extraction de flux d'ions comprennent au moins une grille polarisée (4, 5).
  4. Propulseur à plasma selon l'une des revendications 1 ou 2, caractérisé en ce que les moyens pour créer un champ électrique comprennent deux éléments conducteurs placés aux extrémités de l'étage d'ionisation pour placer ledit étage sous tension.
  5. Propulseur à plasma selon l'une des revendications 1 à 4, caractérisé en ce que les moyens pour créer un champ électrique comprennent une bobine alimentée par un courant radiofréquence.
  6. Propulseur plasma selon l'une des revendications 1 à 4, caractérisé en ce que les moyens pour créer un champ électrique comprennent une antenne hélicon alimentée par un courant radio-fréquence (RF).
  7. Propulseur à plasma selon l'une des revendications 1 à 6, caractérisé en ce que le gaz électronégatif est de type diiode.
  8. Propulseur à plasma selon l'une des revendications 1 à 6, caractérisé en ce que le gaz électronégatif est de l'oxygène.
  9. Propulseur plasma selon l'une des revendications 2 à 8, caractérisé en ce qu'il comprend des moyens pour créer un champ alternatif générant un plasma pulsé permettant simultanément l'extraction des flux d'ions en absence de champ électrique et la filtration des électrons.
  10. Propulseur plasma selon l'une des revendications 2 à 8, caractérisé en ce qu'il comprend des moyens pour générer un champ magnétique statique au sein de l'étage d'ionisation, de manière à filtrer les électrons.
  11. Propulseur plasma selon la revendication 10, caractérisé en ce qu'il comprend des aimants permanents placés en périphérie de l'étage d'ionisation pour créer le champ magnétique au sein dudit étage d'ionisation.
  12. Propulseur à plasma selon l'une des revendications 10 ou 11, caractérisé en ce qu'il comprend des moyens d'extraction de flux d'ions négatifs et positifs (41, 51) dans une direction perpendiculaire à la direction du champ magnétique appliqué au niveau de l'étage d'ionisation.
  13. Propulseur à plasma selon la revendication 12, caractérisé en ce qu'il comprend un cylindre constitutif de l'étage d'ionisation, au moins un étage périphérique d'extraction monté sur ledit cylindre et équipé en surface de grilles polarisées positivement et négativement.
EP06830423.7A 2005-12-07 2006-12-06 Propulseur a plasma electronegatif Not-in-force EP1957792B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0512417A FR2894301B1 (fr) 2005-12-07 2005-12-07 Propulseur a plasma electronegatif
PCT/EP2006/069387 WO2007065915A1 (fr) 2005-12-07 2006-12-06 Propulseur a plasma electronegatif

Publications (2)

Publication Number Publication Date
EP1957792A1 EP1957792A1 (fr) 2008-08-20
EP1957792B1 true EP1957792B1 (fr) 2017-04-19

Family

ID=37067429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830423.7A Not-in-force EP1957792B1 (fr) 2005-12-07 2006-12-06 Propulseur a plasma electronegatif

Country Status (4)

Country Link
US (1) US9603232B2 (fr)
EP (1) EP1957792B1 (fr)
FR (1) FR2894301B1 (fr)
WO (1) WO2007065915A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0614342D0 (en) * 2006-07-19 2006-08-30 Qinetiq Ltd Electric propulsion system
FR2931212B1 (fr) 2008-05-19 2010-06-04 Astrium Sas Propulseur electrique pour vehicule spatial
FR2939173B1 (fr) * 2008-11-28 2010-12-17 Ecole Polytech Propulseur a plasma electronegatif a injection optimisee.
GB0823391D0 (en) * 2008-12-23 2009-01-28 Qinetiq Ltd Electric propulsion
FR2965697B1 (fr) 2010-09-30 2014-01-03 Astrium Sas Procede et dispositif pour la formation d'un faisceau plasma.
RU2509228C2 (ru) * 2012-04-02 2014-03-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Модель стационарного плазменного двигателя
US9856862B2 (en) * 2013-03-13 2018-01-02 Wesley Gordon Faler Hybrid electric propulsion for spacecraft
FR3020235B1 (fr) 2014-04-17 2016-05-27 Ecole Polytech Dispositif de formation d'un faisceau quasi-neutre de particules de charges opposees.
FR3046520B1 (fr) 2015-12-30 2018-06-22 Centre National De La Recherche Scientifique - Cnrs Systeme de generation de faisceau plasma a derive d'electrons fermee et propulseur comprenant un tel systeme
US11834204B1 (en) 2018-04-05 2023-12-05 Nano-Product Engineering, LLC Sources for plasma assisted electric propulsion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263415A (en) * 1961-03-06 1966-08-02 Aerojet General Co Ion propulsion device
US3177654A (en) * 1961-09-26 1965-04-13 Ryan Aeronautical Company Electric aerospace propulsion system
US6609363B1 (en) * 1999-08-19 2003-08-26 The United States Of America As Represented By The Secretary Of The Air Force Iodine electric propulsion thrusters
US7115881B2 (en) * 2002-06-04 2006-10-03 Mario Rabinowitz Positioning and motion control by electrons, ions, and neutrals in electric fields
US6996972B2 (en) * 2004-05-18 2006-02-14 The Boeing Company Method of ionizing a liquid propellant and an electric thruster implementing such a method
US20060042224A1 (en) 2004-08-30 2006-03-02 Daw Shien Scientific Research & Development, Inc. Dual-plasma jet thruster with fuel cell
US7420182B2 (en) * 2005-04-27 2008-09-02 Busek Company Combined radio frequency and hall effect ion source and plasma accelerator system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2007065915A1 (fr) 2007-06-14
FR2894301B1 (fr) 2011-11-18
US20080271430A1 (en) 2008-11-06
EP1957792A1 (fr) 2008-08-20
FR2894301A1 (fr) 2007-06-08
US9603232B2 (en) 2017-03-21

Similar Documents

Publication Publication Date Title
EP1957792B1 (fr) Propulseur a plasma electronegatif
EP2359001B1 (fr) Propulseur a plasma electronegatif a injection optimisee
Levchenko et al. Perspectives, frontiers, and new horizons for plasma-based space electric propulsion
EP1496727B1 (fr) Accélérateur à plasma à dérive fermée d'électrons
JP3169875B2 (ja) 寿命の長いイオン−光学システムを有するイオンスラスタ
EP2798209B1 (fr) Propulseur plasmique et procede de generation d'une poussee propulsive plasmique
ES2745473T3 (es) Acelerador de plasma con empuje modulado y vehículo espacial con el mismo
US10590919B2 (en) Ground based systems and methods for testing reaction thrusters
US9856862B2 (en) Hybrid electric propulsion for spacecraft
RU2738136C1 (ru) Ионный ракетный двигатель и способ его работы
Dudeck et al. Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions
US7934685B1 (en) Methods to actively protect spacecraft from damage due to collision with ions
EP1619123A2 (fr) Propulseur ionique étagé à émisseur et attracteur
US7773362B1 (en) Accelerator system and method of accelerating particles
EP3250822A1 (fr) Propulseur à effet hall et engin spatial comprenant un tel propulseur
Karimov et al. The use of interplanetary medium as fuel for plasma thrusters
Kawata et al. Heavy ion beam final transport through an insulator guide in heavy ion fusion
Lafleur et al. Proof-of-concept demonstration of the PEGASES plasma thruster
WO2024107856A1 (fr) Véhicules ayant une onde électronique pour entraîner des champs électriques pour la propulsion par ondes acoustiques, et systèmes et procédés associés
Laharev et al. The influence of the working fluid type on the parameters of the ion engine
Emsellem Electrodeless plasma thruster design
WO1997034449A1 (fr) Moteur ionique a effet de couronne
Garrigues et al. Determination of the Axial Electron Mobility Profile in the PPS® X000-LM Thruster
Guyot et al. Micro hall effect thruster for nanosatellite propulsion
Harper Electric Spacecraft Propulsion Systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F03H 1/00 20060101AFI20161020BHEP

Ipc: H05H 1/54 20060101ALI20161020BHEP

INTG Intention to grant announced

Effective date: 20161122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOLE POLYTECHNIQUE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 886236

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006052332

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170419

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 886236

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006052332

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

26N No opposition filed

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171206

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180925

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181210

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181218

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006052332

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191206

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231