EP1955739A1 - Senderetikett - Google Patents
Senderetikett Download PDFInfo
- Publication number
- EP1955739A1 EP1955739A1 EP07250488A EP07250488A EP1955739A1 EP 1955739 A1 EP1955739 A1 EP 1955739A1 EP 07250488 A EP07250488 A EP 07250488A EP 07250488 A EP07250488 A EP 07250488A EP 1955739 A1 EP1955739 A1 EP 1955739A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tag
- transmitter
- ball
- signal
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B43/00—Balls with special arrangements
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0021—Tracking a path or terminating locations
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0021—Tracking a path or terminating locations
- A63B2024/0053—Tracking a path or terminating locations for locating an object, e.g. a lost ball
Definitions
- the present invention relates to a transmitter tag, and more particularly but not limited to a transmitter tag for a golf ball.
- Golf is a well known, and popular game in which a participant attempts to use a golf club to hit a golf ball into one of a series of holes in as few shots as possible.
- One issue associated with the game is the frequent loss of golf balls, which can occur. Lost or irretrievable balls result in the participant incurring penalty points thereby negating the objective of the game.
- the loss of balls adds to the financial cost of playing the game, and can result in a relatively large amount of much time being spent searching for the lost balls.
- the time spent searching for golf balls can also reduce the throughput of players on a golf course, thereby having a negative impact, not just on the participant, who has lost the ball but on other players also.
- a golf ball is provided with an embedded passive radio frequency tag.
- the tag contains a microchip that responds to a signal transmitted from a locater device by returning a modified signal.
- the microchip has no independent power source, but instead operates off power taken from a carrier signal transmitted from the locator device.
- the device is inherently limited to a relatively short range ( ⁇ 9m).
- a transmitter tag for a ball comprising: a transmitter configured to issue a signal for location of said ball; a power source for powering said transmitter; activation means operable for activating said transmitter when said ball is in use; and deactivation means operable for remote manual deactivation of said transmitter after said ball is located.
- said activation means comprises an impact switch operable to activate said transmitter in response to said ball being struck.
- said deactivation means comprises a magnetic switch operable to deactivate said transmitter in response to the presence of a magnetic field.
- said magnetic switch is a Hall effect switch.
- said transmitter is configured for issuing a signal comprising a series of pulses modulated with a carrier signal.
- a carrier signal This may be a periodic on/off key modulated ultra high frequency carrier signal.
- said signal is allocated to a specific carrier frequency, said frequency being configurable to provide an identifier for identifying said ball.
- said issued signal has a duty cycle of less than 1%.
- each pulse has a width in the region of 200 ⁇ s, and wherein one pulse is issued in the region of every 60ms.
- said transmitter comprises an oscillator for producing said carrier signal.
- said oscillator comprises a surface acoustic wave resonator.
- a golf ball comprising the transmitter tag.
- said golf ball comprises a substantially spherical core embedded concentrically within said golf ball, wherein said tag is embedded in said core, and wherein said core, tag, and golf ball share substantially the same centre of mass.
- the invention has particular application for the location of golf balls. Hence, for the sake of clarity, the invention is described with particular reference to golf balls. It will be appreciated, however, that the invention has wider application than to golf balls alone.
- a golf ball having a transmitter tag is shown generally at 10.
- the golf ball comprises a shell portion 12, a core portion 14, and a tag 16.
- the shell portion 12 generally comprises a hollow sphere of external dimensions and appearance corresponding to the standard requirements for golf balls. For example, at the time of filing the application, golf balls are required to have a minimum diameter of 1.68 inches.
- the external appearance may include, for example, the dimpled effect associated with maximising the distance that a ball of a particular weight will travel.
- the core portion 14 is embedded for concentric centre of mass within the shell portion.
- the core 14 may be made of any material suitable for ensuring that the golf ball has a weight conforming to standard requirements, and for ensuring an acceptable balance and feel. For example, at the time of filing the application, golf balls are required to have a maximum weight of 1.62 ounces.
- An example of a suitable material for construction of the core portion 14 is a plastics material, such as polyurethane, whose density and other material characteristics (e.g. elasticity), may be manipulated to allow conformity of the golf ball both with appropriate rules, and with the expectations of players.
- the materials of both the shell 12 and the core 14 are of sufficient durability, and resilient strength both to resist physical damage and/or deformity during the normal course of play, and to give the golf ball an acceptable lifespan.
- the tag 16 is embedded for concentric centre of mass within the core.
- the tag 16 comprises a transmitter circuit configured for issuing a suitable signal for minimising power consumption while the transmitter is operational.
- the transmitted signal is received by a complementary receiver circuit, provided in a separate unit, for locating the transmitter tag and hence the golf ball in which it is embedded.
- the shell 12, the core 14 and the tag 16 are further arranged to ensure compliance with rules concerning spherical symmetry, initial velocity, the overall distance standard and similar rules.
- a first embodiment of a transmitter circuit suitable for implementation in the transmitter tag 16, is shown generally at 20.
- the transmitter circuit 20 is operable to transmit an amplitude shift key modulated signal, comprising an ultra high frequency (UHF) signal modulated by a periodic series of on/off pulses to produce periodic UHF carrier bursts.
- UHF ultra high frequency
- Each pulse is relatively short, thereby resulting in a pulsed signal having a correspondingly low mark space ratio and the transmitted signal having an equivalent duty cycle.
- the duty cycle is less than ⁇ 1%, the mark space ratio being less than ⁇ 0.01.
- a typical pulse length, for example, is ⁇ 200 ⁇ s for a period of 60ms.
- tags may be provided with transmitter circuits in which the on/off keyed signal is allocated to a different carrier frequency.
- the associated receiver may be configured for distinguishing between the frequencies thereby allowing a player to locate a ball having a specific identity.
- different frequencies could be used to identify different golf balls.
- the identification may be, for example, an electronic equivalent to the number printed on the side of a ball for visual identification purposes.
- the transmitter circuit 20 comprises a power source 22, activation means 24, deactivation means 26, a latching portion 28, a boost portion 30, oscillator means 32, modulation means 34, and antenna means 36.
- the power source 22 is a conventional battery or the like arranged for providing a working voltage to the latching portion 28, and the rest of the circuit.
- the battery is a primary 3V lithium or the like.
- the activation means 24 comprises a normally open switch, operable in the event of acceleration above a predefined level to switch temporarily from an open circuit or off state, to a short circuit or on state.
- the switch may additionally be hemispherically omni-directional.
- the latching portion 28 comprises a gated switch or circuit having a gate terminal 38, an input terminal 40, and an output terminal 42.
- the latching portion 28 is operable to switch from a high impedance off state, between the input and output terminals 40, 42, to a low impedance on state, on the application of an appropriate voltage to the gate 38.
- the latching portion 28 is further operable to latch, on switching to the on state, thereby maintaining the low impedance state after the applied gate voltage is removed. In operation, the latched condition is maintained until a short-circuit condition exists between the gate 38 and ground.
- the activation means 24 is connected between the power source 22, and the gate 38 of the latching portion 28.
- the input terminal 40 of the latching portion 28 is connected directly to the power source 22.
- the deactivation means 26 comprises a first terminal 44 and a second terminal 46 connected respectively to the gate terminal 38 via an internal connection in the latching portion 28, and ground.
- the deactivation means 26 is operable to switch from a high impedance off state, to a low impedance on state, between the first and second terminals 44, 46, in the presence of a magnetic field of a suitable flux density.
- the deactivation means comprises a Hall effect switch, although it will be appreciated that other remotely influenced switching is possible.
- the Hall effect switch comprises a micro-power omnipolar Hall effect switch. This allows a constant, polarity independent, magnetic field to be used to change the state of the hall switch. Hence, a simple, permanent magnetic source may be used to deactivate the device thereby reducing cost and complexity.
- a permanent magnet could, for example, be incorporated into the hand held receiver unit to allow for ball de-activation.
- the Hall effect switch also incorporates an internally controlled clocking mechanism to cycle power to the Hall element and analogue processing circuits.
- the clocking mechanism serves to place the high current consuming portions of the circuit into a "Sleep” mode. Periodically the device is “Awakened” by internal logic, and the magnetic flux from the Hall element evaluated against predefined thresholds. If the flux density is above or below these thresholds then the output transistor is driven to change state accordingly. While in the "Sleep” cycle the output transistor remains latched in its previous state.
- the Hall effect switch is optimized for extended operating lifetime in battery powered systems.
- the activation means 24 switches to the on state, thereby activating the latching portion 28, such that the voltage at the output terminal 42 rises to that of the input terminal 40, where it is maintained due the latching action of the latching portion 28.
- Power is therefore supplied to the Hall effect switch 26, via the output terminal 42.
- the deactivation means 26 switches to the on state thereby short-circuiting the gate 38 to ground via the latching portion 28, hence de-latching the latching portion 28.
- After de-latching the latching portion 28 switches back to the off state thereby isolating the output terminal 42 from the input terminal 40, and hence the power source 22.
- the boost portion 30 comprises an input and an output, and is operable to boost the voltage applied to the input, to yield a higher working voltage at the output.
- the boost portion comprises a DC-DC boost converter suitable for providing a sufficient output voltage for driving the oscillator and modulation means 32, 34.
- the voltage output is ⁇ 9V.
- additional voltage may be provided by providing at least one lithium power cell or the like, in addition to the power source 22.
- the output terminal 42, of the latching portion 28 provides an input to the power boost portion 30.
- the voltage of the power source 22 is applied to the input of the boost converter 30, thereby resulting in a boosted voltage at the output.
- the oscillator and modulator means 32,34 are arranged for powering by the boosted voltage, in operation, when the latching portion is latched.
- the oscillator means 32 comprises a UHF radio frequency oscillator configured for providing a predefined UHF carrier signal.
- the modulator means comprises an on/off key modulator arranged to modulate the carrier signal with a signal comprising a periodic series of on/off pulses.
- the transmitter produces an associated on/off key modulated signal comprising UHF carrier bursts, which it then transmits via the antenna means 36.
- the UHF oscillator 32 may comprise any suitable oscillator.
- the oscillator comprises a single port surface acoustic wave (SAW) resonator operating at an appropriate frequency.
- SAW single port surface acoustic wave
- the SAW resonator is particularly advantageous because it provides a good degree of frequency stability when subject to excessive mechanical shock of the type the golf ball is likely to receive during play.
- a SAW resonator exhibits acceptable frequency stability at accelerations of the order 80000g.
- the antenna means comprises an omni-directional antenna operable to radiate the UHF carrier bursts in all directions.
- the activation means 24 switches to the on state, and the latching portion 28 latches thereby supplying the input of the boost converter, and Hall effect switch with power from the power source 22.
- the boost converter provides the boosted voltage to the oscillator 32 and the modulator 34 and thus the transmitter begins to transmit the on/off key modulated signal.
- the deactivation means is manually operable to deactivate the transmitter. It will be appreciated that in addition to the manually operable switch, the deactivation means may further comprise a time delay switch, which automatically switches off the transmitter after a pre-determined delay, thereby avoiding undue power loss in the unlikely event that the transmitter is accidentally switched on.
- the transmitter circuit is designed to comply with appropriate statutory and other requirements such as, for example, FCC regulations.
- FIG 2(b) a second embodiment of a transmitter circuit, suitable for implementation in the transmitter tag 16, is shown generally at 120.
- the transmitter circuit 120 is similar to the circuit of figure 2(a) and will be described to highlight the main differences.
- the transmitter circuit 120 is operable to transmit an amplitude shift key modulated signal as generally described previously.
- the circuit 120 comprises a power source 122, activation means 124, deactivation means 126, a latching portion 128, oscillator means 132, modulation means 134, and antenna means 136.
- the circuit 120 does not include a boost converter arrangement, and the rest of the circuit is modified accordingly.
- the absence of the DC-DC boost has the advantage of reduced complexity and cost, and is particularly advantageous for applications where the maximum finding range is limited to between ⁇ 50m and 60m.
- the power source 122, latching portion 128, oscillator means 132, modulation means 134 and antenna means are generally arranged and configured as described with reference to figure 2(a) and will not be described again in detail.
- the latching portion 128 comprises a gated switch or circuit having a gate terminal 138, an input terminal 140, and an output terminal 142.
- the deactivation means 126 comprises a Hall effect switch having a first terminal 144 and a second terminal 146 connected respectively to the gate terminal 138 of the latching portion 128, and ground.
- the oscillator and modulator means 132, 134 are powered directly from the output terminal 142, of the latching portion 128, when the latching portion is latched.
- the activation means 124 comprises a standard ceramic resonator that uses the mechanical resonance of piezoelectric ceramics (generally, lead zirconium titanate or PZT) in order to produce the appropriate voltage at the gate 138 when subjected to a predefined level of acceleration.
- the ceramic resonator may have a resonant frequency of 2 MHz to 16 MHz.
- the ceramic resonator may additionally be hemispherically omni-directional in X,Y and Z planes.
- the activation means 124 is connected between ground and the gate terminal 138 of the latching portion 128.
- the input terminal 140 of the latching portion 128 is connected directly to the power source 122.
- the ceramic resonator 124 when the golf ball is struck the ceramic resonator 124 produces an appropriate voltage, thereby activating the latching portion 128, such that the voltage at the output terminal 142 rises to that of the input terminal 140, where it is maintained due the latching action of the latching portion 128.
- Power is therefore supplied to the Hall effect switch 126, via the output terminal 142.
- the deactivation means 126 switches to the on state thereby short-circuiting the gate 138 to ground via terminals 144 and 146 of the Hall effect switch 126, hence de-latching the latching portion 128.
- After de-latching the latching portion 128 switches back to the off state thereby isolating the output terminal 142 from the input terminal 140, and hence the power source 122.
- the oscillator means 132 comprises a UHF radio frequency oscillator configured for providing a predefined UHF carrier signal.
- the modulator means 134 comprises an on/off key modulator arranged to modulate the carrier signal with a signal comprising a periodic series of on/off pulses.
- the ceramic resonator 124 when the golf ball is struck, the ceramic resonator 124 produces the required voltage at gate terminal 138, and the latching portion 128 latches thereby supplying the input of the Hall effect switch 126, the oscillator 132 and the modulator 134 with power from the power source 122.
- the transmitter begins to transmit the on/off key modulated signal.
- a receiver circuit for receiving the signal transmitted by the transmitter circuit of figure 2(a) or 2(b) is shown generally at 50.
- the receiver 50 is operable to receive the on/off key modulated signal, to recover the signal, and to provide an indication of its strength.
- the receiver circuit 50 forms an amplitude shift key (ASK) superheterodyne receiver.
- ASK amplitude shift key
- the receiver 50 comprises, an antenna 52, a first filter portion 54, a mixer portion 56, a local oscillator portion 58, a second filter portion 60, a demodulator portion 62, peak detection means 64, and indicator means 66.
- the antenna 52 is operable to receive the on/off key modulated signal transmitted by the golf ball.
- the antenna 52 comprises an omni-directional antenna for reasons of practicality and cost efficiency.
- the antenna may alternatively be a directional antenna for assisting directional location of the golf ball emitting the modulated signal.
- the first filter portion 54 comprises a band pass filter configured for filtering and amplifying the signal received by the antenna such that only the UHF frequency corresponding to the carrier of the modulated signal is amplified.
- the oscillator means 58 comprises a UHF radio frequency oscillator configured for providing a second carrier signal.
- the mixer portion 56 is configured to heterodyne the filtered signal with the second carrier signal, produced by the oscillator portion 58, to generate a lower sideband at a beat frequency known as the intermediate frequency.
- the intermediate frequency is substantially equal to the difference between the frequencies of the second carrier and the carrier of the modulated signal.
- the second filter portion 60 is configured to further filter and amplify the heterodyned signal for subsequent demodulation.
- the demodulator portion 62 is operable to amplitude demodulate the output of the second filter portion 60 to recover the on/off key encoded signal transmitted by the transmitter tag in the golf ball.
- the peak voltage of the recovered signal is indicative of the signal strength of the received signal, and hence the distance of the golf ball containing the transmitter tag from the receiver.
- the peak detection means 64 comprises a peak detector operable to detect the peak voltage of the recovered on/off key encoded signal and to convert it into a corresponding DC voltage.
- the peak detection means 64 comprises a high impedance unity gain amplifier having a diode isolated output. The amplifier is configured to have a suitable bandwidth for the intended application.
- a parallel capacitor, resistor arrangement is connected to the amplifier, the arrangement having a time constant sufficient to convert the on/offkey recovered signal into a DC voltage.
- the DC voltage is fed into a further high impedance unity gain amplifier thereby producing a buffered output suitable for driving the indicator means 66.
- the buffered DC voltage is thus indicative of the received signal strength, and hence the distance of the golf ball incorporating the transmitter tag from the receiver.
- the indicator means 66 comprises means for providing a visual and/or audible indication of signal strength to a user.
- the entire circuit is powered by an appropriate power source VCC.
- FIG 4 An example of a typical hand held receiver unit is shown in figure 4 generally at 70.
- the receiver unit incorporates the receiver circuit 50 of figure 3 and a switch 72 for switching power to the circuit on and off as required.
- the indicator means 66 is shown as an analogue coil indicator.
- the indicator means may comprise any suitable means for indicating signal strength to the user.
- the indicator means may alternatively or additionally comprise a digital display, an audible pitched output, an indicator bar or the like.
- the tag begins transmitting an on/off key modulated signal.
- a user uses the receiver unit 70 to pick up the transmitted signal and to give an indication of the associated received signal strength. The user then moves generally toward the area where he thinks the ball may have landed. If the indicator means 66 indicates that the signal strength is increasing the user knows that he is getting closer to the ball. On the other hand if the signal strength decreases the user knows that he is getting further away from the ball and can change direction accordingly. In this manner the user can find the ball quickly and easily without distracting other players.
- the golf ball may be provided with a storage container, of suitable dimensions for storing at least one golf ball, in which a suitable magnet is incorporated for ensuring that stored balls cannot start to transmit accidentally. Such a container would also mitigate against a user forgetting to deactivate the transmitter tag after finishing with the ball.
- the use of a transmitter tag of the type described allows for a relatively large range, without contravening associated regulations, and without undue power consumption.
- the transmitter tag of the second embodiment has a range in the region of 60zn, and a life span exceeding 200 hours in continuous operation.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Radar Systems Or Details Thereof (AREA)
- Burglar Alarm Systems (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Photovoltaic Devices (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07250488A EP1955739B1 (de) | 2007-02-06 | 2007-02-06 | Senderetikett |
ES07250488T ES2346009T3 (es) | 2007-02-06 | 2007-02-06 | Etiqueta transmisora. |
AT07250488T ATE467445T1 (de) | 2007-02-06 | 2007-02-06 | Senderetikett |
DE602007006411T DE602007006411D1 (de) | 2007-02-06 | 2007-02-06 | Senderetikett |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07250488A EP1955739B1 (de) | 2007-02-06 | 2007-02-06 | Senderetikett |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1955739A1 true EP1955739A1 (de) | 2008-08-13 |
EP1955739B1 EP1955739B1 (de) | 2010-05-12 |
Family
ID=38229979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07250488A Not-in-force EP1955739B1 (de) | 2007-02-06 | 2007-02-06 | Senderetikett |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1955739B1 (de) |
AT (1) | ATE467445T1 (de) |
DE (1) | DE602007006411D1 (de) |
ES (1) | ES2346009T3 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102455442A (zh) * | 2010-10-21 | 2012-05-16 | 迎辉科技股份有限公司 | 定位装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3782730A (en) * | 1971-12-02 | 1974-01-01 | Euronics Ltd | Golf ball |
FR2616335A1 (fr) * | 1987-06-11 | 1988-12-16 | Sonigo Ariel | Balle de golf munie d'un dispositif de reperage |
US5423549A (en) * | 1990-03-09 | 1995-06-13 | Ipu Int. Patents Utilization Ltd. | Apparatus with a signal receiving unit for locating golf balls |
DE29718535U1 (de) * | 1997-10-18 | 1998-03-12 | GES Golf Equipment Systems GmbH, 25497 Prisdorf | Golfball, der durch Funkpeilung wiederauffindbar ist |
DE20009198U1 (de) * | 2000-05-22 | 2000-08-17 | Unglaube, Jürgen, 04808 Kühnitzsch | Intelligenter Golfball für Golfbahnen mit Ballerfassungssystem |
US20020091017A1 (en) * | 2001-01-05 | 2002-07-11 | Oblon, Spivak Mcclelland, Maier & Neustadt, P.C. | Golf ball locator |
-
2007
- 2007-02-06 ES ES07250488T patent/ES2346009T3/es active Active
- 2007-02-06 DE DE602007006411T patent/DE602007006411D1/de active Active
- 2007-02-06 EP EP07250488A patent/EP1955739B1/de not_active Not-in-force
- 2007-02-06 AT AT07250488T patent/ATE467445T1/de not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3782730A (en) * | 1971-12-02 | 1974-01-01 | Euronics Ltd | Golf ball |
FR2616335A1 (fr) * | 1987-06-11 | 1988-12-16 | Sonigo Ariel | Balle de golf munie d'un dispositif de reperage |
US5423549A (en) * | 1990-03-09 | 1995-06-13 | Ipu Int. Patents Utilization Ltd. | Apparatus with a signal receiving unit for locating golf balls |
DE29718535U1 (de) * | 1997-10-18 | 1998-03-12 | GES Golf Equipment Systems GmbH, 25497 Prisdorf | Golfball, der durch Funkpeilung wiederauffindbar ist |
DE20009198U1 (de) * | 2000-05-22 | 2000-08-17 | Unglaube, Jürgen, 04808 Kühnitzsch | Intelligenter Golfball für Golfbahnen mit Ballerfassungssystem |
US20020091017A1 (en) * | 2001-01-05 | 2002-07-11 | Oblon, Spivak Mcclelland, Maier & Neustadt, P.C. | Golf ball locator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102455442A (zh) * | 2010-10-21 | 2012-05-16 | 迎辉科技股份有限公司 | 定位装置 |
Also Published As
Publication number | Publication date |
---|---|
ES2346009T3 (es) | 2010-10-07 |
DE602007006411D1 (de) | 2010-06-24 |
EP1955739B1 (de) | 2010-05-12 |
ATE467445T1 (de) | 2010-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7811163B2 (en) | Transmitter tag | |
US7791982B2 (en) | Impact energy powered golf ball transmitter | |
US6118376A (en) | Golf club tracking device and method | |
US9075124B2 (en) | Apparatus for arrow locating and game tracking | |
US4961575A (en) | Hide and seek game | |
JP2895227B2 (ja) | ゴルフボールの位置検出装置 | |
US20080000364A1 (en) | Golf ball locating system and methods of use | |
US5904621A (en) | Electronic game with infrared emitter and sensor | |
EP0073681A2 (de) | Positionsdetektorvorrichtungen | |
US20070105668A1 (en) | Hunting arrow tracking system | |
US20090233735A1 (en) | Golf data recorder with integrated missing club reminder and theft prevention system | |
US11806600B2 (en) | Infrared hockey puck and goal detection system | |
WO2007034421A3 (en) | Radio frequency identification device systems | |
US6011466A (en) | Sealed golf ball with remotely activated audible sound generator powered by an electromagnetically rechargeable battery | |
US7209014B2 (en) | Switching device actuated by a transponder | |
US20110080285A1 (en) | Distress beacon and distress alarm system | |
GB2493042A (en) | An alerting system for hearing impaired sports participants | |
EP1955739B1 (de) | Senderetikett | |
US6904000B1 (en) | Object locator system | |
US20070032314A1 (en) | Transmitter tag | |
US20160189490A1 (en) | Electronic Whistle Sensor | |
CN207883093U (zh) | 一种手持无线遥控安全喇叭 | |
CN110470179A (zh) | 一种枪支实时定位模块及枪支定位方法 | |
GB2440027A (en) | Golf club separation alarm | |
US20180135951A1 (en) | Sound emitting trackable arrow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20090213 |
|
17Q | First examination report despatched |
Effective date: 20090309 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602007006411 Country of ref document: DE Date of ref document: 20100624 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2346009 Country of ref document: ES Kind code of ref document: T3 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100912 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
26N | No opposition filed |
Effective date: 20110215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100813 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007006411 Country of ref document: DE Effective date: 20110214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100812 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20140223 Year of fee payment: 8 Ref country code: IE Payment date: 20140222 Year of fee payment: 8 Ref country code: NL Payment date: 20140224 Year of fee payment: 8 Ref country code: DE Payment date: 20140225 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20140225 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140225 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150327 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007006411 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20150901 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150901 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20151030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150206 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150302 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150207 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180710 |