EP1955261A1 - Verfahren zur optimierung eines kraftstoffverbrauchs eines flugzeugs während seines flugs - Google Patents

Verfahren zur optimierung eines kraftstoffverbrauchs eines flugzeugs während seines flugs

Info

Publication number
EP1955261A1
EP1955261A1 EP06819651A EP06819651A EP1955261A1 EP 1955261 A1 EP1955261 A1 EP 1955261A1 EP 06819651 A EP06819651 A EP 06819651A EP 06819651 A EP06819651 A EP 06819651A EP 1955261 A1 EP1955261 A1 EP 1955261A1
Authority
EP
European Patent Office
Prior art keywords
extra
flight
aircraft
surplus
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP06819651A
Other languages
English (en)
French (fr)
Inventor
François Coulmeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1955261A1 publication Critical patent/EP1955261A1/de
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0005Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with arrangements to save energy

Definitions

  • the invention relates to a method of optimization during flight of the fuel consumption of an aircraft.
  • regulatory entries include:
  • the excess is determined before take-off to refuel the aircraft. This calculation is not repeated later. In case of changes in weather conditions and in particular if the conditions present on the course lead to an increase in fuel consumption, one can arrive in a situation where the surplus becomes negative which is problematic for the safety of the flight.
  • the aim of the invention is to overcome this problem by means of a method making it possible to improve the safety of the flight by proposing to the pilot a modification of the flight profile so as to avoid a negative surplus or at least to limit a possible deficit in flight. fuel.
  • the subject of the invention is a method for optimizing the fuel consumption of an aircraft during flight, characterized in that it consists of a given point of the flight:
  • FIG. flight represents an optimization curve of the speed of the aircraft during a cruising phase.
  • FIG. 1 represents in abscissa the distance traveled by the aircraft and in ordinate its altitude. The scales are not respected.
  • the flight profile shown in FIG. 1 comprises three flight phases: a climb phase ®, a cruise phase ⁇ and a descent phase
  • the fuel consumption of the aircraft is essentially proportional to its speed.
  • performance tables are available which make it possible to calculate the fuel flow, per phase, as a function of the thrust corresponding to the maintenance of a speed.
  • Some additional parameters come into play, such as the temperature that affects engine performance.
  • TRIP FUEL the fuel required to reach the destination
  • TRIP FUEL the fuel required to reach the destination
  • the average wind data is updated at each WPT (i) point and can of course differ from the known initial data for the determination of the fuel intake before take-off.
  • the fuel C (i) remaining at the finish equal to the fuel present at point i in the tanks of the aircraft is then determined and the fuel required to reach the destination TRIP FUEL (i) is subtracted.
  • the excess EXTRA (i) is equal to the fuel C (i) remaining at the end of which the regulatory reserves RFA (i) are subtracted.
  • the pilot of the aircraft gives a minimum EXTRA-mini value of the surplus. Typically, a positive or zero value of the excess EXTRA-mini is chosen.
  • the speed of the aircraft is adjusted so as to increase the excess EXTRA (i) for at least one of the next phases of flight.
  • the speed is adapted so that the excess EXTRA (i) is substantially equal to the value EXTRA-mini. It is indeed not necessary to increase the surplus beyond the EXTRA-mini value which advantageously equals the regulatory reserves. Staking the surplus EXTRA (i) as close as possible to the regulatory reserves avoids diversion to another airport than originally planned without penalizing the cost of the flight by extending its duration.
  • the speed of the aircraft is adapted for the cruising phase ⁇ , and the surplus EXTRA (i) is again determined.
  • the pilot is informed of the determined value of the surplus, if the surplus is less than a given value, for at least one of the next phases of flight, the pilot is offered a speed of the aircraft making it possible to increase the excess. Then the pilot may or may not validate the speed proposed for the phase concerned.
  • the speed of the aircraft is adapted for the cruise phase ⁇ , and then again determines the excess, if the surplus is always negative, the speed of the aircraft is adjusted for the rise ®, then the surplus is determined again, if the surplus is always negative, the speed of the aircraft for the descent ⁇ , then the excess is again determined.
  • This sequence can be illustrated by taking the example of a trip between New York and San Francisco on an airliner with a take-off weight of 200 tonnes.
  • the flight plan for this trip provides for a cruising altitude of 35,000 feet. One foot is equivalent to 0.33m. the altitude is expressed in feet according to the usual aeronautical sector.
  • the diversion airport chosen by the airline is Los Angeles.
  • the optimization criterion given by the company is 100. This criterion is well known in the Anglo-Saxon literature under the name of "cost index”.
  • the on-board computer determines the economic speeds of the different flight phases in order to respect the optimization criterion:
  • the speeds are expressed either in Mach number or in knots as usual in the aeronautical sector.
  • One node is equivalent to one nautical mile per hour and one nautical mile equals 1852 m.
  • the onboard computer determines the following predictions:
  • RSV5% represents the reserve of 5% for the hazards of the flight.
  • 30MIN represents the reserve of 30 min for waiting circuit at the front arrival landing.
  • ALTN represents the reserve to make a diversion on Los Angeles
  • FIG. 2 gives an example of calculation of the surplus EXTRA (i) whose values are given in ordinate as a function of the speed of the aircraft given in abscissas, during the phase of cruise ⁇ .
  • the speed of the aircraft is expressed in Mach number.
  • the curve representing the surplus EXTRA (i) is determined using performance tables for calculating the fuel flow, as a function of the thrust in the cruising phase. We see in Figure 2 that the excess goes through a maximum for a speed Mach 0.8.
  • the climbing phase is particularly suitable for a new search for fuel efficiency because it consumes a lot of fuel.
  • the same reasoning is applied to the climb phase.
  • the economic rate of climb is obtained so that an additional 200 kg can be absorbed: 300 knots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Remote Sensing (AREA)
  • Game Theory and Decision Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Tires In General (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Navigation (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
EP06819651A 2005-11-25 2006-11-22 Verfahren zur optimierung eines kraftstoffverbrauchs eines flugzeugs während seines flugs Pending EP1955261A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0511965A FR2894053B1 (fr) 2005-11-25 2005-11-25 Procede d'optimisation en cours de vol de la consommation en carburant d'un aeronef
PCT/EP2006/068734 WO2007060169A1 (fr) 2005-11-25 2006-11-22 Procede d'optimisation en cours de vol de la consommation en carburant d'un aeronef

Publications (1)

Publication Number Publication Date
EP1955261A1 true EP1955261A1 (de) 2008-08-13

Family

ID=36295533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819651A Pending EP1955261A1 (de) 2005-11-25 2006-11-22 Verfahren zur optimierung eines kraftstoffverbrauchs eines flugzeugs während seines flugs

Country Status (4)

Country Link
US (1) US8437887B2 (de)
EP (1) EP1955261A1 (de)
FR (1) FR2894053B1 (de)
WO (1) WO2007060169A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117111625A (zh) * 2023-10-25 2023-11-24 四川腾盾科技有限公司 一种固定翼无人机低油量在线应急路径规划方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927455B1 (fr) 2008-02-08 2014-03-21 Thales Sa Procedes d'optimisation de la localisation d'un aeronef au sol et en phases de decollage et d'atterrissage
FR2940426B1 (fr) * 2008-12-23 2010-12-10 Thales Sa Dispositif d'assistance au choix d'un aeroport de deroutement
FR2942328B1 (fr) * 2009-02-17 2011-02-25 Thales Sa Procede d'aide a l'elaboration de la strategie de vitesse d'un aeronef en vue de tenir une contrainte de temps
US8645009B2 (en) * 2012-02-23 2014-02-04 Ge Aviation Systems Llc Method for flying an aircraft along a flight path
CN104870884A (zh) * 2012-12-28 2015-08-26 通用电气公司 用于管理lng沸腾物的方法和lng沸腾物管理组件
US8949090B2 (en) * 2013-01-28 2015-02-03 The Boeing Company Formation flight control
US9821903B2 (en) 2014-07-14 2017-11-21 The Boeing Company Closed loop control of aircraft control surfaces
US20180189704A1 (en) * 2017-01-04 2018-07-05 Honeywell International Inc. Methods and Apparatus for Providing Fuel Tankering Data Onboard and Aircraft
US10147330B2 (en) * 2017-03-31 2018-12-04 The Boeing Company Aircraft flight path holding pattern system and method
CN112381265B (zh) * 2020-10-19 2022-09-30 长沙理工大学 基于无人机的充电和任务卸载系统及其任务耗时优化方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB743529A (en) * 1952-08-26 1956-01-18 Svenska Aeroplan Ab Instrument for indicating the distance an aircraft can fly on the fuel available in the fuel tanks of the aircraft
US4312041A (en) * 1978-02-22 1982-01-19 Lear Siegler, Inc. Flight performance data computer system
US4642775A (en) * 1984-05-25 1987-02-10 Sundstrand Data Control, Inc. Airborne flight planning and information system
US5121325A (en) * 1990-04-04 1992-06-09 Smiths Industries Aerospace & Defense Systems, Inc. Required time of arrival (RTA) control system
US5835879A (en) * 1993-08-11 1998-11-10 Bush; Gary L. Apparatus and method for indicating aircraft fuel efficiency
US6484088B1 (en) * 1999-05-04 2002-11-19 Ssi Technologies, Inc. Fuel optimization system with improved fuel level sensor
US6571171B1 (en) * 1999-09-08 2003-05-27 Rockwell Collins, Inc. Method and apparatus for graphically inserting waypoints for a flight management system
US6275768B1 (en) * 2000-04-28 2001-08-14 Grant A. Zobell Fuel pump with fuel mileage calculation option
US7010399B2 (en) * 2003-11-24 2006-03-07 The Boeing Company Methods and apparatus for fuel control using inertial measurement data
US7376495B2 (en) * 2004-01-20 2008-05-20 Varec, Inc. Fuel information messaging system
US20050267673A1 (en) * 2004-01-20 2005-12-01 Varec, Inc. Multiple fueler operations for fuel information messaging system
US7366591B2 (en) * 2004-06-21 2008-04-29 Honeywell International, Inc. System and method for vertical flight planning
US7606641B2 (en) * 2005-08-04 2009-10-20 The Boeing Company Fuel consumption data tracking/collection and aircraft/route optimization
US7647163B2 (en) * 2005-08-04 2010-01-12 The Boeing Company Automated fueling information tracking and fuel hedging
US20090125222A1 (en) * 2007-11-13 2009-05-14 Honeywell International, Inc. Flight plan comparison system and method
US8224561B2 (en) * 2007-12-13 2012-07-17 Hyundai Motor Company System for assisting fuel-efficient driving

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007060169A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117111625A (zh) * 2023-10-25 2023-11-24 四川腾盾科技有限公司 一种固定翼无人机低油量在线应急路径规划方法
CN117111625B (zh) * 2023-10-25 2024-01-23 四川腾盾科技有限公司 一种固定翼无人机低油量在线应急路径规划方法

Also Published As

Publication number Publication date
US20080294304A1 (en) 2008-11-27
WO2007060169A1 (fr) 2007-05-31
US8437887B2 (en) 2013-05-07
FR2894053B1 (fr) 2007-12-28
FR2894053A1 (fr) 2007-06-01

Similar Documents

Publication Publication Date Title
EP1955261A1 (de) Verfahren zur optimierung eines kraftstoffverbrauchs eines flugzeugs während seines flugs
EP1570325B1 (de) Verfahren zur validierung einer flugplaneinschränkung
CA2472288C (fr) Procede et dispositif de generation d'un plan de vol pour un vol tactique d'un aeronef
FR2938327A1 (fr) Procede pour la determination de la vitesse d'un aeronef
EP2498159B1 (de) Verfahren zur Optimierung der Landung eines Luftfahrzeugs auf einer Piste.
FR2930053A1 (fr) Procede et dispositif de guidage d'un aeronef
FR2953302A1 (fr) Procede de planification, de calcul de trajectoire, de predictions et de guidage pour le respect d'une contrainte de temps de passage d'un aeronef
FR3012630A1 (fr) Procede d'aide a la navigation pour un aeronef en descente et en approche a poussee reduite
EP2662743B1 (de) Verfahren und Vorrichtung zur Unterstützung der Flugsteuerung eines Luftfahrzeugs während einer Landephase
FR2912242A1 (fr) Dispositif et procede d'aide a la gestion d'une panne moteur d'un aeronef
FR2923032A1 (fr) Procede et dispositif d'aide au pilotage d'un aeronef en vue d'une phase de descente.
FR2942566A1 (fr) Procede pour la gestion du vol d'un aeronef
CA2297567C (fr) Systeme pour la commande en lacet d'un aeronef
EP2957975B1 (de) Steuerverfahren und -vorrichtung mindestens eines kontrollsystems eines stellglieds eines luftfahrzeugs, entsprechendes computerprogramm-produkt und entsprechendes luftfahrzeug
FR2941554A1 (fr) Procede et dispositif d'aide au pilotage d'un aeronef lors d'une phase d'atterrissage
FR2945513A1 (fr) Procede et dispositif d'optimisation des performances d'un aeronef en presence d'une dissymetrie laterale
FR3022340A1 (fr) Procede et dispositif de determination d'une consigne de controle d'un aeronef, produit programme d'ordinateur et aeronef associes
CA2640925A1 (fr) Procede et dispositif de commande de la poussee d'un aeronef multimoteur
FR2912243A1 (fr) Dispositif et procede d'aide a la gestion d'une panne moteur d'un aeronef
FR2907541A1 (fr) Procede de gestion automatique de la vitesse d'un aeronef en air turbulent et dispositif pour sa mise en oeuvre
FR3037411A1 (fr) Procede et systeme de determination automatique d'un profil optimise de descente et d'approche pour un aeronef
EP1564527B1 (de) Verfahren und Vorrichtung zur Sollgeschwindigkeitsberechnung für ein Luftfahrzeug
FR2749933A1 (fr) Procede pour la gestion de la vitesse air en vue du respect des contraintes de temps d'un aerodyne dans un environnement meteorologique evolutif
FR2954490A1 (fr) Procede et systeme de gestion dynamique d'une procedure de vol d'un plan de vol d'un aeronef
FR2904448A1 (fr) Procede et dispositif d'aide a la gestion de vols successifs d'un aeronef.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN