EP1951795A2 - Foam comprising unsaturated fluorocarbons - Google Patents

Foam comprising unsaturated fluorocarbons

Info

Publication number
EP1951795A2
EP1951795A2 EP06836756A EP06836756A EP1951795A2 EP 1951795 A2 EP1951795 A2 EP 1951795A2 EP 06836756 A EP06836756 A EP 06836756A EP 06836756 A EP06836756 A EP 06836756A EP 1951795 A2 EP1951795 A2 EP 1951795A2
Authority
EP
European Patent Office
Prior art keywords
chf
cfcf
chcf
foam
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06836756A
Other languages
German (de)
French (fr)
Inventor
Joseph Anthony Creazzo
Mario Joseph Nappa
Allen Capron Sievert
Ekaterina N. Swearingen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemours Co FC LLC
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP1951795A2 publication Critical patent/EP1951795A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • Fluorocarbons (Attorney Docket No. FL1184 US NA) and further related to co-filed and jointly owned application titled Methods for Making Foams Using Blowing Agents Comprising Unsaturated Fluorocarbons (Attorney Docket No. FL1319 US NA), both of which are also incorporated herein by reference.
  • the disclosure herein relates to blowing agent compositions comprising unsaturated fluorocarbons and/or unsaturated hydrofluorocarbons.
  • the disclosure herein further relates to the use of the blowing agent compositions in the process for manufacturing plastic foams.
  • Closed-cell polyisocyanate-based foams are widely used for insulation purposes, for example, in building construction and in the manufacture of energy efficient electrical appliances.
  • polyurethane (polyisocyanurate) board stock is used in roofing and siding for its insulation and load-carrying capabilities.
  • Poured and sprayed polyurethane foams are widely used for a variety of applications including insulating roofs, insulating large structures such as storage tanks, insulating appliances such as refrigerators and freezers, insulating refrigerated trucks and railcars, etc. All of these various types of polyurethane foams require blowing (expansion) agents for their manufacture.
  • Insulating foams depend on the use of halocarbon blowing agents, not only to foam the polymer, but primarily for their low vapor thermal conductivity, a very important characteristic for insulation value.
  • polyurethane foams used CFCs (chlorofluorocarbons, for example CFC-11 , trichlorofluoromethane) and HCFCs (hydrochlorofluorocarbons, for example HCFC-141b, 1 ,1- dichloro-1-fluoroethane) as the primary blowing agent.
  • HFCs hydrofluorocarbons
  • An example of an HFC employed in this application is HFC-245fa (1 ,1 ,1 ,3,3-pentafluoropropane).
  • thermoplastic foam primarily polystyrene foam.
  • Polyolefin foams polystyrene, polyethylene, and polypropylene are widely used in insulation and packaging applications. These thermoplastic foams were generally made with CFC-12 (dichlorodifluoromethane) as the blowing agent. More recently HCFCs (HCFC-22, chlorodifluoromethane) or blends of HCFCs (HCFC-22/HCFC- 142b) or HFCs (HFC-152a) have been employed as blowing agents for polystyrene.
  • a third important type of insulating foam is phenolic foam. These foams, which have very attractive flammability characteristics, were generally made with CFC-11 (trichlorofluoromethane) and CFC-113 (1 ,1 ,2- trichloro-1 ,2,2-trifluoroethane) blowing agents
  • open-cell foams are also of commercial interest, for example in the production of fluid-absorbent articles.
  • U.S. Patent 6,703,431 (Dietzen, et. al.) describes open-cell foams based on thermoplastics polymers that are useful for fluid- absorbent hygiene articles such as wound contact materials.
  • U.S. Patent 6,071 ,580 (Bland, et. al.) describes absorbent extruded thermoplastic foams which can be employed in various absorbency applications.
  • Open- cell foams have also found application in evacuated or vacuum panel technologies, for example in the production of evacuated insulation panels as described in U.S. Patent 5,977,271 (Malone).
  • open-cell foams in evacuated insulation panels, it has been possible to obtain R values of 10 to 15 per inch of thickness depending upon the evacuation or vacuum level, polymer type, cell size, density, and open cell content of the foam.
  • These open-cell foams have traditionally been produced employing CFCs, HCFCs, or more recently, HFCs as blowing agents.
  • Multimodal foams are also of commercial interest, and are described, for example, in U.S. Patent 6,787,580 (Chonde, et. al.) and U.S. Patent 5,332,761 (Paquet, et. al.).
  • a multimodal foam is a foam having a multimodal cell size distribution, and such foams have particular utility in thermally insulating articles since they often have higher insulating values (R-values) than analogous foams having a generally uniform cell size distribution.
  • R-values insulating values
  • These foams have been produced employing CFCs, HCFCs, and, more recently, HFCs as the blowing agent.
  • CFCs As discussed above, the production of various types of foams historically employed CFCs as the blowing agent. In general, the CFCs produce foams exhibiting good thermal insulation, low flammability and excellent dimensional stability. However, despite these advantages the CFCs have fallen into disfavor due to their implication in the destruction of stratospheric ozone, as well as their implication in contributing to global warming.
  • HCFCs have been proposed as CFC substitutes, and are currently employed as foam blowing agents. However, the HCFCs have also been shown to contribute to the depletion of stratospheric ozone, and as a result their use has come under scrutiny, and the widespread use of HCFCs is scheduled for eventual phase out under the Montreal Protocol.
  • HFCs More recently HFCs have been proposed and employed as foam blowing agents.
  • the HFCs do not contribute to the destruction of stratospheric ozone, but are of concern due to their contribution to the "greenhouse effect", i.e., they contribute to global warming.
  • the HFCs have come under scrutiny, and their widespread use may also be limited in the future.
  • Hydrocarbons have also been proposed as foam blowing agents.
  • these compounds are flammable, and many are photochemically reactive, and as a result contribute to the production of ground level ozone (i.e., smog).
  • ground level ozone i.e., smog
  • Such compounds are typically referred to as volatile organic compounds (VOCs), and are subject to environmental regulations.
  • Another aspect is for a closed cell foam prepared by foaming a foamable composition in the presence of a blowing agent described above.
  • a further aspect is for a foamable composition comprising a polyol and a blowing agent described above.
  • Another aspect is for a foam premix composition comprising a polyol and a blowing agent described above.
  • one aspect is for a method of forming a foam comprising:
  • a further aspect is for a method of forming a polyisocyanate-based foam comprising reacting at least one organic polyisocyanate with at least one active hydrogen-containing compound in the presence of a blowing agent described above. Another aspect is for a polyisocyanate foam produced by said method.
  • R 1 and R 2 are, independently, Ci to C 6 perfluoroalkyl groups.
  • R 1 and R 2 groups include, but are not limited to, CF 3 , C 2 F 5 , CF 2 CF 2 CF 3 , CF(CF 3 ) 2 , CF 2 CF 2 CF 2 CF 3 , CF(CF 3 )CF 2 CF 3 , CF 2 CF(CFs) 2 , C(CF 3 ) 3 , CF 2 CF 2 CF 2 CF 2 CF 3 , CF 2 CF 2 CF(CFs) 2 , C(CFs) 2 C 2 F 5 , CF 2 CF 2 CF 2 CF 2 CF 3 , CF(CF 3 ) 5 CF 2 CF 2 C 2 F 5 , and C(CFs) 2 CF 2 C 2 F 5 .
  • Said contacting of a perfluoroalkyl iodide with a perfluoroalkyltrihydroolefin may take place in batch mode by combining the reactants in a suitable reaction vessel capable of operating under the autogenous pressure of the reactants and products at reaction temperature.
  • Suitable reaction vessels include those fabricated from stainless steels, in particular of the austenitic type, and the well-known high nickel alloys such as Monel® nickel-copper alloys, Hastelloy® nickel based alloys and Inconel® nickel-chromium alloys.
  • reaction may be conducted in semi-batch mode in which the perfluoroalkyltrihydroolefin reactant is added to the perfluoroalkyl iodide reactant by means of a suitable addition apparatus such as a pump at the reaction temperature.
  • a suitable addition apparatus such as a pump at the reaction temperature.
  • the ratio of perfluoroalkyl iodide to perfluoroalkyltrihydroolefin should be between about 1 :1 to about 4:1 , preferably from about 1.5:1 to 2.5:1. Ratios less than 1.5:1 tend to result in large amounts of the 2:1 adduct as reported by Jeanneaux, et al. in Journal of Fluorine Chemistry, Vol. 4, pages 261-270 (1974).
  • Preferred temperatures for contacting of said perfluoroalkyl iodide with said perfluoroalkyltrihydroolefin are preferably within the range of about 15O 0 C to 300 0 C, preferably from about 170 0 C to about 250 0 C, and most preferably from about 180 0 C to about 230 0 C.
  • Suitable contact times for the reaction of the perfluoroalkyl iodide with the perfluoroalkyltrihydroolefin are from about 0.5 hour to 18 hours, preferably from about 4 to about 12 hours.
  • the trihydroiodoperfluoroalkane prepared by reaction of the perfluoroalkyl iodide with the perfluoroalkyltrihydroolefin may be used directly in the dehydroiodination step or may preferably.be recovered and purified by distilled prior to the dehydroiodination step.
  • the dehydroiodination step is carried out by contacting the trihydroiodoperfluoroalkane with a basic substance.
  • Suitable basic substances include alkali metal hydroxides (e.g., sodium hydroxide or potassium hydroxide), alkali metal oxide (for example, sodium oxide), alkaline earth metal hydroxides (e.g., calcium hydroxide), alkaline earth metal oxides (e.g., calcium oxide), alkali metal alkoxides (e.g., sodium methoxide or sodium ethoxide), aqueous ammonia, sodium amide, or mixtures of basic substances such as soda lime.
  • alkali metal hydroxides e.g., sodium hydroxide or potassium hydroxide
  • alkali metal oxide for example, sodium oxide
  • alkaline earth metal hydroxides e.g., calcium hydroxide
  • alkaline earth metal oxides e.g., calcium oxide
  • alkali metal alkoxides e.g., sodium methoxide or sodium ethoxide
  • aqueous ammonia sodium amide
  • Preferred basic substances are sodium hydroxide and potassium hydro
  • Solvents suitable for the dehydroiodination step include one or more polar organic solvents such as alcohols (e.g., methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and tertiary butanol), nitriles (e.g., acetonitrile, propionitrile, butyronitrile, benzonitrile, or adiponitrile), dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, or sulfolane.
  • solvent may depend on the boiling point of the product and the ease of separation of traces of the solvent from the product during purification.
  • the dehydroiodination reaction may be carried out by addition of one of the reactants (either the basic substance or the trihydroiodoperfluoroalkane) to the other reactant in a suitable reaction vessel.
  • Said reaction vessel may be fabricated from glass, ceramic, or metal and is preferably agitated with an impellor or stirring mechanism.
  • Temperatures suitable for the dehydroiodination reaction are from about 10 0 C to about 100°C, preferably from about 2O 0 C to about 7O 0 C.
  • the dehydroiodination reaction may be carried out at ambient pressure or at reduced or elevated pressure.
  • dehydroiodination reactions in which the compound of Formula I is distilled out of the reaction vessel as it is formed.
  • the dehydroiodination reaction may be conducted by contacting an aqueous solution of said basic substance with a solution of the trihydroiodoperfluoroalkane in one or more organic solvents of lower polarity such as an alkane (e.g., hexane, heptane, or octane), aromatic hydrocarbon (e.g., toluene), halogenated hydrocarbon (e.g., methylene chloride, ethylene dichloride, chloroform, carbon tetrachloride, or perchloroethylene), or ether (e.g., diethyl ether, methyl tert-butyl ether, tetrahydrofuran, 2-methyl tetrahydrofuran, dioxane, dimethoxyethane, diglyme, or tetraglyme) in the presence of a phase transfer catalyst.
  • an alkane e.g., hexane, heptan
  • Suitable phase transfer catalysts include quaternary ammonium halides (e.g., tetrabutylammonium bromide, tetrabutylammonium hydrosulfate, triethylbenzylammonium chloride, dodecyltrimethylammonium chloride, and tricaprylylrnethylammonium chloride), quaternary phosphonium halides (e.g., triphenylmethylphosphonium bromide and tetraphenylphosphonium chloride), and cyclic ether compounds known in the art as crown ethers (e.g., 18-crown-6 and 15-crown-5).
  • the dehydroiodination reaction may be conducted in the absence of solvent by adding the trihydroiodoperfluoroalkane to a solid or liquid basic substance.
  • Suitable reaction times for the dehydroiodination reactions are from about 15 minutes to about six hours or more depending on the solubility of the reactants. Typically the dehydroiodination reaction is rapid and requires about 30 minutes to about three hours for completion.
  • the compound of formula I may be recovered from the dehydroiodination reaction mixture by phase separation after addition of water, by distillation, or by a combination thereof.
  • the compositions disclosed herein may comprise a single compound of Formula I, for example, one of the compounds in Table 1 , or may comprise a combination of compounds of Formula I.
  • compounds presented in Table 2 can be used as blowing agents.
  • bromine-containing fluorocarbons or hydrofluorocarbons presented in Table 3 can be used as blowing agents. TABLE 3
  • 1-Bromo-3,3,4,4,4-pentafluoro-1-butene may be prepared by a three step sequence beginning with reaction of phosphorous tribromide with 3,3,4,4,4-pentafluoro-i-butanol to give 4- bromo-1 ,1 ,1 ,2,2- pentafluorobutane.
  • Thermal bromination of 4- bromo-1 ,1 ,1 ,2,2- pentafluorobutane at 350-400°C gives 4,4-dibromo-1 ,1 ,1 ,2,2- pentafluorobutane which may in turn be heated with powdered potassium hydroxide to give the desired bromobutene.
  • 2-Bromo-3,4,4,4-tetrafluoro-3-(trifluoromethyl)-1-butene may be prepared by addition of bromine to 3,4,4-tetrafluoro-3-(trifluoromethyl)-1- butene followed by treatment of the resulting dibromide with ethanolic potassium hydroxide.
  • HFC-1225ye may exist as one of two configurational isomers, E or Z.
  • HFC-1225ye as used herein refers to the isomers, E-HFC-1225ye (CAS reg no. 5595-10-8) or Z-HFC-1225ye (CAS reg. no. 5528-43-8), as well as any combinations or mixtures of such isomers.
  • Blowing agents can comprise a single compound as listed, for example, in Table 2, or may comprise a combination of compounds from Table 2 or, alternatively, a combination of compounds from Table 1 , Table 2, Table 3, and/or Formula I.
  • the amount of the fluorocarbons (FCs) or HFCs contained in the present compositions can vary widely, depending the particular application, and compositions containing more than trace amounts and less than 100% of the compound are within broad the scope of the present disclosure.
  • compositions disclosed herein may be prepared by any convenient method to combine the desired amounts of the individual components.
  • a preferred method is to weigh the desired component amounts and thereafter combine the components in an appropriate vessel. Agitation may be used, if desired.
  • foamable compositions and preferably thermoset or thermoplastic foam compositions, prepared using the compositions of the present disclosure.
  • one or more of the present compositions are included as or part of a blowing agent in a foamable composition, which composition preferably includes one or more additional components capable of reacting and/or foaming under the proper conditions to form a foam or cellular structure.
  • foam, and preferably closed cell foam prepared from a polymer foam formulation containing a blowing agent comprising the compositions of the present disclosure.
  • the present disclosure further relates to a method for replacing or substituting for the blowing agent in a foamable composition having a GWP of about 150 or more, or a high GWP blowing agent, with a composition having a lower GWP.
  • One method comprises providing a composition comprising at least one fluoroolefin of the present invention as the replacement.
  • the foamable composition of the present invention having a lower GWP than the composition being replaced or substituted is used to produce thermoplastic or thermoset foams.
  • Global warming potentials are an index for estimating relative global warming contribution due to atmospheric emission of a kilogram of a particular greenhouse gas compared to emission of a kilogram of carbon dioxide.
  • GWP can be calculated for different time horizons showing the effect of atmospheric lifetime for a given gas.
  • the GWP for the 100 year time horizon is commonly the value referenced.
  • a high GWP blowing agent would be any compound capable of functioning as a blowing agent having a GWP at the 100 year time horizon of about 1000 or greater, alternatively 500 or greater, 150 or greater, 100 or greater, or 50 or greater.
  • Foam expansion agents that are in need of replacement, based upon GWP calculations published by the
  • Intergovernmental Panel on Climate Change include but are not limited to HFC-134a and HFC-227ea.
  • the present disclosure will provide compositions that have zero or low ozone depletion potential and low global warming potential (GWP).
  • the fluoroolefins of the present invention or mixtures of fluoroolefins of this invention with c-ther blowing agents or foamable compositions will have global warming potentials that are less than many hydrofluorocarbon blowing agents or foamable compositions currently in use.
  • the fluoroolefins of the present invention are expected to have GWP of less than about 25.
  • One aspect of the present invention is to provide a blowing agent with a global warming potential of less than 1000, less than 500, less than 150, less than 100, or less than 50.
  • Another aspect of the present invention is to reduce the net GWP of foamable compositions by adding fluoroolefins to said mixtures.
  • the present invention further relates to a method for lowering the
  • GWP of the methods for manufacturing open, closed and multi-modal foams comprising combining at least one fluoroolefin of the present invention with a resin (for thermoplastic foams) or into a B-side mixture (thermoplastic) to produce a foamable composition with a GWP of lower than 25.
  • the GWP of may be determined that the GWP of a mixture or combination of compounds may be calculated as a weighted average of the GWP for each of the pure compounds.
  • the present compositions also preferably have an Ozone Depletion Potential (ODP) of not greater than 0.05, more preferably not greater than 0.02 and even more preferably about zero.
  • ODP Ozone Depletion Potential
  • Certain embodiments provide foam premixes, foamable compositions, and preferably polyurethane or polyisocyanate foam compositions, and methods of preparing foams.
  • one or more of the compositions of the present disclosure are included as a blowing agent in a foamable composition, which foamable composition preferably includes one or more additional components capable of reacting and/or foaming under the proper conditions to form a foam or cellular structure.
  • foamable composition preferably includes one or more additional components capable of reacting and/or foaming under the proper conditions to form a foam or cellular structure.
  • ingredients in preparing foams.
  • additional ingredients are catalysts, surfactants, flame retardants, preservatives, colorants, antioxidants, reinforcing agents, filler, antistatic agents, nucleating agents and the like.
  • Polyurethane foams are generally prepared by combining and reacting an isocyanate with a polyol in the presence of a blowing or expanding agent and auxiliary chemicals added to control and modify both the polyurethane reaction itself and the properties of the final polymer.
  • these materials can be premixed into two non- reacting parts typically referred to as the "A-side” and the "B-side".
  • the term "B-side” is intended to mean polyol or polyol containing mixture.
  • a polyol containing mixture usually includes the polyol, the blowing or expanding agent and auxiliary chemicals, like catalysts, surfactants, stabilizers, chain extenders, cross-linkers, water, fire retardants, smoke suppressants, pigments, coloring materials, fillers, etc.
  • A-side is intended to mean isocyanate or isocyanate containing mixture.
  • An isocyanate containing mixture may include the isocyanate, the blowing or expanding agent and auxiliary chemicals, like catalysts, surfactants, stabilizers, chain extenders, cross-linkers, water, tire retardants, smoke suppressants, pigments, coloring materials, fillers, etc.
  • A-side and B-side are then combined to react.
  • a surfactant may comprise a liquid or solid organosilicone compound.
  • Other, less preferred surfactants include polyethylene glycol ethers of long chain alcohols, tertiary amine or alkanolamine salts of long chain alkyl acid sulfate esters, alkyl sulfonic esters and alkyl arylsutfonic acids.
  • the surfactants are employed in amounts sufficient to stabilize the foaming reaction mixture against collapse and to prevent the formation of large, uneven cells. About 0.2 to about 5 parts or even more of the surfactant per 100 parts by weight of polyol are usually sufficient.
  • One or more catalysts for the reaction of the polyol with the polyisocyanate may also be used. Any suitable urethane catalyst may be used, including tertiary amine compounds and organometallic compounds. Such catalysts are used in an amount which measurably increases the rate of reaction of the polyisocyanate. Typical amounts are about 0.1 to about 5 parts of catalyst per 100 parts by weight of polyol.
  • Useful flame retardants include, for example, tri(2- chloroethyl)phosphate, tri(2-chloropropyl)phosphate, tri(2,3- dibromopropyl)-phosphate, tri(1 ,3-dichloropropyl) phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
  • the methods of forming a foam generally comprise providing a blowing agent composition of the present disclosure, adding (directly or indirectly) the blowing agent composition to a foamable composition, and reacting the foamable composition under the conditions effective to form a foam or cellular structure.
  • a blowing agent composition of the present disclosure adding (directly or indirectly) the blowing agent composition to a foamable composition, and reacting the foamable composition under the conditions effective to form a foam or cellular structure.
  • Polyisocyanate-based foams are prepared, e.g., by reacting at least one organic polyisocyanate with at least one active hydrogen-containing compound in the presence of the blowing agent composition described herein-above.
  • An isocyanate reactive composition can be prepared by blending at least one active hydrogen-containing compound with the blowing agent composition.
  • the blend contains at least 1 and up to 50, preferably up to 25 weight percent of the blowing agent composition, based on the total weight of active hydrogen-containing compound and blowing agent composition.
  • Active hydrogen-containing compounds include those materials having two or more groups which contain an active hydrogen atom which reacts with an isocyanate. Preferred among such compounds are materials having at least two hydroxyl, primary or secondary amine, carboxylic acid, or thiol groups per molecule. Polyols, i.e., compounds having at least two hydroxyl groups per molecule, are especially preferred due to their desirable reactivity with polyisocyanates. Additional examples of suitable active hydrogen containing compounds can be found in U.S. Patent 6,590,005, incorporated herein by reference.
  • suitable polyester polyols include those prepared by reacting a carboxylic acid and/or a derivative thereof or a polycarboxylic anhydride with a polyhydric alcohol.
  • the polycarboxylic acids may be any of the known aliphatic, cycloaliphatic, aromatic, and/or heterocyclic polycarboxylic acids and may be substituted, (e.g., with halogen atoms) and/or unsaturated.
  • Suitable polycarboxylic acids and anhydrides include oxalic acid, malonic acid, glutaric acid, pimelic acid, succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, trimellitic acid anhydride, pyromellitic dianhydride, phthalic acid anhydride, tetrahydrophthalic acid anhydride, hexahydrophthalic acid anhydride, endomethylene tetrahydrophthalic acid anhydride, glutaric acid anhydride acid, maleic acid, maleic acid anhydride, fumaric acid, and dimeric and trimeric fatty acids, such as those of oleic acid which may be in admixture with monomeric fatty acids.
  • Simple esters of polycarboxylic acids may also be used such as terephthalic acid dimethylester, terephthalic acid bisglycol and extracts thereof.
  • the polyhydric alcohols suitable for the preparation of polyester polyols may be aliphatic, cycloaliphatic, aromatic, and/or heterocyclic.
  • the polyhydric alcohols optionally may include substituents which are inert in the reaction, for example, chlorine and bromine substituents, and/or may be unsaturated.
  • Suitable amino alcohols such as monoethanolamine, diethanolamine or the like may also be used.
  • Suitable polyhydric alcohols include ethylene glycol, propylene glycol, polyoxyalkylene glycols (such as diethylene glycol, polyethylene glycol, dipropylene glycol and polypropylene glycol), glycerol and trimethylolpropane.
  • Suitable additional isocyanate-reactive materials include polyether polyols, polyester polyols, polyhydroxy-terminated acetal resins, hydroxyl- terminated amines and polyamines, and the like. These additional isocyanate-reactive materials include hydrogen terminated polythioethers, polyamides, polyester amides, polycarbonates, polyacetals, polyolefins, polysiloxanes, and polymer polyols.
  • polyols include alkylene oxide derivatives of Mannich condensates, and aminoalkylpiperazine-initiated polyethers as described in U.S. Patent Nos. 4,704,410 and 4,704,411.
  • the low hydroxyl number, high equivalent weight alkylene oxide adducts of carbohydrate initiators such as sucrose and sorbitol may also be used.
  • the polyol(s), polyisocyanate and other components are contacted, thoroughly mixed and permitted to expand and cure into a cellular polymer.
  • the particular mixing apparatus is not critical, and various types of mixing head and spray apparatus are conveniently used. It is often convenient, but not necessary, to preblend certain of the raw materials prior to reacting the polyisocyanate and active hydrogen-containing components. For example, it is often useful to blend the polyol(s), blowing agent, surfactant(s), catalyst(s) and other components except for polyisocyanates, and then contact this mixture with the polyisocyanate.
  • all the components may be introduced individually to the mixing zone where the polyisocyanate and polyol(s) are contacted. It is also possible to pre-react all or a portion of the polyol(s) with the polyisocyanate to form a prepolymer.
  • blowing agent composition employed when preparing a foam is sufficient to give a desired density to the foam.
  • blowing agent composition preblends the blowing agent composition with the active hydrogen-containing compound before contacting the resulting blend with the polyisocyanate. It is also possible to simultaneously blend together the polyisocyanate, active hydrogen- containing compound and blowing agent composition in one operation resulting in the production of polyisocyanate-based foam. Preferably the blowing agent composition is blended with the active hydrogen-containing compound before contacting with the polyisocyanate.
  • One aspect is for a rigid, closed-celled polyisocyanate-based foam.
  • the rigid closed-cell celled polyisocyanate-based foams are useful in spray insulation, as foam-in-place appliance foams, rigid insulating board stock, or in laminates.
  • the blowing agents are used to blow thermoplastic foams, such as polystyrene, polyethylene foams, including low-density polyethylene foams, or polypropylene foams. Any of a wide range of conventional methods for blowing such thermoplastic foams can be adapted for use herein.
  • a foamable composition comprising thermoplastic foams, such as polystyrene, polyethylene (PE), preferably low density PE, or polypropylene (PP).
  • thermoplastic foam bodies are conveniently produced by using conventional equipment comprising an extruder and associated means for (1) melting the resin; (2) homogeneously blending the blowing agent composition with the melt to form a plasticized mass at nonfoaming temperatures and pressures; (3) passing the plasticized mass at a controlled rate, temperature and pressure through a die having a desired shape, e.g., slit die for producing rectangular slabs of foam board having desired thickness and surface area, into an expansion zone; (4) allowing the extrudate to foam in the expansion zone maintainable at suitable temperatures and low pressures; (5) maintaining the expanding extrudate under such temperatures and pressures for a time sufficient for the viscosity of the extrudate to increase such that the cell size and density of the foam remain substantially unchanged and substantially free of ruptured cells at ambient temperature; e.g., 25 0 C and atmospheric pressure; and (6) recovering the extruded foam body.
  • nucleating agents serve primarily to increase cell count and decrease cell size in the foam, and may be used in an amount of about 0.1 to about 10 parts by weight per 100 parts by weight of the resin.
  • Typical nucleating agents comprise at lease one member selected from the group consisting of talc, sodium bicarbonate- citric acid mixtures, calcium silicate, carbon dioxide, among others.
  • the foaming amount of the blowing agent is in the range of from about 1 to about 30 weight percent based on the total weight of the resin plus blowing agent mixture, typically about 2 to 20 weight percent, and normally about 2 to about 10 weight percent.
  • the proper amount of blowing agent or resultant characteristics of the foam for any desired end-use is readily determined by a skilled person in this art.
  • the resin is melted at a temperature of about 200 to about 235 0 C depending upon the grade employed, and at nonfoaming pressures of about 600 psig or higher.
  • the plasticized resin- blowing agent mixture is cooled under nonfoaming pressure to a temperature of about 115 to 150 0 C, normally 130 0 C, and extruded into the expansion zone at or below ambient temperature and at or below atmospheric pressure.
  • the product was washed with 50 ml_ portions of 10 wt % aqueous sodium bisulfite and water, dried over calcium chloride, and then distilled at atmospheric pressure.
  • the product, F24E (128.7 gm, 63%) boils at 95.5°C. It was characterized by 19 F NMR ( ⁇ -81.6 (CF 3 , m, 3F), - 85.4(CF 3 , m 3F), -114.7 (CF 2 , m, 2F), -118.1 (CF 2 , m, 2F), -124.8 ppm (CF 2 , m, 2F), -126.3 ppm (CF 2 , m, 2F)) and 1 H NMR (66.48) in chloroform- d solution.
  • polyurethane and polyisocyanurate foam samples were prepared by hand-mixing, using the two basic polyurethane foam formulations described in Example 4 and Example 5 below.
  • the blowing agents may be generally premixed with the polyol or B-side for convenience.
  • Foams may be prepared either as free-rise or molded samples. For free-rise foams, the reaction mixture is poured into an open, round cardboard container. For molded foams, the reaction mixture is poured into a 2 Vz x 13" x 15" (6.35 cm x 30.02 cm x 38.1 cm) heated aluminum mold.
  • Example 4 Polvisocvanurate Foam
  • polysiloxane surfactant (Dabco DC-193) 1.8 potassium octanoate catalyst (Hexcem 977) 3.2
  • the core sample was about 2.2 pounds/ft 3 (PCF) (35.2 kg/m 3 ) density, had an exceptionally fine cell structure, and remained dimensionally stable. Magnified photographs of the foam showed a uniform, highly closed cell structure and cell sizes about 200-300 microns ( ⁇ ).
  • initial insulation value R-value was measured at 7.4/inch (thermal conductivity of 19.5 milliW/(mK) at a mean temperature of 24.0 0 C or 0.135 BTU-in/hr- ft 2 -°F at a mean temperature of 75.2°F).
  • N,N-Dimethylcyclohexylamine catalyst 1.7 (Polycat 8) pentamethyldiethylenetriamine catalyst 0.4
  • Blowing Agent 1 1,1 , 4,4,5,5,5,Octafluooro-2- 70 pentene (HFC-1438mzz) polymethylene polyphenylisocyanate 169 isocyanate (Papi ® 27)
  • the isocyanate (A-side) was then added and mixed with a mechanical stirrer for 10 seconds.
  • the foam reaction mixture was poured into a closed aluminum mold warmed to about 100 0 F and allowed to expand. When cured, a 1" X 1" X 12" sample was cut from the core of the molded foam.
  • the core sample was about 2.0 pounds/ft 3 (PCF) (32.0 kg/m 3 ) density, had a good cell structure though it did contain some voids, and remained dimensionally stable. Magnified photographs of the foam showed a uniform, highly closed cell structure, excluding the voids, and cell sizes about 200-300 microns ( ⁇ ).
  • initial insulation value was measured at 4.9/inch (29.5 milliW/(mK) at a mean temperature of 24.O 0 C or thermal conductivity of 0.2044 BTU-in/hr-ft 2 -°F at a mean temperature of 75.2 0 F),
  • the blowing agent was not mixed as thoroughly in the B- side. In this case, voids were observed in the foam, but the cell structure excluding the voids remained small and consistent. The resultant insulation value was acceptable despite the voids, demonstrating that these unsaturated fluorocarbons can improve cell structure and foam properties such as to overcome potential processing difficulties that otherwise would detrimentally impact foam performance.
  • thermoplastic foam insulation specifically a polystyrene insulation foam
  • a commercial tandem extruder equipped with die designed for insulation board foam
  • Such a configuration employs a primary extruder and a secondary extruder, with a slit die.
  • a typical polystyrene resin would be Shell NX600 general purpose, 2.5 melt index, and a typical nucleator would be magnesium silicate talc.
  • polystyrene foam sheet is prepared using unsaturated fluorocarbons as the blowing agent.
  • the polystyrene foam sheet is ultimately thermoformed into food service packaging, like egg cartons, hamburger cartons, meat trays, plates, etc.
  • Foam sheet is produced using a conventional tandem extrusion system. Foam is extruded through an annular die, stretched over a mandrel about 4 times the die's diameter, and slit to produce a single sheet.
  • a typical formulation is:
  • the polystyrene sheet is typically extruded to a thickness of 50 to 300 mils and at a rate of approximately 1 ,000 pounds of plastic per hour. Typical extruder conditions range from 1 ,000 to 4,000 psi (70.3 kg/cm to 281.3 kg/cm) and 200 0 F to 400 0 F (93.3 0 C to 204.4 0 C).
  • the blowing agent concentration in the feed material will change depending on the desired thickness (thicker product requires more blowing agent).
  • the rolls of foam are thermoformed, producing the desired type of end-product (e.g., clam-shell containers, plates, etc.).
  • HFC-1225ye 1,2,3,3,3-pentafluoro-1-propene (HFC-1225ye), 1,1- difluoroethane (HFC-152a) and 1,1 ,1 ,2-tetrafluoroethane (HFC-134a) were all analyzed by GC/MS prior to the testing and were found to be 100% pure.
  • test data show that HFC-1225ye was surprisingly as stable as HFC- 134a and more stable than HFC-152a under extrusion conditions.
  • the steel coupons from runs 32a, 32b and 24d were analyzed by Electron Spectroscopy for Chemical Analysis (ESCA). Fluoride ions (F " ) were observed on the surface of all coupons. Estimated concentrations of fluoride ion are shown in the table below.

Abstract

Disclosed herein are blowing agents comprising fluorocarbons and/or hydrofluorocarbons useful in foamable compositions. Also disclosed are methods for forming a foam comprising the aforementioned blowing agents.

Description

BLOWING AGENTS FOR FORMING FOAM COMPRISING
UNSATURATED FLUOROCARBONS
CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of priority of U.S. Provisional Application 60/732,771 , filed November 1 , 2005, and incorporated herein by reference, and is further related to co-filed and jointly owned application titled Blowing Agents for Forming Foam Comprising Unsaturated
Fluorocarbons, (Attorney Docket No. FL1184 US NA) and further related to co-filed and jointly owned application titled Methods for Making Foams Using Blowing Agents Comprising Unsaturated Fluorocarbons (Attorney Docket No. FL1319 US NA), both of which are also incorporated herein by reference.
FIELD OF THE INVENTION
The disclosure herein relates to blowing agent compositions comprising unsaturated fluorocarbons and/or unsaturated hydrofluorocarbons. The disclosure herein further relates to the use of the blowing agent compositions in the process for manufacturing plastic foams.
BACKGROUND OF THE INVENTION Closed-cell polyisocyanate-based foams are widely used for insulation purposes, for example, in building construction and in the manufacture of energy efficient electrical appliances. In the construction industry, polyurethane (polyisocyanurate) board stock is used in roofing and siding for its insulation and load-carrying capabilities. Poured and sprayed polyurethane foams are widely used for a variety of applications including insulating roofs, insulating large structures such as storage tanks, insulating appliances such as refrigerators and freezers, insulating refrigerated trucks and railcars, etc. All of these various types of polyurethane foams require blowing (expansion) agents for their manufacture. Insulating foams depend on the use of halocarbon blowing agents, not only to foam the polymer, but primarily for their low vapor thermal conductivity, a very important characteristic for insulation value. Historically, polyurethane foams used CFCs (chlorofluorocarbons, for example CFC-11 , trichlorofluoromethane) and HCFCs (hydrochlorofluorocarbons, for example HCFC-141b, 1 ,1- dichloro-1-fluoroethane) as the primary blowing agent. However, due to the implication of chlorine-containing molecules such as the CFCs and HCFCs in the destruction of stratospheric ozone, the production and use of CFCs and HCFCs has been restricted by the Montreal Protocol. More recently, hydrofluorocarbons (HFCs), which do not contribute to the destruction of stratospheric ozone, have been employed as blowing agents for polyurethane foams. An example of an HFC employed in this application is HFC-245fa (1 ,1 ,1 ,3,3-pentafluoropropane).
A second type of insulating foam is thermoplastic foam, primarily polystyrene foam. Polyolefin foams (polystyrene, polyethylene, and polypropylene) are widely used in insulation and packaging applications. These thermoplastic foams were generally made with CFC-12 (dichlorodifluoromethane) as the blowing agent. More recently HCFCs (HCFC-22, chlorodifluoromethane) or blends of HCFCs (HCFC-22/HCFC- 142b) or HFCs (HFC-152a) have been employed as blowing agents for polystyrene.
A third important type of insulating foam is phenolic foam. These foams, which have very attractive flammability characteristics, were generally made with CFC-11 (trichlorofluoromethane) and CFC-113 (1 ,1 ,2- trichloro-1 ,2,2-trifluoroethane) blowing agents
In addition to closed-cell foams, open-cell foams are also of commercial interest, for example in the production of fluid-absorbent articles. U.S. Patent 6,703,431 (Dietzen, et. al.) describes open-cell foams based on thermoplastics polymers that are useful for fluid- absorbent hygiene articles such as wound contact materials. U.S. Patent 6,071 ,580 (Bland, et. al.) describes absorbent extruded thermoplastic foams which can be employed in various absorbency applications. Open- cell foams have also found application in evacuated or vacuum panel technologies, for example in the production of evacuated insulation panels as described in U.S. Patent 5,977,271 (Malone). Using open-cell foams in evacuated insulation panels, it has been possible to obtain R values of 10 to 15 per inch of thickness depending upon the evacuation or vacuum level, polymer type, cell size, density, and open cell content of the foam. These open-cell foams have traditionally been produced employing CFCs, HCFCs, or more recently, HFCs as blowing agents. Multimodal foams are also of commercial interest, and are described, for example, in U.S. Patent 6,787,580 (Chonde, et. al.) and U.S. Patent 5,332,761 (Paquet, et. al.). A multimodal foam is a foam having a multimodal cell size distribution, and such foams have particular utility in thermally insulating articles since they often have higher insulating values (R-values) than analogous foams having a generally uniform cell size distribution. These foams have been produced employing CFCs, HCFCs, and, more recently, HFCs as the blowing agent.
As discussed above, the production of various types of foams historically employed CFCs as the blowing agent. In general, the CFCs produce foams exhibiting good thermal insulation, low flammability and excellent dimensional stability. However, despite these advantages the CFCs have fallen into disfavor due to their implication in the destruction of stratospheric ozone, as well as their implication in contributing to global warming. HCFCs have been proposed as CFC substitutes, and are currently employed as foam blowing agents. However, the HCFCs have also been shown to contribute to the depletion of stratospheric ozone, and as a result their use has come under scrutiny, and the widespread use of HCFCs is scheduled for eventual phase out under the Montreal Protocol. More recently HFCs have been proposed and employed as foam blowing agents. The HFCs do not contribute to the destruction of stratospheric ozone, but are of concern due to their contribution to the "greenhouse effect", i.e., they contribute to global warming. As a result of their contribution to global warming, the HFCs have come under scrutiny, and their widespread use may also be limited in the future.
Hydrocarbons have also been proposed as foam blowing agents. However, these compounds are flammable, and many are photochemically reactive, and as a result contribute to the production of ground level ozone (i.e., smog). Such compounds are typically referred to as volatile organic compounds (VOCs), and are subject to environmental regulations.
There is need for producing foams that provide low flammability, good thermal insulation and high dimensional stability by using a blowing agent that has substantially no ozone depletion potential (ODP) and no or very low global warming potential (GWP).
There is also need to provide a process for producing plastic foams employing a blowing agent which has significantly less photochemical reactivity than the hydrocarbons, and hence does not contribute to the formation of ambient ozone and ground level smog.
SUMMARY OF THE INVENTION One aspect is for a blowing agent comprising at least one fluorocarbon or hydrofluorocarbon selected from the group consisting of: (i) a hydrofluorocarbon having the formula E- or Z-R1CH=CHR2, wherein R1 and R2 are, independently, Ci to C6 perfluoroalkyl groups; and
(ii) a fluorocarbon or hydrofluorocarbon selected from the group consisting of CF3CF=CHF, CF3CH=CF2, CHF2CF=CF2,
CHF2CH=CHF, CF3CF=CH2, CF3CH=CHF, CH2FCF=CF2, CHF2CH=CF2, CHF2CF=CHF, CHF2CF=CH2, CF3CH=CH2, CH3CF=CF2, CH2FCHCF2, CH2FCF=CHF, CHF2CH=CHF, CF3CF=CFCF3, CF3CF2CF=CF2, CF3CF=CHCF3, CF3CF2CF=CH2, CF3CH=CHCF3, CF3CF2CH=CH2,
CF2=CHCF2CF3, CF2=CFCHFCF3, CF2=CFCF2CHF2, CHF2CH=CHCF3, (CFs)2C=CHCF3, CF3CF=CHCF2CF3, CF3CH=CFCF2CF3, (CF3)2CFCH=CH2, CF3CF2CF2CH=CH2, CF3CF2CF=CFCF2CF31 (CF3)2C=C(CF3)2, (CF3)2CFCF=CHCF3, CF2=CFCF2CH2F, CF2=CFCHFCHF2I CH2=C(CFs)2, CH2CF2CF=CF2, CH2FCF=CFCHF21 CH2FCF2CF=CF2, CF2=C(CF3)(CH3), CH2=C(CHF2)(CF3), CH2=CHCF2CHF2, CF2=C(CHF2)(CH3), CHF=C(CF3)(CH3),
CH2=C(CHF2)2, CF3CF=CFCHs1 CH3CF=CHCF3, CF2=CFCF2CF2CF31 CHF=CFCF2CF2CFS, CF2=CHCF2CF2CFS1 CF2=CFCF2CF2CHF2, CHF2CF=CFCF2CF31 CF3CF=CFCF2CHF2, CF3CF=CFCHFCFS, CHF=CFCF(CF3)2I CF2=CFCH(CF3) 2,
CF3CH=C(CFs)2, CF2=CHCF(CFs)2, CH2=CFCF2CF2CF3, CHF=CFCF2CF2CHF21 CH2=C(CF3)CF2CF3, CF2=CHCH(CFs)2, CHF=CHCF(CFs) 2, CF2=C(CF3)CH2CF3, CH2=CFCF2CF2CHF21 CF2=CHCF2CH2CFS, CF3CF=C(CF3)(CH3), CH2=CFCH(CF3)2, CHF=CHCH(CF3)2,
CH2FCH=C(CFs)2, CH3CF=C(CFs)2, CH2=CHCF2CHFCF3, CH2C(CFS)CH2CF3, (CF3)2CFCF=CHCF3, CH2=CHC(CF3)3, (CFs)2C=C(CH3)(CF3), CH2=CFCF2CH(CFS)2, CFSCF=C(CH3)CF2CF3, CF3CH=CHCH(CF3)2, CH2=CHCF2CF2CF2CHF2, CH2=CHCH2CF2C2F51 CH2=CHCH2CF2C2F5, CF3CF2CF=CFC2H51 CH2=CHCH2CF(CFS)2, CF3CF=CHCH(CF3)(CH3), (CF3)2C=CFC2H5, cyclo- CF2CF2CF2CH=CH-, cyclo-CF2CF2CH=CH-,
CF3CF2CF2C(CHs)=CH2, CF3CF2CF2CH=CHCH3, cyclo- CF2CF2CF=CF-, CyCIo-CF2CF=CFCF2CF2-, cyclo- CF2CF=CFCF2CF2CF21 CF3CF2CF2CF2CH=CH2, CF3CH=CHCF2CF31 CF3CF2CH=CHCF2CF3, CFSCH=CHCF2CF2CF3, CF3CF=CFC2F5,
CF3CF=CFCF2CF2C2F5, CF3CF2CF=CFCF2C2F5l CF3CH=CFCF2CF2C2F51 CF3CF=CHCF2CF2C2F5, CF3CF2CH=CFCF2C2F5, CFSCF2CF=CHCF2C2F5, C2F5CF2CF=CHCH3, C2F5CF=CHCH3, (CF3)2C=CHCH3, CF3C(CHs)=CHCF3, CHF=CFC2F5, CHF2CF=CFCF3, (CF3)2C=CHF, CH2FCF=CFCF3, CHF=CHCF2CF3, CHF2CH=CFCF3, CHF=CFCHFCF3) CF3CH=CFCHF2, CHF=CFCF2CHF2, CHF2CF=CFCHF2, CH2CF=CFCF3,
CH2FCH=CFCF3, CH2=CFCHFCF3, CH2=CFCF2CHF2, CF3CH=CFCH2F, CHF=CFCH2CF3, CHF=CHCHFCF3, CHF=CHCF2CHF2, CHF2CF=CHCHF2, CHF=CFCHFCHF2, CF3CF=CHCH3, CF2=CHCF2Br, CHF=CBrCHF2, CHBr=CHCF31 CF3CBr=CFCF31 CH2=CBrCF2CF3,
CHBr=CHCF2CF3, CH2=CHCF2CF2Br1 CH2=CHCBrFCF3, CH3CBr=CHCF3, CF3CBr=CHCH3, (CF3)2C=CHBr, CF3CF=CBrCF2CF3, E-CHF2CBr=CFC2F5, Z- CHF2CBr=CFC2F5, CF2=CBrCHFC2F5, (CFs)2CFCBr=CH2; CHBr=CF(CF2)2CHF2, CH2=CBrCF2C2F5, CF2=C(CH2Br)CF3,
CH2=C(CBrF2)CF3, (CF3)2CHCH=CHBr, (CFs)2C=CHCH2Br1 CH2=CHCF(CF3)CBrF21 CF2=CHCF2CH2CBrF2, CFBr=CHCF3, CFBr=CFCF3, CF3CF2CF2CBr=CH2, and CF3(CF2)3CBr=CH2. Another aspect is for a closed cell foam prepared by foaming a foamable composition in the presence of a blowing agent described above.
A further aspect is for a foamable composition comprising a polyol and a blowing agent described above. Another aspect is for a foam premix composition comprising a polyol and a blowing agent described above.
Additionally, one aspect is for a method of forming a foam comprising:
(a) adding to a foamable composition a blowing agent described above; and
(b) reacting the foamable composition under conditions effective to form a foam. A further aspect is for a method of forming a polyisocyanate-based foam comprising reacting at least one organic polyisocyanate with at least one active hydrogen-containing compound in the presence of a blowing agent described above. Another aspect is for a polyisocyanate foam produced by said method.
Other objects and advantages will become apparent to those skilled in the art upon reference to the detailed description that hereinafter follows.
DETAILED DESCRIPTION OF THE INVENTION
Applicants specifically incorporate the entire content of all cited references in this disclosure. Applicants also incorporate by reference the co-owned and concurrently filed applications entitled "Solvent Compositions Comprising Unsaturated Fluorinated Hydrocarbons" (Attorney Docket # FL 1181 US PRV, US Application No. 60/732,771), "Blowing Agents for Forming Foam Comprising Unsaturated Fluorocarbons" (Attorney Docket # FL 1184 US PRV, US Application No. 60/732,090), "Aerosol Propellants Comprising Unsaturated Fluorocarbons" (Attorney Docket # FL 1185 US PRV, US Application No. 60/732,791), and "Compositions Comprising Fluoroolefins and Uses Thereof (Attorney docket # FL 1159, US Application No. 60/732,581).Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.
One aspect provides blowing agents having the formula E- or Z- R1CH=CHR2 (Formula I), wherein R1 and R2 are, independently, Ci to C6 perfluoroalkyl groups. Examples of R1 and R2 groups include, but are not limited to, CF3, C2F5, CF2CF2CF3, CF(CF3)2, CF2CF2CF2CF3, CF(CF3)CF2CF3, CF2CF(CFs)2, C(CF3)3, CF2CF2CF2CF2CF3, CF2CF2CF(CFs)2, C(CFs)2C2F5, CF2CF2CF2CF2CF2CF3, CF(CF3) 5 CF2CF2C2F5, and C(CFs)2CF2C2F5. Exemplary, non-limiting Formula I compounds are presented in Table 1.
Table 1
Compounds of Formula I may be prepared by contacting a perfluoroalkyl iodide of the formula R1I with a perfluoroalkyltrihydroolefin of the formula R2CH=CH2 to form a trihydroiodoperfluoroalkane of the formula R1CH2CHIR2. This trihydroiodoperfluoroalkane can then be dehydroiodinated to form R1CH=CHR2. Alternatively, the olefin R1CH=CHR2 may be prepared by dehydroiodination of a trihydroiodoperfluoroalkane of the formula R1CHICH2R2 formed in turn by reacting a perfluoroalkyl iodide of the formula R2I with a perfluoroalkyltrihydroolefin of the formula R1CH=CH2. Said contacting of a perfluoroalkyl iodide with a perfluoroalkyltrihydroolefin may take place in batch mode by combining the reactants in a suitable reaction vessel capable of operating under the autogenous pressure of the reactants and products at reaction temperature. Suitable reaction vessels include those fabricated from stainless steels, in particular of the austenitic type, and the well-known high nickel alloys such as Monel® nickel-copper alloys, Hastelloy® nickel based alloys and Inconel® nickel-chromium alloys.
Alternatively, the reaction may be conducted in semi-batch mode in which the perfluoroalkyltrihydroolefin reactant is added to the perfluoroalkyl iodide reactant by means of a suitable addition apparatus such as a pump at the reaction temperature.
The ratio of perfluoroalkyl iodide to perfluoroalkyltrihydroolefin should be between about 1 :1 to about 4:1 , preferably from about 1.5:1 to 2.5:1. Ratios less than 1.5:1 tend to result in large amounts of the 2:1 adduct as reported by Jeanneaux, et al. in Journal of Fluorine Chemistry, Vol. 4, pages 261-270 (1974).
Preferred temperatures for contacting of said perfluoroalkyl iodide with said perfluoroalkyltrihydroolefin are preferably within the range of about 15O0C to 3000C, preferably from about 1700C to about 2500C, and most preferably from about 1800C to about 2300C.
Suitable contact times for the reaction of the perfluoroalkyl iodide with the perfluoroalkyltrihydroolefin are from about 0.5 hour to 18 hours, preferably from about 4 to about 12 hours. The trihydroiodoperfluoroalkane prepared by reaction of the perfluoroalkyl iodide with the perfluoroalkyltrihydroolefin may be used directly in the dehydroiodination step or may preferably.be recovered and purified by distilled prior to the dehydroiodination step. The dehydroiodination step is carried out by contacting the trihydroiodoperfluoroalkane with a basic substance. Suitable basic substances include alkali metal hydroxides (e.g., sodium hydroxide or potassium hydroxide), alkali metal oxide (for example, sodium oxide), alkaline earth metal hydroxides (e.g., calcium hydroxide), alkaline earth metal oxides (e.g., calcium oxide), alkali metal alkoxides (e.g., sodium methoxide or sodium ethoxide), aqueous ammonia, sodium amide, or mixtures of basic substances such as soda lime. Preferred basic substances are sodium hydroxide and potassium hydroxide.
Said contacting of the trihydroiodoperfluoroalkane with a basic substance may take place in the liquid phase preferably in the presence of a solvent capable of dissolving at least a portion of both reactants. Solvents suitable for the dehydroiodination step include one or more polar organic solvents such as alcohols (e.g., methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and tertiary butanol), nitriles (e.g., acetonitrile, propionitrile, butyronitrile, benzonitrile, or adiponitrile), dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, or sulfolane. The choice of solvent may depend on the boiling point of the product and the ease of separation of traces of the solvent from the product during purification. Typically, ethanol or isopropanol are good solvents for the reaction.
Typically, the dehydroiodination reaction may be carried out by addition of one of the reactants (either the basic substance or the trihydroiodoperfluoroalkane) to the other reactant in a suitable reaction vessel. Said reaction vessel may be fabricated from glass, ceramic, or metal and is preferably agitated with an impellor or stirring mechanism.
Temperatures suitable for the dehydroiodination reaction are from about 100C to about 100°C, preferably from about 2O0C to about 7O0C. The dehydroiodination reaction may be carried out at ambient pressure or at reduced or elevated pressure. Of note are dehydroiodination reactions in which the compound of Formula I is distilled out of the reaction vessel as it is formed.
Alternatively, the dehydroiodination reaction may be conducted by contacting an aqueous solution of said basic substance with a solution of the trihydroiodoperfluoroalkane in one or more organic solvents of lower polarity such as an alkane (e.g., hexane, heptane, or octane), aromatic hydrocarbon (e.g., toluene), halogenated hydrocarbon (e.g., methylene chloride, ethylene dichloride, chloroform, carbon tetrachloride, or perchloroethylene), or ether (e.g., diethyl ether, methyl tert-butyl ether, tetrahydrofuran, 2-methyl tetrahydrofuran, dioxane, dimethoxyethane, diglyme, or tetraglyme) in the presence of a phase transfer catalyst. Suitable phase transfer catalysts include quaternary ammonium halides (e.g., tetrabutylammonium bromide, tetrabutylammonium hydrosulfate, triethylbenzylammonium chloride, dodecyltrimethylammonium chloride, and tricaprylylrnethylammonium chloride), quaternary phosphonium halides (e.g., triphenylmethylphosphonium bromide and tetraphenylphosphonium chloride), and cyclic ether compounds known in the art as crown ethers (e.g., 18-crown-6 and 15-crown-5). Alternatively, the dehydroiodination reaction may be conducted in the absence of solvent by adding the trihydroiodoperfluoroalkane to a solid or liquid basic substance.
Suitable reaction times for the dehydroiodination reactions are from about 15 minutes to about six hours or more depending on the solubility of the reactants. Typically the dehydroiodination reaction is rapid and requires about 30 minutes to about three hours for completion. The compound of formula I may be recovered from the dehydroiodination reaction mixture by phase separation after addition of water, by distillation, or by a combination thereof. The compositions disclosed herein may comprise a single compound of Formula I, for example, one of the compounds in Table 1 , or may comprise a combination of compounds of Formula I. In addition to the inventive compounds described above, compounds presented in Table 2 can be used as blowing agents.
Table 2
The compounds listed in Table 2 are available commercially or may be prepared by processes known in the art.
In addition to the inventive compounds described above, the bromine-containing fluorocarbons or hydrofluorocarbons presented in Table 3 can be used as blowing agents. TABLE 3
The compounds listed in Table 3 are available commercially or may be prepared by processes known in the art.
1-Bromo-3,3,4,4,4-pentafluoro-1-butene may be prepared by a three step sequence beginning with reaction of phosphorous tribromide with 3,3,4,4,4-pentafluoro-i-butanol to give 4- bromo-1 ,1 ,1 ,2,2- pentafluorobutane. Thermal bromination of 4- bromo-1 ,1 ,1 ,2,2- pentafluorobutane at 350-400°C gives 4,4-dibromo-1 ,1 ,1 ,2,2- pentafluorobutane which may in turn be heated with powdered potassium hydroxide to give the desired bromobutene. 2-Bromo-3,4,4,4-tetrafluoro-3-(trifluoromethyl)-1-butene may be prepared by addition of bromine to 3,4,4-tetrafluoro-3-(trifluoromethyl)-1- butene followed by treatment of the resulting dibromide with ethanolic potassium hydroxide.
Many of the compounds of Formula I, Table 1, Table 2 and Table 3 exist as different configurational isomers or stereoisomers. When the specific isomer is not designated, the present disclosure is intended to include all single configurational isomers, single stereoisomers, or any combination thereof. For instance, CF3CH=CHCF3 is meant to represent the E-isomer, Z-isomer, or any combination or mixture of both isomers in any ratio. Another example is C2F5CF2CH=CH-CF2C2F5, by which is represented the E-isomer, Z-isomer, or any combination or mixture of both isomers in any ratio.
HFC-1225ye may exist as one of two configurational isomers, E or Z. HFC-1225ye as used herein refers to the isomers, E-HFC-1225ye (CAS reg no. 5595-10-8) or Z-HFC-1225ye (CAS reg. no. 5528-43-8), as well as any combinations or mixtures of such isomers.
Blowing agents can comprise a single compound as listed, for example, in Table 2, or may comprise a combination of compounds from Table 2 or, alternatively, a combination of compounds from Table 1 , Table 2, Table 3, and/or Formula I.
The amount of the fluorocarbons (FCs) or HFCs contained in the present compositions (from, e.g., Formula I, Table 1 , or Table 2, or Table 3) can vary widely, depending the particular application, and compositions containing more than trace amounts and less than 100% of the compound are within broad the scope of the present disclosure.
The compositions disclosed herein may be prepared by any convenient method to combine the desired amounts of the individual components. A preferred method is to weigh the desired component amounts and thereafter combine the components in an appropriate vessel. Agitation may be used, if desired.
Other embodiments provide foamable compositions, and preferably thermoset or thermoplastic foam compositions, prepared using the compositions of the present disclosure. In such foam embodiments, one or more of the present compositions are included as or part of a blowing agent in a foamable composition, which composition preferably includes one or more additional components capable of reacting and/or foaming under the proper conditions to form a foam or cellular structure. Another aspect relates to foam, and preferably closed cell foam, prepared from a polymer foam formulation containing a blowing agent comprising the compositions of the present disclosure.
The present disclosure further relates to a method for replacing or substituting for the blowing agent in a foamable composition having a GWP of about 150 or more, or a high GWP blowing agent, with a composition having a lower GWP. One method comprises providing a composition comprising at least one fluoroolefin of the present invention as the replacement. In another embodiment of the present invention the foamable composition of the present invention, having a lower GWP than the composition being replaced or substituted is used to produce thermoplastic or thermoset foams. Global warming potentials (GWPs) are an index for estimating relative global warming contribution due to atmospheric emission of a kilogram of a particular greenhouse gas compared to emission of a kilogram of carbon dioxide. GWP can be calculated for different time horizons showing the effect of atmospheric lifetime for a given gas. The GWP for the 100 year time horizon is commonly the value referenced. A high GWP blowing agent would be any compound capable of functioning as a blowing agent having a GWP at the 100 year time horizon of about 1000 or greater, alternatively 500 or greater, 150 or greater, 100 or greater, or 50 or greater. Foam expansion agents that are in need of replacement, based upon GWP calculations published by the
Intergovernmental Panel on Climate Change (IPCC), include but are not limited to HFC-134a and HFC-227ea.
The present disclosure will provide compositions that have zero or low ozone depletion potential and low global warming potential (GWP). The fluoroolefins of the present invention or mixtures of fluoroolefins of this invention with c-ther blowing agents or foamable compositions will have global warming potentials that are less than many hydrofluorocarbon blowing agents or foamable compositions currently in use. Typically, the fluoroolefins of the present invention are expected to have GWP of less than about 25. One aspect of the present invention is to provide a blowing agent with a global warming potential of less than 1000, less than 500, less than 150, less than 100, or less than 50. Another aspect of the present invention is to reduce the net GWP of foamable compositions by adding fluoroolefins to said mixtures. The present invention further relates to a method for lowering the
GWP of the methods for manufacturing open, closed and multi-modal foams, said method comprising combining at least one fluoroolefin of the present invention with a resin (for thermoplastic foams) or into a B-side mixture (thermoplastic) to produce a foamable composition with a GWP of lower than 25. The GWP of may be determined that the GWP of a mixture or combination of compounds may be calculated as a weighted average of the GWP for each of the pure compounds.
The present compositions also preferably have an Ozone Depletion Potential (ODP) of not greater than 0.05, more preferably not greater than 0.02 and even more preferably about zero. As used herein, "ODP" is as defined in "The Scientific Assessment of Ozone Depletion, 2002, A report of the World Meteorological Association's Global Ozone Research and Monitoring Project," which is incorporated herein by reference. Certain embodiments provide foam premixes, foamable compositions, and preferably polyurethane or polyisocyanate foam compositions, and methods of preparing foams. In such foam embodiments, one or more of the compositions of the present disclosure are included as a blowing agent in a foamable composition, which foamable composition preferably includes one or more additional components capable of reacting and/or foaming under the proper conditions to form a foam or cellular structure. Any of the methods well known in the art, such as those described in "Polyurethanes Chemistry and Technology," Volumes I and II, Saunders and Frisch, 1962, John Wiley and Sons, New York, N.Y., which is incorporated herein by reference, may be used or adapted for use in accordance with the foam embodiments.
In certain embodiments, it is often desirable to employ certain other ingredients in preparing foams. Among these additional ingredients are catalysts, surfactants, flame retardants, preservatives, colorants, antioxidants, reinforcing agents, filler, antistatic agents, nucleating agents and the like.
Polyurethane foams are generally prepared by combining and reacting an isocyanate with a polyol in the presence of a blowing or expanding agent and auxiliary chemicals added to control and modify both the polyurethane reaction itself and the properties of the final polymer. For processing convenience, these materials can be premixed into two non- reacting parts typically referred to as the "A-side" and the "B-side". The term "B-side" is intended to mean polyol or polyol containing mixture. A polyol containing mixture usually includes the polyol, the blowing or expanding agent and auxiliary chemicals, like catalysts, surfactants, stabilizers, chain extenders, cross-linkers, water, fire retardants, smoke suppressants, pigments, coloring materials, fillers, etc. The term "A-side" is intended to mean isocyanate or isocyanate containing mixture. An isocyanate containing mixture may include the isocyanate, the blowing or expanding agent and auxiliary chemicals, like catalysts, surfactants, stabilizers, chain extenders, cross-linkers, water, tire retardants, smoke suppressants, pigments, coloring materials, fillers, etc.
To prepare the foam, appropriate amounts of A-side and B-side are then combined to react. When preparing a foam by a process disclosed herein, it is generally preferred to employ a minor amount of a surfactant to stabilize the foaming reaction mixture until it cures. Such surfactants may comprise a liquid or solid organosilicone compound. Other, less preferred surfactants include polyethylene glycol ethers of long chain alcohols, tertiary amine or alkanolamine salts of long chain alkyl acid sulfate esters, alkyl sulfonic esters and alkyl arylsutfonic acids. The surfactants are employed in amounts sufficient to stabilize the foaming reaction mixture against collapse and to prevent the formation of large, uneven cells. About 0.2 to about 5 parts or even more of the surfactant per 100 parts by weight of polyol are usually sufficient.
One or more catalysts for the reaction of the polyol with the polyisocyanate may also be used. Any suitable urethane catalyst may be used, including tertiary amine compounds and organometallic compounds. Such catalysts are used in an amount which measurably increases the rate of reaction of the polyisocyanate. Typical amounts are about 0.1 to about 5 parts of catalyst per 100 parts by weight of polyol. Useful flame retardants include, for example, tri(2- chloroethyl)phosphate, tri(2-chloropropyl)phosphate, tri(2,3- dibromopropyl)-phosphate, tri(1 ,3-dichloropropyl) phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
The methods of forming a foam generally comprise providing a blowing agent composition of the present disclosure, adding (directly or indirectly) the blowing agent composition to a foamable composition, and reacting the foamable composition under the conditions effective to form a foam or cellular structure. Any of the methods well known in the art, such as those described in "Polyurethanes Chemistry and Technology," Volumes I and II, Saunders and Frisch, 1962, John Wiley and Sons, New York, N. Y., which is incorporated herein by reference, may be used or adapted for use in accordance with the foam embodiments.
Polyisocyanate-based foams are prepared, e.g., by reacting at least one organic polyisocyanate with at least one active hydrogen-containing compound in the presence of the blowing agent composition described herein-above.
An isocyanate reactive composition can be prepared by blending at least one active hydrogen-containing compound with the blowing agent composition. Advantageously, the blend contains at least 1 and up to 50, preferably up to 25 weight percent of the blowing agent composition, based on the total weight of active hydrogen-containing compound and blowing agent composition.
Active hydrogen-containing compounds include those materials having two or more groups which contain an active hydrogen atom which reacts with an isocyanate. Preferred among such compounds are materials having at least two hydroxyl, primary or secondary amine, carboxylic acid, or thiol groups per molecule. Polyols, i.e., compounds having at least two hydroxyl groups per molecule, are especially preferred due to their desirable reactivity with polyisocyanates. Additional examples of suitable active hydrogen containing compounds can be found in U.S. Patent 6,590,005, incorporated herein by reference. For example, suitable polyester polyols include those prepared by reacting a carboxylic acid and/or a derivative thereof or a polycarboxylic anhydride with a polyhydric alcohol. The polycarboxylic acids may be any of the known aliphatic, cycloaliphatic, aromatic, and/or heterocyclic polycarboxylic acids and may be substituted, (e.g., with halogen atoms) and/or unsaturated. Examples of suitable polycarboxylic acids and anhydrides include oxalic acid, malonic acid, glutaric acid, pimelic acid, succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, trimellitic acid anhydride, pyromellitic dianhydride, phthalic acid anhydride, tetrahydrophthalic acid anhydride, hexahydrophthalic acid anhydride, endomethylene tetrahydrophthalic acid anhydride, glutaric acid anhydride acid, maleic acid, maleic acid anhydride, fumaric acid, and dimeric and trimeric fatty acids, such as those of oleic acid which may be in admixture with monomeric fatty acids. Simple esters of polycarboxylic acids may also be used such as terephthalic acid dimethylester, terephthalic acid bisglycol and extracts thereof. The polyhydric alcohols suitable for the preparation of polyester polyols may be aliphatic, cycloaliphatic, aromatic, and/or heterocyclic. The polyhydric alcohols optionally may include substituents which are inert in the reaction, for example, chlorine and bromine substituents, and/or may be unsaturated. Suitable amino alcohols, such as monoethanolamine, diethanolamine or the like may also be used. Examples of suitable polyhydric alcohols include ethylene glycol, propylene glycol, polyoxyalkylene glycols (such as diethylene glycol, polyethylene glycol, dipropylene glycol and polypropylene glycol), glycerol and trimethylolpropane. Suitable additional isocyanate-reactive materials include polyether polyols, polyester polyols, polyhydroxy-terminated acetal resins, hydroxyl- terminated amines and polyamines, and the like. These additional isocyanate-reactive materials include hydrogen terminated polythioethers, polyamides, polyester amides, polycarbonates, polyacetals, polyolefins, polysiloxanes, and polymer polyols.
Other polyols include alkylene oxide derivatives of Mannich condensates, and aminoalkylpiperazine-initiated polyethers as described in U.S. Patent Nos. 4,704,410 and 4,704,411. The low hydroxyl number, high equivalent weight alkylene oxide adducts of carbohydrate initiators such as sucrose and sorbitol may also be used.
In the process of making a polyisocyanate-based foam, the polyol(s), polyisocyanate and other components are contacted, thoroughly mixed and permitted to expand and cure into a cellular polymer. The particular mixing apparatus is not critical, and various types of mixing head and spray apparatus are conveniently used. It is often convenient, but not necessary, to preblend certain of the raw materials prior to reacting the polyisocyanate and active hydrogen-containing components. For example, it is often useful to blend the polyol(s), blowing agent, surfactant(s), catalyst(s) and other components except for polyisocyanates, and then contact this mixture with the polyisocyanate. Alternatively, all the components may be introduced individually to the mixing zone where the polyisocyanate and polyol(s) are contacted. It is also possible to pre-react all or a portion of the polyol(s) with the polyisocyanate to form a prepolymer.
The quantity of blowing agent composition employed when preparing a foam is sufficient to give a desired density to the foam. Advantageously, sufficient blowing agent is employed to provide a polyurethane foam having an overall density of from about 10 to about 500, preferably from about 18 to about 100 kg/m3 (1kg/m3=0.062 Ib./ft.3).
It is often convenient to preblend the blowing agent composition with the active hydrogen-containing compound before contacting the resulting blend with the polyisocyanate. It is also possible to simultaneously blend together the polyisocyanate, active hydrogen- containing compound and blowing agent composition in one operation resulting in the production of polyisocyanate-based foam. Preferably the blowing agent composition is blended with the active hydrogen-containing compound before contacting with the polyisocyanate. One aspect is for a rigid, closed-celled polyisocyanate-based foam.
It is prepared by contacting an organic polyisocyanate with an active hydrogen-containing compound in the presence of the blowing agent composition characterized in that the so-prepared foam contains within its cells gaseous blowing agents. The rigid closed-cell celled polyisocyanate-based foams are useful in spray insulation, as foam-in-place appliance foams, rigid insulating board stock, or in laminates.
In addition, according to certain embodiments, the blowing agents are used to blow thermoplastic foams, such as polystyrene, polyethylene foams, including low-density polyethylene foams, or polypropylene foams. Any of a wide range of conventional methods for blowing such thermoplastic foams can be adapted for use herein. Another embodiment provides a foamable composition comprising thermoplastic foams, such as polystyrene, polyethylene (PE), preferably low density PE, or polypropylene (PP).
The thermoplastic foam bodies are conveniently produced by using conventional equipment comprising an extruder and associated means for (1) melting the resin; (2) homogeneously blending the blowing agent composition with the melt to form a plasticized mass at nonfoaming temperatures and pressures; (3) passing the plasticized mass at a controlled rate, temperature and pressure through a die having a desired shape, e.g., slit die for producing rectangular slabs of foam board having desired thickness and surface area, into an expansion zone; (4) allowing the extrudate to foam in the expansion zone maintainable at suitable temperatures and low pressures; (5) maintaining the expanding extrudate under such temperatures and pressures for a time sufficient for the viscosity of the extrudate to increase such that the cell size and density of the foam remain substantially unchanged and substantially free of ruptured cells at ambient temperature; e.g., 25 0C and atmospheric pressure; and (6) recovering the extruded foam body.
When preparing foams, it is often desirable to add a nucleating agent or other additives into the resin. Nucleating agents serve primarily to increase cell count and decrease cell size in the foam, and may be used in an amount of about 0.1 to about 10 parts by weight per 100 parts by weight of the resin. Typical nucleating agents comprise at lease one member selected from the group consisting of talc, sodium bicarbonate- citric acid mixtures, calcium silicate, carbon dioxide, among others.
In one aspect, the foaming amount of the blowing agent is in the range of from about 1 to about 30 weight percent based on the total weight of the resin plus blowing agent mixture, typically about 2 to 20 weight percent, and normally about 2 to about 10 weight percent. The lower the concentration of blowing agent, the greater the density of the resulting foam. The proper amount of blowing agent or resultant characteristics of the foam for any desired end-use is readily determined by a skilled person in this art. The resin is melted at a temperature of about 200 to about 235 0C depending upon the grade employed, and at nonfoaming pressures of about 600 psig or higher. The plasticized resin- blowing agent mixture is cooled under nonfoaming pressure to a temperature of about 115 to 150 0C, normally 130 0C, and extruded into the expansion zone at or below ambient temperature and at or below atmospheric pressure.
Representative foamed products that can be made in accordance with the present disclosure include, for example: (1) polystyrene foam sheet for the production of disposable thermoformed packaging materials; e.g., as disclosed in York, U.S. Patent No. 5,204,169; (2) extruded polystyrene foam boards for use as residential and industrial sheathing and roofing materials, which may be from about 0.5 to 6 inches (1.25 to 15 cm) thick, up to 4 feet (122 cm) wide, with cross-sectional areas of from 0.17 to 3 square feet (0.016 to 0.28 square meter), and up to 27 feet (813 meters) long, with densities of from about 1.5 to 10 pounds per cubic foot (pcf) (25 to 160 kilograms per cubic meter (kg/m3); (3) expandable foams in the form of large billets which may be up to about 2 feet (61 cm) thick, often at least 1.5 feet 46 cm) thick, up to 4 feet (1.22 meters) wide, up to 16 feet (4.8 meters) long, having a cross-sectional area of about 2 to 8 square feet (0.19 to 0.74 square meter) and a density of from 6 to 15 pcf (96 to 240 kg/m3). Such foamed products are more fully described by Stockdopole and Welsh in the Encyclopedia of Polymer Science and Engineering, vol. 16, pages 193-205, John Wiley & Sons, 1989; hereby incorporated by reference. All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit, and scope of the present disclosure. More specifically, it will be apparent that certain agents which are chemically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the present disclosure as defined by the appended claims.
EXAMPLES
The present disclosure is further defined in the following Examples. It should be understood that these Examples, while indicating preferred embodiments, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the preferred features, and without departing from the spirit and scope thereof, can make various changes and modifications to adapt it to various uses and conditions.
EXAMPLE 1 Synthesis of 1.1.1.4,4.5,5.6.6,7.7,7-dodecafluorohept-2-ene (F14E)
Synthesis Of C4F9CH2CHICF3
Perfluoro-n-butyliodide (180.1 gm, 0.52 moles) and 3,3,3-trifluoropropene (25.0 gm, 0.26 moles) were added to a 400 ml Hastelloy™ shaker tube and heated to 2000C for 8 hours under autogenous pressure, which increased to a maximum of 428 PSI. The product was collected at room temperature. The above reaction was carried out again at these conditions and the products combined. It was then repeated doubling the amount of perfluoro-n-butyliodide and 3,3,3-trifluoropropene in the same 400 ml reactor. In this case the pressure increased to 573 PSI. The products of the three reactions were combined and distilled to give 322.4 gm of C4F9CH2CHICF3 (52.2735 mm) in 70% yield.
Conversion of C4F9CH2CHICF3 to F14E
C4F9CH2CHICF3 (322.4 gm, 0.73 moles) was added dropwise via addition funnel to a 2L round bottom flask equipped with stir a bar and connected to a packed distillation column and still head. The flask contained isopropyl alcohol (95 ml), KOH (303.7 gm, 0.54 moles) and water (303 ml). Product was collected, washed with sodium metabisulfite, water, dried with MgSO4 and distilled through a 6" column filled with glass helices. The product, F14E (173.4 gm, 76%) boils at 78.2°C. It was characterized by 19F NMR (δ -66.7 (CF3, m, 3F), -81.7(CF3, m 3F), -124.8 (CF2, m, 2F), - 126.4 (CF2, m, 2F), and -114.9 ppm (CF2, m, 2F)) 1H NMR(δ 6.45) in chloroform-d solution.
EXAMPLE 2 Synthesis of 1.1.1 , 2.2.5.5,6.6,7,7,8,8,8-tetradecafluorooct-3-ene (F24E)
Synthesis of C4F9CHICH2C2F5 Perfluoroethyliodide (220 gm, 0.895 mole) and 3,3,4,4,5,5,6,6,6- nonafluorohex-1-ene (123 gm, 0.50 mole) were added to a 400 ml Hastelloy™ shaker tube and heated to 2000C for 10 hours under autogenous pressure. The product from this and two others carried out under similar conditions were combined and washed with two 200 ml_ portions of 10 wt % aqueous sodium bisulfite. The organic phase was dried over calcium chloride and then distilled to give 277.4 gm of C4F9CH2CHICF3 (79-810C/ 67-68 mm Hg) in 37% yield.
Conversion of C4F9CHICH2C2F5 to F24E A 1 L round bottom flask equipped with a mechanical stirrer, addition funnel, condenser, and thermocouple was charged with C4F9CHICH2C2F5 (277.4 gm, 0.56 moles) and isopropanol (217.8 g). The addition funnel was charged with a solution of potassium hydroxide (74.5 g, 1.13 moles) dissolved in 83.8 g of water. The KOH solution was added dropwise to the flask with rapid stirring over the course of about one hour as the temperature slowly increased from 210C to 420C. The reaction mass was diluted with water and the product recovered by phase separation. The product was washed with 50 ml_ portions of 10 wt % aqueous sodium bisulfite and water, dried over calcium chloride, and then distilled at atmospheric pressure. The product, F24E (128.7 gm, 63%) boils at 95.5°C. It was characterized by 19F NMR (δ -81.6 (CF3, m, 3F), - 85.4(CF3, m 3F), -114.7 (CF2, m, 2F), -118.1 (CF2, m, 2F), -124.8 ppm (CF2, m, 2F), -126.3 ppm (CF2, m, 2F)) and 1H NMR (66.48) in chloroform- d solution.
EXAMPLE 3 Synthesis of CF3CH=CHCF(CFg)2
Synthesis Of CF3CHICH2CF(CFs)2
(CF3)2CFI (265 gm, 0.9 moles) and 3,3,3-trifluoropropene (44.0 gm, 0.45 moles) were added to a 400 ml Hastelloy shaker tube and heated to 2000C for 8 hours under autogenous pressure, which increased to a maximum of 585 psi. The product was collected at room temperature to give 110 gm of (CF3)2CFCH2CHICF3 (76-77°C/200 mm) in 62% yield.
Conversion of (CF3) 2CFCH2CHICF3 to F13iE
(CF3)2CFCH2CHICF3 (109 gm, 0.28 moles) was slowly added dropwise via addition funnel to a 500 ml round bottom flask heated to 420C equipped with stir a bar and connected to a short path distillation column and dry ice trap. The flask contained isopropyl alcohol (50 ml), KOH (109 gm, 1.96 moles) and water (109 ml). During the addition, the temperature increased from 42 to 55°C. After refluxing for 30 minutes, the temperature in the flask increased to 62°C. Product was collected, washed with water, dried with MgSO4 and distilled. The product, F13iE (41 gm, 55%), boils at 48-500C and was characterized by 19F NMR (δ -187.6 (CF, m 1F), -77.1 (CF3, m 6F), - 66.3 (CF3, m 3F) in chloroform-d solution.
POLYISOCYANATE-BASED FOAM EXAMPLES
To demonstrate effectiveness of unsaturated fluorocarbon blowing agents, polyurethane and polyisocyanurate foam samples were prepared by hand-mixing, using the two basic polyurethane foam formulations described in Example 4 and Example 5 below. The blowing agents may be generally premixed with the polyol or B-side for convenience. Foams may be prepared either as free-rise or molded samples. For free-rise foams, the reaction mixture is poured into an open, round cardboard container. For molded foams, the reaction mixture is poured into a 2 Vz x 13" x 15" (6.35 cm x 30.02 cm x 38.1 cm) heated aluminum mold. Example 4: Polvisocvanurate Foam
Component Parts bv Weiqht aromatic polyester polyol (Stepanpol® PS- 120
2502A) polysiloxane surfactant (Dabco DC-193) 1.8 potassium octanoate catalyst (Hexcem 977) 3.2
Tris-2,4,6- 0.4
(dimethylaminomethyl)phenol/Bis(di- methylaminomethyl)phenol catalyst (Dabco
TMR 30)
1,1,1 , 4,4,5,5,5,Octaf!uooro-2-pentene (HFC- 80
1438mzz) (Blowing Agent) polymethylene polyphenylisocyanate 190 isocyanate (Papi® 580)
All components except the isocyanate were premixed as a B-side. The isocyanate (A-side) was then added and mixed with a mechanical stirrer for 10 seconds. The foam reaction mixture was poured into a closed aluminum mold warmed to about 100°F and allowed to expand. When cured, a 1" X 1" X 12" sample was cut from the core of the molded foam.
The core sample was about 2.2 pounds/ft3 (PCF) (35.2 kg/m3) density, had an exceptionally fine cell structure, and remained dimensionally stable. Magnified photographs of the foam showed a uniform, highly closed cell structure and cell sizes about 200-300 microns (μ). Using a LaserComp FOX 304 Thermal Conductivity Meter, initial insulation value (R-value) was measured at 7.4/inch (thermal conductivity of 19.5 milliW/(mK) at a mean temperature of 24.00C or 0.135 BTU-in/hr- ft2-°F at a mean temperature of 75.2°F).
Example 5: Polyurethane Pour-in-Place Foam
Component Parts bv Weiqht sucrose/glycerine initiated polyether polyol 140
(Voranol® 360) silicone surfactant (Witco L-6900) 3.0
N,N-Dimethylcyclohexylamine catalyst 1.7 (Polycat 8) pentamethyldiethylenetriamine catalyst 0.4
(Polycat 5)
2-Methyl(n-methyl amino b-sodium acetate 0.5 nonyl phenol) catalyst (Curithane® 52)
Water 2.1
Blowing Agent 1 ,1,1 , 4,4,5,5,5,Octafluooro-2- 70 pentene (HFC-1438mzz) polymethylene polyphenylisocyanate 169 isocyanate (Papi® 27)
All components except the isocyanate were premixed as a B-side. The isocyanate (A-side) was then added and mixed with a mechanical stirrer for 10 seconds. The foam reaction mixture was poured into a closed aluminum mold warmed to about 1000F and allowed to expand. When cured, a 1" X 1" X 12" sample was cut from the core of the molded foam.
The core sample was about 2.0 pounds/ft3 (PCF) (32.0 kg/m3) density, had a good cell structure though it did contain some voids, and remained dimensionally stable. Magnified photographs of the foam showed a uniform, highly closed cell structure, excluding the voids, and cell sizes about 200-300 microns (μ). Using a LaserComp FOX 304 Thermal Conductivity Meter, initial insulation value was measured at 4.9/inch (29.5 milliW/(mK) at a mean temperature of 24.O0C or thermal conductivity of 0.2044 BTU-in/hr-ft2-°F at a mean temperature of 75.20F),
Example 6: Polyisocvanurate Foam
Component Parts by Weight aromatic polyester polyol
(Stepanpol® PS-2502A) 14.4 polysiloxane surfactant
(Dabco DC-193) 0.42
Potassium octanoate catalyst
(Hexcem 977) 0.8
Tris-2,4,6-(dimethylaminomethyl)phenol/Bis(di- methylaminomethyl)phenol catalyst n Λ C-
(Dabco TMR 30) 1,1,1 ,4,4,4 Hexafluooro-2-butene
(HFC-1336mzz, Z-isomer) (Blowing Agent) 12.0 polymethylene polyphenylisocyanate isocyanate (Papi® nn a
580) ιιx>
All components except the isocyanate were premixed as a B-side. The isocyanate (A-side) was then added and hand-mixed for about 30 seconds. The foam reaction mixture was allowed to rise in the beaker. The blowing agent mixed well with the B-side and foamed the polymer. Foam density was initially high because the catalyst amounts and ratio were not optimal for the HFC-1336mzz boiling point, and the amounts of catalyst were adjusted to decrease density.
EXAMPLE 7: Blowing Agent Solubility Effect on Foam Cell structure
These unsaturated fluorocarbons offer an advantage of improved foam cell structure because their solubility is different than other typically used blowing agents. Their reduced solubility in the B-side requires proper mixing, but once mixed, they demonstrate a good affinity for the B-side, and being somewhat insoluble, act to help seed small cell growth during the foaming reaction.
This was observed in preparing the foam examples 4 and 5, above. In the case of example 4, the blowing agent (HFC-1438mzz) was mixed in the B- side until a mousse-like consistency was obtained. At that point, the blowing agent was well dispersed in the B-side, with no loss upon sitting at room temperature. When this B-side mixture was foamed, it resulted in the exceptionally fine cell structure described above, and contributed to the high R-value.
In example 5, the blowing agent was not mixed as thoroughly in the B- side. In this case, voids were observed in the foam, but the cell structure excluding the voids remained small and consistent. The resultant insulation value was acceptable despite the voids, demonstrating that these unsaturated fluorocarbons can improve cell structure and foam properties such as to overcome potential processing difficulties that otherwise would detrimentally impact foam performance.
THERMOPLASTIC FOAM EXAMPLES
EXAMPLE 8
The following example serves to illustrate the ability to use unsaturated fluorocarbon blowing agents to produce thermoplastic foam insulation, specifically a polystyrene insulation foam, with fine, uniform cell structure, long-term insulation value, and good dimensional stability. To produce polystyrene foam insulation board, a commercial tandem extruder equipped with die, designed for insulation board foam, is used. Such a configuration employs a primary extruder and a secondary extruder, with a slit die. A typical polystyrene resin would be Shell NX600 general purpose, 2.5 melt index, and a typical nucleator would be magnesium silicate talc.
Table 4 - Typical Extruder Operating Parameters
EXAMPLE 9
In this example, polystyrene foam sheet is prepared using unsaturated fluorocarbons as the blowing agent. The polystyrene foam sheet is ultimately thermoformed into food service packaging, like egg cartons, hamburger cartons, meat trays, plates, etc.
Foam sheet is produced using a conventional tandem extrusion system. Foam is extruded through an annular die, stretched over a mandrel about 4 times the die's diameter, and slit to produce a single sheet. A typical formulation is:
88 to 97 wt. percent polystyrene resin 2 to 8 wt. percent unsaturated fluorocarbon blowing agent 1 to 4 wt. percent nucleating agent
The polystyrene sheet is typically extruded to a thickness of 50 to 300 mils and at a rate of approximately 1 ,000 pounds of plastic per hour. Typical extruder conditions range from 1 ,000 to 4,000 psi (70.3 kg/cm to 281.3 kg/cm) and 200 0F to 400 0F (93.3 0C to 204.4 0C). The blowing agent concentration in the feed material will change depending on the desired thickness (thicker product requires more blowing agent). Once the polystyrene has been extruded, it is typically aged between 3 days to 2 weeks. During this time, it is stored in rolls in a warehouse. Some blowing agent permeates out of the foam at this time, but at a relatively slow rate.
After storage, the rolls of foam are thermoformed, producing the desired type of end-product (e.g., clam-shell containers, plates, etc.).
EXAMPLE 10
Experiments were conducted to assess the stability of HFC-1225ye for thermoplastic foams. 1,2,3,3,3-pentafluoro-1-propene (HFC-1225ye), 1,1- difluoroethane (HFC-152a) and 1,1 ,1 ,2-tetrafluoroethane (HFC-134a) were all analyzed by GC/MS prior to the testing and were found to be 100% pure. Polystyrene, talc nucleator, a 1010 Mild Steel Coupon, and air was heated to 26O0C in a pressure vessel with blowing agent and held ϋ4 hours. After 24 hours, the vessel was cooled and all gaseous products were collected from the vessel for analysis.
The test data show that HFC-1225ye was surprisingly as stable as HFC- 134a and more stable than HFC-152a under extrusion conditions.
The steel coupons from runs 32a, 32b and 24d were analyzed by Electron Spectroscopy for Chemical Analysis (ESCA). Fluoride ions (F") were observed on the surface of all coupons. Estimated concentrations of fluoride ion are shown in the table below.
ESCA Analysis Results (unit: atom%)
EXAMPLE 11
Experiments were conducted to assess the compatibility of the unsaturated fluorocarbons for thermoplastic foams. Polystyrene and talc nucleator were heated to 26O0C in a pressure vessel with blowing agent and held 24 hours. After 24 hours, the vessel was cooled and a polystyrene sample recovered for thermal gravimetric analysis (TGA). Weight loss versus temperature was compared for the polystyrene samples heated with blowing agents to a control sample of starting polystyrene material. The TGA analysis shows that blowing agent was admixed in the melt and the weight loss provides an approximation of the amount of blowing agent that mixed in the melt. The data indicates improved solubility for the unsaturated fluorocarbon blowing agent versus current HFC products.

Claims

What is claimed:
1. An open cell, closed cell or multimodal foam prepared by foaming a foamable composition in the presence of a blowing agent, said blowing agent comprising a fluorocarbon or hydrofluorocarbon selected from the group consisting of:
(i) a hydrofluorocarbon having the formula E- or Z-R1CH=CHR2, wherein R1 and R2 are, independently, Ci to C6 perfluoroalkyl groups; and
(ii) a fluorocarbon or hydrofluorocarbon selected from the group consisting of CF3CF=CHF, CF3CH=CF2, CHF2CF=CF2, CHF2CH=CHF, CF3CF=CH2, CF3CH=CHF, CH2FCF=CF2, CHF2CH=CF2, CHF2CF=CHF, CHF2CF=CH2, CF3CH=CH2, CH3CF=CF2, CH2FCHCF2, CH2FCF=CHF, CHF2CH=CHF, CF3CF=CFCF3, CF3CF2CF=CF2, CF3CF=CHCF3, CF3CF2CF=CH2, CF3CH=CHCF3, CF3CF2CH=CH2, CF2=CHCF2CF3, CF2=CFCHFCF3, CF2=CFCF2CHF2, CHF2CH=CHCF3, (CF3)2C=CHCF3, CF3CF=CHCF2CF3, CF3CH=CFCF2CF3, (CF3)2CFCH=CH2, CF3CF2CF2CH=CH2, CF3(CF2)3CF=CF2, CF3CF2CF=CFCF2CF3, (CF3)2C=C(CF3)2, (CFS)2CFCF=CHCF3, CF2=CFCF2CH2F, CF2=CFCHFCHF2, CH2=C(CFs)2, CH2CF2CF=CF2, CH2FCF=CFCHF2, CH2FCF2CF=CF2, CF2=C(CF3)(CH3), CH2=C(CHF2)(CF3), CH2=CHCF2CHF2, CF2=C(CHF2)(CH3), CHF=C(CF3)(CH3), CH2=C(CHF2)2, CF3CF=CFCH3, CH3CF=CHCFO3, CF2=CFCF2CF2CF31 CHF=CFCF2CF2CF3, CF2=CHCF2CF2CF31 CF2=CFCF2CF2CHF2, CHF2CF=CFCF2CF31 CF3CF=CFCF2CHF2, CF3CF=CFCHFCF3, CHF=CFCF(CFS)2, CF2=CFCH(CFS) 2, CF3CH=C(CFs)2, CF2=CHCF(CF3)2, CH2=CFCF2CF2CF3, CHF=CFCF2CF2CHF21 CH2=C(CF3)CF2CF3, CF2=CHCH(CF3)2l CHF=CHCF(CF3) 2, CF2=C(CF3)CH2CF3, CH2=CFCF2CF2CHF21 CF2=CHCF2CH2CF3, CF3CF=C(CF3)(CH3), CH2=CFCH(CFs)2, CHF=CHCH(CF3)2, CH2FCH=C(CFs)2, CH3CF=C(CFs)2, CH2=CHCF2CHFCF3, CH2C(CF3)CH2CF3, (CFa)2C=CHC2F5, (CF3)2CFCF=CHCF3, CH2=CHC(CFS)31 (CFS)2C=C(CH3)(CF3), CH2=CFCF2CH(CF3)2, CF3CF=C(CH3)CF2CF3, CFSCH=CHCH(CFS)2, CH2=CHCF2CF2CF2CHF2, (CFS)2C=CHCF2CH31 CH2=C(CF3)CH2C2F5, CH2=CHCH2CF2C2F5, CH2=CHCH2CF2C2F5, CF3CF2CF=CFC2Hs, CH2=CHCH2CF(CF3)Z, CFSCF=CHCH(CF3)(CH3), (CF3)2C=CFC2H5, cyclo- CF2CF2CF2CH=CH-, cyclo-CF2CF2CH=CH-, CF3CF2CF2C(CHs)=CH2, CF3CF2CF2CH=CHCH3, cyclo- CF2CF2CF=CF-, CyCIo-CF2CF=CFCF2CF2-, cyclo- CF2CF=CFCF2CF2CF21 CFSCF2CF2CF2CH=CH2, CF3CH=CHCF2CF31 CF2CF2CH=CHCF2CF3, CF3CH=CHCF2CF2CF3, CF3CF=CFC2F5, CF3CF=CFCF2CF2C2F5, CF3CF2CF=CFCF2C2F5, CF3CH=CFCF2CF2C2F51 CF3CF=CHCF2CF2C2F5, CF3CF2CH=CFCF2C2F51 CFSCF2CF=CHCF2C2F5, C2F5CF2CF=CHCH3, C2F5CF=CHCH3, (CFs)2C=CHCH3, CF3C(CHs)=CHCF3, CHF=CFC2F5, CHF2CF=CFCFs1 (CFs)2C=CHF, CH2FCF=CFCF3, CHF=CHCF2CFs, CHF2CH=CFCFs, CHF=CFCHFCFS, CF3CH=CFCHF2, CHF=CFCF2CHF2, CHF2CF=CFCHF2, CH2CF=CFCF3, CH2FCH=CFCF3, CH2=CFCHFCF3, CH2=CFCF2CHF2, CFsCH=CFCH2F, CHF=CFCH2CF3, CHF=CHCHFCF3, CHF=CHCF2CHF2, CHF2CF=CHCHF2, CHF=CFCHFCHF2, CF3CF=CHCH3, CF2=CHCF2Br, CHF=CBrCHF2, CHBr=CHCF3, CF3CBr=CFCF3, CH2=CBrCF2CF3, CHBr=CHCF2CF3, CH2=CHCF2CF2Br, CH2=CHCBrFCF3, CH3CBr=CHCF3, CF3CBr=CHCH3, (CFs)2C=CHBr, CF3CF=CBrCF2CF3, E-CHF2CBr=CFC2F5, Z- CHF2CBr=CFC2F5, CF2=CBrCHFC2F5, (CFs)2CFCBr=CH2, CHBr=CF(CF2)2CHF2, CH2=CBrCF2C2F5, CF2=C(CH2Br)CF3, CH2=C(CBrF2)CF3, (CF3)2CHCH=CHBr, (CF3)2C=CHCH2Br, CH2=CHCF(CF3)CBrF21 CF2=CHCF2CH2CBrF2, CFBr=CHCF3, CFBr=CFCF3, CF3CF2CF2CBr=CH2, and CF3(CF2)3CBr=CH2.
2. The open cell, closed cell or multimodal cell foam of claim 1 , wherein the foamable composition comprises a polymer selected from the group consisting of polyurethane, polyisocyanurate, polystyrene, polyethylene, or polypropylene.
3. The open cell, closed cell or multimodal cell foam of claim 1 , wherein the foam has an overall density of from about 10 to about 500 kg/m3.
4. The open cell, closed cell or multimodal cell foam of claim 1 , wherein the foam has an overall density of from about 18 to about 100 kg/m3.
5. The open cell, closed cell or multimodal cell foam of claim 1 , wherein the blowing agent is comprises a hydrofluorocarbon selected from the group consisting of E-CF3CF=CHF, Z-CF3CF=CHF, E-CF3CH=CHCF3, Z- CF3CH=CHCF3, E-CF3CH=CFCF3, Z-CF3CH=CFCF3, E-CF3CF=CFCF3, Z-CF3CF=CFCF3, E-CF3CH=CHCF2CF3, Z-CF3CH=CHCF2CF3, E- CF3CF=CHCF2CF3, Z-CF3CF=CHCF2CF31 E-CF3CH=CFCF2CF3, Z- CF3CH=CFCF2CF3, E-CF3CF=CFCF2CF3, CF3CF2CF=CH2 or Z- CF3CF=CFCF2CF3; and said blowing agent is present in a range of from about 1 to about 30 wt.%, based on the total weight of the polymer and blowing agent.
6. The open cell, closed cell or multimodal cell foam of claim 1 , wherein the blowing agent is present in a range of from about 2 to about 20 wt.%, based on the total weight of the polymer and blowing agent. ( . The open cell, closed cell or multimodal cell foam of claim 1 , wherein the foamable composition further comprises a nucleating agent.
8. The open cell, closed cell or multimodal cell foam of claim 1 , wherein the nucleating agent is present in range of from about 0.1 to about 4 parts by weight of the nucleating agent per 100 parts by weight of the resin and the foam is a closed cell foam.
9. The open cell, closed cell or multimodal cell foam of claim 6, wherein the blowing agent is present in a range of from about 2 to about 10 wt.%, based on the total weight of the polymer and blowing agent.
10. A polystyrene foam sheet comprising a closed cell foam of claim 1.
11. An extruded polystyrene foam board comprising a closed cell foam of claim 1.
12. An expandable foam in the form of a large billet comprising the closed cell foam of claim 1.
13. The open cell, closed cell or multimodal cell foam of claim 1 , wherein the foam is an open cell foam of and the blowing agent comprises a hydrofluorocarbon selected from the group consisting of E-CF3CF=CHF, Z-CF3CF=CHF, E-CF3CH=CHCF3, Z-CF3CH=CHCF3, E-CF3CH=CFCF3, Z-CF3CH=CFCF3, E-CF3CF=CFCF3, Z-CF3CF=CFCF3, E- CF3CH=CHCF2CF3, Z-CF3CH=CHCF2CF3, E-CF3CF=CHCF2CF3, Z- CF3CF=CHCF2CF3, E-CF3CH=CFCF2CF3, Z-CF3CH=CFCF2CF3, E- CF3CF=CFCF2CF3, CF3CF2CF=CH2 or Z-CF3CF=CFCF2CF3.
14. The open cell, closed cell or multimodal cell foam of claim 1 , wherein the foam is a multi-modal cell foam of and the blowing agent comprises a hydrofluorocarbon selected from the group consisting of E-CF3CF=CHF, Z-CF3CF=CHF, E-CF3CH=CHCF3, Z-CF3CH=CHCF3, E-CF3CH=CFCF3, Z-CF3CH=CFCF3, E-CF3CF=CFCF3, Z-CF3CF=CFCF3, E- CF3CH=CHCF2CF3, Z-CF3CH=CHCF2CF3, E-CF3CF=CHCF2CF3, Z- CF3CF=CHCF2CF3, E-CF3CH=CFCF2CF3, Z-CF3CH=CFCF2CF31 E- CF3CF=CFCF2CF3, CF3CF2CF=CH2 or Z-CF3CF=CFCF2CF3.
15. The open cell, closed cell or multimodal cell foam of claim 1 , wherein the cell size, excluding voids, is about 200-300 microns (μ).
16. The open cell, closed cell or multimodal cell foam of claim 5, wherein said foam has an initial insulation value (R) of at least 2.0/inch (thermal conductivity of 72.1 milliW/mK).
17. The open cell, closed cell or multimodal cell foam of claim 1 , wherein said foam has an initial insulation value (R) of at least 4.0/inch (thermal conductivity of 36 milliW/mK).
EP06836756A 2005-11-01 2006-11-01 Foam comprising unsaturated fluorocarbons Withdrawn EP1951795A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73209005P 2005-11-01 2005-11-01
PCT/US2006/042636 WO2007053675A2 (en) 2005-11-01 2006-11-01 Blowing agents for forming foam comprising unsaturated fluorocarbons

Publications (1)

Publication Number Publication Date
EP1951795A2 true EP1951795A2 (en) 2008-08-06

Family

ID=37872233

Family Applications (5)

Application Number Title Priority Date Filing Date
EP12176143A Withdrawn EP2511330A2 (en) 2005-11-01 2006-11-01 Method for making foams using blowing agents comprising unsaturated fluorocarbons
EP06836756A Withdrawn EP1951795A2 (en) 2005-11-01 2006-11-01 Foam comprising unsaturated fluorocarbons
EP06827260A Withdrawn EP1951794A2 (en) 2005-11-01 2006-11-01 Blowing agents for forming foam comprising unsaturated fluorocarbons
EP06827268A Withdrawn EP1943299A2 (en) 2005-11-01 2006-11-01 Methods for making foams using blowing agents comprising unsaturated fluorocarbons
EP12176140.7A Withdrawn EP2511329A3 (en) 2005-11-01 2006-11-01 Method for making foams using blowing agents comprising unsaturated fluorocarbons

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12176143A Withdrawn EP2511330A2 (en) 2005-11-01 2006-11-01 Method for making foams using blowing agents comprising unsaturated fluorocarbons

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP06827260A Withdrawn EP1951794A2 (en) 2005-11-01 2006-11-01 Blowing agents for forming foam comprising unsaturated fluorocarbons
EP06827268A Withdrawn EP1943299A2 (en) 2005-11-01 2006-11-01 Methods for making foams using blowing agents comprising unsaturated fluorocarbons
EP12176140.7A Withdrawn EP2511329A3 (en) 2005-11-01 2006-11-01 Method for making foams using blowing agents comprising unsaturated fluorocarbons

Country Status (10)

Country Link
EP (5) EP2511330A2 (en)
JP (6) JP5601774B2 (en)
KR (8) KR101671828B1 (en)
CN (5) CN103396582B (en)
AR (3) AR058828A1 (en)
AU (3) AU2006308690A1 (en)
BR (2) BRPI0619653A2 (en)
CA (5) CA2840435A1 (en)
SG (3) SG166812A1 (en)
WO (3) WO2007053675A2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541238A (en) 2005-05-05 2008-11-20 アーキペラゴ ホールディングス インコーポレイテッド Auction and transfer of unpriced orders
US20110152392A1 (en) * 2009-12-17 2011-06-23 Honeywell International Inc. Catalysts For Polyurethane Foam Polyol Premixes Containing Halogenated Olefin Blowing Agents
US9695267B2 (en) * 2009-08-11 2017-07-04 Honeywell International Inc. Foams and foamable compositions containing halogenated olefin blowing agents
CN101610987A (en) 2006-10-31 2009-12-23 纳幕尔杜邦公司 Contain 2,3,3,3-tetrafluoeopropene and/or 1,2,3, the composition and method of making the same of 3-tetrafluoeopropene
ES2433722T3 (en) * 2007-07-20 2013-12-12 E. I. Du Pont De Nemours And Company Compositions and use of a cis-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based foams
US9550854B2 (en) * 2007-10-12 2017-01-24 Honeywell International Inc. Amine catalysts for polyurethane foams
EP2215154B1 (en) * 2007-11-29 2017-12-20 The Chemours Company FC, LLC Compositions and use of cis-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based foams
KR20160040314A (en) 2008-06-20 2016-04-12 이 아이 듀폰 디 네모아 앤드 캄파니 Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
CA2752263A1 (en) 2009-03-06 2010-09-10 Solvay Fluor Gmbh Use of unsaturated hydrofluorocarbons
DE102009028061A1 (en) 2009-07-29 2011-02-10 Evonik Goldschmidt Gmbh Process for the production of polyurethane foam
JP5664669B2 (en) * 2011-02-02 2015-02-04 旭硝子株式会社 Manufacturing method of rigid foam synthetic resin
MX2013010410A (en) 2011-03-11 2013-10-17 Arkema Inc Improved stability of polyurethane polyol blends containing halogenated olefin blowing agent.
US9896558B2 (en) 2011-08-01 2018-02-20 Basf Se HFO/water-blown rigid foam systems
BR112014002392B1 (en) 2011-08-01 2020-11-10 Basf Se process to produce rigid polyurethane foams, use of a blowing agent mixture, and rigid polyurethane foam
US10308783B2 (en) 2012-09-24 2019-06-04 Arkema Inc. Stability of polyurethane polyol blends containing halogenated olefin blowing agent
CN105008442A (en) * 2013-03-06 2015-10-28 霍尼韦尔国际公司 Storage stable foamable compositions containing 1,1,1,4,4,4-hexafluoro-2-butene
CN106414573B (en) 2014-01-24 2020-03-17 旭化成建材株式会社 Phenolic resin foam and method for producing same
US10435604B2 (en) 2014-10-30 2019-10-08 The Chemours Company Fc, Llc Use of (2E)-1,1,1,4,5,5,5-heptafluoro-4-(trifluoromethyl)pent-2-ene in power cycles
KR20170011717A (en) 2015-07-24 2017-02-02 대산안전산업 주식회사 A Road pence
JP2019515112A (en) * 2016-05-06 2019-06-06 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Z-HFO-1336mzz blowing agent for foaming thermoplastic polymers containing polystyrene
MX2018013273A (en) * 2016-05-06 2019-03-28 Chemours Co Fc Llc Foaming of styrene polymer.
US10131758B2 (en) * 2016-07-25 2018-11-20 Accella Polyurethane Systems, Llc Polyurethane foam-forming compositions, methods of making low density foams using such compositions, and foams formed therefrom
JP7176738B2 (en) 2016-11-16 2022-11-22 国立大学法人電気通信大学 Laser cavity and method for designing laser cavity
KR102101293B1 (en) 2017-02-28 2020-04-17 (주)엘지하우시스 Polyolefin based composition and the extrusion foams prepared by using the composition
HUE059728T2 (en) * 2017-05-10 2022-12-28 Chemours Co Fc Llc Z-hfo-1336mzz blowing agent blends for foaming thermoplastic polymers comprising polystyrene
CA3077388C (en) * 2017-10-10 2024-04-09 The Chemours Company Fc, Llc Process for the manufacture of thermoplastic foam containing hfo-1336mzz(z) and hfo-1336mzz(e)
WO2019117292A1 (en) * 2017-12-15 2019-06-20 株式会社イノアックコーポレーション Method for producing polyurethane foam
JP7129324B2 (en) 2017-12-15 2022-09-01 株式会社イノアックコーポレーション Method for manufacturing polyurethane foam
JP2021522383A (en) * 2018-04-26 2021-08-30 スリーエム イノベイティブ プロパティズ カンパニー Fluorosulfone
US11732081B2 (en) 2021-06-08 2023-08-22 Covestro Llc HCFO-containing isocyanate-reactive compositions, related foam-forming compositions and flame retardant PUR-PIR foams
US11905707B2 (en) 2021-06-29 2024-02-20 Covestro Llc Foam wall structures and methods for their manufacture
US11767394B2 (en) 2021-12-09 2023-09-26 Covestro Llc HCFO-containing polyurethane foam-forming compositions, related foams and methods for their production
US11767407B1 (en) 2022-04-21 2023-09-26 Covestro Llc HCFO-containing polyurethane foam-forming compositions, related foams and methods for their production
US11827735B1 (en) 2022-09-01 2023-11-28 Covestro Llc HFO-containing isocyanate-reactive compositions, related foam-forming compositions and flame retardant PUR-PIR foams

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194619B1 (en) * 1991-08-28 2001-02-27 E. I. Du Pont De Nemours And Company Gem-dihydropolyfluoroalkanes and monohydropolyfluoroalkenes, processes for their production, and use of gem-dihydropolyfluoroalkanes in cleaning compositions
US20050154072A1 (en) * 2004-01-08 2005-07-14 Samsung Electronics Co., Ltd. Method for producing rigid polyurethane foam

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL179914C (en) * 1975-11-04 1986-12-01 Dow Chemical Co METHOD FOR MANUFACTURING A FOAM ARTICLE FROM A THERMOPLASTIC ALKENYL AROMATIC RESIN BY EXTRUSION.
GB8516826D0 (en) 1985-07-03 1985-08-07 Dow Chemical Nederland Precursor compositions of nitrogen-containing polyols
US4704410A (en) 1986-06-30 1987-11-03 The Dow Chemical Company Molded rigid polyurethane foams prepared from aminoalkylpiperazine-initiated polyols
US5037572A (en) * 1990-10-03 1991-08-06 E. I. Du Pont De Nemours And Company Ternary azeotropic compositions of n-perfluorobutylethylene and trans-1,2-dichloroethylene with methanol or ethanol or isopropanol
US5147896A (en) 1991-05-20 1992-09-15 E. I. Du Pont De Nemours And Company Foam blowing agent composition and process for producing foams
JPH05179043A (en) * 1991-11-18 1993-07-20 Daikin Ind Ltd Blowing agent comprising fluorobutene and production of plastic foam
JPH05247249A (en) * 1991-11-27 1993-09-24 Daikin Ind Ltd Blowing agent and production of plastic foam
WO1993016023A1 (en) * 1992-02-06 1993-08-19 Daikin Industries, Ltd. 1,1,1,2,2,5,5,5-octafluoropentane and production thereof
US5332761A (en) 1992-06-09 1994-07-26 The Dow Chemical Company Flexible bimodal foam structures
US5539008A (en) * 1993-12-29 1996-07-23 Minnesota Mining And Manufacturing Company Foamable composition containing unsaturated perfluorochemical blowing agent
US5977271A (en) 1994-09-02 1999-11-02 The Dow Chemical Company Process for preparing thermoset interpolymers and foams
WO1996037540A1 (en) * 1995-05-23 1996-11-28 Minnesota Mining And Manufacturing Company Foamable composition containing unsaturated perfluorochemical blowing agent
JPH09132625A (en) * 1995-11-08 1997-05-20 Tosoh Corp Catalyst for isocyanurate-modified polyurethane foam and production of isocyanurate-modified polyurethane foam by using the same
CA2260871A1 (en) * 1996-07-24 1998-01-29 E.I. Du Pont De Nemours And Company Closed-cell styrenic foams blown with 1,1,2,2-tetrafluoroethane
AU3894397A (en) * 1996-07-24 1998-02-10 E.I. Du Pont De Nemours And Company Blowing agent blends and use thereof in the preparation of polyisocyanate-based foams
WO1998056430A2 (en) 1997-06-11 1998-12-17 The Dow Chemical Company Absorbent, extruded thermoplastic foams
TR199902970T2 (en) 1997-06-13 2000-05-22 Huntsman Ici Chemicals Llc Isocyanate compositions for foamed polyurethane foams.
JPH11158316A (en) * 1997-11-27 1999-06-15 Nippon Zeon Co Ltd Blowing agent containing alicyclic hydrofluorocarbon compound, composition for foam and production of foam
ATE234892T1 (en) * 1998-05-22 2003-04-15 Solvay Fluor & Derivate PRODUCTION OF POLYURETHANE FOAM AND FOAMED THERMOPLASTIC PLASTIC
JP2002062421A (en) * 2000-08-14 2002-02-28 Canon Inc Optical device, method for manufacturing the same and liquid crystal device
DE60114223T2 (en) 2000-10-24 2006-07-06 Dow Global Technologies, Inc., Midland METHOD OF MANUFACTURING MULTIMODAL THERMOPLASTIC POLYMER FOAM
DE10055084A1 (en) 2000-11-07 2002-06-13 Basf Ag Flexible, open-celled, microcellular polymer foams
JP3894326B2 (en) * 2001-11-13 2007-03-22 ダイキン工業株式会社 Method for producing synthetic resin foam
JP3774680B2 (en) * 2002-06-10 2006-05-17 第一工業製薬株式会社 Method for producing rigid polyurethane foam
PT3170880T (en) * 2002-10-25 2020-06-16 Honeywell Int Inc Compositions containing fluorine substituted olefin
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
TW201815923A (en) * 2005-06-24 2018-05-01 美商哈尼威爾國際公司 Foaming agents and compositions containing fluorine substituted olefins, and methods of foaming

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194619B1 (en) * 1991-08-28 2001-02-27 E. I. Du Pont De Nemours And Company Gem-dihydropolyfluoroalkanes and monohydropolyfluoroalkenes, processes for their production, and use of gem-dihydropolyfluoroalkanes in cleaning compositions
US20050154072A1 (en) * 2004-01-08 2005-07-14 Samsung Electronics Co., Ltd. Method for producing rigid polyurethane foam

Also Published As

Publication number Publication date
JP5856993B2 (en) 2016-02-10
AU2006308695B2 (en) 2012-09-20
CA2625118A1 (en) 2007-05-10
AU2006308694A1 (en) 2007-05-10
KR20160104751A (en) 2016-09-05
CN102690434B (en) 2015-08-19
CA2855233A1 (en) 2007-05-10
SG166808A1 (en) 2010-12-29
SG166812A1 (en) 2010-12-29
BRPI0619653A2 (en) 2011-10-11
WO2007053674A2 (en) 2007-05-10
KR20140089551A (en) 2014-07-15
EP1951794A2 (en) 2008-08-06
SG166810A1 (en) 2010-12-29
JP5601774B2 (en) 2014-10-08
KR20150065922A (en) 2015-06-15
BRPI0619714A2 (en) 2011-10-11
KR20140105870A (en) 2014-09-02
JP2009513815A (en) 2009-04-02
CN101300296B (en) 2013-10-30
WO2007053670A2 (en) 2007-05-10
CN103396582B (en) 2016-03-23
JP2013136793A (en) 2013-07-11
CA2627047C (en) 2014-07-29
AR058828A1 (en) 2008-02-27
CN103396582A (en) 2013-11-20
KR101519772B1 (en) 2015-05-12
AU2006308690A1 (en) 2007-05-10
EP1943299A2 (en) 2008-07-16
JP2009513814A (en) 2009-04-02
JP5705409B2 (en) 2015-04-22
KR20130109256A (en) 2013-10-07
CN101356217A (en) 2009-01-28
KR20080074921A (en) 2008-08-13
EP2511330A2 (en) 2012-10-17
WO2007053670A3 (en) 2008-04-10
CN101300296A (en) 2008-11-05
AR058829A1 (en) 2008-02-27
WO2007053675A2 (en) 2007-05-10
CN101316885A (en) 2008-12-03
JP2013163814A (en) 2013-08-22
EP2511329A3 (en) 2015-10-14
KR20080074920A (en) 2008-08-13
WO2007053674A3 (en) 2008-06-12
AU2006308695A1 (en) 2007-05-10
JP6181357B2 (en) 2017-08-16
WO2007053675A3 (en) 2008-04-17
EP2511329A2 (en) 2012-10-17
CA2625365A1 (en) 2007-05-10
CN102690434A (en) 2012-09-26
JP2009513812A (en) 2009-04-02
JP2012184446A (en) 2012-09-27
KR101671828B1 (en) 2016-11-03
CA2840435A1 (en) 2007-05-10
CA2627047A1 (en) 2007-05-10
CA2625118C (en) 2014-08-05
KR20080075128A (en) 2008-08-14
AR058830A1 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US8633339B2 (en) Blowing agents for forming foam comprising unsaturated fluorocarbons
CA2627047C (en) Methods for making foams using blowing agents comprising unsaturated fluorocarbons
US20070100010A1 (en) Blowing agents for forming foam comprising unsaturated fluorocarbons
AU2017248408A1 (en) Methods for making foams using blowing agents comprising unsaturated fluorocarbons
AU2013200184B2 (en) Methods for making foams using blowing agents comprising unsaturated fluorocarbons
AU2012268812A1 (en) Blowing agents for forming foam comprising unsaturated fluorocarbons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080507

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20110228

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THE CHEMOURS COMPANY FC, LLC

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180206