EP1947213B1 - Process for producing an oxide coated cutting tool - Google Patents
Process for producing an oxide coated cutting tool Download PDFInfo
- Publication number
- EP1947213B1 EP1947213B1 EP08103220A EP08103220A EP1947213B1 EP 1947213 B1 EP1947213 B1 EP 1947213B1 EP 08103220 A EP08103220 A EP 08103220A EP 08103220 A EP08103220 A EP 08103220A EP 1947213 B1 EP1947213 B1 EP 1947213B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- deposited
- vol
- temperature
- pvd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 238000005520 cutting process Methods 0.000 title claims abstract description 43
- 238000000151 deposition Methods 0.000 claims abstract description 23
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000005864 Sulphur Substances 0.000 claims abstract description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000003795 chemical substances by application Substances 0.000 claims abstract 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 12
- 230000008021 deposition Effects 0.000 claims description 11
- 238000000576 coating method Methods 0.000 abstract description 47
- 239000011248 coating agent Substances 0.000 abstract description 35
- 229910052760 oxygen Inorganic materials 0.000 abstract description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 35
- 229910052593 corundum Inorganic materials 0.000 description 30
- 229910001845 yogo sapphire Inorganic materials 0.000 description 30
- 229910052594 sapphire Inorganic materials 0.000 description 23
- 238000005240 physical vapour deposition Methods 0.000 description 17
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 8
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 229910003074 TiCl4 Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000005137 deposition process Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- -1 sulphur compound Chemical class 0.000 description 2
- 238000007514 turning Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910003158 γ-Al2O3 Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/403—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T407/00—Cutters, for shaping
- Y10T407/27—Cutters, for shaping comprising tool of specific chemical composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/252—Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Definitions
- the present invention relates to a CVD coating process for depositing ⁇ -Al 2 O 3 layers at low temperatures as well as to a coated cutting tool for chipforming machining.
- the coated cutting tool includes at least one Al 2 O 3 -layer deposited according to the claimed process.
- the coated tool shows improved toughness behaviour when used in interrupted cutting operations and improved wear resistance if the Al 2 O 3 layer is deposited onto a PVD-precoated tool.
- Cemented carbide cutting tools coated with various types of hard layers like TiC, TiCN, TiN and Al 2 O 3 have been commercially available for years. Such tool coatings are generally built up by several hard layers in a multilayer structure. The sequence and the thickness of the individual layers are carefully chosen to suit different cutting applications and work-piece materials e g cast iron and stainless steel.
- CVD Chemical Vapour Deposition
- PVD Physical Vapour Deposition
- PVD Plasma Assisted Chemical Vapour Deposition
- the CVD technique employed for coating cemented carbide tools is conducted at a rather high temperature, about 880-1000 °C. Due to this high deposition temperature and to a mismatch in thermal expansion coefficient between the deposited coating materials and the cemented carbide tool, CVD produces coatings with cooling cracks and tensile stresses.
- the PVD technique runs at a significantly lower temperature about 450-700 °C and it is performed under ion bombardment leading to high compressive stresses in the coating and no cooling cracks. Because of these process differences CVD-coated tools are more brittle and thereby possess inferior toughness behaviour compared to PVD coated tools.
- Al 2 O 3 crystallises in several different phases: ⁇ , ⁇ , ⁇ , ⁇ , ⁇ etc.
- the most common CVD deposition temperature for Al 2 O 3 is in the range 980-1050 °C. At these temperatures both single phase ⁇ -Al 2 O 3 and single phase ⁇ -Al 2 O 3 can be produced or mixtures thereof. Occasionally also the ⁇ -phase can be present in smaller amounts.
- Nanocrystalline ⁇ -Al 2 O 3 layers can be deposited by PVD- and PACVD technique at low temperatures as disclosed in US 5,698,314 , US 6,139,921 and US 5,516,588 .
- PVD- and PACVD technique at low temperatures as disclosed in US 5,698,314 , US 6,139,921 and US 5,516,588 .
- these techniques are much more technically complicated, process sensitive and have less throwing power than the CVD-technique when used for depositing ⁇ -Al 2 O 3
- a coating consisting of a PVD-coated innerlayer with a top layer of Al 2 O 3 deposited by the CVD-technique at a medium temperature.
- the Al 2 O 3 -layer can be essentially any of the modifications: ⁇ , ⁇ , ⁇ and amorphous.
- a temperature range of 700-850 °C is claimed for the deposition process. However, no method for depositing the ⁇ -Al 2 O 3 phase at temperatures less than 850 °C is disclosed.
- the life time and the performance of a coated cutting tool are closely related to the method by which the coating is produced.
- high temperature deposition processes generally give cutting tools with lower toughness behaviour compared to coatings deposited at lower temperatures. This is due to many factors like differences in the number of cooling cracks formed in the coating, differences in the tensile stress state, influence of the process on the cemented carbide tool body e g degree of decarburisation and degree of diffusion of elements from the cemented carbide into the coating.
- PVD-coated tools generally lack wear resistance in comparison to CVD-coated tools. If the temperature of the CVD-process could be lowered for all, or at least for the majority of the coating steps then a higher toughness would be expected and such a CVD-coated tool may better complement the pure PVD-tools in operations where both toughness and high wear resistance is required.
- a wear resistant coating comprising at least one layer essentially consisting of ⁇ -Al 2 O 3 deposited by CVD at a temperature (T) below 800 °C.
- Other layers in the coating can be deposited by MTCVD or by PVD-technique and PACVD (plasma assisted CVD) at low temperatures.
- Fig. 1-3 show Scanning Electron Microscope (SEM) micrographs in top view projections of an ⁇ -Al 2 O 3 layer deposited according to the present invention in x10000 magnification.
- Fig 1 shows an ⁇ -Al 2 O 3 -layer deposited onto a PVD TiN precoated tool at 690 °C
- Fig 2 onto a CVD Ti(C,N) precoated tool with a Ti(C,O) intermediate layer at 690 °C
- Fig 4 shows an XRD-diffraction pattern of a coating comprising a layer deposited by the invented low temperature Al 2 O 3 -process.
- the present invention thus relates to a method of making a cutting tool for metal machining such as turning, milling and drilling comprising a coating and a substrate.
- the coating comprises at least one well-crystalline layer consisting of 100 % ⁇ -Al 2 O 3 deposited at 625-800 °C using Chemical Vapour Deposition technique.
- the substrate consists of a hard alloy such as cemented carbide, cermet, ceramics or high speed steel or the superhard materials such as cubic boron nitride or diamond.
- the Al 2 O 3 -layer according to the invention is generally deposited on a substrate that has been precoated with at least one wear resistant inner layer as known in the art.
- the TiC x N y O z -layer Prior to the start of the Al 2 O 3 -coating step the TiC x N y O z -layer is treated with a gas mixture containing 0.5-3 vol-% oxygen preferably CO 2 +H 2 or O 2 +H 2 , optionally adding 0.5-6 vol-% HCl for a short period of time about 0.5-4 min at temperatures between 625 and 1050 °C, preferably around 1000 °C, if the intermediate layer is deposited by CVD or around 625 °C if the inner layer is deposited by PVD. This step is conducted in order to increase the oxygen content in the surface zone of the intermediate layer.
- a gas mixture containing 0.5-3 vol-% oxygen preferably CO 2 +H 2 or O 2 +H 2
- 0.5-6 vol-% HCl for a short period of time about 0.5-4 min at temperatures between 625 and 1050 °C, preferably around 1000 °C, if the intermediate layer is deposited by CVD or around 625
- the subsequent Al 2 O 3 deposition process is performed with the following concentrations in vol-%: 16-40 CO 2 , 0.8-2 H 2 S, 2-10 AlCl 3 , preferably 2-7 vol-% HCl and balance H 2 at a process pressure of 40-300 mbar and a temperature of 625-800, preferably 625-700, most preferably 650-695 °C.
- the surface of the inner layer is scratched prior to the Al 2 O 3 coating step(s) with hard particles e g diamond in an ultra sonic bath or by a blasting treatment. This applies in particular to a PVD-precoated surface or when depositing at temperatures below 675 °C.
- a cutting tool obtainable by the present invention comprise a body of sintered cemented carbide, cermet or ceramic or high speed steel or the superhard materials such as cubic boron nitride or diamond with at least on the functioning parts of the surface of the body, a hard and wear resistant coating comprising at least one layer consisting essentially of crystalline ⁇ -Al 2 O 3 with a thickness of 0.5-10 ⁇ m, with columnar grains with an average grain width of 0.1-1.1 ⁇ m and deposited at a temperature of 625-800 °C.
- said coating comprises layer(s) adjacent to the tool body deposited by PVD or PACVD with an intermediate layer of 0.1-1.5 ⁇ m TiC x N y O z preferably with x ⁇ 0.1 between the ⁇ -Al 2 O 3 and the PVD- or PACVD-layer(s).
- the ⁇ -Al 2 O 3 -layer has a pronounced columnar grain structure with a grain width of ⁇ 0.5 ⁇ m.
- one such ⁇ -Al 2 O 3 layer is the top visible layer at least along the cutting edge line.
- the coating on the rake face and along the edge line is smoothed by brushing or by blasting to a surface roughness (R a ) of less than 0.2 ⁇ m over a measured length of 5 ⁇ m.
- the tool coated according to the present invention is a cutting insert or a solid carbide drill or carbide end-mill.
- the Al 2 O 3 layer is preferably first etched with a mixture of HF and HNO 3 or the grain size can be measured on a fractured sample in a Scanning Electron Microscope as the width of the grains.
- the coatings deposited in the examples below were carried out in CVD- and PVD-tool coaters capable in housing several thousands of cutting tool inserts.
- Cemented carbide cutting inserts in style CNMG 120408-PM with the composition 7.5 weight-% Co, 1.8 % wt% TiC, 0.5 wt% TiN, 3 wt% TaC, 0.4 wt% NbC and balance WC were coated with a 1 ⁇ m thick layer of TiN using conventional CVD-technique at 930 °C followed by a 5 ⁇ m TiCN layer employing the MTCVD-technique using TiCl 4 , H 2 , N 2 and CH 3 CN as process gases at a temperature of 700 °C.
- a layer of Ti(C,O) about 0.5 ⁇ m thick was deposited at 1000 °C, and then the reactor was flushed with a mixture of 2 % CO 2 , 5 % HCl and 93 % H 2 for 2 min before cooling down in an argon atmosphere to 690 °C at which a 2 ⁇ m thick layer of ⁇ -Al 2 O 3 was deposited according to the invented coating process conditions.
- TiCl 4 1.5% 1.4% 2 % N 2 38 % 38 % CO 2 : 2 % 20% CO 6 % AlCl 3 : 3.2% H 2 S - 1 % HCl 5 % 3.2% H 2 : balance balance balance balance balance CH 3 CN - 0.6 % Pressure: 160 mbar 60 mbar 60 mbar 60 mbar 70 mbar
- the ⁇ -Al 2 O 3 layer was astonishingly well crystalline to have been deposited at such low temperature as 690 °C. A grain size of about 1 ⁇ m was observed.
- Cemented carbide substrate of the same style and composition as in C were coated by PVD (ion plating technique) with 4 ⁇ m of TiN.
- step Flush Al 2 O 3 CO 2 3.4 % 20% AlCl 3 : 3.2% H 2 S 1 % HCl 1.5 % 3.2% H 2 : balance balance Pressure: 60 mbar 70 mbar Temperature: 690°C 690°C Duration: 3 min 5 h
- XRD-analysis of the deposited Al 2 O 3 layer showed that it consisted of the ⁇ -phase. No diffraction peaks from K- or ⁇ -phase could be detected.
- a SEM-micrograph in top-view projection of the obtained coating is shown in fig 1 . An average grain size of about 0.25 ⁇ m was found.
- TiN-precoated inserts from C) were coated with 2 ⁇ m of Al 2 O 3 according to a prior art process similar to what is disclosed in US 5,487,625 .
- the coated was performed according to the process: step Al 2 O 3 Al 2 O 3 CO 2 : 4 % 4 % AlCl 3 4 % 4 % H 2 S 0.2 % HCl 1 % 4 %% H 2 : balance balance Pressure: 65 mbar 65 mbar Temperature: 1010 °C 1010 °C Duration: 30 min 110 min
- the inserts from A), B), E) and F) were brushed with a nylon brush containing SiC grains in order to smooth the coating surfaces.
- the PVD coated inserts from D) showed high smoothness already as coated and were therefore not subjected to brushing.
- Coating insert from A) and B) were then tested with respect to toughness in a specially designed workpiece.
- the workpiece consisted of two flat steel plates in material SS1312 clamped together side to side with a distance bar in between leaving a gap between the plates. The plates were cut longitudinal with an increased feed rate until the cutting edge broke. The time to breakage was recorded for each tested insert. Within each variant population some edges last longer than others and the life time of each tested edge was recorded. The obtained result are below presented as time for the insert with shortest life time, time for the insert with the longest life time and time to when 50 % of the edges within the population had obtained breakage. Ten inserts from A and B were run to edge breakage.
- a facing operation in an alloyed steel (AISI 1518,W-no 1.0580) was performed.
- the shape of the work-piece was such that the cutting edge was out of cut three times per revolution.
- Cutting inserts from D.), E.) and F. were tested with respect of edge line flaking in a facing operation in an alloyed steel (AISI 1518, W-no. 1,0580).
- the shape of the work piece was such that the cutting edge was out of cut three times during each revolution.
- the insert according to the alternative process has improved crater wear properties over PVD coated tool and better coating adhesion than variant F with a prior art high temperature CVD Al 2 O 3 on top of a PVD-TiN layer.
- the PVD TiN-pre coating can not withstand the high temperature of the prior art Al 2 O 3 -process.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
- Drilling Tools (AREA)
- Turning (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
- The present invention relates to a CVD coating process for depositing α-Al2O3 layers at low temperatures as well as to a coated cutting tool for chipforming machining. The coated cutting tool includes at least one Al2O3-layer deposited according to the claimed process. The coated tool shows improved toughness behaviour when used in interrupted cutting operations and improved wear resistance if the Al2O3 layer is deposited onto a PVD-precoated tool.
- Cemented carbide cutting tools coated with various types of hard layers like TiC, TiCN, TiN and Al2O3 have been commercially available for years. Such tool coatings are generally built up by several hard layers in a multilayer structure. The sequence and the thickness of the individual layers are carefully chosen to suit different cutting applications and work-piece materials e g cast iron and stainless steel.
- Tool coatings are most frequently deposited by Chemical Vapour Deposition (CVD) or Physical Vapour Deposition (PVD) techniques. In some rare cases also Plasma Assisted Chemical Vapour Deposition (PACVD) has been used. The CVD technique employed for coating cemented carbide tools is conducted at a rather high temperature, about 880-1000 °C. Due to this high deposition temperature and to a mismatch in thermal expansion coefficient between the deposited coating materials and the cemented carbide tool, CVD produces coatings with cooling cracks and tensile stresses. The PVD technique runs at a significantly lower temperature about 450-700 °C and it is performed under ion bombardment leading to high compressive stresses in the coating and no cooling cracks. Because of these process differences CVD-coated tools are more brittle and thereby possess inferior toughness behaviour compared to PVD coated tools.
- With the CVD-technique it is possible to deposit many hard and wear resistant coating materials like Al2O3, TiC, Ti(C,N), TiN TiCxNyOz and ZrO2. The microstructure and thereby the properties of these coatings can be altered quite considerably by varying the deposition conditions. If the standard CVD deposition temperature could be decreased significantly an increased toughness of the coated tool would be expected.
- A noticeable improvement in performance of CVD-coated tools came about when the MTCVD (Moderate Temperature CVD)-technique begun to come into the tool industry about 5-10 years ago. An improvement in the toughness behaviour of the tool was obtained. Today the majority of tool producers use this technique. Unfortunately the MTCVD-technique is limited only to fabrication of Ti(C,N)-layers. The deposition process here takes place at temperatures in the range 700-900 °C. It uses a gas mixture of CH3CN, TiCl4 and H2.
- It is generally accepted that modern tool coatings also should include at least one layer of Al2O3 in order to achieve high crater wear resistance. Hence, it would be desirable if also high quality Al2O3 layers could be deposited by a CVD-process at a temperature in the range similar to that of the MTCVD TiCN-process and closer to the PVD-process temperatures if combined PVD-CVD coatings are desired.
- It is well known that Al2O3 crystallises in several different phases: α, κ, γ, δ, θ etc. The most common CVD deposition temperature for Al2O3 is in the range 980-1050 °C. At these temperatures both single phase κ-Al2O3 and single phase α-Al2O3 can be produced or mixtures thereof. Occasionally also the θ-phase can be present in smaller amounts.
- In
US 5,674,564 is disclosed a method of growing a fine-grained κ-alumina layer by employing a low deposition temperature and a high concentration of a sulphur compound. - In
US 5,487,625 a method is disclosed for obtaining a fine grained, (012)-textured α-Al2O3 layer consisting of columnar grains with a small cross section (about 1 µm). - In
US 5,766,782 a method is disclosed for obtaining a fine-grained (104)-textured α-Al2O3 layer. - Nanocrystalline α-Al2O3 layers can be deposited by PVD- and PACVD technique at low temperatures as disclosed in
US 5,698,314 ,US 6,139,921 andUS 5,516,588 . However these techniques are much more technically complicated, process sensitive and have less throwing power than the CVD-technique when used for depositing α-Al2O3 - The κ-Al2O3-, γ-Al2O3- and α-Al2O3-layers have slightly different wear properties when cutting different materials. Broadly speaking the α-phase is preferred when cutting cast iron while the K-phase is more often used when cutting low carbon steels. Desirable is also to have means to produce α-Al2O3-layers at temperatures e g <700 °C that e g can be combined with MTCVD Ti(C,N)-layers or even can be deposited onto PVD-coated layers. Low temperature processes for κ-Al2O3 and γ-Al2O3 are disclosed in
US 5,674,564 and inEP-A-1122334 . Deposition temperatures in the ranges of 800-950 °C and 700-900 °C are disclosed. - In
DE-A-101 15 390 a coating is disclosed consisting of a PVD-coated innerlayer with a top layer of Al2O3 deposited by the CVD-technique at a medium temperature. The Al2O3-layer can be essentially any of the modifications: κ, α, δ and amorphous. A temperature range of 700-850 °C is claimed for the deposition process. However, no method for depositing the α-Al2O3 phase at temperatures less than 850 °C is disclosed. - Since the α-Al2O3 is the high temperature stable aluminium oxide phase one would not expect it to be formed at temperatures <800 °C.
EP-A-1122334 andUS 5,674,564 point toward the reasonable assumption that only the metastable phases are possible to be obtained at these low temperatures. So far there have not been any reports on a CVD-process capable of depositing well crystalline α-Al2O3 at temperatures <800 °C that can be used as a tool coating. However, low temperature Al2O3 CVD-processes using Al-metallo-organic compounds have been reported e g inUS 3,838,392 . Such coatings are generally impure and possess no or low crystallinity and hence are not suitable as tool coatings. - The life time and the performance of a coated cutting tool are closely related to the method by which the coating is produced. As mentioned above high temperature deposition processes generally give cutting tools with lower toughness behaviour compared to coatings deposited at lower temperatures. This is due to many factors like differences in the number of cooling cracks formed in the coating, differences in the tensile stress state, influence of the process on the cemented carbide tool body e g degree of decarburisation and degree of diffusion of elements from the cemented carbide into the coating.
- On the other hand high temperature deposition processes generally give better coating adhesion due to a substantial interdiffusion of materials from the tool body into the growing coating.
- However, there are many cutting operations where high toughness of the tool is more important than high coating adhesion. In such cutting operations the tougher PVD coated tools are frequently used.
- PVD-coated tools generally lack wear resistance in comparison to CVD-coated tools. If the temperature of the CVD-process could be lowered for all, or at least for the majority of the coating steps then a higher toughness would be expected and such a CVD-coated tool may better complement the pure PVD-tools in operations where both toughness and high wear resistance is required.
- It is an object of the present invention to provide a CVD process for depositing an α-Al2O3 layer at a temperature below 800 °C.
- It is a further object of the invention to provide onto a hard tool body a wear resistant coating comprising at least one layer essentially consisting of α-Al2O3 deposited by CVD at a temperature (T) below 800 °C. Other layers in the coating can be deposited by MTCVD or by PVD-technique and PACVD (plasma assisted CVD) at low temperatures.
- It is still a further object of the invention to provide an alumina coated cutting tool insert, a solid carbide drill or carbide end-mill with improved cutting performance in steel.
-
Fig. 1-3 show Scanning Electron Microscope (SEM) micrographs in top view projections of an α-Al2O3 layer deposited according to the present invention in x10000 magnification.Fig 1 shows an α-Al2O3-layer deposited onto a PVD TiN precoated tool at 690 °C,Fig 2 onto a CVD Ti(C,N) precoated tool with a Ti(C,O) intermediate layer at 690 °C andFig 3 onto a CVD Ti(C,N) precoated tool with a Ti(C,O) intermediate layer at 625 °C. -
Fig 4 shows an XRD-diffraction pattern of a coating comprising a layer deposited by the invented low temperature Al2O3-process. - Surprisingly it was found after carrying out a lot of deposition experiments that also well-crystalline layers consisting of 100 % α-Al2O3 in fact can be deposited at such low temperatures as down to 625 °C if the Al2O3 is deposited on preferably an oxygen rich layer that first is treated with an oxygen containing gas mixture and the subsequent Al2O3-process uses high concentration of CO2 and a sulphur dopant, preferably H2S. If the oxygen treatment step is excluded then mainly amorphous or metastable phases of Al2O3 are formed.
- The present invention thus relates to a method of making a cutting tool for metal machining such as turning, milling and drilling comprising a coating and a substrate. The coating comprises at least one well-crystalline layer consisting of 100 % α-Al2O3 deposited at 625-800 °C using Chemical Vapour Deposition technique. The substrate consists of a hard alloy such as cemented carbide, cermet, ceramics or high speed steel or the superhard materials such as cubic boron nitride or diamond.
- The Al2O3-layer according to the invention is generally deposited on a substrate that has been precoated with at least one wear resistant inner layer as known in the art. A 0.1-1.5 µm intermediate layer of TiCxNyOz where x+y+z>=1 and z>0, preferably z>0.2 is first deposited at 450-600 °C using PVD-technique or at 1000-1050 °C using CVD-technique. Prior to the start of the Al2O3-coating step the TiCxNyOz-layer is treated with a gas mixture containing 0.5-3 vol-% oxygen preferably CO2+H2 or O2+H2, optionally adding 0.5-6 vol-% HCl for a short period of time about 0.5-4 min at temperatures between 625 and 1050 °C, preferably around 1000 °C, if the intermediate layer is deposited by CVD or around 625 °C if the inner layer is deposited by PVD. This step is conducted in order to increase the oxygen content in the surface zone of the intermediate layer. The subsequent Al2O3 deposition process is performed with the following concentrations in vol-%: 16-40 CO2, 0.8-2 H2S, 2-10 AlCl3, preferably 2-7 vol-% HCl and balance H2 at a process pressure of 40-300 mbar and a temperature of 625-800, preferably 625-700, most preferably 650-695 °C.
- Alternativly, if the TiCxNyOz intermediate layer is excluded, the surface of the inner layer is scratched prior to the Al2O3 coating step(s) with hard particles e g diamond in an ultra sonic bath or by a blasting treatment. This applies in particular to a PVD-precoated surface or when depositing at temperatures below 675 °C.
- A cutting tool obtainable by the present invention comprise a body of sintered cemented carbide, cermet or ceramic or high speed steel or the superhard materials such as cubic boron nitride or diamond with at least on the functioning parts of the surface of the body, a hard and wear resistant coating comprising at least one layer consisting essentially of crystalline α-Al2O3 with a thickness of 0.5-10 µm, with columnar grains with an average grain width of 0.1-1.1 µm and deposited at a temperature of 625-800 °C. Said coating comprises at least one layer consisting of Ti(C,N) with a thickness of 0.5-10 µm deposited by the MTCVD technique at a temperature less than 885 °C and with an intermediate layer of 0.5-1.5 µm of TiCxNyOz preferably x=z=0.5 and y=0 between the α-Al2O3-layer and the MTCVD coated Ti(C,N)-layer. Alternatively said coating comprises layer(s) adjacent to the tool body deposited by PVD or PACVD with an intermediate layer of 0.1-1.5 µm TiCxNyOz preferably with x<0.1 between the α-Al2O3 and the PVD- or PACVD-layer(s). In this case the α-Al2O3-layer has a pronounced columnar grain structure with a grain width of <0.5 µm. Preferably one such α-Al2O3 layer is the top visible layer at least along the cutting edge line. The coating on the rake face and along the edge line is smoothed by brushing or by blasting to a surface roughness (Ra) of less than 0.2 µm over a measured length of 5 µm.
- The tool coated according to the present invention is a cutting insert or a solid carbide drill or carbide end-mill.
- If the grain size of the Al2O3-layer is to be determined from a top view projection after the smoothing operation then the Al2O3 layer is preferably first etched with a mixture of HF and HNO3 or the grain size can be measured on a fractured sample in a Scanning Electron Microscope as the width of the grains.
- The coatings deposited in the examples below were carried out in CVD- and PVD-tool coaters capable in housing several thousands of cutting tool inserts.
- A) Cemented carbide cutting inserts in style CNMG 120408-PM with the composition 7.5 weight-% Co, 1.8 % wt% TiC, 0.5 wt% TiN, 3 wt% TaC, 0.4 wt% NbC and balance WC were coated with a 1 µm thick layer of TiN using conventional CVD-technique at 930 °C followed by a 5 µm TiCN layer employing the MTCVD-technique using TiCl4, H2, N2 and CH3CN as process gases at a temperature of 700 °C. In subsequent process steps during the same coating cycle, a layer of Ti(C,O) about 0.5 µm thick was deposited at 1000 °C, and then the reactor was flushed with a mixture of 2 % CO2, 5 % HCl and 93 % H2 for 2 min before cooling down in an argon atmosphere to 690 °C at which a 2 µm thick layer of α-Al2O3 was deposited according to the invented coating process conditions. The process conditions during the deposition steps were as below:
Step TiN Ti(C,N) Ti(C,O) Flush Al2O3 TiCl4 1.5% 1.4% 2 % N2 38 % 38 % CO2: 2 % 20% CO 6 % AlCl3: 3.2% H2S - 1 % HCl 5 % 3.2% H2: balance balance balance balance balance CH3CN - 0.6 % Pressure: 160 mbar 60 mbar 60 mbar 60 mbar 70 mbar Temperature: 930°C 700°C 1000°C 1000°C 690°C Duration: 30 min 4 h 20 min 2 min 5 h - XRD-analysis of the deposited Al2O3 layer showed that it consisted only of the α-phase,
fig 4 . No diffraction peaks from κ- or γ-phase were hence detected. - SEM-micrograph in top-view projection is shown in
fig 2 . - The α-Al2O3 layer was astonishingly well crystalline to have been deposited at such low temperature as 690 °C. A grain size of about 1 µm was observed.
- B) Cemented carbide cutting inserts in style CNMG 120408-PM with the composition 7.5 weight- Co, 1.8 - wt% TiC, 0.5 wt% TiN, 3 wt% TaC, 0.4 wt% NbC and balance WC were coated with a 1 µm thick layer of TiN using conventional CVD-technique at 930 °C followed by a 5 µm TiCN layer employing the MTCVD-technique using TiCl4, H2, N2 and CH3CN as process gases at a temperature of 700 °C. In subsequent process steps during the same coating cycle, a 0.5 µm Ti(C,O) was deposited at 1000 °C. Then a 2 µm thick α-Al2O3-layer was deposited according to prior art technique similar to what is disclosed in
US 5,487,625 at 1010 °C. The process conditions during the Al2O3 deposition were as below:Step TiN Ti(C,N) Ti(C,O) Al2O3 Al2O3 TiCl4 1.5% 1.4% 2 % N2 38 % 38 % CO2: 4 % 4 % CO 6 % AlCl3: 4 % 4 % H2S - 0.2 % HCl 1 % 4 % H2: balance balance balance balance Balance CH3CN - 0.6 % Pressure: 160 mbar 60 mbar 60 mbar 65 mbar 65 mbar Temperature: 930°C 700°C 1000°C 1010°C 1010°C Duration: 30 min 4 h 20 min 30 min 110 min - XRD-analysis of the deposited Al2O3 layer showed that it consisted only of the α-phase.
- C) Inserts in style CNMG 120408-PM with the composition 7.5 weight-% Co, 1.8 % wt% TiC, 0.5 wt% TiN, 3 wt% TaC, 0.4 wt% NbC and balance WC were coated 2 µm of TiN by PVD (ion plating technique).
- D) Cemented carbide substrate of the same style and composition as in C were coated by PVD (ion plating technique) with 4 µm of TiN.
- E.) TiN-precoated inserts from C) were coated with 2 µm of Al2O3 according to the alternative process.
- The coating was performed according to the process:
step Flush Al2O3 CO2: 3.4 % 20% AlCl3: 3.2% H2S 1 % HCl 1.5 % 3.2% H2: balance balance Pressure: 60 mbar 70 mbar Temperature: 690°C 690°C Duration: 3 min 5 h - XRD-analysis of the deposited Al2O3 layer showed that it consisted of the α-phase. No diffraction peaks from K- or γ-phase could be detected. A SEM-micrograph in top-view projection of the obtained coating is shown in
fig 1 . An average grain size of about 0.25 µm was found. - F.) TiN-precoated inserts from C) were coated with 2 µm of Al2O3 according to a prior art process similar to what is disclosed in
US 5,487,625 . - The coated was performed according to the process:
step Al2O3 Al2O3 CO2: 4 % 4 % AlCl3 4 % 4 % H2S 0.2 % HCl 1 % 4 %% H2: balance balance Pressure: 65 mbar 65 mbar Temperature: 1010 °C 1010 °C Duration: 30 min 110 min - XRD-analysis of the deposited Al2O3 layer showed that it consisted of the α-phase.
- The inserts from A), B), E) and F) were brushed with a nylon brush containing SiC grains in order to smooth the coating surfaces. The PVD coated inserts from D) showed high smoothness already as coated and were therefore not subjected to brushing.
- Coating insert from A) and B) were then tested with respect to toughness in a specially designed workpiece. The workpiece consisted of two flat steel plates in material SS1312 clamped together side to side with a distance bar in between leaving a gap between the plates. The plates were cut longitudinal with an increased feed rate until the cutting edge broke. The time to breakage was recorded for each tested insert. Within each variant population some edges last longer than others and the life time of each tested edge was recorded. The obtained result are below presented as time for the insert with shortest life time, time for the insert with the longest life time and time to when 50 % of the edges within the population had obtained breakage. Ten inserts from A and B were run to edge breakage.
-
- Dry condition
- V = 100 m/min
- A = 1.5 mm
- Feed = 0.15-0.35 mm/r
- Feed rate increase 0.1 mm/min
- Result:
Time to first breakage, s Time when 50 % of the insert had failed, s Time when last insert broke, s B) Prior art 24 66 83 A) Invention 62 80 105 - A facing operation in an alloyed steel (AISI 1518,W-no 1.0580) was performed. The shape of the work-piece was such that the cutting edge was out of cut three times per revolution.
Cutting data: Speed: 130-220 m/min Feed: 0.2 mm/rev. Depth of cut: 2.0 mm - Five inserts (edges) were run one cut over the work-piece. The results in table 2 are expressed as percentage of the edge-line in cut that obtained flaking of the coating.
Table 2 Cutting operation 2Variant Edge line Flaking average B) Prior art < 10 % only small dots of flaking A) Invention <10 % only small dots of flaking - From the results from cutting
tests 1 and 2 it can be concluded that the inserts according to present invention posses a higher toughness and equal flaking resistance compared to prior art inserts. - Cutting inserts from D), E) and F) were tested in a longitudinal turning operation in a ball bearing steel Ovako 825B.
- Cutting data:
- Cutting speed 210 m/min,
- Feed 0.25 mm/rev,
- Depth of cut 2.0 mm, coolant was used.
- The cutting operation was periodically interrupted in order to follow closely the development of the crater wear. The wear was measured (observed) in a microscope. The machining time until the coating broke through and the carbide substrate became visible in the bottom of the crater wear..
Variant Time to carbide visible D) PVD TiN precoated less than 1 min E) PVD-TiN+α-Al2O3 acc. to the alternative process About 5 min F) PVD-TiN+α-Al2O3 acc. to prior art About 5 min - Cutting inserts from D.), E.) and F.) were tested with respect of edge line flaking in a facing operation in an alloyed steel (AISI 1518, W-no. 1,0580). The shape of the work piece was such that the cutting edge was out of cut three times during each revolution.
- Cutting data :
- Cutting speed 130-220 m/min,
- Feed 0.2 mm/rev,
- Depth of cut 2.0 mm.
- The inserts were run one cut over the work piece. The results are expressed as percentage of the edge line in cut that had obtained flaking.
Variant Percentage of edge line that obtained flaking D) PVD-TiN About 5 % E) PVD-TiN+α-Al2O3 acc. to the alternative process About 15 % F) PVD-TiN+α-Al2O3 acc. to prior art About 75 % + flaking spread onto the rake face - From the results obtained in cutting operation 3 and 4 it can be concluded that the insert according to the alternative process has improved crater wear properties over PVD coated tool and better coating adhesion than variant F with a prior art high temperature CVD Al2O3 on top of a PVD-TiN layer. Obviously the PVD TiN-pre coating can not withstand the high temperature of the prior art Al2O3-process.
Claims (8)
- Method of depositing a crystalline α-Al2O3-layer onto a cutting tool insert by Chemical Vapour Deposition
characterised in comprising the following steps
depositing a 0.1-1.5 µm layer of TiCxNyOz where x+y+z>=1 and z>0,
treating said layer at 625-1000 °C in a gas mixture containing 0.5-3 vol% O2, preferably CO2 + H2 or O2 + H2, for a short period of time about 0.5-4 min, optionally in the presence of 0.5-6 vol% HCl and
depositing said α-Al2O3-layer by bringing said treated layer into contact with a gas mixture containing 2-10 vol-% of AlCl3, 16-40 vol-% of CO2, in H2 and 0.8-2 vol-% of a sulphur-containing agent, preferably H2S, at a process pressure of 40-300 mbar and a temperature of 625-800 °C. - Method according to claim 1 characterized in that z>0.2 for the TiCxNyOz-layer.
- Method according to any of the preceding claims
characterized in that the α-Al2O3-layer is deposited at a temperature of 625-700 °C. - Method according to any of the preceding claims
characterized in that the α-Al2O3-layer is deposited at a temperature of 650-695 °C. - Method according to any of the preceding claims
characterized in that the method further comprising deposition of at least one Ti(C,N)-layer, with a thickness of from 0.5 to 10 µm, prior to deposition of the TiCxNyOz-layer. - Method according to any of the preceding claims
characterized in that the at least one Ti(C,N)-layer is deposited by the MTCVD technique. - Method according to any of the preceding claims
characterized in that the TiCxNyOz-layer has been deposited at 450-600 °C using PVD-technique. - Method according to any of claims 1-6
characterized in that the TiCxNyOz-layer has been deposited at 1000-1050°C using CVD-technique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0300930A SE526526C3 (en) | 2003-04-01 | 2003-04-01 | Ways of coating cutting with A1203 and a cutting tool with A1203 |
EP04445034A EP1464727B1 (en) | 2003-04-01 | 2004-03-17 | Oxide coated cutting tool |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04445034.4 Division | 2004-03-17 | ||
EP04445034A Division EP1464727B1 (en) | 2003-04-01 | 2004-03-17 | Oxide coated cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1947213A1 EP1947213A1 (en) | 2008-07-23 |
EP1947213B1 true EP1947213B1 (en) | 2011-10-12 |
Family
ID=20290876
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04445034A Expired - Lifetime EP1464727B1 (en) | 2003-04-01 | 2004-03-17 | Oxide coated cutting tool |
EP08103220A Expired - Lifetime EP1947213B1 (en) | 2003-04-01 | 2004-03-17 | Process for producing an oxide coated cutting tool |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04445034A Expired - Lifetime EP1464727B1 (en) | 2003-04-01 | 2004-03-17 | Oxide coated cutting tool |
Country Status (8)
Country | Link |
---|---|
US (2) | US7306636B2 (en) |
EP (2) | EP1464727B1 (en) |
JP (2) | JP4685364B2 (en) |
KR (2) | KR101157434B1 (en) |
CN (1) | CN1570203B (en) |
AT (2) | ATE533871T1 (en) |
IL (2) | IL160911A (en) |
SE (1) | SE526526C3 (en) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7455918B2 (en) * | 2004-03-12 | 2008-11-25 | Kennametal Inc. | Alumina coating, coated product and method of making the same |
JP4680932B2 (en) * | 2004-10-29 | 2011-05-11 | 住友電工ハードメタル株式会社 | Surface coated cutting tool |
EP1825943B1 (en) * | 2004-12-14 | 2017-01-25 | Sumitomo Electric Hardmetal Corp. | Coated cutting tool |
JP4518260B2 (en) * | 2005-01-21 | 2010-08-04 | 三菱マテリアル株式会社 | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting |
SE528672C2 (en) * | 2005-01-31 | 2007-01-16 | Sandvik Intellectual Property | Carbide inserts for durability-demanding short-hole drilling and ways of making the same |
SE528696C2 (en) | 2005-02-25 | 2007-01-23 | Sandvik Intellectual Property | CVD-coated carbide, cermet or ceramic cutter and ways of manufacturing the same |
JP4692065B2 (en) * | 2005-04-28 | 2011-06-01 | 三菱マテリアル株式会社 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
SE0602723L (en) | 2006-06-16 | 2007-12-17 | Sandvik Intellectual Property | Coated insert |
US20070298282A1 (en) | 2005-06-17 | 2007-12-27 | Sandvik Intellectual Property Ab | Coated cutting tool insert |
SE529023C2 (en) * | 2005-06-17 | 2007-04-10 | Sandvik Intellectual Property | Coated carbide cutter |
SE529051C2 (en) * | 2005-09-27 | 2007-04-17 | Seco Tools Ab | Cutting tool inserts coated with alumina |
JP4888688B2 (en) * | 2005-10-18 | 2012-02-29 | 三菱マテリアル株式会社 | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting |
JP4888689B2 (en) * | 2005-11-04 | 2012-02-29 | 三菱マテリアル株式会社 | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting |
EP1788124B1 (en) | 2005-11-18 | 2008-09-24 | Mitsubishi Materials Corporation | Surface coated cutting tool made of cermet having property-modified alpha type Al2O3 layer of hard coating layer |
JP4900653B2 (en) * | 2005-12-12 | 2012-03-21 | 三菱マテリアル株式会社 | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting |
JP4900652B2 (en) * | 2005-12-12 | 2012-03-21 | 三菱マテリアル株式会社 | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting |
JP2007283478A (en) * | 2006-03-24 | 2007-11-01 | Sumitomo Electric Ind Ltd | Surface-coated cutting tool |
CN101088759B (en) * | 2006-06-16 | 2010-06-16 | 山特维克知识产权股份有限公司 | Coat cutting tool blade |
JP5111600B2 (en) * | 2008-02-27 | 2013-01-09 | 京セラ株式会社 | Surface covering member and cutting tool |
KR101057106B1 (en) * | 2008-10-21 | 2011-08-16 | 대구텍 유한회사 | Cutting tool and its surface treatment method |
DE102009028579B4 (en) * | 2009-08-17 | 2013-08-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Coated bodies of metal, cemented carbide, cermet or ceramic, and methods of coating such bodies |
CN102596456B (en) * | 2009-10-30 | 2014-12-10 | 三菱综合材料株式会社 | Surface coated cutting tool with excellent chip resistance |
EP2395126A1 (en) * | 2010-06-08 | 2011-12-14 | Seco Tools AB | Textured alumina layer |
ES2567039T5 (en) * | 2011-09-16 | 2019-07-03 | Walter Ag | Alpha alumina coated cutting tool containing sulfur |
JP5838806B2 (en) * | 2011-12-28 | 2016-01-06 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
US11267053B2 (en) * | 2012-02-21 | 2022-03-08 | P&S Global Holdings Llc | Nanostructured coated substrates for use in cutting tool applications |
US20130216777A1 (en) * | 2012-02-21 | 2013-08-22 | Wenping Jiang | Nanostructured Multi-Layer Coating on Carbides |
EP2722416A1 (en) * | 2012-10-16 | 2014-04-23 | Sandvik Intellectual Property AB | Coated cemented carbide cutting tool with patterned surface area |
US9028953B2 (en) | 2013-01-11 | 2015-05-12 | Kennametal Inc. | CVD coated polycrystalline c-BN cutting tools |
DE102013104254A1 (en) | 2013-04-26 | 2014-10-30 | Walter Ag | Tool with CVD coating |
JP6657594B2 (en) * | 2014-05-16 | 2020-03-04 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP6548072B2 (en) * | 2014-05-30 | 2019-07-24 | 三菱マテリアル株式会社 | Surface coated cutting tool |
EP3034652A1 (en) * | 2014-12-19 | 2016-06-22 | Sandvik Intellectual Property AB | CVD coated cutting tool |
CN104889430A (en) * | 2015-05-29 | 2015-09-09 | 苏州亚思科精密数控有限公司 | Cutter used for numerical control machine tool |
KR102216097B1 (en) * | 2015-08-28 | 2021-02-15 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | Surface-coated cutting tool and method of manufacturing the same |
CN105965043B (en) * | 2016-05-27 | 2019-05-21 | 常州市迈瑞廷涂层科技有限公司 | A kind of coated cutting tool and preparation method thereof |
CN107557755B (en) * | 2016-07-01 | 2020-05-01 | 山特维克知识产权股份有限公司 | With { 001 } textured kappa-Al2O3CVD coated cutting tool for layers |
JP6905807B2 (en) | 2016-08-29 | 2021-07-21 | 三菱マテリアル株式会社 | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer |
CN107931617B (en) * | 2017-11-21 | 2019-06-07 | 江苏雨燕模业科技有限公司 | A kind of compound material cutter and preparation method thereof based on automobile die production |
BR112021023613A2 (en) | 2019-05-27 | 2022-01-04 | Sandvik Coromant Ab | A coated cutting tool |
WO2020239747A1 (en) | 2019-05-27 | 2020-12-03 | Ab Sandvik Coromant | A coated cutting tool |
CN111348919A (en) * | 2020-03-13 | 2020-06-30 | 燕山大学 | TiN-NbC composite material and preparation method thereof |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3914473A (en) * | 1971-05-26 | 1975-10-21 | Gen Electric | Method of making a coated cemented carbide product |
CH540990A (en) * | 1971-07-07 | 1973-08-31 | Battelle Memorial Institute | Method for increasing the wear resistance of the surface of a cutting tool |
US3838392A (en) | 1973-07-05 | 1974-09-24 | R Spair | Audible warning system for school buses |
JPS537513A (en) * | 1976-07-10 | 1978-01-24 | Mitsubishi Metal Corp | Covered hard alloy product |
SE406090B (en) * | 1977-06-09 | 1979-01-22 | Sandvik Ab | COATED HARD METAL BODY AND WAY TO PRODUCE A SUITABLE BODY |
US4463062A (en) * | 1983-03-25 | 1984-07-31 | General Electric Company | Oxide bond for aluminum oxide coated cutting tools |
US4957780A (en) * | 1987-01-20 | 1990-09-18 | Gte Laboratories Incorporated | Internal reactor method for chemical vapor deposition |
DE3841730C2 (en) * | 1988-12-10 | 1997-06-19 | Widia Gmbh | Process for coating a metallic base body with a non-conductive coating material |
JPH06506178A (en) * | 1991-03-27 | 1994-07-14 | クルップ・ヴィデア・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Composites, uses of composites and methods of manufacturing them |
SE9101953D0 (en) * | 1991-06-25 | 1991-06-25 | Sandvik Ab | A1203 COATED SINTERED BODY |
US5665431A (en) * | 1991-09-03 | 1997-09-09 | Valenite Inc. | Titanium carbonitride coated stratified substrate and cutting inserts made from the same |
DE4209975A1 (en) * | 1992-03-27 | 1993-09-30 | Krupp Widia Gmbh | Composite body and its use |
SE501527C2 (en) * | 1992-12-18 | 1995-03-06 | Sandvik Ab | Methods and articles when coating a cutting tool with an alumina layer |
SE502174C2 (en) * | 1993-12-23 | 1995-09-04 | Sandvik Ab | Methods and articles when coating a cutting tool with an alumina layer |
SE502223C2 (en) | 1994-01-14 | 1995-09-18 | Sandvik Ab | Methods and articles when coating a cutting tool with an alumina layer |
CA2149567C (en) * | 1994-05-31 | 2000-12-05 | William C. Russell | Coated cutting tool and method of making same |
JP3250414B2 (en) * | 1995-03-29 | 2002-01-28 | 三菱マテリアル株式会社 | Method for producing cutting tool coated with titanium carbonitride layer surface |
DE19518779C1 (en) * | 1995-05-22 | 1996-07-18 | Fraunhofer Ges Forschung | Stable aluminium oxide coating on sintered body |
SE514177C2 (en) | 1995-07-14 | 2001-01-15 | Sandvik Ab | Coated cemented carbide inserts for intermittent machining in low alloy steel |
SE517046C2 (en) | 1997-11-26 | 2002-04-09 | Sandvik Ab | Plasma-activated CVD method for coating fine-grained alumina cutting tools |
US6572991B1 (en) | 2000-02-04 | 2003-06-03 | Seco Tools Ab | Deposition of γ-Al2O3 by means of CVD |
SE519339C2 (en) * | 2000-11-22 | 2003-02-18 | Sandvik Ab | Cutting tools coated with alumina and ways of manufacturing the same |
DE10115390A1 (en) | 2000-12-22 | 2002-06-27 | Mitsubishi Materials Corp Toki | Coated cutting tool |
SE522736C2 (en) * | 2001-02-16 | 2004-03-02 | Sandvik Ab | Aluminum-coated cutting tool and method for making the same |
SE526603C3 (en) * | 2003-01-24 | 2005-11-16 | Sandvik Intellectual Property | Coated cemented carbide insert |
SE526674C2 (en) * | 2003-03-24 | 2005-10-25 | Seco Tools Ab | Coated cemented carbide insert |
-
2003
- 2003-04-01 SE SE0300930A patent/SE526526C3/en not_active IP Right Cessation
-
2004
- 2004-03-17 EP EP04445034A patent/EP1464727B1/en not_active Expired - Lifetime
- 2004-03-17 IL IL160911A patent/IL160911A/en not_active IP Right Cessation
- 2004-03-17 AT AT04445034T patent/ATE533871T1/en active
- 2004-03-17 AT AT08103220T patent/ATE528419T1/en active
- 2004-03-17 EP EP08103220A patent/EP1947213B1/en not_active Expired - Lifetime
- 2004-03-24 US US10/807,376 patent/US7306636B2/en not_active Expired - Lifetime
- 2004-03-31 JP JP2004106655A patent/JP4685364B2/en not_active Expired - Lifetime
- 2004-03-31 KR KR1020040021976A patent/KR101157434B1/en active IP Right Grant
- 2004-04-01 CN CN2004100321672A patent/CN1570203B/en not_active Expired - Lifetime
-
2006
- 2006-09-28 US US11/528,427 patent/US7531214B2/en not_active Expired - Lifetime
-
2008
- 2008-03-27 IL IL190473A patent/IL190473A0/en unknown
-
2010
- 2010-10-12 JP JP2010229821A patent/JP5363445B2/en not_active Expired - Lifetime
-
2012
- 2012-01-20 KR KR1020120006942A patent/KR101260694B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
US20070020393A1 (en) | 2007-01-25 |
KR20050010474A (en) | 2005-01-27 |
EP1464727B1 (en) | 2011-11-16 |
US7531214B2 (en) | 2009-05-12 |
US7306636B2 (en) | 2007-12-11 |
JP5363445B2 (en) | 2013-12-11 |
JP2011045994A (en) | 2011-03-10 |
SE526526C3 (en) | 2005-10-26 |
US20040253446A1 (en) | 2004-12-16 |
SE526526C2 (en) | 2005-10-04 |
JP2004308008A (en) | 2004-11-04 |
SE0300930D0 (en) | 2003-04-01 |
EP1464727A3 (en) | 2004-11-10 |
SE0300930L (en) | 2004-10-02 |
EP1947213A1 (en) | 2008-07-23 |
IL160911A0 (en) | 2004-08-31 |
KR101157434B1 (en) | 2012-06-22 |
KR101260694B1 (en) | 2013-05-10 |
EP1464727A2 (en) | 2004-10-06 |
JP4685364B2 (en) | 2011-05-18 |
ATE533871T1 (en) | 2011-12-15 |
IL160911A (en) | 2010-04-29 |
IL190473A0 (en) | 2008-11-03 |
ATE528419T1 (en) | 2011-10-15 |
KR20120040163A (en) | 2012-04-26 |
CN1570203A (en) | 2005-01-26 |
CN1570203B (en) | 2010-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1947213B1 (en) | Process for producing an oxide coated cutting tool | |
US6902764B2 (en) | Oxide coated cutting tool | |
US5786069A (en) | Coated turning insert | |
EP0738336B2 (en) | Oxide coated cutting tool | |
EP1717348B1 (en) | Coated cutting tool insert | |
EP0347399A1 (en) | A diffusion barrier coating material | |
US20060127671A1 (en) | Cutting tool having high toughness and abrasion resistance | |
EP2074241B1 (en) | Coated cutting tool | |
EP2342367A1 (en) | A coated tool and a method of making thereof | |
EP2287359A1 (en) | Coated cutting tool insert | |
EP2632619B1 (en) | Alumina layer with multitexture components | |
EP1262576B1 (en) | CVD Al2O3 coated cutting tool | |
EP1352697B1 (en) | Coated cutting tool insert | |
JP3265974B2 (en) | Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance | |
JP3304767B2 (en) | Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance | |
KR20030052469A (en) | Method to improve wear resistance and toughness of coated cutting tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1464727 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
17P | Request for examination filed |
Effective date: 20090123 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1464727 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004034875 Country of ref document: DE Effective date: 20111215 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120213 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120112 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
26N | No opposition filed |
Effective date: 20120713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004034875 Country of ref document: DE Effective date: 20120713 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120123 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 528419 Country of ref document: AT Kind code of ref document: T Effective date: 20120317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040317 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20150311 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160318 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20170314 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230221 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230213 Year of fee payment: 20 Ref country code: GB Payment date: 20230202 Year of fee payment: 20 Ref country code: DE Payment date: 20230131 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 602004034875 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20240316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240316 |