EP1942390A1 - Pédale d'accélérateur pour véhicule motorisé - Google Patents

Pédale d'accélérateur pour véhicule motorisé Download PDF

Info

Publication number
EP1942390A1
EP1942390A1 EP08154991A EP08154991A EP1942390A1 EP 1942390 A1 EP1942390 A1 EP 1942390A1 EP 08154991 A EP08154991 A EP 08154991A EP 08154991 A EP08154991 A EP 08154991A EP 1942390 A1 EP1942390 A1 EP 1942390A1
Authority
EP
European Patent Office
Prior art keywords
brake pad
accelerator pedal
housing
pedal
pivot axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08154991A
Other languages
German (de)
English (en)
Other versions
EP1942390B1 (fr
Inventor
Michael Wurn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CTS Corp
Original Assignee
CTS Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CTS Corp filed Critical CTS Corp
Priority claimed from EP04753520A external-priority patent/EP1627268B1/fr
Publication of EP1942390A1 publication Critical patent/EP1942390A1/fr
Application granted granted Critical
Publication of EP1942390B1 publication Critical patent/EP1942390B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot

Definitions

  • This invention relates to a pedal mechanism.
  • the pedal may be an accelerator pedal in a vehicle.
  • Automobile accelerator pedals have conventionally been linked to engine fuel subsystems by a cable, generally referred to as a Bowden cable. While accelerator pedal designs vary, the typical return spring and cable friction together create a common and accepted tactile response for automobile drivers. For example, friction between the Bowden cable and its protective sheath otherwise reduce the foot pressure required from the driver to hold a given throttle position. Likewise, friction prevents road bumps felt by the driver from immediately affecting throttle position.
  • the accelerator pedal assembly includes a housing, an elongated pedal arm terminating at one end in a rotatable drum defining a curved braking surface, a brake pad having a curved contact surface substantially complementary to the braking surface and a bias spring device operably situated between the pedal arm and the brake pad.
  • the pedal arm is rotatably mounted to the housing such that the curved braking surface rotates as the pedal moves between an idle position to an open throttle position.
  • the brake pad defines a primary pivot axis and is pivotably mounted for frictional engagement with the braking surface.
  • the bias spring serves to urge the contact surface of the brake pad into frictional engagement with the braking surface of the drum.
  • the pedal arm carries a magnet and a Hall effect position sensor is secured to the housing and responsive to the movement of the magnet for providing an electrical signal representative of pedal displacement.
  • a non-contacting accelerator pedal assembly 20 includes a housing 32, a pedal arm 22 rotatably mounted to housing 32, a brake pad 44 and a bias spring device 46.
  • the labels "pedal beam” or “pedal lever” also apply to pedal arm 22.
  • brake pad 44 may be referred to as a “body” or “braking lever.”
  • Pedal arm 22 has a footpad 27 at one end and terminates at its opposite proximal end 26 in a drum portion 29 that presents a curved, convex braking (or drag) surface 42.
  • Pedal arm 22 has a forward side 28 nearer the front of the car and a rearward side 30 nearer the driver and rear of the car.
  • Footpad 27 may be integral with the pedal lever 22 or articulating and rotating at its connection at the lower end 24.
  • Braking surface 42 of accelerator arm 22 preferably has the curvature of a circle of a radius R1 which extends from the center of opening 40.
  • a non-circular curvature for braking surface is also contemplated.
  • surface 42 is curved and convex with a substantially constant radius of curvature. In alternate embodiments, surface 42 has a varying radius of curvature.
  • Pedal arm 22 pivots from housing 32 via an axle connection through drum 29 such that drum 29 and its contact surface 42 rotate as pedal arm 22 is moved.
  • Spring device 46 biases pedal arm 22 towards the idle position.
  • Brake pad 44 is positioned to receive spring device 46 at one end and contact drum 29 at the other end.
  • Brake pad 44 is pivotally mounted to housing 32 such that a contact surface 70 is urged against braking surface 42 as pedal arm 22 is depressed.
  • Pedal arm 22 carries a magnet subassembly 80 for creating a magnetic field that is detected by redundant Hall effect sensors 92A and 92B which are secured in housing 32. Acting together, magnet 80 and sensors 92 provide a signal representative of pedal displacement.
  • a Hall effect sensor with magnet is representative of a number of sensor arrangements available to measure the displacement of pedal arm 22 with respect to housing 32 including other optical, mechanical, electrical, magnetic and chemical means. Specifically contemplated is a contacting variable resistance position sensor.
  • housing 32 also serves as a base for the mounted end 26 of pedal arm 22 and for sensors 92.
  • Proximal end 26 of pedal arm 22 is pivotally secured to housing 32 with axle 34.
  • drum portion 29 of pedal arm 22 includes an opening 40 for receiving axle 34, while housing 32 has a hollow portion 37 with corresponding openings 39A and 39B also for receiving axle 34.
  • Axle 34 is narrowed at its ends where it is collared by a bearing journal 19.
  • brake pad 44 In addition to contact surface 70, the other features of brake pad 44 include a top 52 which is relatively flat, a bottom 54 which consists of two flat planes 114 and 112 intersecting to a ridge 110, a front face 56 which is substantially flat, and a circular back face 58.
  • Brake pad 44 also has opposed trunnions 60A and 60B (also called outriggers or flanges) to define a primary pivot axis positioned between spring device 46 and contact surface 70.
  • Contact surface 70 of brake pad 44 is situated on one side of this pivot axis and a donut-shaped socket 104 for receiving one end of bias spring 46 is provided on the other side.
  • Contact surface 70 is substantially complementary to braking surface 42.
  • contact surface 70 is curved and concave with a substantially constant radius of curvature.
  • braking surface has a varying radius of curvature. The frictional engagement between contact surface 70 and braking surface 42 may tend to wear either surface.
  • the shape of contact surface 42 may be adapted to reduce or accommodate wear.
  • housing 32 is provided with spaced cheeks 66 for slidably receiving the trunnions 60A and 60B.
  • Trunnions 60A and 60B are substantially U-shaped and have an arc-shaped portion 62 and a rectilinear (straight) portion 64.
  • Brake pad 44 pivots over cheeks 66 at trunnions 60A and 60B.
  • brake pad 44 The sliding motion of brake pad 44 is gradual and can be described as a "wedging" effect that either increases or decreases the force urging contact surface 70 into braking surface 42. This directionally dependent hysteresis is desirable in that it approximates the feel of a conventional mechanically-linked accelerator pedal.
  • brake pad 44 When pedal force on arm 22 is increased, brake pad 44 is urged forward on cheeks 66 by the frictional force created on contact surface 70 as braking surface 42 rotates forward (direction 120 in FIG. 4 ). This urging forward of brake pad 44 likewise urges trunnions 60A and 60B lower on cheeks 66 such that the normal, contact force of contact surface 70 into braking surface 42 is relatively reduced.
  • Bias spring device 46 is situated between a hollow 106 ( FIG. 3 ) in pedal lever 22 and a receptacle 104 on brake pad 44.
  • Spring device 46 includes two, redundant coil springs 46A and 46B in a concentric orientation, one spring nestled within the other. This redundancy is provided for improved reliability, allowing one spring to fail or flag without disrupting the biasing function. It is preferred to have redundant springs and for each spring to be capable - on its own - of returning the pedal lever 22 to its idle position.
  • brake pad 44 is provided with redundant pivoting (or rocking) structures.
  • brake pad 44 defines a ridge 110 which forms a secondary pivot axis, as best shown in FIG. 6 .
  • ridge 110 When assembled, ridge 110 is juxtaposed to a land 47 defined in housing 32. Ridge 110 is formed at the intersection of two relatively flat plane portions at 112 and 114. The pivot axis at ridge 110 is substantially parallel to, but spaced apart from, the primary pivot axis defined by trunnions 60A and 60B and cheeks 60.
  • the secondary pivot axis provided by ridge 110 and land 47 is a preferred feature of accelerator pedals according to the present invention to allow for failure of the structural elements that provide the primary pivot axis, namely trunnions 60A and 60B and cheeks 66. Over the useful life of an automobile, material relaxations, stress and or other aging type changes may occur to trunnions 60A and 60B and cheeks 66. Should the structure of these features be compromised, the pivoting action of brake pad 44 can occur at ridge 110.
  • Pedal arm 22 has predetermined rotational limits in the form of an idle, return position stop 33 on side 30 and a depressed, open-throttle position stop 36 on side 28.
  • stop 36 comes to rest against portion 98 of housing 32 and thereby limits forward movement.
  • Stop 36 may be elastomeric or rigid. Stop 33 on the opposite side 30 contacts a lip 35 of housing 32.
  • Housing 32 is securable to a wall via fasteners through mounting holes 38.
  • Pedal assemblies according to the present invention are suitable for both firewall mounting or pedal rack mounting by means of an adjustable or non-adjustable position pedal box rack.
  • Magnet assembly 80 has opposing fan-shaped sections 81 A and 81 B, and a stem portion 87 that is held in a two-pronged plastic grip 86 extending from drum 29.
  • Assembly 80 preferably has two major elements: a specially shaped, single-piece magnet 82 and a pair of (steel) magnetic flux conductors 84A and 84B.
  • Single-piece magnet 82 has four alternating (or staggered) magnetic poles: north, south, north, south, collectively labeled with reference numbers 82A, 82B, 82C, 82D as best seen in FIG. 2 .
  • Each pole 82A, 82B, 82C, 82D is integrally formed with stem portion 87 and separated by air gaps 89 ( FIG. 1 ) and 88 ( FIG. 3 ). Magnetic flux flows from one pole to the other - like charge arcing the gap on a spark plug - but through the magnetic conductor 84. A zero gauss point is located at about air gap 88.
  • Magnetic field conductors 84A and 84B are on the outsides of the magnet 82, acting as both structural, mechanical support to magnet 82 and functionally tending to act as electromagnetic boundaries to the flux the magnet emits. Magnetic field conductors 84 provide a low impedance path for magnetic flux to pass from one pole (e.g., 82A) of the magnet assembly 80 to another (e.g., 82B).
  • sensor assembly 90 is mounted to housing 32 to interact with magnet assembly 80.
  • Sensor assembly 90 includes a circuit board portion 94 received within the gap 89 between opposing magnet sections 81A and 81 B, and a connector socket 91 for receiving a wiring harness connector plug.
  • Circuit board 94 carries a pair of Hall Effect sensors 92A and 92B.
  • Hall effect sensors 92 are responsive to flux changes induced by pedal arm lever displacement and corresponding rotation of drum 29 and magnet assembly 80. More specifically, Hall effect sensors 92 measure magnet flux through the magnet poles 82A and 82B. Hall effect sensors 92 are operably connected via circuit board 94 to connector 91 for providing a signal to an electronic throttle control. Only one Hall effect sensor 92 is needed but two allow for comparison of the readings between the two Hall effect sensors 82 and consequent error correction. In addition, each sensor serves as a back up to the other should one sensor fail.
  • the preferably circular contours of contact surface 70 and trunnion portion 62 can be aligned concentrically or eccentrically.
  • a concentric alignment as illustrated in FIG. 4 with reference labels R1 and R2, results in a more consistent force F N applied between surface 42 and surface face 70 as pedal arm 22 is actuated up or down.
  • An eccentric, alignment as illustrated in FIG. 2 tends to increase the hysteresis effect.
  • the center of the circle that traces the contour of the surface 70 is further away from the firewall in the rearward direction 74.
  • Friction force Ff runs in one of two directions along face 70 depending on whether the pedal lever is pushed forward 72 or rearward 74. The friction force F f opposes the applied force F a as the pedal is being depressed and subtracts from the spring force F S as the pedal is being returned toward its idle position.
  • FIGS. 8A, 8B , 8C, 8D contain a force diagram demonstrating the directionally dependent actuation-force hysteresis provided by accelerator pedal assemblies according to the present invention.
  • the y-axis represents the foot pedal force F a required to actuate the pedal arm, in Newtons (N).
  • the x-axis is displacement of the footpad 27.
  • Path 150 represents the pedal force required to begin depressing pedal arm 22.
  • Path 152 represents the relatively smaller increase in pedal force necessary to continue moving pedal arm 22 after initial displacement toward mechanical travel stop, i.e. contact between stop 36 and surface 98.
  • Path 154 represents the decrease in foot pedal force allowed before pedal arm 22 begins movement toward idle position. This no-movement zone allows the driver to reduce foot pedal force while still holding the same accelerator pedal position.
  • accelerator pedal assembly 20 is in motion as the force level decreases.
  • FIGS. 8A, 8B , 8C, 8D combine a force-displacement graph with simplified schematics showing selected features of accelerator pedals according to the invention.
  • the schematic portion of FIG. 8A illustrates the status of accelerator pedal apparatus 20 for path 150 when initially depressed.
  • FIG. 8B illustrates the status of apparatus 20 for path 152 when increasing pedal force causes relatively greater pedal displacement.
  • FIG. 8C illustrates the status of apparatus 20 for path 154 when pedal force can decrease without pedal arm movement.
  • FIG. 8D illustrates the status of apparatus 20 for path 156 as pedal arm 22 is allowed to return to idle position.
  • FIGS. 8A through 8D describe pedal operation according to the present invention over a complete cycle of actuation from a point of zero pedal pressure, i.e., idle position, to the fully depressed position and then back to idle position again with no pedal pressure.
  • the shape of this operating curve also applies, however, to mid-cycle starts and stops of the accelerator pedal. For example, when the accelerator pedal is depressed to a mid-position, the driver still benefits from a no-movement zone when foot pedal force is reduced.
  • FIGS. 9A through 9C are additional force diagrams demonstrating the directionally dependent actuation-force hysteresis provided by accelerator pedal assemblies according to the present invention.
  • FIG. 9A is a reproduction of the force diagram of FIGS. 8A through 8D for juxtaposition with FIGS. 9B and 9C .
  • FIG. 9C is the operating response for an accelerator pedal requiring a greater increase in foot pedal force to actuate the pedal arm.
  • FIG. 9C describes an accelerator pedal according to the present invention having a relatively "stiffer" tactile feel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Control Devices (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
EP08154991A 2003-05-29 2004-05-27 Pédale d'accélérateur pour véhicule motorisé Expired - Fee Related EP1942390B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47413503P 2003-05-29 2003-05-29
EP04753520A EP1627268B1 (fr) 2003-05-29 2004-05-27 Pedale d'accelerateur pour vehicule a moteur

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP04753520A Division EP1627268B1 (fr) 2003-05-29 2004-05-27 Pedale d'accelerateur pour vehicule a moteur

Publications (2)

Publication Number Publication Date
EP1942390A1 true EP1942390A1 (fr) 2008-07-09
EP1942390B1 EP1942390B1 (fr) 2009-08-12

Family

ID=39473010

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08154991A Expired - Fee Related EP1942390B1 (fr) 2003-05-29 2004-05-27 Pédale d'accélérateur pour véhicule motorisé

Country Status (1)

Country Link
EP (1) EP1942390B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD832162S1 (en) 2016-05-25 2018-10-30 Exmark Manufacturing Company, Incorporated Foot pedal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524589A (en) 1993-11-19 1996-06-11 Aisin Seiki Kabushiki Kaisha Throttle control apparatus
DE19701637A1 (de) * 1997-01-20 1998-07-23 Mannesmann Vdo Ag Pedaleinrichtung
US5868040A (en) * 1995-04-20 1999-02-09 Mercedes-Benz Ag. Gas pedal with friction structure
US6003404A (en) * 1995-05-10 1999-12-21 Vdo Adolf Schindling Ag Accelerator pedal assembly for controlling the power of an internal combustion engine
EP0974886A2 (fr) * 1998-07-21 2000-01-26 Caithness Development Ltd. Mécanisme pour pédale
US6073610A (en) 1997-04-25 2000-06-13 Mitsubishi Jidosha Kogyo Kabushiki Control apparatus of internal combustion engine equipped with electronic throttle control device
EP1154346A1 (fr) * 2000-05-11 2001-11-14 Teleflex Inc Système de pédale avec pédale sans contact; Capteur de position pour générer un signal de contrôle
US6360631B1 (en) 2000-01-12 2002-03-26 Dura Global Technologies, Inc. Electronic throttle control accelerator pedal mechanism with mechanical hysteresis provider

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524589A (en) 1993-11-19 1996-06-11 Aisin Seiki Kabushiki Kaisha Throttle control apparatus
US5868040A (en) * 1995-04-20 1999-02-09 Mercedes-Benz Ag. Gas pedal with friction structure
US6003404A (en) * 1995-05-10 1999-12-21 Vdo Adolf Schindling Ag Accelerator pedal assembly for controlling the power of an internal combustion engine
DE19701637A1 (de) * 1997-01-20 1998-07-23 Mannesmann Vdo Ag Pedaleinrichtung
US6073610A (en) 1997-04-25 2000-06-13 Mitsubishi Jidosha Kogyo Kabushiki Control apparatus of internal combustion engine equipped with electronic throttle control device
EP0974886A2 (fr) * 1998-07-21 2000-01-26 Caithness Development Ltd. Mécanisme pour pédale
US6360631B1 (en) 2000-01-12 2002-03-26 Dura Global Technologies, Inc. Electronic throttle control accelerator pedal mechanism with mechanical hysteresis provider
EP1154346A1 (fr) * 2000-05-11 2001-11-14 Teleflex Inc Système de pédale avec pédale sans contact; Capteur de position pour générer un signal de contrôle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD832162S1 (en) 2016-05-25 2018-10-30 Exmark Manufacturing Company, Incorporated Foot pedal

Also Published As

Publication number Publication date
EP1942390B1 (fr) 2009-08-12

Similar Documents

Publication Publication Date Title
EP1627268B1 (fr) Pedale d'accelerateur pour vehicule a moteur
US20060185469A1 (en) Pedal for motorized vehicle
US8042430B2 (en) Accelerator pedal for a vehicle
EP2390752B1 (fr) Pédale d'accélérateur pour véhicule
US20070193401A1 (en) Accelerator pedal for a vehicle
KR101412677B1 (ko) 히스테리시스 및 킥다운을 갖는 전자식 스로틀 제어장치
US7216563B2 (en) Electronic throttle control with hysteresis device
US6857336B2 (en) Electronic pedal assembly and method for providing a tuneable hystersis force
US20080276749A1 (en) Accelerator pedal for a vehicle
US20140352485A1 (en) Vehicle Pedal Assembly with Hysteresis Assembly
JP3421276B2 (ja) ヒステリシスを有する電子式スロットル制御装置
JP4148553B2 (ja) 車両用アクセルペダル機構
US5812050A (en) Electrical control apparatus with unidirectional tactile indicator
JP2000118259A (ja) アクセルペダルモジュ―ル
EP0837782A1 (fr) Agencement de pedale amortie
EP1942390B1 (fr) Pédale d'accélérateur pour véhicule motorisé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1627268

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20081219

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1627268

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004022602

Country of ref document: DE

Date of ref document: 20090924

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100517

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100527

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220527

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004022602

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201