EP1938624A2 - Apparatus and method for uncompressed, wireless transmission of video - Google Patents

Apparatus and method for uncompressed, wireless transmission of video

Info

Publication number
EP1938624A2
EP1938624A2 EP06836492A EP06836492A EP1938624A2 EP 1938624 A2 EP1938624 A2 EP 1938624A2 EP 06836492 A EP06836492 A EP 06836492A EP 06836492 A EP06836492 A EP 06836492A EP 1938624 A2 EP1938624 A2 EP 1938624A2
Authority
EP
European Patent Office
Prior art keywords
coefficients
symbol
values
video signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06836492A
Other languages
German (de)
French (fr)
Other versions
EP1938624A4 (en
Inventor
Zvi Reznic
Nathan Elnathan
Meir Feder
Shay Freundlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amimon Ltd
Original Assignee
Amimon Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/551,654 external-priority patent/US7860180B2/en
Priority claimed from US11/551,641 external-priority patent/US8559525B2/en
Application filed by Amimon Ltd filed Critical Amimon Ltd
Publication of EP1938624A2 publication Critical patent/EP1938624A2/en
Publication of EP1938624A4 publication Critical patent/EP1938624A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • H04N11/04Colour television systems using pulse code modulation
    • H04N11/042Codec means
    • H04N11/044Codec means involving transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/36Scalability techniques involving formatting the layers as a function of picture distortion after decoding, e.g. signal-to-noise [SNR] scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the invention relates to the transmission of uncompressed video over a wireless link. More specifically, the invention relates to the delay-less and buffer-less transmission of uncompressed HDTV video over a wireless link using direct mapping of image transform coefficients to transmission symbols.
  • television and/or video signals are received through cable or satellite links at a set-top box at a fixed point in the house.
  • a screen at a point a distance from the set-top box by a few meters.
  • LCD liquid crystal display
  • Connection of the screen to the set-top box through cables is generally undesired for aesthetic reasons and/or installation convenience.
  • wireless transmission of the video signals from the set-top box to the screen is preferred.
  • the data are received at the set-top box compressed in accordance, for example, with the motion picture expert group (MPEG) format and are decompressed by the set-top box to a high quality raw video signal.
  • the raw video signal may be in an analog format or a digital format, such as the digital video interface (DVI) format or the high definition multimedia interface (HDMI) format.
  • DVI digital video interface
  • HDMI high definition multimedia interface
  • These digital formats generally have a high definition television (HDTV) data rate of up to about 1.5 Giga bits per second (Gbps). in the home can be done over the unlicensed bands around 2.4GHz or around 5GHz (e.g., in the U. S 5.15-5.85 GHz band).
  • WLAN wireless local area networks
  • 802.11 WiFi standard allow maximal data rates of 11Mbps (802.11b), or 54Mbps (for 20MHz bandwidth and the 802.11g/802.11a standards).
  • Wi-Fi wireless local area networks
  • Wi-Fi Wireless Fidelity
  • the method includes providing high definition video, compressing the video using an image domain compression method, in which each pixel is coded based on a vicinity of the pixel, and transmitting the compressed video over a fading transmission channel.
  • signals are transmitted in the form of symbols.
  • Each symbol can have one of a predetermined number of possible values.
  • the set of possible values of each symbol is referred to as a constellation and each possible value is referred to as a constellation point.
  • the distance between neighboring points affects the immunity to noise.
  • the noise causes reception of another point instead of the intended point, and thus the symbol may be interpreted incorrectly.
  • OFDM orthogonal frequency division multiplexing
  • the symbols are comprised of multiple bins, e.g., 64, 128 or 256 bins, in the frequency domain, each bin of each symbol comprised of a two dimensional constellation. It is also known in the art that the use of some of the available bins is not recommended. Typically these are the bins located at the ends of the transmission band. Typically, for example in 802.11a/g, some 16 available channels out of the 64, are not used, and hence the efficiency of the band is reduced.
  • An apparatus and method for wireless transmission of uncompressed HDTV video overcomes the challenges of sending vast amounts of information over a wireless link. This is achieved by direct mapping of transformation coefficients of the video components (for example Y-Cr-Cb components) to communication symbols, such as OFDM symbols.
  • a main portion of the important transform coefficients for example the most significant bits of the coefficients representing lower frequencies of each of the video components, and in particular the quantized values of the DC and the near DC components thereof, are sent in a coarse, digital, representation using, for example, QPSK or QAM.
  • the coefficients representing the higher frequency of each of the video components, as well as the quantization error values of the DC and near DC components, or some, possibly non-linear transformation thereof, are sent as pairs of real and imaginary portions of a complex number that comprises a point in a fine granularity constellation.
  • the invention thus provides a delay-less and buffer-less implementation of transmitter and receiver pairs.
  • Fig. 1 is a block diagram of coding system in accordance with the disclosed invention.
  • Fig. 2 is a schematic diagram showing an 8-by-8 pixel de-correlation transform, the grouping of the coefficients, and the mapping into coarse and fine symbol representations in accordance with the disclosed invention
  • Fig. 3 is a table showing the number of coefficients selected from each of the transformed Y, Cr and Cb of an 8-by-8 pixel conversion in accordance with an embodiment described in the disclosed invention
  • Fig. 4 is a flowchart describing the principles of the disclosed invention.
  • Fig. 5 is a flowchart showing handling an HDTV video for wireless transmission using OFDM scheme in accordance with the disclosed invention
  • Fig. 6 is a detailed block diagram of a coding system in accordance with the disclosed invention.
  • Fig. 7 is a block diagram of the bit manipulation block of a coding system in accordance with the disclosed invention.
  • Fig. 8 is a block diagram of a receiver enabled to receive a video steam transmitted in accordance with the disclosed invention.
  • the disclosed invention is intended to overcome the deficiencies of the prior art solutions by providing a scheme that allows the transmission of video, such as a high- definition television (HDTV) video, over a wireless link using transmission symbols, such as symbols of an OFDM scheme.
  • video such as a high- definition television (HDTV) video
  • transmission symbols such as symbols of an OFDM scheme.
  • the inventors have realized that it is possible to map the coefficients of a block of pixels, or a portion thereof, after a de- correlating transformation directly into the transmission symbols.
  • the de-correlation is performed for the purpose of minimizing the energy of the coefficients but without compromising the number of degrees of freedom available.
  • a discrete cosine transform (DCT) is performed on a block of pixels of each of the Y, Cr and Cb components of the video.
  • DCT discrete cosine transform
  • the Y component provides the luminance of the pixel, while the Cr and Cb components provide the color difference information, otherwise known as chrominance.
  • all the coefficients are transmitted in accordance with the disclosed invention.
  • only a portion of the coefficients are used for transmission purposes, thereby frequency coefficients and keeping the lower spatial frequency coefficients.
  • more of the Y related coefficients are preserved for wireless transmission purposes than those for the other two components, as the human eye is more sensitive to luminance then chrominance.
  • a ratio of at least three coefficients respective of the Y component may be used for each of the Cr and Cb components, e.g. a ratio of 3:1 :1.
  • the invention further sends the information of the quantization error over the transmission channel thereby allowing the reconstruction of the video frame and providing an essentially uncompressed transmission of video, and in particular high- 5 definition video, over a transmission channel, wired or wireless.
  • the DC coefficients, or DC proximate coefficients having a larger value are represented in a coarse, sometimes referred to as digital, manner, i.e. part of the DC value is represented as one of a plurality of constellation 0 points of a symbol. This is achieved by performing a quantization on these values and mapping those quantized values in accordance with the disclosed invention.
  • the higher frequency coefficients and in addition the quantization errors of the DC and the DC proximate components whose main part is presented coarsely, are grouped in pairs, positioning each pair in a point as the real and imaginary values of the complex 5 number, that provide the fine granularity, almost analog, value which at an extreme fineness provides for a continuous representation of these values.
  • a non-linear transformation is performed on any one of these values that comprise the complex number.
  • Companding is a non- 0 linear transformation of a value.
  • Common companding functions are logarithmic, e.g., A-law and ⁇ -law. The use of these techniques effectively provide for a better dynamical range and better signal-to-noise ratio in representing the corresponding values.
  • the following companding function may be used' S J! Pu ⁇ heM ?y fte vil ⁇ iy'ofllii coefficient and a is a factor designed to maintain the power of f(x) to be the same as that of x.
  • mapping of a number of data values to a smaller 5 number of values thereby potentially saving transmission bandwidth. For example, two numbers are mapped into one number, or three numbers are mapped into two numbers and the likes. While inserting a certain distortion when the original values are reconstructed, the advantage is the capability of sending also the less important data on the limited available bandwidth.
  • two numbers for example x ?
  • the data transferred may be encrypted.
  • the invention disclosed herein allows keeping all the coefficients of the de-correlating transform. Therefore the reconstruction at the receiver 0 side is more accurate as more information is available for such reconstruction. Furthermore, in accordance with the disclosed invention it is possible to use subchannels of the transmission channel, normally avoided so as to provide necessary margin or to avoid interference problems, for the purpose of transmitting those coefficient values which receive a lesser representation. By transmitting the less 5 important values as determined in accordance with the disclosed invention, over the normally un-used sub-channels, or subbands, effectively there is an increase of the available bandwidth for transmission. In addition some values can be compacted together using the methods described hereinabove.
  • OFDM orthogonal frequency division modulation
  • symbols are comprised of multiple domain, each bin of each symbol comprised of a two dimensional constellation (a complex number).
  • W there are 2W degrees of freedom. If the spectral efficiency p is less than 100% then the number of degrees of freedom is 2Wp per second. Since each complex
  • 5 number contains two degrees of freedom the number of complex number that can be transmitted is pW.
  • MIMO multi-in multi-input multi-output
  • Fig. 1 shows an exemplary and non-limiting block diagram of system 100 for direct symbol coding in accordance with the disclosed invention.
  • the system 100 receives the red-green-blue (RGB) components of a video signal, for example an HDTV video signal.
  • the RGB stream is converted in the color conversion block 110 to the luminance component Y, and the two color difference components, Cr and Cb. This 0 conversion is well known to persons of ordinary skill in the art.
  • the video begins with a Y-Cr-Cb video signal and, in such a case, there is no need for the color conversion block 110.
  • the Y-Cr-Cb components are fed to a transform unit 120 where a de-correlating transformation is performed on blocks of pixels respective of each of the three components.
  • the block 120 performs a DCT on the blocks of pixels.
  • a block of pixels may contain 64 pixels arranged in an 8-by-8 format, as shown in to Fig. 2.
  • the transform unit 120 may comprise a single subunit for performing the desired transform, for example a DCT, handling the conversions for all the blocks of pixels of an entire video frame for each of the Y-Cr-Cb component.
  • a dedicated 0 transform subunit is used for each of the Y-Cr-Cb components, thereby accelerating the performance of the system.
  • a plurality of subunits are used such that two or more such subunits, capable of performing a desired transform on a block of pixels, are used for each of the Y-Cr-Cb components, thus further accelerating the performance of the system 100.
  • the output of transform unit 120 is a are fed to a mapper 130.
  • the mapper 130 selects those coefficients from each of the Y-Cr-Cb components which are to be transferred over the wireless link.
  • the mapper 130 also maps the coefficients to be sent to transmission symbols, for example, the symbols of an orthogonal frequency division multiplexing 5 (OFDM) scheme, a process described in more detail with respect to Fig. 4.
  • OFDM orthogonal frequency division multiplexing 5
  • a modified OFDM transmitter 140 that handles the mixed nature of the symbols having a mix of coarse and fine constellation values, as explained in more detail with respect to Fig 2.
  • a modified OFDM transmitter 140 is connected to a plurality of antennas for 0 the purpose of supporting a multi-input, multi-output (MIMO) transmission scheme, thereby increasing the effective bandwidth and reliability of the transmission.
  • MIMO multi-input, multi-output
  • a receiver for example the receiver shown in Fig. 8, adapted to receive the wireless signal comprising the symbols transmitted in accordance with the disclosed invention, must be capable of detecting the coarse and 5 fine representations of the sent symbols, reconstruct the respective coefficients, and perform an inverse transform to reconstructing the Y-Cr-Cb components.
  • a de-correlating transform such as a DCT, 5 is performed on blocks of pixels, for example 8-by-8 pixels, on each of the Y-Cr-Cb components of the video.
  • a two dimensional coefficient matrix 220 is created.
  • the coefficients closer to the origin, in the area 222, are generally the low frequency and DC portions of each of the Y-Cr-Cb components, such as the coefficient 222-i.
  • Higher 0 frequency coefficients may be found in the area 224, such as coefficients 224-i, 224-j, and 224-k, generally having a significantly smaller magnitude than the DC components, for example less than half the amplitude of the DC component. Even higher frequencies may be found in the area marked as 226.
  • the inventors have noted that, to keep an essentially uncompressed video, it may be possible to remove the high area 226 for each of the Y-Cr-Cb components.
  • the area 226 may be smaller or larger depending on the number of coefficients that may be sent in a particular implementation.
  • the main portion of the DC coefficient for example the most significant bits of the coefficient 222-i, is preferably mapped into one of a plurality
  • a constellation map may be a 4QAM (QPSK), 16QAM, or any other appropriate type. Because four constellation points 231 through 234 are shown in constellation map 230, a 4QAM implementation is taught in this embodiment, and each of the constellation points is mapped to a digital value from 00 to 11 , respectively. The quantized value of 0 coefficient 222-i is mapped to one such constellation point, depending on its specific value. Such a mapping is considered a digital value mapping.
  • this coarse representation is also likely to have a quantization error, or in other words, a value corresponding to the difference between the original value and 5 the value represented by the coarse representation.
  • This error essentially corresponds to the least significant bits of the high importance coefficients' values that were quantized.
  • the quantization error value, as well as coefficients not represented in a coarse manner, i.e., the coefficients associated with the higher frequencies of area 224, may be mapped as part of constellation point 240-i as, for example, the real 0 portion of the complex number constituting the symbol 240-i.
  • the higher frequency coefficients are paired and each pair is mapped to a constellation point as a real portion and an imaginary portion of a complex number.
  • the coefficients 224-i and 224-j may be mapped to the imaginary and real portions of a constellation point 240-j. This allows for a continuous representation effectively using any available 5 point in the constellation mapping, or otherwise providing a fine constellation. Such a mapping is considered continuous value mapping.
  • a receiver enabled to receive the symbol stream disclosed herein should be able to recompose the coefficients 0 from the transmitted symbols, and is discussed in more detail below.
  • the inventions of MIMO with continuous representation and OFDM with continuous representation provide advantages over the prior art. Specifically, only simple and straightforward algebraic computation is necessary for the reception of the fine values of the transmitted video stream. Even if some errors occur, the impact on the quality of the and generally non-observable.
  • MIMO and/or OFDM systems sending pure data, including video transmitted as data rather than that in the manner disclosed in this invention requires significantly more compute power, and more bandwidth, generally not readily available, and the video quality is more
  • FIG. 3 An exemplary reference may be found in Fig. 3, where an 8-by-8 coefficient matrix is assumed and, hence, there are 64 coefficients found for each of the Y-Cr-Cb components. However, for the reasons mentioned hereinabove, typically between 28- 0 64 of the coefficients of the Y component, and 12-64 of each of the Cr and Cb components are transmitted over the wireless link. The exact number of coefficients may be determined based on the available number of OFDM symbols, where each bin of the OFDM symbol has two degrees of freedom, available for wireless transmission, and on the desired level of reliability of the wireless transmission.
  • a 20 MHz OFDM 5 channel allows for up to 2OM complex numbers, 2OM real and 2OM imaginary, per second, i.e., 4OM degrees of freedom per second.
  • spectral efficiency of the disclosed solution is typically ⁇ 75% and hence each transmission channel can deliver about 3OM degrees of freedom per second or a total of 120M degrees of freedom per second, in the discussed example.
  • some of the channels are used to transmit the coarse representation and the rest to transmit the 5 fine representation. More degrees of freedom are provided to the more important coefficients while less degrees of freedom are provided to the less important coefficients, or even quantization errors thereof.
  • a single frame is contained in about 1200 OFDM symbols corresponding to 256 bins, and which contain the information of about 14,400 blocks of 8-by-8 pixels.
  • the use of a 40 MHz bandwidth channel will allow the sending of twice the number of coefficients and thus more of the coefficients more accurately, for example, it may allow sending the coarse information that has higher importance in a more robust manner, by repeating the information in the course of transmission.
  • ⁇ M(feW ⁇ &lb ⁇ Wfe ⁇ li>vwjhart 400 describing the principles that are at the core of the disclosed invention.
  • a video stream undergoes a de-correlating transformation.
  • the fine representation data undergoes non- linear transformations, as explained in more detail above.
  • the fine representation values are mapped into pairs of real and imaginary portions of symbols.
  • the created symbols are transmitted in accordance with the disclosed invention.
  • Fig. 5 shows an exemplary and non-limiting flowchart 500 of the handling of an HDTV video for wireless transmission using the OFDM scheme in accordance with the disclosed invention.
  • a RGB video is received.
  • the RGB is converted to a Y-Cr-Cb video data stream.
  • a Y-Cr- Cb video is provided and, therefore, the conversions discussed with respect to S510 and S520 are not necessary.
  • a de-correlating transform is performed, for example DCT, on each of the plurality of blocks of pixels, for example a block of 8-by-8 pixels, of each of the Y-Cr-Cb components of the video.
  • a plurality of coefficients is created as a result for each block, for example 64 coefficients in the case of the 8-by-8 block.
  • the number of coefficients to be transmitted is selected.
  • S550 through S570 provide a more detailed description of the mapping process discussed with respect to Figs. 1 , 2 and 4 above.
  • the coefficients in the DC p li ⁇ t ⁇ f ⁇ naM fenlgW are handled.
  • their amplitude is significantly higher than that of the rest of the coefficients, i.e., their most significant bits (MSBs) are material for the information to be sent, and hence these form the coarse representation. Therefore, the MSBs of these coefficients are mapped separately and differently from their respective least significant bits (LSBs), which are otherwise referred to as the quantization error of the DC coefficient.
  • MSBs most significant bits
  • the three MSBs are separated from the rest of the bits as a coarse representation, and transferred as a symbol of its own.
  • the coarse representation is repeated in several symbols for the purpose of ensuring proper and robust reception because the loss of this information is significant for the quality of the reconstructed image.
  • the coarse representation is sent as explained in more detail with respect to Fig. 2 above.
  • error correction code is used to assure the robust reception of these bits.
  • the error correction may further be an unequal error correction which is described in detail in US provisional patent application serial number 60/752,155, entitled “An Apparatus and Method for Unequal Error Protection of Wireless Video Transmission", assigned to common assignee and which is hereby incorporated by reference for all the useful information it may contain
  • the more important coefficients are represented by more of the MSBs versus other coefficients represented by fewer MSBs
  • the LSBs of the DC component that (as noted above) have an amplitude described by the LSBs, for example 8 LSBs of an 11- bit value, as well as the rest of the higher frequency coefficients, construct the fine representation of the coefficients and may be mapped as explained with respect of S560 and S570, as further discussed with reference to Fig 2 above
  • Each pair of the fine representation values may be viewed as the real and imaginary components of a complex value which establishes a symbol of the OFDM scheme Therefore, if there are 230 available symbols for transmission in a given time slot, it is possible to
  • pilots are sent as a priori known signals in some bins of the OFDM symbol, preferably a value from a QPSK constellation. These pilots, alone or in conjunction with other pilots, are used in standard modems for synchronization, frequency, phase corrections, and the like. Pilots can also help in channel estimation and equalization. In standard digital modem, these pilots together with the digital information values, the latter being used via decision feedback because these values are known to those skilled in the art after decoding, allow robust channel estimation and tracking. In the invention disclosed herein, the analog data, sent in the manner discussed in more detail above, makes the use of decision feedback impossible.
  • additional pilots are sent to ensure stable channel estimation and tracking.
  • These pilots may now be used for the purpose of sending the digital data discussed in more detail above, i.e. the coarse values of some transform coefficients are sent over these pilots.
  • additional pilot signals are sent, there is more room for coarsely represented data.
  • SNR signal-to-noise ratio
  • the higher importance coefficients can now be sent more than once thereby increasing the noise immunity for such high importance coefficients.
  • Fig. 6 shows an exemplary and non-limiting block diagram 600 of a system designed to handle the coding in accordance with the disclosed invention.
  • a base band modulator is divided into five basic blocks, according to the functionality and working domain of each bock.
  • the modulator input consists of four signals: one is a symbol stream of the fine data, the result of the transform discussed in more detail above with respect to the handling of the quantization error values of the higher importance P&ifflc ⁇ A ⁇ feftiKrtA ⁇ b'& ⁇ iM ⁇ i ⁇ ntB identified to be of lower importance.
  • the other is a bit stream that represents the coarse part of the DC values of, for example, Y, Cr and Cb components, and possibly the coarse part of some other components as explained in more detail above with respect of the MSBs of the coefficients above.
  • These streams are supplied from video coder 610.
  • the signals from modem control 670 consists of a number of control commands that are to be passed to the receiver, for example the receiver of Fig. 8, as well as other control signals to control the modulator.
  • the modulator output consists of a plurality of signals, for example four signals, that carry the information to digital-to- analog converter 660. This allows for the implementation of MIMO transmission as discussed above.
  • Fig. 7 shows an exemplary and non-limiting block diagram of bit manipulation unit (BMU) 620 of the system 600.
  • the BMU 620 is capable of performing all bit manipulations on the data bits themselves. There are no quantization errors handled by the BMU 620, and all operations are performed bitwise.
  • the audio and coarse representation bit streams are arranged in a predefined order and create a single bit stream by the bit arrangement unit 622.
  • the bits of the single bit stream are mapped to the desired constellation by B2S mapper 626 and passed to a framer unit 630.
  • the framer unit 630 receives the single bit stream and the fine bit stream as a number of sample streams and organizes it into four sample streams with an appropriate header, pilots, and so on.
  • the frequency domain unit (FDU) 640 gets its inputs from the framer 530.
  • the framer 630 creates a symbol stream, such that each symbol is a complex number in accordance with the disclosed invention, as described hereinabove, that represents a point in the two-dimensional space.
  • the framer 630 also includes an inverse fast Fourier transform (IFFT) operation, and the resultant signal is fed to the time domain unit (TDU) 650 where certain shaping of the signal is performed prior to converting the signal to an analog signal in the digital-to-analog converter (DAC) 660.
  • TDU time domain unit
  • DAC digital-to-analog converter
  • the desirable number of bits can be approximated using the following assumptions: quantization noise of about 6 dB per bit, peak to average (PAR) of the signal ⁇ 14 dB, symbol SNR for a desired bit error rate (BER) and given constellation -22 dB, and a safety margin ⁇ 6 dB.
  • PAR peak to average
  • BER bit error rate
  • a safety margin ⁇ 6 dB a safety margin
  • at least seven bits are required, however, to be on the safe side, and according to the limitations of existing technology, it is recommended to use, without limiting the generality of the disclosed invention, a 10-bit or even 12-bit DAC
  • Fig. 8 shows an exemplary and non-limiting receiver 800 adapted to receive signals transmitted in accordance with the disclosed invention.
  • a demodulator 810 is adapted to receive the symbols transmitted in accordance with the disclosed invention, for example as OFDM symbols. The reception is performed, for example, by means of receiving a wireless transmission received from a plurality of antennas 815. Typically, in a MIMO system, the receiver will have at least one more antenna over the number of channels, or antennas, used by the transmitter.
  • the demodulator 810 receives the signals from antennas 815 and processed according to principles of linear filtering theory by unit 812, that also separates the received streams into the respective coarse and fine streams.
  • the coarse data is decoded directly by a MIMO decoding method, such as sphere decoding, while the fine data is process in accordance with linear filtering theory.
  • the fine stream is handled by the decompanding unit 814 that linearizes the received data and generates the fine stream data.
  • the coarse stream is handled by digital demodulator 816 operative in accordance with standard digital modulation techniques and that generates the coarse stream data.
  • the demodulator provides coarse and fine streams of detected OFDM symbols which are then converted by unit 820 to the coefficients by appropriately reconstructing them. Specifically, the information of the quantization errors is added to the respective coarse values to reconstruct the DC and near DC coefficients. Other fine values construct the high frequency coefficient.
  • the reconstructed coefficients are now provided to the inverse transformation unit 830 that generates the Y, Cr, and Cb components of the video transmission.
  • a color converter unit 840 further converts the luminance and chrominance inputs into a standard RGB output, if so desired.
  • elements such as, but not limited to, decision feedback channel distortions and enable precise reception, channel tracking, timing and carrier tracking, and other components, are not shown, however, such are part of any operable OFDM receiver, are well-known in the art, and hence considered part of the receiver.
  • the receiver 800 may be further enabled to receive pilot signals and interpret them as containing data.
  • An embodiment may include a computer software product containing a plurality of instructions that when executed comprise the inventions disclosed herein.

Abstract

An apparatus and method for wireless transmission of uncompressed HDTV video overcomes the challenges of sending vast amounts of information over a wireless link. This is achieved by direct mapping of transformation coefficients of the video components to communication symbols, such as OFDM symbols. A main portion of the important transform coefficients, for example the MSBs of the coefficients representing lower frequencies of each of the video components, and in particular the quantized values of the lower frequencies components, are sent in a coarse representation using, for example, QPSK or QAM. The coefficients representing higher frequencies of the video components, and the quantization error values of the lower frequencies components, or some, non-linear transformation thereof, are sent as pairs of real and imaginary portions of a complex number that comprises a point in a fine constellation. The invention further provides a delay-less and buffer-less implementation of transmitter and receiver pairs.

Description

APPARATUS AND METHOD FOR UNCOMPRESSED, WIRELESS
TRANSMISSION OF VIDEO
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention relates to the transmission of uncompressed video over a wireless link. More specifically, the invention relates to the delay-less and buffer-less transmission of uncompressed HDTV video over a wireless link using direct mapping of image transform coefficients to transmission symbols.
DISCUSSION OF THE PRIOR ART
In many houses, television and/or video signals are received through cable or satellite links at a set-top box at a fixed point in the house. In many cases, it is desired to place a screen at a point a distance from the set-top box by a few meters. This trend is becoming more common as flat-screen using plasma or liquid crystal display (LCD) televisions are hung on a wall. Connection of the screen to the set-top box through cables is generally undesired for aesthetic reasons and/or installation convenience. Thus, wireless transmission of the video signals from the set-top box to the screen is preferred. Similarly, it may be desired to place a computer, game controller, VCR, DVD, or other video source that generates images to be displayed on a screen a distance from the screen.
Generally, the data are received at the set-top box compressed in accordance, for example, with the motion picture expert group (MPEG) format and are decompressed by the set-top box to a high quality raw video signal. The raw video signal may be in an analog format or a digital format, such as the digital video interface (DVI) format or the high definition multimedia interface (HDMI) format. These digital formats generally have a high definition television (HDTV) data rate of up to about 1.5 Giga bits per second (Gbps). in the home can be done over the unlicensed bands around 2.4GHz or around 5GHz (e.g., in the U. S 5.15-5.85 GHz band). These bands are currently used by wireless local area networks (WLAN) where the 802.11 WiFi standard allow maximal data rates of 11Mbps (802.11b), or 54Mbps (for 20MHz bandwidth and the 802.11g/802.11a standards). Using the emerging Multi-Input Multi- Output technology the data rate of the emerging 802.11 n standard can increase to above 200Mbps when a 20MHz band is used and double of that when a 40MHz band is used. Another alternative is to use Ultra Wide Band (UWB), which claims to provide 100-400Mbps.
Since the available data rate is lower than the 1.5Gbps needed for uncompressed HDTV video, the video generally needs to be recompressed for wireless transmission, when desired. Known strong video compression methods, e.g. those having a compression factor of above 1 :30 require very complex hardware to implement the compression. This is generally not practical for home applications. These compression methods generally transform the image into a different domain by using, for example, wavelet, discrete cosine transform (DCT), or Fourier transforms, and then perform the compression in that domain. The transforms typically de-correlate the data to allow for effective compression. In PCT application IL/2004/000779, Wireless Transmission of High Quality Video, assigned to common assignee and incorporated herein in its entirety by this reference thereto, there is shown a method of transmitting video images. The method includes providing high definition video, compressing the video using an image domain compression method, in which each pixel is coded based on a vicinity of the pixel, and transmitting the compressed video over a fading transmission channel.
In U.S. patent publication 2003/002582 to Obrador there is described a wireless transmission of images which are encoded using joint source channel coding (JSCC). The transmitted images are decomposed into a plurality of sub-bands of different frequencies. Image and corresponding boundary coefficients with a lowest resolution are sent first and then image and boundary coefficients with a higher resolution are transmitted. An exemplary JSCC applies channel encoding techniques to the source coded coefficients, providing more protection to more important, i.e. low frequency, coefficients and less protection to less important, i.e. high frequency, coefficients. Λhcth'drtβcnnrque TOr' JSϋC was proposed by Ramstad, The Marriage of Subband Coding and OFDM Transmission, Norwegian University of Science and Technology (July 2003), that combines subband coding of the source, for example images, and OFDM modulation.
In digital transmission methods, signals are transmitted in the form of symbols. Each symbol can have one of a predetermined number of possible values. The set of possible values of each symbol is referred to as a constellation and each possible value is referred to as a constellation point. The distance between neighboring points affects the immunity to noise. The noise causes reception of another point instead of the intended point, and thus the symbol may be interpreted incorrectly. In orthogonal frequency division multiplexing (OFDM) communication scheme, the symbols are comprised of multiple bins, e.g., 64, 128 or 256 bins, in the frequency domain, each bin of each symbol comprised of a two dimensional constellation. It is also known in the art that the use of some of the available bins is not recommended. Typically these are the bins located at the ends of the transmission band. Typically, for example in 802.11a/g, some 16 available channels out of the 64, are not used, and hence the efficiency of the band is reduced.
In U.S. patent application serial no, 2004/0196920 and 2004/0196404 by Loheit et al. another scheme is proposed for the transmission of HDTV over a wireless link. The discussed scheme transmits and receives an uncompressed HDTV signal over a wireless RF link which includes a clock that provides a clock signal synchronized to the uncompressed HDTV signal. This scheme also includes a data regeneration module connected to the clock, which provides a stream of regenerated data from the uncompressed HDTV signal. A demultiplexer demultiplexes the stream of regenerated data, using the clock signal, into an I data stream and a Q data stream. A modulator connected to the demultiplexer modulates a carrier with the I data stream and the Q data stream. According to Loheit et al. the RF links operate at a variety of frequency bands from 18 GHz up to 110 GHz, hence requiring sophisticated and more expensive transmitters and receivers.
In view of a variety of limitations of the prior art it would be advantageous to provide a solution that enables the reliable wireless transmission of an HDTV stream while avoiding tne neecf Tor aggressive or complex compression, or complex hardware implementations. In particular it would be advantageous to avoid a compression that relies on having frame buffers for reaching the compression levels necessary to transmit the vast amount of data required in applications, such as wireless transmission of HDTV data streams. It would be further advantageous to avoid use of ultra-high frequencies to achieve the goal of wireless transmission of an HDTV data stream. It would be of further advantage if the proposed system would not insert delays in the transmission of the video. It would be further advantageous if a more efficient use of the transmission band is achieved, thus allowing the transmission of more information.
Summary of the Invention An apparatus and method for wireless transmission of uncompressed HDTV video overcomes the challenges of sending vast amounts of information over a wireless link. This is achieved by direct mapping of transformation coefficients of the video components (for example Y-Cr-Cb components) to communication symbols, such as OFDM symbols. A main portion of the important transform coefficients, for example the most significant bits of the coefficients representing lower frequencies of each of the video components, and in particular the quantized values of the DC and the near DC components thereof, are sent in a coarse, digital, representation using, for example, QPSK or QAM. The coefficients representing the higher frequency of each of the video components, as well as the quantization error values of the DC and near DC components, or some, possibly non-linear transformation thereof, are sent as pairs of real and imaginary portions of a complex number that comprises a point in a fine granularity constellation. The invention thus provides a delay-less and buffer-less implementation of transmitter and receiver pairs.
BRIEF DESCRIPTION OF FIGURES
Fig. 1 is a block diagram of coding system in accordance with the disclosed invention;
Fig. 2 is a schematic diagram showing an 8-by-8 pixel de-correlation transform, the grouping of the coefficients, and the mapping into coarse and fine symbol representations in accordance with the disclosed invention; Fig. 3 is a table showing the number of coefficients selected from each of the transformed Y, Cr and Cb of an 8-by-8 pixel conversion in accordance with an embodiment described in the disclosed invention;
Fig. 4 is a flowchart describing the principles of the disclosed invention;
Fig. 5 is a flowchart showing handling an HDTV video for wireless transmission using OFDM scheme in accordance with the disclosed invention;
Fig. 6 is a detailed block diagram of a coding system in accordance with the disclosed invention;
Fig. 7 is a block diagram of the bit manipulation block of a coding system in accordance with the disclosed invention;
Fig. 8 is a block diagram of a receiver enabled to receive a video steam transmitted in accordance with the disclosed invention.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
The disclosed invention is intended to overcome the deficiencies of the prior art solutions by providing a scheme that allows the transmission of video, such as a high- definition television (HDTV) video, over a wireless link using transmission symbols, such as symbols of an OFDM scheme. Specifically, the inventors have realized that it is possible to map the coefficients of a block of pixels, or a portion thereof, after a de- correlating transformation directly into the transmission symbols. The de-correlation is performed for the purpose of minimizing the energy of the coefficients but without compromising the number of degrees of freedom available. For example, a discrete cosine transform (DCT) is performed on a block of pixels of each of the Y, Cr and Cb components of the video. The Y component provides the luminance of the pixel, while the Cr and Cb components provide the color difference information, otherwise known as chrominance. In a preferred embodiment all the coefficients are transmitted in accordance with the disclosed invention. In another embodiment of the disclosed invention, only a portion of the coefficients are used for transmission purposes, thereby frequency coefficients and keeping the lower spatial frequency coefficients. Significantly, more of the Y related coefficients are preserved for wireless transmission purposes than those for the other two components, as the human eye is more sensitive to luminance then chrominance. Without limitation and for 5 the purposes of example only, a ratio of at least three coefficients respective of the Y component may be used for each of the Cr and Cb components, e.g. a ratio of 3:1 :1. However, other ratios may be used without departing from the spirit of the disclosed invention. Hence, in accordance with the disclosed invention emphasis is given to DC and near DC coefficients over coefficients representing higher frequencies, and 0 coefficients respective of luminance receive a preferred treatment over coefficients respective of chrominance Unlike compression techniques of the likes of JPEG and MPEG, the invention further sends the information of the quantization error over the transmission channel thereby allowing the reconstruction of the video frame and providing an essentially uncompressed transmission of video, and in particular high- 5 definition video, over a transmission channel, wired or wireless.
In accordance with the invention, the DC coefficients, or DC proximate coefficients having a larger value, are represented in a coarse, sometimes referred to as digital, manner, i.e. part of the DC value is represented as one of a plurality of constellation 0 points of a symbol. This is achieved by performing a quantization on these values and mapping those quantized values in accordance with the disclosed invention. The higher frequency coefficients and in addition the quantization errors of the DC and the DC proximate components whose main part is presented coarsely, are grouped in pairs, positioning each pair in a point as the real and imaginary values of the complex 5 number, that provide the fine granularity, almost analog, value which at an extreme fineness provides for a continuous representation of these values.
Optionally, a non-linear transformation, referred to as companding, is performed on any one of these values that comprise the complex number. Companding is a non- 0 linear transformation of a value. Common companding functions are logarithmic, e.g., A-law and μ-law. The use of these techniques effectively provide for a better dynamical range and better signal-to-noise ratio in representing the corresponding values. In a preferred embodiment the following companding function may be used' SJ! Pu ^heM ?y fte vilϊiy'ofllii coefficient and a is a factor designed to maintain the power of f(x) to be the same as that of x.
Another possible mapping allows the mapping of a number of data values to a smaller 5 number of values thereby potentially saving transmission bandwidth. For example, two numbers are mapped into one number, or three numbers are mapped into two numbers and the likes. While inserting a certain distortion when the original values are reconstructed, the advantage is the capability of sending also the less important data on the limited available bandwidth. In an exemplary two numbers, for example x? and 0 X2, would therefore be transformed by a function that would result in a single value ffxη.x), where f(xi,x2) would be further multiplied by a factor a, designed to maintain the power after the mapping to be the same as prior to the mapping, shown as: a2E(f2(xvxz)) = E(x2) + E{x2 2) where α is the factor designed to maintain the power of f(Xi,xz) to be the same as the 5 combined power of Xi and x. In one embodiment of the disclosed invention the data transferred may be encrypted.
Unlike MPEG and the likes, the invention disclosed herein allows keeping all the coefficients of the de-correlating transform. Therefore the reconstruction at the receiver 0 side is more accurate as more information is available for such reconstruction. Furthermore, in accordance with the disclosed invention it is possible to use subchannels of the transmission channel, normally avoided so as to provide necessary margin or to avoid interference problems, for the purpose of transmitting those coefficient values which receive a lesser representation. By transmitting the less 5 important values as determined in accordance with the disclosed invention, over the normally un-used sub-channels, or subbands, effectively there is an increase of the available bandwidth for transmission. In addition some values can be compacted together using the methods described hereinabove.
0 The constellation points of all the coarse and fine constellations, generated as disclosed above, are arranged as series of complex numbers that are modulated for the transmission purposes. In a preferred embodiment for wireless communication, but without limitation on the disclosed invention, orthogonal frequency division modulation (OFDM) is used. In OFDM communication scheme, symbols are comprised of multiple domain, each bin of each symbol comprised of a two dimensional constellation (a complex number). In a communication system having a bandwidth W there are 2W degrees of freedom. If the spectral efficiency p is less than 100% then the number of degrees of freedom is 2Wp per second. Since each complex
5 number contains two degrees of freedom the number of complex number that can be transmitted is pW. By using multiple transmission antennas, that require multiple reception antennas, i.e., a multi-in multi-input multi-output (MIMO) system, the transmission rate for a given bandwidth is increased.
0 Following is a detailed description of the principles of the disclosed invention. While the invention is described with respect to particular embodiments and respective figures, such are not intended to limit the scope of the invention and are provided for purposes of example only.
5 Fig. 1 shows an exemplary and non-limiting block diagram of system 100 for direct symbol coding in accordance with the disclosed invention. The system 100 receives the red-green-blue (RGB) components of a video signal, for example an HDTV video signal. The RGB stream is converted in the color conversion block 110 to the luminance component Y, and the two color difference components, Cr and Cb. This 0 conversion is well known to persons of ordinary skill in the art. In one embodiment of the disclosed invention, the video begins with a Y-Cr-Cb video signal and, in such a case, there is no need for the color conversion block 110. The Y-Cr-Cb components are fed to a transform unit 120 where a de-correlating transformation is performed on blocks of pixels respective of each of the three components. In one embodiment of the 5 disclosed invention, the block 120 performs a DCT on the blocks of pixels. A block of pixels may contain 64 pixels arranged in an 8-by-8 format, as shown in to Fig. 2. The transform unit 120 may comprise a single subunit for performing the desired transform, for example a DCT, handling the conversions for all the blocks of pixels of an entire video frame for each of the Y-Cr-Cb component. In another embodiment, a dedicated 0 transform subunit is used for each of the Y-Cr-Cb components, thereby accelerating the performance of the system. In yet another embodiment a plurality of subunits are used such that two or more such subunits, capable of performing a desired transform on a block of pixels, are used for each of the Y-Cr-Cb components, thus further accelerating the performance of the system 100. The output of transform unit 120 is a are fed to a mapper 130. The mapper 130 selects those coefficients from each of the Y-Cr-Cb components which are to be transferred over the wireless link. The mapper 130 also maps the coefficients to be sent to transmission symbols, for example, the symbols of an orthogonal frequency division multiplexing 5 (OFDM) scheme, a process described in more detail with respect to Fig. 4. The symbols are then transmitted using a modified OFDM transmitter 140 that handles the mixed nature of the symbols having a mix of coarse and fine constellation values, as explained in more detail with respect to Fig 2. In one embodiment of the disclosed invention, a modified OFDM transmitter 140 is connected to a plurality of antennas for 0 the purpose of supporting a multi-input, multi-output (MIMO) transmission scheme, thereby increasing the effective bandwidth and reliability of the transmission. A person skilled in the art further appreciate that a receiver, for example the receiver shown in Fig. 8, adapted to receive the wireless signal comprising the symbols transmitted in accordance with the disclosed invention, must be capable of detecting the coarse and 5 fine representations of the sent symbols, reconstruct the respective coefficients, and perform an inverse transform to reconstructing the Y-Cr-Cb components. However, because there is no frame-to-frame compression there is no need for frame buffers in the system. Because the mapping and transform are fast and work on small blocks with no need to consider wide area correlation in the image, nor frame-to-frame 0 correlations, there is practically no delay associated with the operations disclosed herein, and further more only a limited number of lines need to be kept within frame processing. The components the receiver are discussed in more detail below.
In accordance with the disclosed invention, a de-correlating transform, such as a DCT, 5 is performed on blocks of pixels, for example 8-by-8 pixels, on each of the Y-Cr-Cb components of the video. As a result of the transform on a block, for example a block 210 shown in Fig. 2, a two dimensional coefficient matrix 220 is created. The coefficients closer to the origin, in the area 222, are generally the low frequency and DC portions of each of the Y-Cr-Cb components, such as the coefficient 222-i. Higher 0 frequency coefficients may be found in the area 224, such as coefficients 224-i, 224-j, and 224-k, generally having a significantly smaller magnitude than the DC components, for example less than half the amplitude of the DC component. Even higher frequencies may be found in the area marked as 226. The inventors have noted that, to keep an essentially uncompressed video, it may be possible to remove the high area 226 for each of the Y-Cr-Cb components. The area 226 may be smaller or larger depending on the number of coefficients that may be sent in a particular implementation. The main portion of the DC coefficient, for example the most significant bits of the coefficient 222-i, is preferably mapped into one of a plurality
5 of constellation points, such as shown in the constellation map 230. A constellation map may be a 4QAM (QPSK), 16QAM, or any other appropriate type. Because four constellation points 231 through 234 are shown in constellation map 230, a 4QAM implementation is taught in this embodiment, and each of the constellation points is mapped to a digital value from 00 to 11 , respectively. The quantized value of 0 coefficient 222-i is mapped to one such constellation point, depending on its specific value. Such a mapping is considered a digital value mapping.
However, this coarse representation is also likely to have a quantization error, or in other words, a value corresponding to the difference between the original value and 5 the value represented by the coarse representation. This error essentially corresponds to the least significant bits of the high importance coefficients' values that were quantized. The quantization error value, as well as coefficients not represented in a coarse manner, i.e., the coefficients associated with the higher frequencies of area 224, may be mapped as part of constellation point 240-i as, for example, the real 0 portion of the complex number constituting the symbol 240-i. The higher frequency coefficients are paired and each pair is mapped to a constellation point as a real portion and an imaginary portion of a complex number. For example, the coefficients 224-i and 224-j may be mapped to the imaginary and real portions of a constellation point 240-j. This allows for a continuous representation effectively using any available 5 point in the constellation mapping, or otherwise providing a fine constellation. Such a mapping is considered continuous value mapping.
As noted above, a receiver enabled to receive the symbol stream disclosed herein, such as the receiver shown in Fig. 8, should be able to recompose the coefficients 0 from the transmitted symbols, and is discussed in more detail below. The inventions of MIMO with continuous representation and OFDM with continuous representation provide advantages over the prior art. Specifically, only simple and straightforward algebraic computation is necessary for the reception of the fine values of the transmitted video stream. Even if some errors occur, the impact on the quality of the and generally non-observable. By contrast, MIMO and/or OFDM systems sending pure data, including video transmitted as data rather than that in the manner disclosed in this invention, requires significantly more compute power, and more bandwidth, generally not readily available, and the video quality is more
5 sensitive to errors.
An exemplary reference may be found in Fig. 3, where an 8-by-8 coefficient matrix is assumed and, hence, there are 64 coefficients found for each of the Y-Cr-Cb components. However, for the reasons mentioned hereinabove, typically between 28- 0 64 of the coefficients of the Y component, and 12-64 of each of the Cr and Cb components are transmitted over the wireless link. The exact number of coefficients may be determined based on the available number of OFDM symbols, where each bin of the OFDM symbol has two degrees of freedom, available for wireless transmission, and on the desired level of reliability of the wireless transmission. A 20 MHz OFDM 5 channel allows for up to 2OM complex numbers, 2OM real and 2OM imaginary, per second, i.e., 4OM degrees of freedom per second. In a MIMO, that effectively expands the available bandwidth, system with four transmission antennas four such 20 MHz OFDM channels are made available and hence, theoretically, up to 160M numbers, or degrees of freedom per second, are possible. In practice full spectral efficiency is not 0 achievable. Due to the techniques disclosed herein, spectral efficiency of the disclosed solution is typically ~75% and hence each transmission channel can deliver about 3OM degrees of freedom per second or a total of 120M degrees of freedom per second, in the discussed example. In accordance with the disclosed invention some of the channels are used to transmit the coarse representation and the rest to transmit the 5 fine representation. More degrees of freedom are provided to the more important coefficients while less degrees of freedom are provided to the less important coefficients, or even quantization errors thereof. In an exemplary transmission of an HDTV video a single frame is contained in about 1200 OFDM symbols corresponding to 256 bins, and which contain the information of about 14,400 blocks of 8-by-8 pixels. 0 The use of a 40 MHz bandwidth channel will allow the sending of twice the number of coefficients and thus more of the coefficients more accurately, for example, it may allow sending the coarse information that has higher importance in a more robust manner, by repeating the information in the course of transmission. Pϊ^T|^M(feW^ι<&lb^Wfe^li>vwjhart 400 describing the principles that are at the core of the disclosed invention. In S410 a video stream undergoes a de-correlating transformation. As a result a plurality of coefficients describing the components of the original video stream are provided. In S420 the DC and DC proximate coefficients are selected for the coarse representation of the transmission in accordance with the disclosed invention. In S430 a quantization of the coarse representation takes place and in S440 the quantized coarse representation is mapped onto symbols in accordance with the disclosed invention. In S450 the fine representation comprised of quantization error values from the quantization in S430 as well as the remaining coefficients not selected in S420 form the fine representation of the transmission in accordance with the disclosed invention are prepared. In one embodiment of the disclosed invention only a portion of the higher frequency coefficients are selected for use with respect of the fine representation stream. In yet another embodiment of the disclosed invention the fine representation data, or portions thereof, undergoes non- linear transformations, as explained in more detail above. In S460 the fine representation values are mapped into pairs of real and imaginary portions of symbols. Lastly, in S470 the created symbols are transmitted in accordance with the disclosed invention.
Fig. 5 shows an exemplary and non-limiting flowchart 500 of the handling of an HDTV video for wireless transmission using the OFDM scheme in accordance with the disclosed invention. In S510, a RGB video is received. In S520, the RGB is converted to a Y-Cr-Cb video data stream. In one embodiment of the disclosed invention, a Y-Cr- Cb video is provided and, therefore, the conversions discussed with respect to S510 and S520 are not necessary. In S530 a de-correlating transform is performed, for example DCT, on each of the plurality of blocks of pixels, for example a block of 8-by-8 pixels, of each of the Y-Cr-Cb components of the video. A plurality of coefficients is created as a result for each block, for example 64 coefficients in the case of the 8-by-8 block. Optionally, in S540, for each of the Y-Cr-Cb components, the number of coefficients to be transmitted is selected. A person skilled in the art would appreciate that in a sense a compaction takes place in this case. However, the compaction, if performed, takes place on low coefficient values.
S550 through S570 provide a more detailed description of the mapping process discussed with respect to Figs. 1 , 2 and 4 above. In S550, the coefficients in the DC p liΦφtøfønaM fenlgW are handled. Typically, their amplitude is significantly higher than that of the rest of the coefficients, i.e., their most significant bits (MSBs) are material for the information to be sent, and hence these form the coarse representation. Therefore, the MSBs of these coefficients are mapped separately and differently from their respective least significant bits (LSBs), which are otherwise referred to as the quantization error of the DC coefficient. For example, if the coefficient is represented by 11 -bits, the three MSBs are separated from the rest of the bits as a coarse representation, and transferred as a symbol of its own. In one embodiment, the coarse representation is repeated in several symbols for the purpose of ensuring proper and robust reception because the loss of this information is significant for the quality of the reconstructed image. Specifically, the coarse representation is sent as explained in more detail with respect to Fig. 2 above. In another embodiment error correction code is used to assure the robust reception of these bits. The error correction may further be an unequal error correction which is described in detail in US provisional patent application serial number 60/752,155, entitled "An Apparatus and Method for Unequal Error Protection of Wireless Video Transmission", assigned to common assignee and which is hereby incorporated by reference for all the useful information it may contain In a further embodiment the more important coefficients are represented by more of the MSBs versus other coefficients represented by fewer MSBs The LSBs of the DC component that (as noted above) have an amplitude described by the LSBs, for example 8 LSBs of an 11- bit value, as well as the rest of the higher frequency coefficients, construct the fine representation of the coefficients and may be mapped as explained with respect of S560 and S570, as further discussed with reference to Fig 2 above Each pair of the fine representation values may be viewed as the real and imaginary components of a complex value which establishes a symbol of the OFDM scheme Therefore, if there are 230 available symbols for transmission in a given time slot, it is possible to send up to 460 pairs of real and imaginary portions of a complex values However, some 60 symbols are used to send coarse values as explained above In S580, the symbols are transmitted over a wireless link using the OFDM scheme The overall result of using the steps described herein is to provide a very high frame rate, for example above 45 frames per second, or over 0 6 Gbits per second of video information, hence allowing for a high quality transmission of HDTV video where the video is essentially uncompressed. P C T ■/" LI S O S-/ 4- 1.1118 Ei
The separation to a quantized value referred to as a coarse representation and a quantization error referred to as a fine representation, for describing the DC and other important transform coefficients, can be generalized as follows. These coefficients can pass via a quantizer that can take several values, say M=2Λn. The specification of the quantizer value, represented by n bits plays the role of the MSB's, or coarse values, above, while the quantization error, or fine representation, that is the original value minus the value represented by the quantizer, plays the role of the LSB's above.
One embodiment of the disclosed invention makes use of pilots. Commonly, pilots are sent as a priori known signals in some bins of the OFDM symbol, preferably a value from a QPSK constellation. These pilots, alone or in conjunction with other pilots, are used in standard modems for synchronization, frequency, phase corrections, and the like. Pilots can also help in channel estimation and equalization. In standard digital modem, these pilots together with the digital information values, the latter being used via decision feedback because these values are known to those skilled in the art after decoding, allow robust channel estimation and tracking. In the invention disclosed herein, the analog data, sent in the manner discussed in more detail above, makes the use of decision feedback impossible. Therefore, in accordance with this embodiment of the disclosed invention additional pilots are sent to ensure stable channel estimation and tracking. These pilots may now be used for the purpose of sending the digital data discussed in more detail above, i.e. the coarse values of some transform coefficients are sent over these pilots. Because additional pilot signals are sent, there is more room for coarsely represented data. This results in an improved signal-to-noise ratio (SNR) on the finely represented data, because even larger portion of the transform coefficients, for example the DCT coefficient, is now sent. Alternatively the higher importance coefficients can now be sent more than once thereby increasing the noise immunity for such high importance coefficients.
Fig. 6 shows an exemplary and non-limiting block diagram 600 of a system designed to handle the coding in accordance with the disclosed invention. A base band modulator is divided into five basic blocks, according to the functionality and working domain of each bock. The modulator input consists of four signals: one is a symbol stream of the fine data, the result of the transform discussed in more detail above with respect to the handling of the quantization error values of the higher importance P&ifflcϊAΗfeftiKrtA^b'&ϊiMϊiθntB identified to be of lower importance. The other is a bit stream that represents the coarse part of the DC values of, for example, Y, Cr and Cb components, and possibly the coarse part of some other components as explained in more detail above with respect of the MSBs of the coefficients above. These streams are supplied from video coder 610. In addition, there may be an audio signal, and command signals that come from modem control 670. The signals from modem control 670 consists of a number of control commands that are to be passed to the receiver, for example the receiver of Fig. 8, as well as other control signals to control the modulator. In one embodiment of the system 600, the modulator output consists of a plurality of signals, for example four signals, that carry the information to digital-to- analog converter 660. This allows for the implementation of MIMO transmission as discussed above.
Fig. 7 shows an exemplary and non-limiting block diagram of bit manipulation unit (BMU) 620 of the system 600. The BMU 620 is capable of performing all bit manipulations on the data bits themselves. There are no quantization errors handled by the BMU 620, and all operations are performed bitwise. First, the audio and coarse representation bit streams are arranged in a predefined order and create a single bit stream by the bit arrangement unit 622. After optional coding by optional coding unit 624, the bits of the single bit stream are mapped to the desired constellation by B2S mapper 626 and passed to a framer unit 630. The framer unit 630 receives the single bit stream and the fine bit stream as a number of sample streams and organizes it into four sample streams with an appropriate header, pilots, and so on. Two different data streams are padded with pilots and, optionally, with some other data where it may be deemed necessary, and then interleaved. In a MIMO implementation, the stream is divided into a plurality of streams, for example four streams, one for each of the MIMO transmitters. The frequency domain unit (FDU) 640 gets its inputs from the framer 530. The framer 630 creates a symbol stream, such that each symbol is a complex number in accordance with the disclosed invention, as described hereinabove, that represents a point in the two-dimensional space. The framer 630 also includes an inverse fast Fourier transform (IFFT) operation, and the resultant signal is fed to the time domain unit (TDU) 650 where certain shaping of the signal is performed prior to converting the signal to an analog signal in the digital-to-analog converter (DAC) 660. in one embodiment of the disclosed invention, at a sampling rate of 40 MHz, or even higher frequencies, for example 80 or 160 MHz. The desirable number of bits can be approximated using the following assumptions: quantization noise of about 6 dB per bit, peak to average (PAR) of the signal ~14 dB, symbol SNR for a desired bit error rate (BER) and given constellation -22 dB, and a safety margin ~6 dB. In total, at least seven bits are required, however, to be on the safe side, and according to the limitations of existing technology, it is recommended to use, without limiting the generality of the disclosed invention, a 10-bit or even 12-bit DAC.
Fig. 8 shows an exemplary and non-limiting receiver 800 adapted to receive signals transmitted in accordance with the disclosed invention. A demodulator 810 is adapted to receive the symbols transmitted in accordance with the disclosed invention, for example as OFDM symbols. The reception is performed, for example, by means of receiving a wireless transmission received from a plurality of antennas 815. Typically, in a MIMO system, the receiver will have at least one more antenna over the number of channels, or antennas, used by the transmitter. The demodulator 810 receives the signals from antennas 815 and processed according to principles of linear filtering theory by unit 812, that also separates the received streams into the respective coarse and fine streams. Alternatively, the coarse data is decoded directly by a MIMO decoding method, such as sphere decoding, while the fine data is process in accordance with linear filtering theory. The fine stream is handled by the decompanding unit 814 that linearizes the received data and generates the fine stream data. The coarse stream is handled by digital demodulator 816 operative in accordance with standard digital modulation techniques and that generates the coarse stream data. The demodulator provides coarse and fine streams of detected OFDM symbols which are then converted by unit 820 to the coefficients by appropriately reconstructing them. Specifically, the information of the quantization errors is added to the respective coarse values to reconstruct the DC and near DC coefficients. Other fine values construct the high frequency coefficient. The reconstructed coefficients are now provided to the inverse transformation unit 830 that generates the Y, Cr, and Cb components of the video transmission. A color converter unit 840 further converts the luminance and chrominance inputs into a standard RGB output, if so desired. For purposes of simplicity, elements such as, but not limited to, decision feedback channel distortions and enable precise reception, channel tracking, timing and carrier tracking, and other components, are not shown, however, such are part of any operable OFDM receiver, are well-known in the art, and hence considered part of the receiver. The receiver 800 may be further enabled to receive pilot signals and interpret them as containing data. Such a capability is described in detail in US provisional patent application serial number 60/758,060, entitled "Use of Pilot Symbols for Data Transmission in Uncompressed, Wireless Transmission of Video", assigned to common assignee and which is hereby incorporated by reference for all the useful information it may contain.
Although the invention is described herein with reference to several embodiments, including the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the invention, including, but not limited to, transmission in accordance with the disclosed invention over a wired medium. The invention may be further implemented in hardware, software, firmware or any combination thereof. Accordingly, the invention should only be limited by the following claims. An embodiment may include a computer software product containing a plurality of instructions that when executed comprise the inventions disclosed herein.

Claims

PC "IVUSOB-^1 M-XM-B Ei;
1. Apparatus for transmission of a substantially uncompressed high definition video signal without substantial delay, comprising:
means for receiving uncompressed video signal components;
means for performing a de-correlating transform on said uncompressed video signal components to provide a plurality of coefficients; and
means for mapping each of said coefficients to a transmission symbol.
2. The apparatus of Claim 1 , said transmission comprising a wireless transmission.
3. The apparatus of Claim 1 , further comprising:
means for removing a portion of said transform's coefficients.
4. The apparatus of Claim 3, said means for removing a portion of said transform's coefficients further comprising means for performing said removal without dependency on a previous frame of said high definition video signal.
5. The apparatus of Claim 1, said transmission of said high definition video signal comprising buffer-less transmission.
6. The apparatus of Claim 1, said de-correlating transform comprising:
a discrete cosine transform (DCT).
7. The apparatus of Claim 1 , said transmission symbol comprising:
a symbol of an orthogonal frequency division multiplexing (OFDM) transmission scheme. 7, further comprising:
an OFDM transmitter for sending said transform's coefficients.
9. The apparatus of Claim 8, said OFDM transmitter comprising means for transmitting over a multi-input multi-output (MIMO) link.
10. The apparatus of Claim 1, said uncompressed components comprising a component digital format comprising a luminance signal and color difference signals.
11. The apparatus of Claim 10, further comprising:
means for converting a color space of said high definition video signal into said component digital format.
12. The apparatus of Claim 3, said means for removing a portion of said transform's coefficients comprising means for removing only a number of said coefficients that is sufficient to maintain a substantially uncompressed wireless transmission of said high definition video signal.
13. The apparatus of Claim 12, said means for removing said transform's coefficients leaving between forty-five and sixty four out of a total of sixty four coefficients with respect to a luminance signal of said high definition video signal.
14. The apparatus of Claim 12, said means for removing a portion of said transform's coefficients leaving between twelve and sixty four out of a total of sixty four coefficients with respect to color difference signals of said high definition video signal.
15. The apparatus of Claim 1 , said means for mapping further comprising: IP plurality of coefficients into a first group comprising coefficients representing low-frequencies and into a second group comprising coefficients representing high-frequencies.
16 The apparatus of Claim 15, further comprising:
quantization means for generating coarse values from said first group.
17. The apparatus of Claim 16, further comprising
means for mapping a coarse value to one of a plurality of constellation points of a symbol.
18. The apparatus of Claim 17, further comprising:
means for generating extra pilot signals in addition to standard pilot signals; and
means for using at least one of said extra pilot signals to send one of said coarse values.
19. The apparatus of Claim 15, further comprising1
means for generating quantization error values from said first group;
means for representing said quantization error values and said coefficients representing high frequencies as a plurality of complex values of a symbol, wherein each complex value comprises both a first value and a second value from said quantization error values and said coefficients representing high frequencies, wherein said first value is represented as a real portion of a complex value and said second value is represented as an imaginary portion of said complex value.
20. The apparatus of Claim 1 , wherein said high definition video signal has a transmission rate of at least 45 frames per second. P C T / U S Cl S ./ H- JLMrS S
21. The apparatus of Claim 1, said high definition video signal having an uncompressed data rate of above 100 Mbit per second.
22. The apparatus of Claim 1 , said high definition video signal having an uncompressed data rate that is greater than 0.6 Gbit per second.
23. The apparatus of Claim 1 , said means for performing a de-correlating transform comprising means for processing a block of pixels of said high definition video signal.
24. The apparatus of Claim 23, said block of pixels comprising a rectangle of eight pixels by eight pixels.
25. The apparatus of Claim 23, said means for performing a de-correlating transform comprising means for processing a plurality of blocks of pixels of said high definition video signal in parallel.
26. The apparatus of Claim 1 , comprising:
means for performing said de-correlating transform on all t pixels of a frame of a video signal.
27. The apparatus of Claim 1 , further comprising:
means for performing a non-linear transformation of at least one of said coefficients.
28. The apparatus of Claim 28, said means for performing a non-linear transformation comprising means for adjusting the power of a non-linear function of a coefficient to the power of said coefficient prior to said non-linear transformation. IM- E$f of a substantially uncompressed high definition video signal, comprising the steps of:
receiving uncompressed components of said high definition video signal;
performing a de-correlating transform on said uncompressed video signal components to provide a plurality of coefficients; and
mapping each of said coefficients to a transmission symbol.
30. The method of Claim 29, further comprising the step of:
transmitting said transmission symbol over any of a wireless link and a wired link.
31. The method of Claim 29, said step of removing a portion of said coefficients is performed without dependency on a previous frame of said high definition video signal.
32. The method of Claim 29, said de-correlating transform comprising a discrete cosine transform (DCT).
33. The method of Claim 29, said transmission symbol comprising a symbol of an orthogonal frequency division multiplexing (OFDM) transmission scheme.
33. The method of Claim 29, further comprising the step of:
converting a color space of said high definition video signal into a component digital format.
34. The method of Claim 29, further comprising the step of:
transmitting a symbol stream with an OFDM transmitter. """ Sδ? ήrfie'niefea oteiaW'sl, said step of transmitting said symbol stream further comprising the step of:
transmitting over a multi-input multi-output (MIMO) link.
36. The method of Claim 29, further comprising the step of:
removing a portion of said transform's coefficients.
37. The method of Claim 36, said step of removing a portion of said transform's coefficients further comprising the step of:
removing only a number of said coefficients that is sufficient to maintain a substantively uncompressed wireless transmission of said high definition video signal.
38. The method of Claim 37, said step of removing said coefficients further comprising the step of:
leaving between forty five and sixty four out of a total of sixty four coefficients with respect to a luminance signal of said high definition video signal.
39. The method of Claim 37, said step of removing said coefficients further comprising the step of:
leaving between twelve and sixty four out of a total of sixty four coefficients with respect to color difference signals of said high definition video signal.
40. The method of Claim 29, said step of mapping further comprising the step of:
separating said plurality of coefficients into a first group comprising low frequency coefficients and a second group comprising high frequency coefficients. -1Mt 41I >τihfe!i?rθfe)ici of cikaW'lfi, said step of mapping further comprising the step of.
generating coarse values by quantizing the values of said first group.
42. The method of Claim 41, further comprising the step of:
mapping a coarse value to one of a plurality of constellation points of a symbol.
43. The method of Claim 42, further comprising the steps of
generating extra pilots in addition to standard pilots; and
using at least one of said extra pilots to send one of said coarse values.
44. The method of Claim 41 , said step of mapping further comprising the steps of:
generating quantization error values from said first group; and
representing said quantization error values and said high frequency coefficients as a plurality of complex values of symbols, wherein each complex value comprises both a first value and a second value from said quantization error values and said coefficients representing high frequencies, wherein said first value is represented as a real portion of said complex value and said second value is represented as an imaginary portion of said complex value.
45. The method of Claim 29, said step of performing said de-correlating transform further comprising the step of:
processing a block of pixels of said high definition video signal.
46. The method of Claim 45, said block of pixels comprising a rectangle of eight pixels by eight pixels. P%y4h|3:fti9t?fe6 olέlaWl, said uncompressed components comprising a component digital format comprising a luminance signal and color difference signals.
48. The method of Claim 29, wherein said step of performing a de-correlating transform comprises performing said transform on all the pixels of a frame of a video signal.
49. The method of Claim 29, further comprising the step of:
performing a non-linear transformation of at least one of said coefficients.
50. The method of Claim 49, said step of performing a non-linear transformation comprises the step of the adjusting power of a non-linear function of a coefficient to the power of said coefficient prior to said non-linear transformation.
51. A system for transmission and reception of a substantially uncompressed high definition video signal, comprising:
a transmitter comprising:
means for receiving uncompressed components of the high definition video signal;
means for performing a de-correiating transform on said uncompressed components to provide a plurality of coefficients; and
means for mapping each remaining coefficient to a transmission symbol; and
means for transmitting a stream of symbols over a communication link, said stream of symbols comprising at least said transmission symbol; and
a receiver for receiving said stream of symbols from said transmitter over a communication link and for recreating said plurality of coefficients from said
wherein said transmitter and said receiver provide essentially delay-less transmission of said high definition video signal.
52. The system of Claim 51 , said communication link comprises any of a wireless link and a wired link.
53. The system of Claim 51 , further comprising: means for removing a portion of said transform's coefficients, said means for removing a portion of said transform's coefficients performing the removal without dependency on a previous frame of said high definition video signal.
54. The system of Claim 53, said transmitter and said receiver comprising means for effecting buffer-less transmission and reception of said high definition video signal.
55. The system of Claim 51 , said transmission symbol comprising a symbol of an orthogonal frequency division multiplexing (OFDM) transmission scheme.
56. The system of Claim 51 , said transmitter further comprising:
means for transmitting data comprising said high definition video signal over a multi-input multi-output MIMO link.
57. The system of Claim 56, said receiver further comprising:
means for receiving data comprising said high definition video signal from a multi- input multi-output MIMO link.
58. The system of Claim 51 , further comprising:
means for generating extra pilots; and IP C IV U S O B /' »I«:)L »4'iB S means for receiving said extra pilots;
wherein at least one of said extra pilots comprises a digital value of most significant bits that reject from performing said de-correlating transform.
59. The system of Claim 51 , said means for mapping further comprising:
means for separating said plurality of coefficients into a first group comprising coefficients representing low-frequencies and into a second group comprising coefficients representing high-frequencies.
60. The system of Claim 59, further comprising:
quantization means for generating coarse values from said first group.
61. The system of Claim 60, further comprising:
means for mapping a coarse value to one of a plurality of constellation points of a symbol.
62. The system of Claim 61 , further comprising:
means for generating extra pilot signals in addition to the standard pilot signals; and
means for using at least one of said extra pilot signals to send one of said coarse values.
63. The system of Claim 59, further comprising:
means for generating quantization error values from said first group;
means for representing said quantization error values and said coefficients as a plurality of complex values of a symbol, wherein each complex value contains both a first value and a second value from said quantization error values and said coefficients representing high frequencies, wherein said first value is represented as a real portion of a complex value and said second value is represented as an imaginary portion of said complex value.
64. A method for a symbol based transmission comprising at least the steps of:
receiving an input stream of data samples; and
generating a first symbol placed in a constellation for fine representation based on sample values that correspond to at least a portion of said input stream.
65. The method of Claim 64, wherein said input stream comprises a high-importance portion and a low-importance portion.
66. The method of Claim 65, further comprising:
generating a second symbol placed in a constellation for coarse representation based on at least a portion of said input stream.
67. The method of Claim 66, wherein said step of generating a second symbol comprises the steps of:
quantizing the high importance portion of said input stream into coarse values; and
mapping a coarse value to said second symbol.
68. The method of Claim 67, further comprising the step of:
mapping a quantization error value resulting from said step of quantizing the high importance portion of said input stream to said first symbol. P C T/' IJ S O S / «+1 «ΨB S
69. The method of Claim 65, further comprising the step of:
mapping a low-importance portion of said input stream to said first symbol.
70. The method of Claim 64, said step of generating said first symbol comprising the steps of:
mapping a first value to a real value of a complex number; and
mapping a second value to a imaginary value of said complex number.
71. The method of Claim 70, further comprising the steps of:
providing content for said first value from any of at least a portion of said input stream and a quantization error value of a quantized high importance portion of said input stream; and,
providing the content of said second value from one of: said at least a portion of said input stream, the quantization error value of the quantized high importance portion of said input stream.
72. The method of Claim 70, further comprising the step of:
transmitting said first symbol on a low transmission quality sub-channel.
73. The method of Claim 64, further comprising the step of:
performing a non-linear mapping on at least a portion of said input stream.
74. The method of Claim 64, further comprising the step of:
adjusting the power of the result of said non-linear mapping on at least a part of f u it ''sέwcflrTpα? ^'trearn fc'thiiOf power of said part of said input stream prior to said non-linear mapping.
75. The method of Claim 64, further comprising the step of:
transmitting said symbols over any of a wireless link and a wired link.
76. The method of Claim 75, said transmission is over a wireless link comprising a multi-input multi-output link.
77. The method of Claim 64, wherein the symbols comprise OFDM symbols.
78. The method of Claim 64, further comprising the step of:
generating a plurality of pilot symbols.
79. The method of Claim 78, further comprising the step of:
generating at least an extra pilot symbol for transmission of high importance values.
80. The method of Claim 64, wherein said input stream corresponds to coefficients of a video frame transformation.
81. The method of Claim 80, wherein said coefficients correspond to a decorrelating transformation of any of a luminance component of a video frame and a chrominance component of said video frame.
82. The method of Claim 80, wherein said low-importance portion corresponds to any of quantization error values of coefficients of a video frame and coefficients corresponding to high frequencies. division multiplexing (OFDM) communication system comprising:
means for receiving data values, the data values being ranked by importance;
means for mapping data values that are not high importance data values as pairs of imaginary and real values of a fine OFDM symbol constellation; and
means for mapping OFDM symbols to sub-channels of a transmission channel.
84. The OFDM communication system of Claim 83, further comprising:
means for mapping as a coarse representation quantized values of the high importance data values directly to OFDM symbols; and
means for mapping quantization error values of said quantized values of said high importance data as pairs of imaginary and real values of a fine OFDM symbol constellation;
85. The OFDM communication system of Claim 83, further comprising:
means for transmitting OFDM symbols corresponding to lowest ranking data values via lowest quality sub-channels .
86. The OFDM communication system of Claim 83, further comprising:
means for transmitting said OFDM symbols over any of a wireless link and a wired link. system of Claim 86, said wireless link comprising a multi-input multi-output link.
88. The OFDM communication system of Claim 83, further comprising:
means for generating at least an extra pilot symbol for transmission of said coarse representation.
89. The OFDM communication system of Claim 83, further comprising:
means for companding at least a portion of said data values.
90. The OFDM communication system of Claim 83, further comprising:
means for non-linear mapping of at least a portion of said data values.
91. The OFDM communication system of Claim 83, further comprising:
means for sending a fine OFDM symbol on a low transmission quality sub- channel.
92. The OFDM communication system of Claim 83, wherein said data values correspond to coefficients of a video frame transformation.
93. The OFDM communication system of Claim 92, wherein said coefficients correspond to a decorrelating transformation of a luminance component of a video frame and a chrominance component of said video frame. P C T / IJ 3015./' if 1 H- 85
94. The OFDM communication system of Claim 92, wherein said low-importance portion corresponds to any of quantization error values of coefficients of a video frame and coefficients corresponding to high frequencies.
95. The OFDM communication system of Claim 92, wherein said low importance data values of said coefficients of a video frame transformation correspond to DC and near DC coefficients.
96. The OFDM communication system of Claim 91 , wherein data values that are not of high importance as coefficients of a video frame transformation correspond to high frequency coefficients.
EP06836492A 2005-10-21 2006-10-23 Apparatus and method for uncompressed, wireless transmission of video Withdrawn EP1938624A4 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US72945905P 2005-10-21 2005-10-21
US75215505P 2005-12-19 2005-12-19
US75806006P 2006-01-10 2006-01-10
US11/551,654 US7860180B2 (en) 2005-10-21 2006-10-20 OFDM modem for transmission of continuous complex numbers
US11/551,641 US8559525B2 (en) 2005-10-21 2006-10-20 Apparatus and method for uncompressed, wireless transmission of video
PCT/US2006/041485 WO2007048061A2 (en) 2005-10-21 2006-10-23 Apparatus and method for uncompressed, wireless transmission of video

Publications (2)

Publication Number Publication Date
EP1938624A2 true EP1938624A2 (en) 2008-07-02
EP1938624A4 EP1938624A4 (en) 2009-10-28

Family

ID=37963912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06836492A Withdrawn EP1938624A4 (en) 2005-10-21 2006-10-23 Apparatus and method for uncompressed, wireless transmission of video

Country Status (3)

Country Link
EP (1) EP1938624A4 (en)
JP (1) JP2009513064A (en)
WO (1) WO2007048061A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7860180B2 (en) 2005-10-21 2010-12-28 Amimon Ltd OFDM modem for transmission of continuous complex numbers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914707B1 (en) 2006-12-01 2009-08-28 엘지전자 주식회사 Method of allocating instant channel resources and device in a wireless network
JP6854495B2 (en) * 2016-09-12 2021-04-07 チェン シードンCHEN, Shidong Video transmission method using multiple inputs and multiple outputs channels
CN114143557B (en) * 2021-12-24 2023-07-07 成都索贝数码科技股份有限公司 Low-complexity coding method for wavelet transformation high-frequency coefficient of video image

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029737A2 (en) * 2003-09-25 2005-03-31 Amimon Ltd. Wireless transmission of high quality video
WO2005055444A2 (en) * 2003-11-26 2005-06-16 Delphi Technologies, Inc. Method to create hierarchical modulation in ofdm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69803195T2 (en) * 1997-11-27 2002-08-29 British Telecomm CODE IMPLEMENTATION
JP4732660B2 (en) * 2000-02-17 2011-07-27 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Visual attention system
US7149350B2 (en) * 2001-09-19 2006-12-12 Kabushiki Kaisha Toshiba Image compression apparatus, image depression apparatus and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029737A2 (en) * 2003-09-25 2005-03-31 Amimon Ltd. Wireless transmission of high quality video
WO2005055444A2 (en) * 2003-11-26 2005-06-16 Delphi Technologies, Inc. Method to create hierarchical modulation in ofdm

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FAZEL K ET AL: "A CONCEPT OF DIGITAL TERRESTRIAL TELEVISION BROADCASTING" WIRELESS PERSONAL COMMUNICATIONS, vol. 2, no. 1/02, 1 January 1995 (1995-01-01), pages 9-27, XP000589609 SPRINGER, DORDRECHT, NL ISSN: 0929-6212 *
See also references of WO2007048061A2 *
YUJIN NOH ET AL: "Design of Unequal Error Protection for MIMO-OFDM Systems" VEHICULAR TECHNOLOGY CONFERENCE, vol. 2, 30 May 2005 (2005-05-30), pages 1058-1062, XP010855571 IEEE, PISCATAWAY, NJ, USA ISBN: 978-0-7803-8887-1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7860180B2 (en) 2005-10-21 2010-12-28 Amimon Ltd OFDM modem for transmission of continuous complex numbers

Also Published As

Publication number Publication date
JP2009513064A (en) 2009-03-26
WO2007048061A3 (en) 2009-04-30
EP1938624A4 (en) 2009-10-28
WO2007048061A2 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
US7860180B2 (en) OFDM modem for transmission of continuous complex numbers
US9369709B2 (en) Apparatus and method for uncompressed, wireless transmission of video
US20070177670A1 (en) Use of Pilot Symbols for Data Transmission in Uncompressed, Wireless Transmission of Video
US8139645B2 (en) Apparatus for enhanced wireless transmission and reception of uncompressed video
US9781473B2 (en) Method for effectively implementing a multi-room television system
US8249527B2 (en) Multimedia client/server system, client module, multimedia server, radio receiver and methods for use therewith
JP3083471B2 (en) Method and apparatus for partially recompressing digital signals
US20050289631A1 (en) Wireless display
US8175041B2 (en) System and method for wireless communication of audiovisual data having data size adaptation
US20160073122A1 (en) Wireless transmission of high quality video
US20080178243A1 (en) Multimedia client/server system with audio synchronization and methods for use therewith
WO2010147276A1 (en) Method of controlling devices and tuner device
JPH0369295A (en) Method and apparatus for digital processing of highly fine television signal
US6456607B2 (en) Apparatus and method for transmitting an image signal modulated with a spreading code
CN105611228B (en) Numerical data method of sending and receiving and device based on composite video signal
EP1938624A2 (en) Apparatus and method for uncompressed, wireless transmission of video
CN101536329A (en) Apparatus and method for uncompressed, wireless transmission of video
KR101604694B1 (en) Method of messages exchanging and transmitting devices and receving devices
Matsuura et al. Realtime transmission of full high-definition 30 frames/s videos over 8× 8 MIMO-OFDM channels using HACP-based lossless coding
Huang et al. A multiple description coding based on SPIHT algorithm with WiMAX modulations for color images
Jain Digital HDTV system
Nasiopoulos Error resistant schemes for all-digital high definition television

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080331

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

R17D Deferred search report published (corrected)

Effective date: 20090430

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 1/66 20060101AFI20090602BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20090925

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 27/34 20060101AFI20090921BHEP

17Q First examination report despatched

Effective date: 20100128

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120503