EP1934387B1 - Method for removing the coating from a gas turbine component - Google Patents
Method for removing the coating from a gas turbine component Download PDFInfo
- Publication number
- EP1934387B1 EP1934387B1 EP06805384.2A EP06805384A EP1934387B1 EP 1934387 B1 EP1934387 B1 EP 1934387B1 EP 06805384 A EP06805384 A EP 06805384A EP 1934387 B1 EP1934387 B1 EP 1934387B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bath
- layer
- turbine component
- remove
- gas turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000576 coating method Methods 0.000 title claims description 35
- 238000000034 method Methods 0.000 title claims description 22
- 239000011248 coating agent Substances 0.000 title claims description 21
- 239000000919 ceramic Substances 0.000 claims description 18
- 159000000000 sodium salts Chemical class 0.000 claims description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 150000007524 organic acids Chemical class 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 239000002585 base Substances 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 3
- 235000005985 organic acids Nutrition 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910010037 TiAlN Inorganic materials 0.000 claims 2
- JQDZNJOONPXQSL-UHFFFAOYSA-N [acetyloxy-[2-(diacetyloxyamino)ethyl]amino] acetate;sodium Chemical compound [Na].CC(=O)ON(OC(C)=O)CCN(OC(C)=O)OC(C)=O JQDZNJOONPXQSL-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 46
- 239000007789 gas Substances 0.000 description 33
- -1 nitrogen-containing organic compound Chemical class 0.000 description 4
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000009419 refurbishment Methods 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 239000002347 wear-protection layer Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/005—Repairing methods or devices
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/44—Compositions for etching metallic material from a metallic material substrate of different composition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/10—Other heavy metals
- C23G1/106—Other heavy metals refractory metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
Definitions
- the invention relates to a method for stripping a gas turbine component according to.
- Components of a gas turbine such as the rotor blades, are provided with special anti-wear coatings to provide oxidation resistance, corrosion resistance, or erosion resistance on the surfaces.
- the components of gas turbines are subject to wear during operation of the same or can be damaged in any other way. In order to repair damage, it is generally necessary to remove or remove the wear protection coating from the component to be repaired in regions, partially or even in total.
- the removal or removal of coatings is also referred to as stripping. In the stripping process, a distinction is made between those in which stripping takes place by mechanical means, by chemical means or by electrochemical means.
- wear protection coatings are designed as so-called multilayer coatings consisting of several alternately applied to the gas turbine component layers. So it is e.g. it is possible that a wear protection coating designed as a multilayer coating comprises a relatively soft, metallic layer and a relatively hard, ceramic layer, which are applied to the gas turbine component repeatedly alternately in succession. Furthermore, wear-resistant coatings are known in practice, in which more than two different layers are alternately applied successively to the gas turbine component, e.g.
- Multilayer coatings of four alternatingly applied successively to the gas turbine component layers namely a first, adapted to the material composition of the gas turbine component metallic and thus relatively soft layer, a relatively soft, metallic layer of a metal alloy material, a third, relatively hard graded metal Ceramic layer and a fourth relatively hard, ceramic layer.
- the publication US 5,972,424 A discloses a method for stripping turbine components.
- the method comprises a treatment in an alkaline solution for removing the thermal protective layer and an acid treatment for removing the metallic adhesive layer. This coating also provides protection against wear.
- the publication US 2005/152805 A1 discloses a method for refurbishment Turbine components with a wear protection coating.
- the upper wear protection layer is removed mechanically, a metallic diffusion layer is chemically removed.
- the present invention is based on the problem to provide a novel method for stripping a gas turbine component.
- the gas turbine component is alternately positioned in two different chemical baths, a first bath excluding removal of the or each relatively hard ceramic layer and a second bath excluding removal of the or each relatively soft metallic layer the wear protection coating is used.
- the component with a multilayer wear protection coating alternately in different baths, wherein the different baths selectively ablate either a relatively hard, ceramic layer or a relatively soft, metallic layer of the wear protection coating to be removed.
- a method is proposed for the first time, with the aid of which gas turbine components can be effectively freed from a so-called multilayer wear protection coating without the risk of damage to the gas turbine component.
- the first bath which serves solely to remove the or each relatively hard ceramic layer is an acid of a hydrogen peroxide solution and at least one sodium salt and / or potassium salt of an organic acid contained therein.
- the first bath may comprise a nitrogen-containing organic compound.
- the first bath has a pH between 3 and 5.
- the second bath which serves exclusively for removing the or each relatively soft, metallic layer, is a base of an aqueous solution of at least one alkali hydroxide or alkaline earth hydroxide with silicon and / or phosphorus contained therein, the second bath having a pH of has at least 12.
- the first bath is a 5% to 50% hydrogen peroxide solution with 10 g / l to 100 g / l sodium salts of organic acids.
- the first bath may have 1 g / L to 10 g / L of a nitrogen-containing organic compound.
- the second bath is preferably a 2% to 50% alkali hydroxide solution containing 1 g / l to 200 g / l of silicon and / or 10 g / l to 100 g / l of phosphorus.
- the gas turbine component is positioned to remove a relatively hard, ceramic layer in the first bath at a temperature between 10 ° C and 70 ° C for a period of 1-60 minutes per 1 nm thickness of the layer to be removed .
- the gas turbine component is positioned in the second bath at a temperature between 20 ° C and 150 ° C for a period of 10-120 minutes per 1 nm thickness of the layer to be removed.
- the inventive method is used for stripping of coated with multilayer wear protection coatings gas turbine components, the multilayer wear protection coatings from at least two different, alternately successively arranged layers, namely alternately arranged one behind the other ceramic, relatively hard layers and metallic, relatively soft layers are formed.
- the method is used for stripping gas turbine components, on which a wear protection coating of four different, alternately successive layers are applied.
- the first layer is preferably formed of titanium or palladium or platinum.
- a second layer is applied, which is preferably formed by a TiCrAl material.
- the third layer is followed by a grading layer, which is formed from a TiAlN1-x material.
- the third layer is followed by a fourth layer of titanium aluminum nitride (TiAlN).
- TiAlN titanium aluminum nitride
- a first bath exclusively removes the or each relatively hard, ceramic layer and a second bath solely for removing the or any relatively soft, metallic layer of the wear-resistant coating.
- the first bath which serves exclusively to remove the or each relatively hard ceramic layer, is an acid of a hydrogen peroxide solution and at least one sodium salt and / or potassium salt of an organic acid contained therein.
- the first bath may comprise a nitrogen-containing organic compound.
- the first bath is formed from a 5% to 50% hydrogen peroxide solution with 10 g / l to 100 g / l sodium salts of organic acids.
- the pH of this first bath is between 3 and 5.
- the second bath which serves exclusively to remove the or each relatively soft, metallic layer, is a base of an aqueous solution of at least one alkali hydroxide or an alkaline earth hydroxide with silicon and / or phosphorus contained therein.
- the second bath is a base of a 2% to 50% alkali hydroxide solution with 1 g / l to 200 g / l of silicon compounds and 10 g / l to 100 g / l of phosphorus compounds.
- the pH of this second bath is at least 12.
- the first bath is an acid of a 10% hydrogen peroxide solution with 70 g / l of ethylenediaminetetraacetate sodium salt and 20 g / l of phenol-4-sulfonic acid sodium salt and a 20% in the second bath Alkali hydroxide solution with 100 g / l silicon compounds and 50 g / l phosphorus compounds.
- the gas turbine component is alternately positioned in the first bath and the second bath, with the first bath selectively removing only the hard, ceramic layers and the second bath only serves to remove the soft, metallic layers.
- a gas turbine component is accordingly positioned in the first bath, for which purpose the first bath has a temperature between 10 ° C and 70 ° C.
- the temperature of this bath is in the order of the room temperature, ie at about 20 ° C.
- the gas turbine component is placed in this bath for a period of 1 to 60 minutes per 1 nm thickness of the ceramic, relatively hard layer to be removed.
- the gas turbine component is positioned in the second bath, the temperature of the second bath being between 20 ° C and 150 ° C, preferably the temperature of the second bath is 80 ° C.
- the component is positioned in the second bath for a period between 10 minutes and 120 minutes per 1 nm thickness of the metallic, relatively soft layer to be removed. Between the repositioning of a gas turbine component to be stripped between the two baths, the gas turbine component can be purged.
- wear protection coatings of gas turbine components can be effectively removed without the risk of damage to the gas turbine component.
- wear protection coatings can be completely or even partially removed from a gas turbine component, with partial removal of the wear protection coatings either submerged in the baths by a gas turbine component, or areas of the gas turbine component not to be stripped prior to immersion in the corresponding bath with a protective layer of z. B. wax are provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- ing And Chemical Polishing (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Detergent Compositions (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Entschichtung eines Gasturbinenbauteils nach.The invention relates to a method for stripping a gas turbine component according to.
Bauteile einer Gasturbine, wie zum Beispiel die Laufschaufeln, sind zur Bereitstellung einer Oxidationsbeständigkeit, einer Korrosionsbeständigkeit oder auch einer Erosionsbeständigkeit an den Oberflächen mit speziellen Verschleißschutzbeschichtungen versehen. Die Bauteile von Gasturbinen unterliegen während des Betriebs derselben einem Verschleiß oder können auf sonstige Art und Weise beschädigt werden. Zur Reparatur von Beschädigungen ist es in der Regel erforderlich, vom zu reparierenden Bauteil die verschleißschutzbeschichtung bereichsweise, teilweise oder auch insgesamt zu entfernen bzw. abzutragen. Das Entfernen bzw. Abtragen von Beschichtungen bezeichnet man auch als Entschichten. Bei den Entschichtungsverfahren unterscheidet man solche, bei denen die Entschichtung auf mechanischem Wege, chemischem Wege oder elektrochemischem Wege erfolgt.Components of a gas turbine, such as the rotor blades, are provided with special anti-wear coatings to provide oxidation resistance, corrosion resistance, or erosion resistance on the surfaces. The components of gas turbines are subject to wear during operation of the same or can be damaged in any other way. In order to repair damage, it is generally necessary to remove or remove the wear protection coating from the component to be repaired in regions, partially or even in total. The removal or removal of coatings is also referred to as stripping. In the stripping process, a distinction is made between those in which stripping takes place by mechanical means, by chemical means or by electrochemical means.
Üblicherweise sind Verschleißschutzbeschichtungen als sogenannte Multilayer-Beschichtungen ausgeführt, die aus mehreren wechselweise auf das Gasturbinenbauteil aufgebrachten Lagen bestehen. So ist es z.B. möglich, dass eine als Multilayer-Beschichtung ausgeführte Verschleißschutzbeschichtung eine relativ weiche, metallische Lage und eine relativ harte, keramische Lage umfasst, die mehrfach wechselweise hintereinander auf das Gasturbinenbauteil aufgebracht sind. Weiterhin sind aus der Praxis verschleißscrutzbeschichtungen bekannt, bei welchen mehr als zwei unterschiedliche Lagen wechselweise hintereinander auf das Gasturbinenbauteil aufgebracht sind, so z.B. Multilayer-Beschichtungen aus jeweils vier wechselweise hintereinander auf das Gasturbinenbauteil aufgebrachten Lagen, nämlich einer ersten, an die Werkstoffzusammensetzung des Gasturbinenbauteils angepassten metallischen und damit relativ weichen Lage, einer ebenfalls relativ weichen, metallische Lage aus einem Metalllegierungswerkstoff, einer dritten, relativ harten gradierten Metall-Keramik-Lage sowie einer vierten relativ harten, keramischen Lage.Usually wear protection coatings are designed as so-called multilayer coatings consisting of several alternately applied to the gas turbine component layers. So it is e.g. it is possible that a wear protection coating designed as a multilayer coating comprises a relatively soft, metallic layer and a relatively hard, ceramic layer, which are applied to the gas turbine component repeatedly alternately in succession. Furthermore, wear-resistant coatings are known in practice, in which more than two different layers are alternately applied successively to the gas turbine component, e.g. Multilayer coatings of four alternatingly applied successively to the gas turbine component layers, namely a first, adapted to the material composition of the gas turbine component metallic and thus relatively soft layer, a relatively soft, metallic layer of a metal alloy material, a third, relatively hard graded metal Ceramic layer and a fourth relatively hard, ceramic layer.
Die Druckschrift
Die Druckschrift
Aus dem Stand der Technik ist bislang kein Verfahren bekannt, mit Hilfe dessen als Multilayer-Beschichtungen ausgebildete verschleißschutzbeschichtungen effektiv entfernt werden können, ohne dass die Gefahr von Beschädigungen des Gasturbinenbauteils besteht.From the state of the art, no method is yet known with the aid of which multilayer coatings designed wear protection coatings can be effectively removed without the risk of damage to the gas turbine component.
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zur Entschichtung eines Gasturbinenbauteils zu schaffen.On this basis, the present invention is based on the problem to provide a novel method for stripping a gas turbine component.
Dieses Problem wird durch ein Verfahren zur Entschichtung eines Gasturbinenbauteils im Sinne von Anspruch 1 gelöst. Erfindungsgemäß wird zum Entfernen der mehrlagigen bzw. mehrschichtigen Verschleißschutzbeschichtung das Gasturbinenbauteil wechselweise in zwei unterschiedlichen chemischen Bädern positioniert, wobei ein erstes Bad ausschließlich dem Entfernen der oder jeder relativ harten, keramischen Lage und ein zweites Bad ausschließlich dem Entfernen der oder jeder relativ weichen, metallischen Lage der Verschleißschutzbeschichtung dient.This problem is solved by a method for stripping a gas turbine component in the sense of claim 1. According to the present invention, to remove the multi-layer or anti-wear coating, the gas turbine component is alternately positioned in two different chemical baths, a first bath excluding removal of the or each relatively hard ceramic layer and a second bath excluding removal of the or each relatively soft metallic layer the wear protection coating is used.
Im Sinne der hier vorliegenden Erfindung wird vorgeschlagen, das Bauteil mit einer Multilayer-Verschleißschutzbeschichtung wechselweise in unterschiedlichen Bädern anzuordnen, wobei die unterschiedlichen Bäder selektiv entweder eine relativ harte, keramische Lage oder eine relativ weiche, metallische Lage der zu entfernenden Verschleißschutzbeschichtung abtragen. Hierdurch wird erstmals ein Verfahren vorgeschlagen, mit Hilfe dessen Gasturbinenbauteile effektiv von einer sogenannten Multilayer-Verschleißschutzbeschichtung befreit werden können, ohne dass die Gefahr von Beschädigungen des Gasturbinenbauteils besteht.For the purposes of the present invention, it is proposed to arrange the component with a multilayer wear protection coating alternately in different baths, wherein the different baths selectively ablate either a relatively hard, ceramic layer or a relatively soft, metallic layer of the wear protection coating to be removed. As a result, a method is proposed for the first time, with the aid of which gas turbine components can be effectively freed from a so-called multilayer wear protection coating without the risk of damage to the gas turbine component.
Das erste Bad, welches ausschließlich dem Entfernen der oder jeder relativ harten, keramischen Lage dient, ist eine Säure aus einer Wasserstoffperoxydlösung und mindestens einem darin enthaltenen Natriumsalz und/oder Kaliumsalz einer organischen Säure. Zusätzlich zum Natriumsalz und/oder Kaliumsalz kann das erste Bad eine stickstoffhaltige organische Verbindung aufweisen. Das erste Bad weist einen pH-Wert zwischen 3 und 5 auf.The first bath which serves solely to remove the or each relatively hard ceramic layer is an acid of a hydrogen peroxide solution and at least one sodium salt and / or potassium salt of an organic acid contained therein. In addition to the sodium salt and / or potassium salt, the first bath may comprise a nitrogen-containing organic compound. The first bath has a pH between 3 and 5.
Das zweite Bad, welches ausschließlich dem Entfernen der oder jeder relativ weichen, metallischen Lage dient, ist eine Base aus einer wässrigen Lösung mindestens eines Alkalihydroxids oder Erdalkalihydroxids mit darin enthaltenem Silizium und/oder Phosphor bzw., wobei das zweite Bad einen pH-wert von mindestens 12 aufweist.The second bath, which serves exclusively for removing the or each relatively soft, metallic layer, is a base of an aqueous solution of at least one alkali hydroxide or alkaline earth hydroxide with silicon and / or phosphorus contained therein, the second bath having a pH of has at least 12.
Vorzugsweise ist das erste Bad eine 5%ige bis 50%ige wasserstoffperoxydlösung mit 10 g/l bis 100 g/l Natriumsalzen organischer Säuren. Zusätzlich zu den Natriumsalzen kann das erste Bad 1 g/l bis 10 g/l einer stickstoffhaltigen organischen Verbindung aufweisen. Das zweite Bad ist vorzugsweise eine 2%ige bis 50%ige Alkalihydroxidlösung mit 1 g/l bis 200 g/l Silizium und/oder 10 g/l bis 100 g/l Phosphor.Preferably, the first bath is a 5% to 50% hydrogen peroxide solution with 10 g / l to 100 g / l sodium salts of organic acids. In addition to the sodium salts, the first bath may have 1 g / L to 10 g / L of a nitrogen-containing organic compound. The second bath is preferably a 2% to 50% alkali hydroxide solution containing 1 g / l to 200 g / l of silicon and / or 10 g / l to 100 g / l of phosphorus.
Nach einer weiteren vorteilhaften Weiterbildung der Erfindung wird das Gasturbinenbauteil zum Entfernen einer relativ harten, keramischen Lage in dem ersten Bad bei einer Temperatur zwischen 10°C und 70°C für eine Zeitdauer von 1-60 Minuten pro 1 nm Dicke der zu entfernenden Lage positioniert. Zum Entfernen einer relativ weichen, metallischen Lage wird das Gasturbinenbauteil in dem zweiten Bad bei einer Temperatur zwischen 20°C und 150°C für eine Zeitdauer von 10-120 Minuten pro 1 nm Dicke der zu entfernenden Lage positioniert.According to a further advantageous development of the invention, the gas turbine component is positioned to remove a relatively hard, ceramic layer in the first bath at a temperature between 10 ° C and 70 ° C for a period of 1-60 minutes per 1 nm thickness of the layer to be removed , To remove a relatively soft metallic layer, the gas turbine component is positioned in the second bath at a temperature between 20 ° C and 150 ° C for a period of 10-120 minutes per 1 nm thickness of the layer to be removed.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ein Ausführungsbeispiel der Erfindung wird nachfolgend in größerem Detail beschrieben.Preferred embodiments of the invention will become apparent from the dependent claims and the description below. An embodiment of the invention will be described below in more detail.
Das erfindungsgemäße Verfahren dient dem Entschichten von mit Multilayer-Verschleißschutzbeschichtungen beschichteten Gasturbinenbauteilen, wobei die Multilayer-Verschleißschutzbeschichtungen aus mindestens zwei unterschiedlichen, wechselweise hintereinander angeordneten Lagen, nämlich aus wechselweise hintereinander angeordneten keramischen, relativ harten Lagen sowie metallischen, relativ weichen Lagen gebildet sind. Das Verfahren dient dem Entschichten von Gasturbinenbauteilen, auf welche eine Verschleißschutzbeschichtung aus vier unterschiedlichen, wechselweise aufeinander folgenden Lagen aufgebracht sind.The inventive method is used for stripping of coated with multilayer wear protection coatings gas turbine components, the multilayer wear protection coatings from at least two different, alternately successively arranged layers, namely alternately arranged one behind the other ceramic, relatively hard layers and metallic, relatively soft layers are formed. The method is used for stripping gas turbine components, on which a wear protection coating of four different, alternately successive layers are applied.
Bei einem Gasturbinenbauteil, welches aus einem Titanbasiswerkstoff gebildet ist, ist die erste Lage vorzugsweise aus Titan oder Palladium oder Platin gebildet. Auf die erste Lage ist eine zweite Lage aufgebracht, die vorzugsweise von einem TiCrAl-Werkstoff gebildet wird. Als dritte Lage schließt sich eine Gradierungsschicht an, die aus einem TiAlN1-x Werkstoff gebildet ist. An die dritte Lage schließt sich eine vierte Lage aus Titanaluminiumnitrid (TiAlN) an. Diese vier Lagen sind wiederum zur Bildung einer mehrlagigen bzw. mehrschichtigen Verschleißschutzbeschichtung wechselweise hintereinander auf das Gasturbinenbauteil aufgebracht, wobei die erste und zweite Lage jeweils metallisch und relativ weich und die dritte und vierte Lage jeweils keramisch und relativ hart sind.In a gas turbine component formed of a titanium base material, the first layer is preferably formed of titanium or palladium or platinum. On the first layer, a second layer is applied, which is preferably formed by a TiCrAl material. The third layer is followed by a grading layer, which is formed from a TiAlN1-x material. The third layer is followed by a fourth layer of titanium aluminum nitride (TiAlN). These four layers are in turn applied to the formation of a multilayer or multi-layer wear protection coating alternately one behind the other on the gas turbine component, wherein the first and second layer respectively metallic and relatively soft and the third and fourth layers are each ceramic and relatively hard.
Zum Entfernen solcher mehrlagiger bzw. mehrschichtiger Verschleißschutzbeschichtungen von einem Gasturbinenbauteil wird im Sinne der hier vorliegenden Erfindung vorgeschlagen, das Gasturbinenbauteil wechselweise in zwei unterschiedlichen chemischen Bädern zu positionieren, wobei ein erstes Bad ausschließlich dem Entfernen der oder jeder relativ harten, keramischen Lage und ein zweites Bad ausschließlich dem Entfernen der oder jeder relativ weichen, metallischen Lage der Verschleißschutzbeschichtung dient.For the purpose of the present invention, in order to remove such multilayer or wear-resistant coatings from a gas turbine component, it is proposed to alternately position the gas turbine component in two different chemical baths, wherein a first bath exclusively removes the or each relatively hard, ceramic layer and a second bath solely for removing the or any relatively soft, metallic layer of the wear-resistant coating.
Bei dem ersten Bad, welches ausschließlich dem Entfernen der oder jeder relativ harten, keramischen Lage dient, handelt es sich um eine Säure aus einer Wasserstoffperoxydlösung und mindestens einem darin enthaltenen Natriumsalz und/oder Kaliumsalz einer organischen Säure. Zusätzlich zum Natriumsalz und/oder Kaliumsalz kann das erste Bad eine stickstoffhaltige organische Verbindung aufweisen.The first bath, which serves exclusively to remove the or each relatively hard ceramic layer, is an acid of a hydrogen peroxide solution and at least one sodium salt and / or potassium salt of an organic acid contained therein. In addition to the sodium salt and / or potassium salt, the first bath may comprise a nitrogen-containing organic compound.
Vorzugsweise wird das erste Bad von einer 5%igen bis 50%igen Wasserstoffperoxydlösung mit 10 g/l bis 100 g/l Natriumsalzen organischer Säuren gebildet. Der pH-Wert dieses ersten Bads liegt zwischen 3 und 5.Preferably, the first bath is formed from a 5% to 50% hydrogen peroxide solution with 10 g / l to 100 g / l sodium salts of organic acids. The pH of this first bath is between 3 and 5.
Bei dem zweiten Bad, welches ausschließlich dem Entfernen der oder jeder relativ weichen, metallischen Lage dient, handelt es sich um eine Base aus einer wässrigen Lösung mindestens eines Alkalihydroxids oder eines Erdalkalihydroxids mit darin enthaltenem Silizium und/oder Phosphor.The second bath, which serves exclusively to remove the or each relatively soft, metallic layer, is a base of an aqueous solution of at least one alkali hydroxide or an alkaline earth hydroxide with silicon and / or phosphorus contained therein.
Vorzugsweise ist das zweite Bad eine Base aus einer 2%igen bis 50%igen Alkalihydroxidlösung mit 1 g/l bis 200 g/l Siliziumverbindungen und 10 g/l bis 100 g/l Phosphorverbindungen. Der pH-Wert dieses zweiten Bads beträgt mindestens 12.Preferably, the second bath is a base of a 2% to 50% alkali hydroxide solution with 1 g / l to 200 g / l of silicon compounds and 10 g / l to 100 g / l of phosphorus compounds. The pH of this second bath is at least 12.
In einem konkreten Ausführungsbeispiel handelt es sich bei dem ersten Bad um eine Säure aus einer 10%igen Wasserstoffperoxydlösung mit 70 g/l Ethylendiamintetraacetat-Natriumsalz und 20 g/l Phenol-4-Sulfonsäure-Natriumsalz und bei dem zweiten Bad um eine 20%ige Alkalihydroxidlösung mit 100 g/l Siliziumverbindungen und 50 g/l Phosphorverbindungen.In a specific embodiment, the first bath is an acid of a 10% hydrogen peroxide solution with 70 g / l of ethylenediaminetetraacetate sodium salt and 20 g / l of phenol-4-sulfonic acid sodium salt and a 20% in the second bath Alkali hydroxide solution with 100 g / l silicon compounds and 50 g / l phosphorus compounds.
Wie bereits erwähnt, wird das Gasturbinenbauteil zum Entfernen der Verschleißschutzbeschichtung wechselweise in dem ersten Bad sowie dem zweiten Bad positioniert, wobei das erste Bad selektiv lediglich dem Entfernen der harten, keramischen Lagen und das zweite Bad ausschließlich dem Entfernen der weichen, metallischen Lagen dient. Zum Entfernen einer keramischen Lage wird ein Gasturbinenbauteil demnach in dem ersten Bad positioniert, wobei hierzu das erste Bad eine Temperatur zwischen 10°C und 70°C aufweist. Vorzugsweise liegt die Temperatur dieses Bads in der Größenordnung der Raumtemperatur, also bei in etwa 20°C. Das Gasturbinenbauteil wird in diesem Bad für eine Zeitdauer von 1 bis 60 Minuten pro 1 nm Dicke der zu entfernenden keramischen, relativ harten Lage angeordnet. Zum Entschichten einer metallischen, relativ weichen Lage der Verschleißschutzbeschichtung wird das Gasturbinenbauteil im zweiten Bad positioniert, wobei die Temperatur des zweiten Bads zwischen 20°C und 150°C beträgt, vorzugsweise liegt die Temperatur des zweiten Bads bei 80°C. Das Bauteil wird im zweiten Bad für eine Zeitdauer zwischen 10 Minuten und 120 Minuten pro 1 nm Dicke der zu entfernenden metallischen, relativ weichen Lage positioniert. Zwischen dem Umpositionieren eines zu entschichtenden Gasturbinenbauteils zwischen den beiden Bädern kann das Gasturbinenbauteil gespült werden.As previously mentioned, to remove the anti-wear coating, the gas turbine component is alternately positioned in the first bath and the second bath, with the first bath selectively removing only the hard, ceramic layers and the second bath only serves to remove the soft, metallic layers. For removing a ceramic layer, a gas turbine component is accordingly positioned in the first bath, for which purpose the first bath has a temperature between 10 ° C and 70 ° C. Preferably, the temperature of this bath is in the order of the room temperature, ie at about 20 ° C. The gas turbine component is placed in this bath for a period of 1 to 60 minutes per 1 nm thickness of the ceramic, relatively hard layer to be removed. For stripping a metallic, relatively soft layer of wear protection coating, the gas turbine component is positioned in the second bath, the temperature of the second bath being between 20 ° C and 150 ° C, preferably the temperature of the second bath is 80 ° C. The component is positioned in the second bath for a period between 10 minutes and 120 minutes per 1 nm thickness of the metallic, relatively soft layer to be removed. Between the repositioning of a gas turbine component to be stripped between the two baths, the gas turbine component can be purged.
Mit dem erfindungsgemäßen Verfahren lassen sich sogenannte Multilayer-Verschleißschutzbeschichtungen von Gasturbinenbauteilen effektiv entfernen, ohne dass die Gefahr von Beschädigungen des Gasturbinenbauteils besteht. Mit Hilfe des erfindungsgemäßen Verfahrens können Verschleißschutzbeschichtungen von einem Gasturbinenbauteil vollständig oder auch lediglich teilweise entfernt werden, wobei zum teilweisen Entfernen der Verschleißschutzbeschichtungen ein Gasturbinenbauteil entweder nur teilweise in die Bäder eingetaucht wird, oder wobei nicht zu entschichtende Bereiche des Gasturbinenbauteils vor dem Eintauchen in das entsprechende Bad mit einer Schutzschicht aus z. B. Wachs versehen werden.With the method according to the invention, so-called multilayer wear protection coatings of gas turbine components can be effectively removed without the risk of damage to the gas turbine component. With the aid of the method according to the invention, wear protection coatings can be completely or even partially removed from a gas turbine component, with partial removal of the wear protection coatings either submerged in the baths by a gas turbine component, or areas of the gas turbine component not to be stripped prior to immersion in the corresponding bath with a protective layer of z. B. wax are provided.
Claims (8)
- A method for removing the coating from a gas-turbine component, namely for completely or partially removing a multi-layer or multi-coat wear-protection coating from the surface of the gas-turbine component, wherein the wear-protection coating comprises relatively hard ceramic layers and relatively soft metallic layers, having in each case at least one first layer of titanium, palladium or platinum, a second layer of a TiCrAl material, a third layer of a TiAlN(1-x) material and a fourth layer of TiAlN, wherein in order to remove the multi-layer or multi-coat wear-protection coating the gas-turbine component is alternately positioned in two different chemical baths, wherein a first bath is used exclusively to remove each relatively hard ceramic layer, and a second bath is used exclusively to remove each relatively soft metallic layer of the wear-protection coating, characterised in that the first bath, which is used exclusively to remove each relatively hard ceramic layer, is an acid consisting of a hydrogen peroxide solution and at least one sodium salt and/or potassium salt of an organic acid contained therein, and the second bath, which is used exclusively to remove each relatively soft metallic layer, is a base consisting of an aqueous solution of at least one alkali hydroxide or an alkaline earth hydroxide with silicon and/or phosphorus contained therein.
- A method according to claim 1,
characterised in that
the first bath is a 5% to 50% hydrogen peroxide solution with 10 g/l to 100 g/l sodium salts of organic acids. - A method according to claim 1 or 2,
characterised in that
the first bath has a pH value between 3 and 5. - A method according to one of claims 1 to 3,
characterised in that
in order to remove a relatively hard ceramic layer the gas-turbine component is positioned in the first bath at a temperature between 10°C and 70°C for a period of time of 1-60 minutes per 1 nm thickness of the layer that is to be removed. - A method according to one of claims 1 to 4,
characterised in that
the second bath is a 2% to 50% alkali hydroxide solution with 1 g/l to 200 g/l silicon and/or 10 g/l to 100 g/l phosphorus. - A method according to one of claims 1 to 5,
characterised in that
the second bath has a pH value that is greater than 12. - A method according to one of claims 1 to 6,
characterised in that in order to remove a relatively soft metallic layer the gas-turbine component is positioned in the second bath at a temperature between 20°C and 150°C for a period of time of 10-120 minutes per 1 nm thickness of the layer that is to be removed. - A method according to one of claims 1 to 7,
characterised in that
the first bath is an acid consisting of a 10% hydrogen peroxide solution with 70g/l ethylenediamine tetraacetate sodium salt and 20 g/l phenol-4-sulphonic acid sodium salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL06805384T PL1934387T3 (en) | 2005-10-14 | 2006-10-10 | Method for removing the coating from a gas turbine component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005049249.5A DE102005049249B4 (en) | 2005-10-14 | 2005-10-14 | Process for stripping a gas turbine component |
PCT/DE2006/001766 WO2007041998A1 (en) | 2005-10-14 | 2006-10-10 | Method for removing the coating from a gas turbine component |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1934387A1 EP1934387A1 (en) | 2008-06-25 |
EP1934387B1 true EP1934387B1 (en) | 2015-06-17 |
Family
ID=37605754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06805384.2A Not-in-force EP1934387B1 (en) | 2005-10-14 | 2006-10-10 | Method for removing the coating from a gas turbine component |
Country Status (6)
Country | Link |
---|---|
US (1) | US9212555B2 (en) |
EP (1) | EP1934387B1 (en) |
JP (1) | JP2009511804A (en) |
DE (1) | DE102005049249B4 (en) |
PL (1) | PL1934387T3 (en) |
WO (1) | WO2007041998A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8377324B2 (en) * | 2005-06-10 | 2013-02-19 | Acromet Technologies Inc. | Methods for removing coatings from a metal component |
US8262870B2 (en) * | 2005-06-10 | 2012-09-11 | Aeromet Technologies, Inc. | Apparatus, methods, and compositions for removing coatings from a metal component |
DE102007022832A1 (en) * | 2007-05-15 | 2008-11-20 | Mtu Aero Engines Gmbh | Process for stripping a component |
DE102010034336B4 (en) | 2010-08-14 | 2013-05-29 | Mtu Aero Engines Gmbh | Method and apparatus for removing a layer from a surface of a body |
US10316414B2 (en) * | 2016-06-08 | 2019-06-11 | United Technologies Corporation | Removing material with nitric acid and hydrogen peroxide solution |
US10377968B2 (en) | 2017-06-12 | 2019-08-13 | General Electric Company | Cleaning compositions and methods for removing oxides from superalloy substrates |
US10501839B2 (en) | 2018-04-11 | 2019-12-10 | General Electric Company | Methods of removing a ceramic coating from a substrate |
US11926880B2 (en) | 2021-04-21 | 2024-03-12 | General Electric Company | Fabrication method for a component having magnetic and non-magnetic dual phases |
US11661646B2 (en) | 2021-04-21 | 2023-05-30 | General Electric Comapny | Dual phase magnetic material component and method of its formation |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3438901A (en) * | 1965-10-22 | 1969-04-15 | Neiko I Vassileff | Metal treating bath and chelating agent for metal reactive acid baths |
US3833414A (en) | 1972-09-05 | 1974-09-03 | Gen Electric | Aluminide coating removal method |
US4746369A (en) * | 1982-01-11 | 1988-05-24 | Enthone, Incorporated | Peroxide selective stripping compositions and method |
US4900398A (en) * | 1989-06-19 | 1990-02-13 | General Motors Corporation | Chemical milling of titanium |
CA2071944C (en) | 1990-10-19 | 1998-02-03 | Jiinjen Albert Sue | Stripping solution and process for stripping compounds of titanium from base metals |
DE4101843C1 (en) | 1991-01-23 | 1992-04-02 | Eifeler Werkzeuge Gmbh, 4000 Duesseldorf, De | Hard tool coating for economy - by stripping using tetra:sodium di:phosphate soln. and hydrogen peroxide |
US5248386A (en) * | 1991-02-08 | 1993-09-28 | Aluminum Company Of America | Milling solution and method |
DE4110595C1 (en) | 1991-04-02 | 1992-11-26 | Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De | Wet-chemical removal of hard coatings from workpiece surfaces - comprises using hydrogen peroxide soln. stabilised by complex former e.g. potassium-sodium tartrate-tetra:hydrate |
DE4339502C2 (en) | 1993-11-24 | 1999-02-25 | Thoene Carl Stefan | Stripping solution for the wet chemical removal of hard material layers and processes for their application |
JPH09109126A (en) * | 1995-10-17 | 1997-04-28 | Ngk Insulators Ltd | Recycling method for honeycomb molding mouth piece |
US6432219B1 (en) | 1997-11-10 | 2002-08-13 | Unakis Trading Ag | Method for separating layers from articles |
US5972424A (en) | 1998-05-21 | 1999-10-26 | United Technologies Corporation | Repair of gas turbine engine component coated with a thermal barrier coating |
JP4824163B2 (en) * | 1998-06-11 | 2011-11-30 | エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ | Method for removing a hard material layer |
US6132520A (en) * | 1998-07-30 | 2000-10-17 | Howmet Research Corporation | Removal of thermal barrier coatings |
DE19924589A1 (en) | 1999-05-28 | 2000-11-30 | Thoene Carl Stefan | Hard material layers stripping from hard metal substrates, e.g. tool and machine component scrap, involves using a solution of an oxidizing mineral acid and a hydrogen halide compound |
US6488729B1 (en) * | 1999-09-30 | 2002-12-03 | Showa Denko K.K. | Polishing composition and method |
US6379749B2 (en) * | 2000-01-20 | 2002-04-30 | General Electric Company | Method of removing ceramic coatings |
US6355116B1 (en) * | 2000-03-24 | 2002-03-12 | General Electric Company | Method for renewing diffusion coatings on superalloy substrates |
US20020125215A1 (en) * | 2001-03-07 | 2002-09-12 | Davis Brian Michael | Chemical milling of gas turbine engine blisks |
US6793838B2 (en) * | 2001-09-28 | 2004-09-21 | United Technologies Corporation | Chemical milling process and solution for cast titanium alloys |
US6936543B2 (en) * | 2002-06-07 | 2005-08-30 | Cabot Microelectronics Corporation | CMP method utilizing amphiphilic nonionic surfactants |
US6916429B2 (en) * | 2002-10-21 | 2005-07-12 | General Electric Company | Process for removing aluminosilicate material from a substrate, and related compositions |
US7008553B2 (en) * | 2003-01-09 | 2006-03-07 | General Electric Company | Method for removing aluminide coating from metal substrate and turbine engine part so treated |
US7094450B2 (en) * | 2003-04-30 | 2006-08-22 | General Electric Company | Method for applying or repairing thermal barrier coatings |
US7078073B2 (en) * | 2003-11-13 | 2006-07-18 | General Electric Company | Method for repairing coated components |
US20050152805A1 (en) | 2004-01-08 | 2005-07-14 | Arnold James E. | Method for forming a wear-resistant hard-face contact area on a workpiece, such as a gas turbine engine part |
DE102004001392A1 (en) * | 2004-01-09 | 2005-08-04 | Mtu Aero Engines Gmbh | Wear protection coating and component with a wear protection coating |
PL1725700T3 (en) * | 2004-01-29 | 2010-07-30 | Oerlikon Trading Ag | Method for removing a coating |
US7271136B2 (en) * | 2005-01-21 | 2007-09-18 | Spray Nine Corporation | Aircraft cleaner formula |
US8377324B2 (en) * | 2005-06-10 | 2013-02-19 | Acromet Technologies Inc. | Methods for removing coatings from a metal component |
US7425278B2 (en) * | 2006-11-28 | 2008-09-16 | International Business Machines Corporation | Process of etching a titanium/tungsten surface and etchant used therein |
US20080169270A1 (en) * | 2007-01-17 | 2008-07-17 | United Technologies Corporation | Method of removing a case layer from a metal alloy |
US8623236B2 (en) * | 2007-07-13 | 2014-01-07 | Tokyo Ohka Kogyo Co., Ltd. | Titanium nitride-stripping liquid, and method for stripping titanium nitride coating film |
-
2005
- 2005-10-14 DE DE102005049249.5A patent/DE102005049249B4/en not_active Expired - Fee Related
-
2006
- 2006-10-10 WO PCT/DE2006/001766 patent/WO2007041998A1/en active Application Filing
- 2006-10-10 US US12/088,800 patent/US9212555B2/en not_active Expired - Fee Related
- 2006-10-10 EP EP06805384.2A patent/EP1934387B1/en not_active Not-in-force
- 2006-10-10 PL PL06805384T patent/PL1934387T3/en unknown
- 2006-10-10 JP JP2008534864A patent/JP2009511804A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US9212555B2 (en) | 2015-12-15 |
WO2007041998A1 (en) | 2007-04-19 |
JP2009511804A (en) | 2009-03-19 |
DE102005049249B4 (en) | 2018-03-29 |
PL1934387T3 (en) | 2016-03-31 |
DE102005049249A1 (en) | 2007-04-19 |
EP1934387A1 (en) | 2008-06-25 |
US20090302004A1 (en) | 2009-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1934387B1 (en) | Method for removing the coating from a gas turbine component | |
CH635018A5 (en) | METHOD FOR APPLYING A SURFACE LAYER BY Fusion Welding. | |
DE10237042B4 (en) | Composition and method of resist removal | |
EP1632589B1 (en) | Method for removing surface areas of a component | |
EP2591872A1 (en) | Remelting method and subsequent filling and resulting component | |
EP1430568B1 (en) | Metallic surface of a body, method for producing a structured metallic surface of a body and the use thereof | |
EP3118352B1 (en) | Method for galvanically coating of ti-al alloys | |
DE102019134298A1 (en) | Method for producing a flat steel product with a metallic protective layer based on zinc and a phosphate layer produced on a surface of the metallic protective layer and such a flat steel product | |
EP2576863B1 (en) | Method for producing a layer by means of cold spraying and use of such a layer | |
EP1552037B1 (en) | Method for removing a layer area of a component | |
EP1805344A1 (en) | Method for producing a component covered with a wear-resistant coating | |
DE3125565A1 (en) | "ELECTROCHEMICAL DE-METALIZING BATH AND METHOD FOR DE-METALIZING" | |
EP1743053B1 (en) | Method for production of a coating | |
DE10043148B4 (en) | A method for increasing the corrosion resistance of a titanium or titanium alloy workpiece and use of the method | |
EP2581473B1 (en) | Method for protecting a workpiece made of an aluminium material from corrosion, in particular a workpiece made from an aluminium forgeable alloy | |
DE4411677C1 (en) | Process for removing organic materials from engine components | |
WO2008138301A1 (en) | Method for removing the coating of a component | |
DE19536312C1 (en) | Prodn. of multilayered coating with defect-free bore holes used for turbine blades | |
DE102005011011A1 (en) | Component, in particular gas turbine component | |
DE102014206407A1 (en) | Two-stage pre-treatment of aluminum including pickle and passivation | |
EP3357630A1 (en) | Method and device for repairing a damaged tip of an hard faced turbine blade with a coating | |
DE102022211828A1 (en) | Recoating of surfaces and components | |
DE102007028294B4 (en) | Apparatus and method for exposing silicon crystals embedded in an aluminum matrix to a surface of a workpiece | |
EP3794167B1 (en) | Rack cleaning in a process of electrophoretic coating | |
DE102004053135A1 (en) | Process for removing a coating containing a chromium and/or chromium oxide compound from a component comprises placing the component in a bath containing an alkanol-amine compound as inhibitor and removing after a treatment time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080506 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB PL |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB PL |
|
17Q | First examination report despatched |
Effective date: 20121211 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AB SOLUT CHEMIE GMBH Owner name: MTU AERO ENGINES AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/28 20060101ALI20150210BHEP Ipc: C23F 1/44 20060101ALI20150210BHEP Ipc: F01D 5/00 20060101ALI20150210BHEP Ipc: C23G 1/10 20060101AFI20150210BHEP |
|
INTG | Intention to grant announced |
Effective date: 20150224 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006014388 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006014388 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160318 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20190930 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191023 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20191022 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191023 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006014388 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210501 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201010 |