EP1930578B1 - Cooling duct variant for pistons - Google Patents

Cooling duct variant for pistons Download PDF

Info

Publication number
EP1930578B1
EP1930578B1 EP07022821.8A EP07022821A EP1930578B1 EP 1930578 B1 EP1930578 B1 EP 1930578B1 EP 07022821 A EP07022821 A EP 07022821A EP 1930578 B1 EP1930578 B1 EP 1930578B1
Authority
EP
European Patent Office
Prior art keywords
piston
cooling duct
coolant
inlet opening
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP07022821.8A
Other languages
German (de)
French (fr)
Other versions
EP1930578A3 (en
EP1930578A2 (en
Inventor
Hartmut Kamp
Emmerich Ottliczky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KS Kolbenschmidt GmbH
Original Assignee
KS Kolbenschmidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39205482&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1930578(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KS Kolbenschmidt GmbH filed Critical KS Kolbenschmidt GmbH
Publication of EP1930578A2 publication Critical patent/EP1930578A2/en
Publication of EP1930578A3 publication Critical patent/EP1930578A3/en
Application granted granted Critical
Publication of EP1930578B1 publication Critical patent/EP1930578B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets

Definitions

  • the invention relates to a liquid-cooled piston of an internal combustion engine, with a radially encircling, to a piston bottom spaced cooling channel which includes at least one inlet opening and at least one outlet opening.
  • the coolant, a lubricating oil of the internal combustion engine is injected via a free jet of an injection nozzle into an inlet opening, flows through the cooling channel and leaves the piston through an outlet opening, according to the features of claim 1.
  • the operating temperatures of the pistons may exceed the limits permitted by the piston material, unless measures are taken to cool the piston.
  • effective cooling it is known to integrate in the piston a cooling passage through which circulates an injected lubricating oil as the coolant.
  • the Inlet opening according to DE 43 40 891 A1 designed as an elongated, having a magnifying cross-section opening.
  • relatively large coolant losses occur due to an ever-changing inflow angle of the injected coolant. Associated with this results in no optimal inflow of the inlet opening, associated with pressure fluctuations of the coolant flow in the cooling channel, which adversely affect the cooling effect.
  • the invention is therefore based on the object to realize a liquid-cooled piston with an improved cooling effect to achieve a lowered temperature of the piston crown.
  • the piston encloses at least two fixedly arranged injection nozzles for applying coolant to an undivided cooling channel. Regardless of the cooling channel design, each inlet opening of the cooling channel is acted upon by a free coolant jet of the injection nozzle, which is aligned parallel to the longitudinal axis of the piston. In addition, the piston is cooled via at least one directed to the underside of the piston free jet of an injection nozzle.
  • the inventive measures in particular by the guided parallel to the longitudinal axis of the piston coolant jet, which directs the coolant, regardless of the position and / or the position of the piston perpendicular to the inlet opening of the cooling channel, always sets an optimaldeffenbeetzschung the cooling channel.
  • the continuous and consequently uninterrupted coolant supply avoids pressure fluctuations within the cooling channel and ensures a constant coolant flow.
  • the heat dissipation of the piston is crucial improved, which sets in particular a lowering of the piston crown temperature.
  • the inventively designed piston allows the application in performance-enhanced internal combustion engines. In particular for thermally and mechanically highly loaded pistons of diesel internal combustion engines, the measures according to the invention are advantageous. Furthermore, the piston according to the invention reduces the number of damage cases while improving the service life.
  • the undivided cooling channel preferably forms a jet or flow divider in the region of the inlet opening.
  • a local, provided in the region of the inlet opening constriction of the cooling channel form the jet or flow divider, which divides the flow of coolant in the region of the inlet opening into two partial streams. Consequently, the coolant flows through the cooling channel up to the outlet opening in countercurrent.
  • about 180 ° to the inlet opening staggered arrangement of the outlet opening a related to the circumference of the cooling channel, almost balanced heat dissipation can be achieved, which ensures efficient piston cooling.
  • each half of the divided by the flow divider inlet opening is associated with an injection nozzle.
  • a flow divider can also be assigned to the outlet opening.
  • the arrangement of two flow dividers also allows for directing coolant admission of the undivided cooling channel.
  • the flow divider effect a division of the inlet opening and the outlet opening into separate areas, forming further connections of the cooling channel, which can be used as an additional outlet opening or inlet opening.
  • two mutually opposite staggered inlet openings and Outlet openings, each inlet opening is associated with a separate injection nozzle.
  • this structure allows a direct current directed coolant flow, which forms an extended cooling channel compared to a split cooling channel, since the design-related distances between the respective inlet opening and the associated outlet opening omitted.
  • the cooling channel includes an expanded section forming a flow collector.
  • the outlet opening is simultaneously designed as a flow collector, which advantageously reduces the flow rate and ensures a desired accelerated discharge of the heated cooling medium from the cooling channel.
  • the inventively fixedly positioned injection nozzles are preferably designed as multi-hole nozzles and produce a concentrated, targeted, the inlet opening acting on the coolant jet.
  • the number of nozzle openings of the injection nozzles used is preferably ⁇ 3.
  • FIG. 1 shows a piston 1, which can be designed as a one-piece light metal or steel piston.
  • the piston 1 comprises a piston head 2, which can also be referred to as a piston upper part, and a piston lower part 3.
  • a ring field 4 assigned to the piston head 2 includes circumferential annular grooves 5a, 5b, 5c which are each intended to receive piston rings (not shown).
  • a radially encircling cooling channel 6a is integrated in the piston 1.
  • a combustion bowl 7 is introduced into the piston head 3.
  • the lower piston part 3 forms two oppositely arranged piston shanks 8, which adjoin the ring field 4 directly.
  • the lower piston part 3 further includes two hubs 9 with associated bolt holes 10, which are for receiving a in FIG. 1 not shown piston pin are determined with which a linkage between a connecting rod and the piston 1 is carried out.
  • a coolant in particular a lubricating oil of the internal combustion engine is injected into the cooling channel 6a.
  • This is done via stationary, especially at a in FIG. 1 Not shown crankcase positioned injectors 11, 12 of which, starting in a free focused and targeted beam, the coolant in each case into an inlet opening 13,14 of the Cooling channel 6a is injected.
  • the coolant flows through as in FIG. 2 , which shows an embodiment not belonging to the invention, illustrates, in a direct current, the split-shaped, two sections 15,16 enclosing the cooling channel 6a and leaves the piston 1 through outlet openings 17,18.
  • coolant is sprayed onto a bottom side 20 of the piston 1 via a free, widely spread jet of the injection nozzle 19.
  • the injection nozzle 19 is inclined in the direction of a longitudinal axis 21 of the piston 1.
  • the arrangement of the injection nozzle 19 is such that at least a subset of the coolant jet acts on a vertex 22 of the underside 20.
  • FIG. 2 shows in a view the underside 20 of the piston 1, which comprises a divided, two sections 15,16 forming cooling channel 6a.
  • Circumferential broken lines illustrate the installation position of the cooling channel 6a.
  • Each section 15, 16 includes separately positioned inlet openings 13, 14 and outlet openings 17, 18, which are each arranged offset from one another.
  • the adjacent arrangement of the inlet opening 13 to the outlet opening 18 and the inlet opening 14 to the Outlet opening 17 causes a direct current directed coolant flow, illustrated by the arrows.
  • the position of the inlet openings 13, 14 on the piston shafts 8 in conjunction with the clockwise flow ensures that first the zones of the piston 1 with the highest temperature level, the piston shafts 8 are cooled before the coolant cools the area above the hub 9.
  • FIG. 3 is the piston 1 alternative to FIG. 2 shown with an undivided cooling channel 6b.
  • the inlet opening 23 includes a flow divider 24, which deflects the separate coolant jets from two separately arranged injection nozzles whereby the coolant in countercurrent, indicated by the arrows, flows through the cooling channel 6b to the opposite outlet opening 25.
  • the flow divider 24 allows optimal loading of the cooling channel 6b to achieve efficient piston cooling.
  • a local constriction or constriction of the cooling channel 6b is suitable.
  • the coolant may alternatively be effected via two injection nozzles, wherein the separate injection jets are each assigned to one half of the inlet opening 23 divided by the flow divider 24.
  • the cooling channel 6b comprises in the region of the outlet opening 25 a local, a flow collector 26 forming widening.
  • the flow collector 26 causes a reduced flow rate, which ensures a desired rapid escape of the heated coolant from the cooling channel 6 b via the outlet opening 25.
  • One of the outlet opening 25 associated flow divider 27 has the task to prevent mutual interference of the countercurrent entering the flow collector 26 coolant flows.
  • FIG. 4 shows the piston 1 with the undivided cooling channel 6c, through which the coolant flows in cocurrent.
  • Flow dividers 24, 28 take over a division of the inlet opening 23 and the outlet opening 25 into two separate areas and thus allow a coolant admission of the cooling channel 6c in direct current.
  • the division provides that a separate terminal 29 of the inlet opening 23 is provided as an additional outlet opening and the separated terminal 28 of the outlet opening 25 as a further inlet opening.
  • the inlet opening 23 and the terminal 28 are each offset from each other, in FIG. 4 not shown mapped injector, via which the coolant enters the undivided cooling channel 6c and exits via the outlet opening 25 and the terminal 29.
  • This structure causes an extension of the cooling passage 6c in comparison with a divided, co-currently charged cooling passage 6a according to FIG FIG. 2 in which distances without a cooling channel in each case between an inlet opening 13, 14 and an outlet opening 17, 18 set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft einen flüssigkeitsgekühlten Kolben einer Brennkraftmaschine, mit einem radial umlaufenden, zu einem Kolbenboden beabstandeten Kühlkanal, der zumindest eine Eintrittsöffnung und zumindest eine Austrittsöffnung einschließt. Das Kühlmittel, ein Schmieröl der Brennkraftmaschine, wird über einen freien Strahl einer Einspritzdüse in eine Eintrittsöffnung eingespritzt, durchströmt den Kühlkanal und verlässt den Kolben durch eine Austrittsöffnung, gemäß den Merkmalen des Patentanspruches 1.The invention relates to a liquid-cooled piston of an internal combustion engine, with a radially encircling, to a piston bottom spaced cooling channel which includes at least one inlet opening and at least one outlet opening. The coolant, a lubricating oil of the internal combustion engine is injected via a free jet of an injection nozzle into an inlet opening, flows through the cooling channel and leaves the piston through an outlet opening, according to the features of claim 1.

In höherbelasteten Brennkraftmaschinen können die Betriebstemperaturen der Kolben die von dem Kolbenwerkstoff her zulässigen Grenzen überschreiten, wenn nicht Maßnahmen zur Kühlung des Kolbens ergriffen werden. Als wirksame Kühlung ist es bekannt, in dem Kolben einen Kühlkanal zu integrieren, durch den als Kühlmittel ein eingespritztes Schmieröl zirkuliert.In more highly loaded internal combustion engines, the operating temperatures of the pistons may exceed the limits permitted by the piston material, unless measures are taken to cool the piston. As effective cooling, it is known to integrate in the piston a cooling passage through which circulates an injected lubricating oil as the coolant.

Aus den Dokumenten JP 2000-274306 A , DE 28 31 566 A1 , JP 2003 301744 A , DE 43 31 649 A1 und DE 43 40 891 A1 sind flüssigkeitsgekühlte Kolben mit einer Einspritzkühlung bekannt. Von einer zu einer Längsachse des Kolbens geneigt ausgerichteten, ortsfest angeordneten Einspritzdüse wird dabei ein freier Kühlmittelstrahl in den Kühlkanal des Kolbens gespritzt. Ein schräg zu der Bewegungsrichtung des Kolbens ausgerichteter freier Kühlmittelstrahl trifft, bedingt durch die oszillierende Bewegung des Kolbens, nur zeitweise die Eintrittsöffnung des Kühlkanals optimal. Als Maßnahme, um den Anteil des in den Kühlkanal eingespritzten Kühlmittels zu vergrößern, ist gemäß DE 43 31 649 A1 die Eintrittsöffnung als ein Fangtrichter ausgebildet. Alternativ dazu ist die Eintrittsöffnung gemäß DE 43 40 891 A1 als eine langgestreckte, einen vergrößernden Querschnitt aufweisende Öffnung gestaltet. Bei derartig ausgeführten Eintrittsöffnungen stellen sich relativ große Kühlmittelverluste ein, aufgrund eines sich stets ändernden Einströmwinkels des eingespritzten Kühlmittels. Damit verbunden ergibt sich keine optimale Zuströmung der Eintrittsöffnung, verbunden mit Druckschwankungen des Kühlmittelstroms in dem Kühlkanal, die sich nachteilig auf die Kühlwirkung auswirken.From the documents JP 2000-274306 A . DE 28 31 566 A1 . JP 2003 301744 A . DE 43 31 649 A1 and DE 43 40 891 A1 are liquid-cooled piston with an injection cooling known. In this case, a free coolant jet is injected into the cooling channel of the piston, by a stationary injection nozzle, which is inclined relative to a longitudinal axis of the piston. An obliquely oriented to the direction of movement of the piston free coolant jet hits, due to the oscillating movement of the piston, only temporarily the inlet opening of the cooling channel optimally. As a measure to increase the proportion of injected into the cooling channel coolant is in accordance with DE 43 31 649 A1 the inlet opening formed as a drogue. Alternatively, the Inlet opening according to DE 43 40 891 A1 designed as an elongated, having a magnifying cross-section opening. In the case of inlet openings designed in this way, relatively large coolant losses occur due to an ever-changing inflow angle of the injected coolant. Associated with this results in no optimal inflow of the inlet opening, associated with pressure fluctuations of the coolant flow in the cooling channel, which adversely affect the cooling effect.

Der Erfindung liegt daher die Aufgabe zugrunde, einen flüssigkeitsgekühlten Kolben mit einer verbesserten Kühlwirkung zur Erzielung einer abgesenkten Temperatur des Kolbenbodens zu realisieren.The invention is therefore based on the object to realize a liquid-cooled piston with an improved cooling effect to achieve a lowered temperature of the piston crown.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is solved by the features of patent claim 1.

Erfindungsgemäß ist vorgesehen, dass der Kolben zur Kühlmittelbeaufschlagung eines ungeteilten Kühlkanals zumindest zwei ortsfest angeordnete Einspritzdüsen einschliesst. Unabhängig von der Kühlkanalgestaltung wird dabei jede Eintrittsöffnung des Kühlkanals von einem freien Kühlmittelstrahl der Einspritzdüse beaufschlagt, der parallel zu der Längsachse des Kolbens ausgerichtet ist. Zusätzlich wird der Kolben über zumindest einen auf die Unterseite des Kolbens gerichteten freien Strahl einer Einspritzdüse gekühlt.According to the invention, it is provided that the piston encloses at least two fixedly arranged injection nozzles for applying coolant to an undivided cooling channel. Regardless of the cooling channel design, each inlet opening of the cooling channel is acted upon by a free coolant jet of the injection nozzle, which is aligned parallel to the longitudinal axis of the piston. In addition, the piston is cooled via at least one directed to the underside of the piston free jet of an injection nozzle.

Durch die erfindungsgemäßen Maßnahmen, insbesondere durch den parallel zu der Längsachse des Kolbens geführten Kühlmittelstrahl, der das Kühlmittel unabhängig von der Position und/oder der Lage des Kolbens senkrecht in die Eintrittsöffnung des Kühlkanals leitet, stellt sich stets eine optimale Kühlmittelbeaufschlagung des Kühlkanals ein. Die kontinuierliche und folglich unterbrechungsfreie Kühlmittelzufuhr vermeidet Druckschwankungen innerhalb des Kühlkanals und sorgt für einen konstanten Kühlmittelfluß. Die Wärmeabfuhr des Kolbens wird dadurch entscheidend verbessert, wodurch sich insbesondere eine Absenkung der Kolbenbodentemperatur einstellt. Der erfindungsgemäß ausgebildete Kolben ermöglicht die Anwendung in leistungsgesteigerte Brennkraftmaschinen. Insbesondere für thermisch und mechanisch hoch belastete Kolben von Diesel-Brennkraftmaschinen sind die erfindungsgemäßen Maßnahmen von Vorteil. Weiterhin verringert der erfindungsgemäße Kolben die Anzahl der Schadensfälle bei gleichzeitig verbesserter Lebensdauer.The inventive measures, in particular by the guided parallel to the longitudinal axis of the piston coolant jet, which directs the coolant, regardless of the position and / or the position of the piston perpendicular to the inlet opening of the cooling channel, always sets an optimal Kühlmittelbeaufschlagung the cooling channel. The continuous and consequently uninterrupted coolant supply avoids pressure fluctuations within the cooling channel and ensures a constant coolant flow. The heat dissipation of the piston is crucial improved, which sets in particular a lowering of the piston crown temperature. The inventively designed piston allows the application in performance-enhanced internal combustion engines. In particular for thermally and mechanically highly loaded pistons of diesel internal combustion engines, the measures according to the invention are advantageous. Furthermore, the piston according to the invention reduces the number of damage cases while improving the service life.

Der ungeteilte Kühlkanal bildet bevorzugt im Bereich der Eintrittsöffnung einen Strahl- oder Strömungsteiler. Beispielsweise kann eine lokale, im Bereich der Eintrittsöffnung vorgesehene Einschnürung des Kühlkanals den Strahl- oder Strömungsteiler bilden, der die Kühlmittelströmung im Bereich der Eintrittsöffnung in zwei Teilströme aufteilt. Folglich durchströmt das Kühlmittel den Kühlkanal bis zu der Austrittsöffnung im Gegenstrom. Durch eine gegenüberliegende, um ca. 180 ° zu der Eintrittsöffnung versetzte Anordnung der Austrittsöffnung kann eine auf den Umfang des Kühlkanals bezogene, nahezu ausgeglichene Wärmeabfuhr erreicht werden, die eine effiziente Kolbenkühlung sicherstellt. Zur Erzielung stets gleicher Teilströme ist vorgesehen, dass jeder Hälfte der durch den Strömungsteiler geteilten Eintrittsöffnung eine Einspritzdüse zugeordnet ist. Als Maßnahme um eine gegenseitige Beeinflussung der Kühlmittelströmungen im Bereich der Austrittsöffnung zu verhindern kann auch der Austrittsöffnung ein Strömungsteiler zugeordnet werden.The undivided cooling channel preferably forms a jet or flow divider in the region of the inlet opening. For example, a local, provided in the region of the inlet opening constriction of the cooling channel form the jet or flow divider, which divides the flow of coolant in the region of the inlet opening into two partial streams. Consequently, the coolant flows through the cooling channel up to the outlet opening in countercurrent. By an opposite, about 180 ° to the inlet opening staggered arrangement of the outlet opening a related to the circumference of the cooling channel, almost balanced heat dissipation can be achieved, which ensures efficient piston cooling. To achieve always the same partial flows is provided that each half of the divided by the flow divider inlet opening is associated with an injection nozzle. As a measure to prevent mutual influence of the coolant flows in the region of the outlet opening, a flow divider can also be assigned to the outlet opening.

Die Anordnung von zwei Strömungsteilern ermöglicht außerdem eine im Gleichstrom gerichtete Kühlmittelbeaufschlagung des ungeteilten Kühlkanals. Die Strömungsteiler bewirken eine Aufteilung der Eintrittsöffnung und der Austrittsöffnung in jeweils getrennte Bereiche unter Bildung weitere Anschlüsse des Kühlkanals, die als zusätzliche Austrittsöffnung bzw. Eintrittsöffnung nutzbar sind. Entsprechend ergeben sich zwei zueinander gegenüberliegende versetzte Eintrittsöffnungen und Austrittsöffnungen, wobei jeder Eintrittsöffnung eine separate Einspritzdüse zugeordnet ist. Vorteilhaft ermöglicht dieser Aufbau einen im Gleichstrom gerichteten Kühlmittelstrom, der im Vergleich zu einem geteilten Kühlkanal einen verlängerten Kühlkanal bildet, da die bauartbedingten Abstände zwischen der jeweiligen Eintrittsöffnung und der zugehörigen Austrittsöffnung entfallen.The arrangement of two flow dividers also allows for directing coolant admission of the undivided cooling channel. The flow divider effect a division of the inlet opening and the outlet opening into separate areas, forming further connections of the cooling channel, which can be used as an additional outlet opening or inlet opening. Accordingly, two mutually opposite staggered inlet openings and Outlet openings, each inlet opening is associated with a separate injection nozzle. Advantageously, this structure allows a direct current directed coolant flow, which forms an extended cooling channel compared to a split cooling channel, since the design-related distances between the respective inlet opening and the associated outlet opening omitted.

Gemäß einer weiteren Ausgestaltung der Erfindung schließt der Kühlkanal einen aufgeweiteten, einen Strömungssammler bildenden Abschnitt ein. Vorzugsweise ist die Austrittsöffnung gleichzeitig als Strömungssammler gestaltet, der die Strömungsgeschwindigkeit vorteilhaft verringert und einen gewollten beschleunigten Austritt des erwärmten Kühlmediums aus dem Kühlkanal sicherstellt.According to a further embodiment of the invention, the cooling channel includes an expanded section forming a flow collector. Preferably, the outlet opening is simultaneously designed as a flow collector, which advantageously reduces the flow rate and ensures a desired accelerated discharge of the heated cooling medium from the cooling channel.

Die erfindungsgemäß ortsfest positionierten Einspritzdüsen sind bevorzugt als Mehrlochdüsen ausgebildet und erzeugen einen gebündelten, zielgerichteten, die Eintrittsöffnung beaufschlagenden Kühlmittelstrahl. Die Anzahl der Düsenöffnungen der eingesetzten Einspritzdüsen beträgt vorzugweise ≥ 3. Alternativ zu mehreren getrennt angeordneten Einspritzdüsen bietet es sich an, Einspritzdüsen mit unterschiedlich ausgerichteten Düsenöffnungen und/oder vergrößerten Strömungsquerschnitten einzusetzen. Beispielsweise bietet es sich an, von der für die Eintrittsöffnung bestimmten Einspritzdüse eine Teilmenge, d.h. eine Düsenöffnung auf die Unterseite des Kolbens zu richten. Entsprechend dazu ist diese Düsenöffnung in Richtung einer Längsachse des Kolbens geneigt ausgerichtet.The inventively fixedly positioned injection nozzles are preferably designed as multi-hole nozzles and produce a concentrated, targeted, the inlet opening acting on the coolant jet. The number of nozzle openings of the injection nozzles used is preferably ≥ 3. Alternatively to a plurality of separately arranged injection nozzles, it is advisable to use injection nozzles with differently aligned nozzle openings and / or enlarged flow cross sections. For example, it is appropriate to provide a subset of the injection nozzle intended for the entrance opening, i. To direct a nozzle opening on the bottom of the piston. Accordingly, this nozzle opening is inclined in the direction of a longitudinal axis of the piston.

Ausführungsbeispiele der Erfindung, auf die diese jedoch nicht beschränkt ist, werden nachfolgend beschrieben und anhand der Zeichnungen näher erläutert. Es zeigen:

Fig.1:
einen Kolben im Längsschnitt mit erfindungsgemäßen Einspritzdüsen, die Kühlmittel in Eintrittsöffnungen eines geteilten Kühlkanals einspritzen,
Fig.2:
einen nicht erfindungsgemässen Kolben mit einem geteilten Kühlkanal in einer Ansicht auf die Unterseite des Kolbens,
Fig.3:
einen erfindungsgemässen Kolben, der einen ungeteilten Kühlkanal einschließt,
Fig. 4:
einen Kolben, bei dem das Kühlmittel im Gleichstrom den ungeteiltem Kühlkanal durchströmt.
Embodiments of the invention, to which this is not limited, are described below and explained in more detail with reference to the drawings. Show it:
Fig.1:
a piston in longitudinal section with injection nozzles according to the invention, which inject coolant into inlet openings of a divided cooling channel,
Figure 2:
a non-inventive piston with a divided cooling channel in a view of the underside of the piston,
Figure 3:
a piston according to the invention, which includes an undivided cooling channel,
4:
a piston in which the coolant flows through the undivided cooling channel in cocurrent.

Figur 1 zeigt einen Kolben 1, der als ein einteiliger Leichtmetall- oder Stahlkolben ausgeführt werden kann. Der Kolben 1 umfasst einen auch als Kolbenoberteil zu bezeichnenden Kolbenboden 2 und ein Kolbenunterteil 3. Ein dem Kolbenboden 2 zugeordnetes Ringfeld 4 schließt umlaufende Ringnuten 5a, 5b, 5c ein, die jeweils zur Aufnahme von nicht dargestellten Kolbenringen bestimmt sind. Beabstandet zu dem Ringfeld 4 ist in dem Kolben 1 ein radial umlaufender Kühlkanal 6a integriert. Stirnseitig ist in dem Kolbenboden 3 eine Brennraummulde 7 eingebracht. Das Kolbenunterteil 3 bildet zwei gegenüberliegend angeordnete Kolbenschäfte 8, die sich unmittelbar an das Ringfeld 4 anschließen. Versetzt zu den Kolbenschäften 8 schließt das Kolbenunterteil 3 weiterhin zwei Naben 9 mit zugehörigen Bolzenbohrungen 10 ein, die zur Aufnahme eines in Figur 1 nicht abgebildeten Kolbenbolzens bestimmt sind, mit dem eine Anlenkung zwischen einem Pleuel und dem Kolben 1 erfolgt. FIG. 1 shows a piston 1, which can be designed as a one-piece light metal or steel piston. The piston 1 comprises a piston head 2, which can also be referred to as a piston upper part, and a piston lower part 3. A ring field 4 assigned to the piston head 2 includes circumferential annular grooves 5a, 5b, 5c which are each intended to receive piston rings (not shown). Spaced to the ring field 4, a radially encircling cooling channel 6a is integrated in the piston 1. On the front side, a combustion bowl 7 is introduced into the piston head 3. The lower piston part 3 forms two oppositely arranged piston shanks 8, which adjoin the ring field 4 directly. Offset to the piston shafts 8, the lower piston part 3 further includes two hubs 9 with associated bolt holes 10, which are for receiving a in FIG. 1 not shown piston pin are determined with which a linkage between a connecting rod and the piston 1 is carried out.

Zur gezielten Kühlung des Kolbens 1 wird ein Kühlmittel, insbesondere ein Schmieröl der Brennkraftmaschine in den Kühlkanal 6a eingespritzt. Dies erfolgt über ortsfest, insbesondere an einem in Figur 1 nicht dargestellten Kurbelgehäuse positionierte Einspritzdüsen 11, 12 von denen ausgehend, in einem freien gebündelten und zielgerichteten Strahl das Kühlmittel jeweils in eine Eintrittsöffnung 13,14 des Kühlkanals 6a eingespritzt wird. Das Kühlmittel durchströmt wie in Figur 2, die ein nicht zu der Erfindung gehörendes Ausführungsbeispiel zeigt, verdeutlicht, in einem Gleichstrom den geteilt gestalteten, zwei Abschnitte 15,16 einschließenden Kühlkanal 6a und verlässt den Kolben 1 durch Austrittsöffnungen 17,18. Als weitere Maßnahme zur Bodenkühlung des Kolbens 1 wird Kühlmittel über einen freien, breit gespreizten Strahl der Einspritzdüse 19 auf eine Unterseite 20 des Kolbens 1 gespritzt. Dazu ist die Einspritzdüse 19 in Richtung einer Längsachse 21 des Kolbens 1 geneigt ausgerichtet. Die Anordnung der Einspritzdüse 19 erfolgt so, dass zumindest eine Teilmenge des Kühlmittelstrahls einen Scheitelpunkt 22 der Unterseite 20 beaufschlagt. Alternativ zu der dritten Einspritzdüse 19 bietet es sich an, die als Mehrlochdüsen ausgelegten Einspritzdüsen 11, 12 so auszulegen, dass beispielsweise von jeder Einspritzdüse ausgehend, zumindest ein Kühlmittelstrahl auf die Unterseite 20 des Kolbens 1 gerichtet ist. Die Schnittansicht gemäß Figur 1 zeigt einen vergrößerten Durchströmquerschnitt der Abschnitte 15, 16, des Kühlkanals 6 oberhalb der Kolbenschäfte 8. Diese Auslegung ist an das dort herrschende höhere Temperaturniveau angepasst und bewirkt eine effektive Kühlung dieser Kolbenzonen. Im Bereich der Bolzenbohrungen 10 ist der Durchströmquerschnitt des Kühlkanals 6a entsprechend des dort herrschenden geringeren Temperaturniveaus verkleinert. Diese Maßnahme verbessert gleichzeitig die Bauteilfestigkeit des Kolbens 1, da der kleinere Durchströmquerschnitt sich positiv auf die die Gefügespannungen auswirkt, die sich im Bereich der Bolzenbohrungen 10 aufgrund der eingeleiteten Kräfte einstellen.For targeted cooling of the piston 1, a coolant, in particular a lubricating oil of the internal combustion engine is injected into the cooling channel 6a. This is done via stationary, especially at a in FIG. 1 Not shown crankcase positioned injectors 11, 12 of which, starting in a free focused and targeted beam, the coolant in each case into an inlet opening 13,14 of the Cooling channel 6a is injected. The coolant flows through as in FIG. 2 , which shows an embodiment not belonging to the invention, illustrates, in a direct current, the split-shaped, two sections 15,16 enclosing the cooling channel 6a and leaves the piston 1 through outlet openings 17,18. As a further measure for cooling the bottom of the piston 1, coolant is sprayed onto a bottom side 20 of the piston 1 via a free, widely spread jet of the injection nozzle 19. For this purpose, the injection nozzle 19 is inclined in the direction of a longitudinal axis 21 of the piston 1. The arrangement of the injection nozzle 19 is such that at least a subset of the coolant jet acts on a vertex 22 of the underside 20. As an alternative to the third injection nozzle 19, it makes sense to design the injection nozzles 11, 12 designed as multi-hole nozzles so that, for example, starting from each injection nozzle, at least one coolant jet is directed onto the underside 20 of the piston 1. The sectional view according to FIG. 1 shows an enlarged flow cross-section of the sections 15, 16, of the cooling channel 6 above the piston shafts 8. This design is adapted to the prevailing higher temperature level and causes effective cooling of these piston zones. In the area of the pin holes 10, the flow cross-section of the cooling channel 6a is reduced in accordance with the lower temperature level prevailing there. This measure at the same time improves the component strength of the piston 1, since the smaller flow cross-section has a positive effect on the structural stresses that occur in the region of the bolt holes 10 due to the forces introduced.

Die nicht zu der Erfindung gehörende Figur 2 zeigt in einer Ansicht die Unterseite 20 des Kolbens 1, der einen geteilten, zwei Abschnitte 15,16 bildenden Kühlkanal 6a umfasst. Umlaufende unterbrochene Linien verdeutlichen die Einbaulage des Kühlkanals 6a. Jeder Abschnitt 15, 16 schließt getrennt voneinander positionierte Eintrittsöffnungen 13, 14 und Austrittsöffnungen 17, 18 ein, die jeweils gegenüberliegend versetzt zueinander angeordnet sind. Die benachbarte Anordnung der Eintrittsöffnung 13 zu der Austrittsöffnung 18 bzw. der Eintrittsöffnung 14 zu der Austrittsöffnung 17 bewirkt eine im Gleichstrom gerichtete Kühlmittelströmung, verdeutlicht durch die Pfeile. Die Lage der Eintrittsöffnungen 13, 14 an den Kolbenschäften 8 in Verbindung mit der im Uhrzeigersinn gerichteten Strömung gewährleistet, dass zuerst die Zonen des Kolbens 1 mit dem höchsten Temperaturniveau, den Kolbenschäften 8 gekühlt werden, bevor das Kühlmittel den Bereich oberhalb der Nabe 9 kühlt.The not belonging to the invention FIG. 2 shows in a view the underside 20 of the piston 1, which comprises a divided, two sections 15,16 forming cooling channel 6a. Circumferential broken lines illustrate the installation position of the cooling channel 6a. Each section 15, 16 includes separately positioned inlet openings 13, 14 and outlet openings 17, 18, which are each arranged offset from one another. The adjacent arrangement of the inlet opening 13 to the outlet opening 18 and the inlet opening 14 to the Outlet opening 17 causes a direct current directed coolant flow, illustrated by the arrows. The position of the inlet openings 13, 14 on the piston shafts 8 in conjunction with the clockwise flow ensures that first the zones of the piston 1 with the highest temperature level, the piston shafts 8 are cooled before the coolant cools the area above the hub 9.

In der Figur 3 ist der Kolben 1 alternativ zur Figur 2 mit einem ungeteilten Kühlkanal 6b gezeigt. Die Eintrittsöffnung 23 schließt einen Strömungsteiler 24 ein, der die separaten Kühlmittelstrahlen von zwei getrennt angeordneten Einspritzdüsen umlenkt wodurch das Kühlmittel im Gegenstrom, verdeutlicht durch die Pfeile, durch den Kühlkanal 6b zu der gegenüberliegenden Austrittsöffnung 25 strömt. Der Strömungsteiler 24 ermöglicht eine optimale Beaufschlagung des Kühlkanals 6b zur Erzielung einer effizienten Kolbenkühlung. Als Strömungsteiler 24 eignet sich eine lokale Verengung bzw. Einschnürung des Kühlkanals 6b. Die Kühlmittelbeaufschlagung kann alternativ über zwei Einspritzdüsen erfolgen, wobei die getrennten Einspritzstrahlen jeweils einer Hälfte der durch den Strömungsteiler 24 aufgeteilten Eintrittsöffnung 23 zugeordnet sind. Der Kühlkanal 6b umfasst im Bereich der Austrittsöffnung 25 eine lokale, einen Stömungssammler 26 bildende Aufweitung. Der Strömungssammler 26 bewirkt eine reduzierte Strömungsgeschwindigkeit, die einen gewollten schnellen Austritt des aufgeheizten Kühlmittels aus dem Kühlkanal 6b über die Austrittsöffnung 25 sicherstellt. Ein der Austrittsöffnung 25 zugeordneter Strömungsteiler 27 hat die Aufgabe, eine gegenseitige Beeinflussung der im Gegenstrom in den Strömungssammler 26 eintretenden Kühlmittelströme zu unterbinden.In the FIG. 3 is the piston 1 alternative to FIG. 2 shown with an undivided cooling channel 6b. The inlet opening 23 includes a flow divider 24, which deflects the separate coolant jets from two separately arranged injection nozzles whereby the coolant in countercurrent, indicated by the arrows, flows through the cooling channel 6b to the opposite outlet opening 25. The flow divider 24 allows optimal loading of the cooling channel 6b to achieve efficient piston cooling. As a flow divider 24, a local constriction or constriction of the cooling channel 6b is suitable. The coolant may alternatively be effected via two injection nozzles, wherein the separate injection jets are each assigned to one half of the inlet opening 23 divided by the flow divider 24. The cooling channel 6b comprises in the region of the outlet opening 25 a local, a flow collector 26 forming widening. The flow collector 26 causes a reduced flow rate, which ensures a desired rapid escape of the heated coolant from the cooling channel 6 b via the outlet opening 25. One of the outlet opening 25 associated flow divider 27 has the task to prevent mutual interference of the countercurrent entering the flow collector 26 coolant flows.

Die Figur 4 zeigt den Kolben 1 mit dem ungeteilten Kühlkanal 6c, durch den das Kühlmittel im Gleichstrom strömt. Strömungsteiler 24, 28 übernehmen eine Aufteilung der Eintrittsöffnung 23 und der Austrittsöffnung 25 in zwei getrennte Bereiche und ermöglichen damit eine Kühlmittelbeaufschlagung des Kühlkanals 6c im Gleichstrom. Die Aufteilung sieht vor, dass ein abgetrennter Anschluß 29 der Eintrittsöffnung 23 als zusätzliche Austrittsöffnung und der abgetrennte Anschluß 28 der Austrittsöffnung 25 als weitere Eintrittsöffnung vorgesehen ist. Entsprechend ist der Eintrittsöffnung 23 und dem Anschluß 28 jeweils eine versetzt zueinander, in Figur 4 nicht abgebildete Einspritzdüse zugeordnet, über die das Kühlmittel in den ungeteilten Kühlkanal 6c eintritt und über die Austrittsöffnung 25 bzw. den Anschluß 29 austritt. Dieser Aufbau bewirkt eine Verlängerung des Kühlkanals 6c im Vergleich zu einem geteilten, im Gleichstrom beaufschlagten Kühlkanal 6a gemäß Figur 2, bei dem sich Abstände ohne Kühlkanal jeweils zwischen einer Eintrittsöffnung 13, 14 und einer Austrittsöffnung 17, 18 einstellen.The FIG. 4 shows the piston 1 with the undivided cooling channel 6c, through which the coolant flows in cocurrent. Flow dividers 24, 28 take over a division of the inlet opening 23 and the outlet opening 25 into two separate areas and thus allow a coolant admission of the cooling channel 6c in direct current. The division provides that a separate terminal 29 of the inlet opening 23 is provided as an additional outlet opening and the separated terminal 28 of the outlet opening 25 as a further inlet opening. Accordingly, the inlet opening 23 and the terminal 28 are each offset from each other, in FIG. 4 not shown mapped injector, via which the coolant enters the undivided cooling channel 6c and exits via the outlet opening 25 and the terminal 29. This structure causes an extension of the cooling passage 6c in comparison with a divided, co-currently charged cooling passage 6a according to FIG FIG. 2 in which distances without a cooling channel in each case between an inlet opening 13, 14 and an outlet opening 17, 18 set.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Kolbenpiston
22
Kolbenbodenpiston crown
33
KolbenunterteilPiston part
44
Ringfeldring box
5a5a
Ringnutring groove
5b5b
Ringnutring groove
5c5c
Ringnutring groove
6a6a
Kühlkanalcooling channel
6b6b
Kühlkanalcooling channel
77
BrennraummuldeCombustion bowl
88th
Kolbenschaftpiston shaft
99
Nabehub
1010
Bolzenbohrungpin bore
1111
Einspritzdüseinjection
1212
Einspritzdüseinjection
1313
Eintrittsöffnunginlet opening
1414
Eintrittsöffnunginlet opening
1515
Abschnittsection
1616
Abschnittsection
1717
Austrittsöffnungoutlet opening
1818
Austrittsöffnungoutlet opening
1919
Einspritzdüseinjection
2020
Unterseitebottom
2121
Längsachselongitudinal axis
2222
Scheitelpunktvertex
2323
Eintrittsöffnunginlet opening
2424
Strömungsteilerflow divider
2525
Austrittsöffnungoutlet opening
2626
Strömungssammlerflow collector
2727
Strömungsteilerflow divider
2828
AnschlußConnection
2929
AnschlußConnection

Claims (7)

  1. Arrangement comprising a liquid-cooled piston of an internal combustion engine and three injection nozzles (11, 12, 19), wherein the piston has a radially encircling cooling duct (6a, 6b, 6c) spaced apart from a piston crown (2), wherein, as coolant, a lubricant oil of the internal combustion engine is injected into in each case one inlet opening (13, 14, 23) over a free jet via two injection nozzles (11, 12), flows through the cooling duct (6a, 6b, 6c) and leaves the piston (1) through in each case one outlet opening (17, 18, 25), wherein
    - the cooling duct (6a, 6b) is embodied in an undivided manner;
    - two injection nozzles (11, 12) for acting on the inlet openings (13, 14, 23) or a connection (28) of the cooling duct (6a, 6b, 6c) are provided;
    - the coolant enters the respective inlet opening (13, 14) in each case in a free jet, oriented parallel to a longitudinal axis (21) of the piston (1), from the injection nozzles (11, 12)
    - an underside (20) of the piston (1) is acted on with coolant by a free jet of the third injection nozzle (19) .
  2. Arrangement according to Claim 1, characterized in that the undivided cooling duct (6b) encloses, in the region of the inlet opening (23), a flow divider (24) that divides the injected coolant into two partial flows and directs them in countercurrent to the outlet opening (25) .
  3. Arrangement according to Claim 1, characterized in that the inlet opening (23) and the outlet opening (25) of the undivided cooling duct (6c) are each assigned a flow divider (24, 28) that divides the openings, forming additional connections (28, 29) that are provided as inlets or outlets and allow the cooling duct (6c) to be acted on with coolant in cocurrent.
  4. Arrangement according to Claim 1, characterized in that the undivided cooling duct (6a, 6b) encloses, in the region of the outlet opening (25), a widened portion in the form of a flow manifold (26).
  5. Arrangement according to Claim 1, characterized in that the number of nozzle openings of the injection nozzle (11, 12, 19) designed as a multi-hole nozzle is ≥ 3.
  6. Arrangement according to Claim 1, characterized in that the injection nozzle (19) assigned to the underside (20) of the piston (1) is oriented in a manner inclined in the direction of a longitudinal axis (21) of the position (19).
  7. Arrangement according to Claim 5, characterized in that, starting from the injection nozzle (11, 12), a plurality of the nozzle openings are oriented towards the inlet opening (13, 14) of the cooling duct (6a) and at least in each case one nozzle opening of the injection nozzle (11, 12) is directed towards the underside (20) of the piston (1) .
EP07022821.8A 2006-11-28 2007-11-24 Cooling duct variant for pistons Revoked EP1930578B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006056011A DE102006056011A1 (en) 2006-11-28 2006-11-28 Liquid-cooled piston for e.g. diesel internal-combustion engine, has medium in free jet of nozzles entering into openings, where jet is directed parallel to longitudinal axis of piston, and lower side loaded with medium by jet

Publications (3)

Publication Number Publication Date
EP1930578A2 EP1930578A2 (en) 2008-06-11
EP1930578A3 EP1930578A3 (en) 2012-02-08
EP1930578B1 true EP1930578B1 (en) 2019-09-25

Family

ID=39205482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07022821.8A Revoked EP1930578B1 (en) 2006-11-28 2007-11-24 Cooling duct variant for pistons

Country Status (2)

Country Link
EP (1) EP1930578B1 (en)
DE (1) DE102006056011A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056011A1 (en) 2006-11-28 2008-05-29 Ks Kolbenschmidt Gmbh Liquid-cooled piston for e.g. diesel internal-combustion engine, has medium in free jet of nozzles entering into openings, where jet is directed parallel to longitudinal axis of piston, and lower side loaded with medium by jet
DE102008038324A1 (en) * 2008-08-19 2010-02-25 Mahle International Gmbh Cooling channel of a piston for an internal combustion engine
DE102010055029A1 (en) 2009-12-18 2012-05-10 Ks Kolbenschmidt Gmbh Cooling passage piston for internal combustion engine, has cooling passage comprising incidence surface that is vertically aligned to beam through inlet opening in cooling passage during movement of piston
DE102012203570A1 (en) 2012-03-07 2013-09-12 Mahle International Gmbh Cast light metal piston, especially an aluminum piston
DE102012017217A1 (en) 2012-08-31 2014-05-15 Mahle International Gmbh Piston for an internal combustion engine
CN103184918A (en) * 2012-12-29 2013-07-03 中国兵器工业集团第七0研究所 Piston cooling device for opposed piston two-stroke internal combustion engine
DE102013013962A1 (en) 2013-08-23 2015-02-26 Mahle International Gmbh Assembly of a piston and a Anspritzdüse for an internal combustion engine
DE102014005364A1 (en) 2014-04-11 2015-10-29 Mahle International Gmbh Assembly of a piston and an oil spray nozzle for an internal combustion engine
DE102017206152A1 (en) * 2017-04-11 2018-10-11 Bayerische Motoren Werke Aktiengesellschaft Reciprocating internal combustion engine
AT522701B1 (en) * 2019-06-28 2021-06-15 Avl List Gmbh PISTON
DE102020007484A1 (en) 2020-12-08 2022-06-09 Mercedes-Benz Group AG Pistons for an internal combustion engine
DE102021002870A1 (en) 2021-06-02 2022-12-08 Mercedes-Benz Group AG Pistons for an internal combustion engine, in particular a motor vehicle

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE967568C (en) 1951-01-27 1957-11-21 Mak Maschb Kiel Ag Method for lubricating the piston pin and cooling the piston crown of piston engines by means of oil and equipment for practicing the method
DE1055879B (en) 1955-03-23 1959-04-23 Schmidt Gmbh Karl Oil-cooled pistons for diesel engines in vehicles
US3459253A (en) 1964-03-25 1969-08-05 Wellworthy Ltd Method of casting pistons
DE2831566A1 (en) 1977-07-18 1979-02-01 Caterpillar Tractor Co ENGINE
WO1982002575A1 (en) 1981-01-23 1982-08-05 Clairmont Floyd H Jr Nozzle assembly for controlled spray
DE3444661A1 (en) 1984-12-07 1986-06-12 Klöckner-Humboldt-Deutz AG, 5000 Köln Liquid-cooled piston
DE3732927C2 (en) 1987-09-30 1989-09-28 Mahle Gmbh, 7000 Stuttgart, De
US5595145A (en) 1995-05-31 1997-01-21 Kabushiki Kaisha Komatsu Seisakusho Cooling structure of diesel engine piston
DE19634742A1 (en) 1996-08-28 1998-03-05 Deutz Ag Internal combustion engine with piston lubricating and cooling oil injector
JP2000274306A (en) 1999-03-23 2000-10-03 Mazda Motor Corp Piston structure of engine
DE19935399A1 (en) 1999-07-30 2001-02-01 Ks Kolbenschmidt Gmbh Pistons for an internal combustion engine
US6250275B1 (en) 1999-08-16 2001-06-26 Caterpillar Inc. Internal combustion engine piston pin lubrication
US6557514B1 (en) 2001-10-23 2003-05-06 Federal-Mogul World Wide, Inc. Closed gallery monobloc piston having oil drainage groove
JP2003301744A (en) * 2002-04-08 2003-10-24 Toyota Motor Corp Piston cooling device and method
EP1394376A1 (en) 2002-09-02 2004-03-03 Bontaz Centre Spray nozzle with multiple jets for cooling an internal combustion engine and engine with such nozzle
WO2004104391A1 (en) 2003-05-24 2004-12-02 Daimlerchrysler Ag Multi-cylinder combustion engine
DE102004043720A1 (en) 2004-09-09 2006-03-30 Federal-Mogul Nürnberg GmbH Piston for an internal combustion engine and internal combustion engine
DE102004056769A1 (en) 2004-11-24 2006-06-01 Federal-Mogul Nürnberg GmbH Piston for an internal combustion engine and combination of a piston with an oil injection assembly
DE102005061059A1 (en) 2005-12-21 2007-06-28 Mahle International Gmbh Piston for internal combustion engine has piston head side regions of gudgeon-pin hub reinforced radially inward, and oil outflow borings directed to these regions
DE102006056011A1 (en) 2006-11-28 2008-05-29 Ks Kolbenschmidt Gmbh Liquid-cooled piston for e.g. diesel internal-combustion engine, has medium in free jet of nozzles entering into openings, where jet is directed parallel to longitudinal axis of piston, and lower side loaded with medium by jet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331649A1 (en) 1993-09-17 1995-03-23 Kloeckner Humboldt Deutz Ag Piston cooling of an internal combustion engine
DE4340891A1 (en) 1993-12-01 1995-06-08 Mahle Gmbh Reciprocating pistons for internal combustion engines made in particular of light metal
DE19621894B4 (en) * 1995-06-08 2004-07-15 Deutz Ag Internal combustion engine with piston cooling
DE19930630C1 (en) * 1999-07-02 2000-10-26 Federal Mogul Nuernberg Gmbh Liquid-cooled piston for I.C. engines has an annular cooling channel that runs in an undulating fashion in the direction of the piston axis
JP2006207537A (en) * 2005-01-31 2006-08-10 Toyota Motor Corp Top face rotating type piston

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE967568C (en) 1951-01-27 1957-11-21 Mak Maschb Kiel Ag Method for lubricating the piston pin and cooling the piston crown of piston engines by means of oil and equipment for practicing the method
DE1055879B (en) 1955-03-23 1959-04-23 Schmidt Gmbh Karl Oil-cooled pistons for diesel engines in vehicles
US3459253A (en) 1964-03-25 1969-08-05 Wellworthy Ltd Method of casting pistons
DE2831566A1 (en) 1977-07-18 1979-02-01 Caterpillar Tractor Co ENGINE
WO1982002575A1 (en) 1981-01-23 1982-08-05 Clairmont Floyd H Jr Nozzle assembly for controlled spray
DE3444661A1 (en) 1984-12-07 1986-06-12 Klöckner-Humboldt-Deutz AG, 5000 Köln Liquid-cooled piston
DE3732927C2 (en) 1987-09-30 1989-09-28 Mahle Gmbh, 7000 Stuttgart, De
US5595145A (en) 1995-05-31 1997-01-21 Kabushiki Kaisha Komatsu Seisakusho Cooling structure of diesel engine piston
DE19634742A1 (en) 1996-08-28 1998-03-05 Deutz Ag Internal combustion engine with piston lubricating and cooling oil injector
JP2000274306A (en) 1999-03-23 2000-10-03 Mazda Motor Corp Piston structure of engine
DE19935399A1 (en) 1999-07-30 2001-02-01 Ks Kolbenschmidt Gmbh Pistons for an internal combustion engine
US6250275B1 (en) 1999-08-16 2001-06-26 Caterpillar Inc. Internal combustion engine piston pin lubrication
US6557514B1 (en) 2001-10-23 2003-05-06 Federal-Mogul World Wide, Inc. Closed gallery monobloc piston having oil drainage groove
JP2003301744A (en) * 2002-04-08 2003-10-24 Toyota Motor Corp Piston cooling device and method
EP1394376A1 (en) 2002-09-02 2004-03-03 Bontaz Centre Spray nozzle with multiple jets for cooling an internal combustion engine and engine with such nozzle
WO2004104391A1 (en) 2003-05-24 2004-12-02 Daimlerchrysler Ag Multi-cylinder combustion engine
DE102004043720A1 (en) 2004-09-09 2006-03-30 Federal-Mogul Nürnberg GmbH Piston for an internal combustion engine and internal combustion engine
DE102004056769A1 (en) 2004-11-24 2006-06-01 Federal-Mogul Nürnberg GmbH Piston for an internal combustion engine and combination of a piston with an oil injection assembly
DE102005061059A1 (en) 2005-12-21 2007-06-28 Mahle International Gmbh Piston for internal combustion engine has piston head side regions of gudgeon-pin hub reinforced radially inward, and oil outflow borings directed to these regions
DE102006056011A1 (en) 2006-11-28 2008-05-29 Ks Kolbenschmidt Gmbh Liquid-cooled piston for e.g. diesel internal-combustion engine, has medium in free jet of nozzles entering into openings, where jet is directed parallel to longitudinal axis of piston, and lower side loaded with medium by jet
EP1930578A2 (en) 2006-11-28 2008-06-11 KS Kolbenschmidt GmbH Cooling duct variant for pistons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Taschenbuch für den Maschinenbau", 1 January 2005, article DUBBEL: "fahrzeugmotoren", pages: 84, XP055761931

Also Published As

Publication number Publication date
EP1930578A3 (en) 2012-02-08
EP1930578A2 (en) 2008-06-11
DE102006056011A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
EP1930578B1 (en) Cooling duct variant for pistons
EP2304210B1 (en) Friction welded steel piston having optimized cooling channel
EP1778953B1 (en) Exhaust turbine cleaning device
EP3746651B1 (en) Reciprocating piston for a reciprocating piston internal combustion engine, and use of a reciprocating piston in a reciprocating piston internal combustion engine
DE2723619A1 (en) BUILT LIQUID-COOLED PISTON FOR INTERNAL COMBUSTION ENGINES
EP2242915B1 (en) Gas turbine having an improved cooling architecture
DE102017204316A1 (en) COMBUSTION ENGINE
EP1231374B1 (en) Piston for an internal combustion engine
EP1925805A1 (en) Variably designed cooling duct for a piston
WO2021044000A1 (en) Crankcase for an internal combustion engine, and internal combustion engine
DE102010012119A1 (en) Piston for reciprocating piston engine, has upper section, which has piston head of piston on top side, where controlling unit is provided, by which squirted lubricant is diverted by opening
DE102015009568B4 (en) Internal combustion engine with a control device for the targeted control of a piston cooling nozzle or a piston cooling duct and a method for operating an internal combustion engine
WO2018184894A1 (en) Piston of an internal combustion engine
DE102020007484A1 (en) Pistons for an internal combustion engine
DE102005057760A1 (en) Cooling system for a motor
DE102021128792B3 (en) Piston for a reciprocating engine, corresponding engine and motor vehicle with such
DE102020133122B3 (en) Pistons for an internal combustion engine and method of manufacturing a piston for an internal combustion engine
DE102020116922A1 (en) piston
DE102021128789B3 (en) Piston assembly for an internal combustion engine
DE10230746B4 (en) piston
DE102016216360B4 (en) Cylinder head for an internal combustion engine
DE4120850A1 (en) BUILT OIL-COOLED PISTON FOR DIESEL ENGINES
DE102014010156A1 (en) Arrangement of a piston in a cylinder of a reciprocating internal combustion engine and piston for a reciprocating internal combustion engine
DE102016225632A1 (en) Piston of an internal combustion engine
AT512303B1 (en) INTERNAL COMBUSTION ENGINE WITH A CYLINDER HEAD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 3/08 20060101ALI20111230BHEP

Ipc: F02F 3/22 20060101AFI20111230BHEP

AKY No designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20121017

17P Request for examination filed

Effective date: 20121113

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016780

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1184055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007016780

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: MAHLE INTERNATIONAL GMBH

Effective date: 20200624

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200126

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191124

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1184055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20211122

Year of fee payment: 15

Ref country code: DE

Payment date: 20211118

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502007016780

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502007016780

Country of ref document: DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20220203

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1184055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071124