EP1927414B1 - Fentes de soufflage à pointe défini par RMC pour pales de turbine - Google Patents

Fentes de soufflage à pointe défini par RMC pour pales de turbine Download PDF

Info

Publication number
EP1927414B1
EP1927414B1 EP07254584A EP07254584A EP1927414B1 EP 1927414 B1 EP1927414 B1 EP 1927414B1 EP 07254584 A EP07254584 A EP 07254584A EP 07254584 A EP07254584 A EP 07254584A EP 1927414 B1 EP1927414 B1 EP 1927414B1
Authority
EP
European Patent Office
Prior art keywords
tip
refractory metal
core element
metal core
airfoil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07254584A
Other languages
German (de)
English (en)
Other versions
EP1927414A3 (fr
EP1927414A2 (fr
Inventor
Jason Edward Albert
Jeffrey S. Beattie
Francisco J. Cunha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to EP10007545.6A priority Critical patent/EP2246133B1/fr
Publication of EP1927414A2 publication Critical patent/EP1927414A2/fr
Publication of EP1927414A3 publication Critical patent/EP1927414A3/fr
Application granted granted Critical
Publication of EP1927414B1 publication Critical patent/EP1927414B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/103Multipart cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • F05D2230/211Manufacture essentially without removing material by casting by precision casting, e.g. microfusing or investment casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade

Definitions

  • the present invention relates to a process for forming a turbine engine component, such as a turbine blade, having a plurality of as-cast blowing slots in a tip region using a refractory core element.
  • HPT high pressure turbine
  • blade distress via oxidation and erosion. It is particularly challenging to design a cooling configuration for a tip region for a variety of reasons.
  • the tip region of a turbine blade is typically the thinnest portion of the airfoil, which makes it more difficult to package the desired cooling features.
  • the tip region of a turbine blade is typically difficult to accurately produce with investment casting processes because the internal ceramic core is thin and weak near the tip. Further, it is cantilevered relatively far from the core-locating fixture at the blade root. Considering these points, it is desirable to have methods to create intricate cooling features near the tip capable of being targeted at specific regions of high heat load, while also allowing for greater control during the investment casting process.
  • FIG. 1 An existing HPT blade tip cooling design is shown in FIG. 1 .
  • a radially oriented cavity supplies cooling air to a leading edge impingement cooling scheme as well as a laterally-oriented cavity, known as a tip flag, that helps cool the tip before exiting the blade at the trailing edge near the tip.
  • FIG. 1 also shows a midbody three-pass serpentine cooling arrangement and a trailing edge double-impingement system.
  • the tip of the core in FIG. 1 includes an appendage that creates a recess blade tip known as a squealer pocket. That appendage is connected to the leading edge and tip flag core by means of two cylindrical connections (“print-outs") that form open holes in the finished casting (“print-out holes”).
  • the core is fixed at the root of the blade during the casting process.
  • the squealer pocket core is located laterally during the casting process, allowing the tip print outs to stabilize the tip region of the core. In order to prevent core breakage during the casting process, these tip print-outs should be as large as possible, especially considering that they are constructed from the brittle ceramic core material.
  • One of the primary purposes of the squealer pocket is to allow for a shorter distance that the tip print-outs must span.
  • EP-1543896 discloses a blade-forming core including a tip ceramic core forming a squealer pocket.
  • a new tip cooling design that utilizes refractory metal core (RMC) technology in order to create a tip cooling scheme for a turbine engine component that is capable of more efficient use of cooling air and a more reliable casting process.
  • RMC refractory metal core
  • a process for forming an airfoil portion of a turbine engine component comprises the steps of placing a ceramic core having a configuration of a passageway to be formed in the airfoil portion within a mold; attaching a refractory metal core element to the ceramic core to stabilize a tip region of the ceramic core during casting; and casting the airfoil portion as defined by claim 5.
  • a ceramic core for forming a passageway in a cast airfoil portion and means for stabilizing a tip region of the ceramic core.
  • the stabilizing means comprises a refractory metal core element.
  • a refractory metal core element comprising a solid portion and a plurality of spaced apart legs depending from the solid portion.
  • Each of the legs has a first portion adjacent the solid portion, a base portion, and an angled portion intermediate the first portion and the base portion so that the base portion is laterally offset from the solid portion.
  • the base portions of the legs are preferably joined together by a lower portion.
  • a turbine engine component having an airfoil portion with a tip region, a shelf portion in said tip region, and a plurality of as-cast slots in the shelf portion through which a cooling fluid flows.
  • the slots are located along a pressure side of the tip region.
  • a new tip cooling design for a turbine blade is proposed here that utilizes refractory metal core technology in order to help create a tip cooling scheme that is capable of more efficient use of cooling air and a more reliable casting process.
  • a relatively thin, approximately 0.015" (0.38 mm), refractory metal core element 10 is used to stabilize a tip region 12 of a ceramic core 14 during the casting process.
  • the ceramic core 14 is positioned within a mold 80, only a portion of which has been shown.
  • the ceramic core 14 may have the configuration of a laterally oriented passageway 15 to be formed in the airfoil tip region 34.
  • the refractory metal core element 10 is printed out of the airfoil tip region 34 during casting and is located laterally of the ceramic core 14.
  • the refractory metal core element 10 is positioned adjacent a side of the mold which forms the pressure side 40 of the airfoil portion 42.
  • the refractory metal core element 10 is a metal piece which is much more rugged than typically brittle core print-outs. Thus, there is no manufacturing requirement for relatively large core print-out. A core print-out hole (not shown) may still be included if it is required for cooling purposes. In the present case, the core print-out hole can be made smaller than it previously could because it is not required to have as high of a strength. This configuration also allows for multiple ceramic core features to be stabilized by the same refractory metal core element. Furthermore, because this new tip design provides more stability and strength for the ceramic core 14 near the tip, the size of the trailing edge print-out of the tip flag cavity can be reduced, enabling lower cooling air flow out the tip flag exit.
  • the refractory metal core element 10 may be formed from any suitable refractory material known in the art such as molybdenum or a molybdenum alloy.
  • the refractory metal core element 10, as shown in FIGS. 2 , 4 and 5 has a solid portion 46 and a plurality of spaced apart legs 48 depending downwardly from the solid portion 46.
  • Each leg 48 has a first leg portion 50, a base portion 52, and an angled portion 54 between the first portion 50 and the base portion 52.
  • the base portion 52 of the legs may be joined together by a lower portion 53.
  • the refractory metal core element 10 may be attached to the ceramic core 14 using any suitable means known in the art such as an adhesive or a mechanical fit connection.
  • the refractory metal core element 10 and the ceramic core 14 are attached, inside the casting, the refractory metal core element can be used to control the location of both the refractory metal core and the ceramic core, relative to the external mold. Still further, the legs 48 can be arranged in any way that makes sense for the cooling design. Furthermore, the legs 48 only need to be connected at one end (inside or outside the casting), whichever makes sense for the cooling design and the casting process.
  • the refractory metal core element 10 is printed out in such a way as to produce a row of aligned open slots 30 in the finished casting, along the pressure side edge 32 of the tip 34. Cooling air may be ejected from the slots 30 in whichever direction the slots 30 are oriented.
  • the slots 30 may be oriented primarily radially outwards towards an outer circumference of the gaspath.
  • the slots 30 may also be slightly angled towards the pressure side 40 of the turbine blade airfoil portion 42.
  • the slots 30 may be purely radial or leaned in any combination of directions - forward/aft and/or towards pressure/suction side.
  • The' slots 30 may be in fluid communication with the passageway 15.
  • the slots 30 may be located in a recessed shelf 36 in the tip 34.
  • the recessed shelf 36 may be a cast feature, or it may be machined into the finished casting in a later process.
  • the cooling air When the cooling air exits the RMC defined tip slots 30, the cooling air immediately flows into a tip gap between the blade tip 34 and the blade outer air seal (BOAS)(not shown) due to the strong pressure gradient towards the suction side 60 of the airfoil portion 42. Injecting the cooling air into the tip gap significantly reduces the gaspath temperature in the tip gap downstream of the slots 30, resulting in lower heat load to the tip region of the blade. This is a similar effect to film cooling on the body of an airfoil.
  • Conventional tip print-out holes provide some film cooling benefit on the tip surface, but they are significantly less efficient than this new design because the conventional tip print-out holes are so large that they can only be located at one or two locations along the mid-thickness of the tip.
  • FIG. 3 shows a tip cooling design in accordance with the present invention which has only a single row of shaped cooling holes 70. The reduction of two rows of pressure side film cooling to one row is a benefit of the present invention, but it is not a necessary aspect of it.
  • Tip blowing utilizes a row of cooling air jets or holes 70 along the pressure side edge 32 of the blade tip 34, which act to improve aerodynamic efficiency by reducing endwall losses associated with gaspath leakage across the tip gap.
  • the cooling holes 70 may be machined in the pressure side edge 32 after the blade and its airfoil portion have been cast.
  • the cooling holes 70 may be machined using any suitable technique known in the art.
  • the cooling holes 70 are preferably in fluid communication with the passageway 15.
  • the RMC-defined cooling slots 30 may be situated along the recessed shelf 36 along the pressure side of the tip 34.
  • the recessed shelf 36 will prevent the slots 30 from being unexpectedly closed during engine operation when the blade tip 34 rubs against the outer circumference of the gaspath.
  • the recessed shelf 36 also allows for easier masking when applying abradable coating to the tip surface.
  • the tip portion 34 of the airfoil portion 42 of the turbine engine blade is a cast structure and is formed at the same time as the remainder of the cast portions of the turbine engine blade.
  • the mold 80 forming the tip region 34 of the airfoil portion 42 is illustrated in the drawings. It should be recognized that the mold 80 has a portion which is in the shape of the pressure side of the airfoil.
  • the tip portion 34 may be formed by placing the ceramic core 14 into a mold 80. After the ceramic core 14, as well as any other needed ceramic or silica cores, has been positioned, the refractory metal core element 10 may be attached to the ceramic core 14 using any suitable means known in the art, such as an adhesive or pins.
  • the mold 80 is created after the ceramic core 14 and the RMC 10 are assembled. This is preferably done by first assembling the ceramic core 14 and RMC 10, then injecting wax around the cores 10 and 14 using a wax die, so that the external surface of the wax is the same geometry as the external surface of finished casting. Then, a ceramic shell is applied to the external surface of the wax pattern. Then, the wax is melted out, leaving the ceramic core 14, RMC 10 and ceramic shell (not shown).
  • the refractory metal core element 10 serves to stabilize the tip region of the ceramic core 14. Thereafter the blade with the airfoil portion may be cast using any suitable technique known in the art. After casting has been completed, the ceramic core 14 may be removed using any suitable technique known in the art to leave the passageway 15. Similarly, the refractory metal core element 10 is removed, thus leaving the slots 30.
  • the RMC 10 may be leached out of the casting using any suitable chemical bath known in the art, very similar to how the ceramic cores are leached. Thereafter, a plurality of cooling holes 70 may be machined into the tip region of the airfoil portion 42.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Claims (7)

  1. Procédé de formation d'une partie de déflecteur d'air (42) d'un composant de moteur de turbine, ladite partie de déflecteur d'air (42) ayant un côté de pression (40) et un côté d'aspiration (60), le procédé comprenant :
    le positionnement d'un coeur en céramique (14) configurant un passage (15) à former dans ladite partie de déflecteur d'air (42) ;
    la fixation d'un élément central en métal réfractaire (10) audit coeur en céramique (14) pour stabiliser une région d'extrémité (12) dudit coeur en céramique (14), dans lequel ledit élément central en métal réfractaire (10) comprend une partie solide (46) et une pluralité de pattes espacées (48) dépendant de ladite partie solide (46), chacune desdites pattes (48) ayant une première partie (50) placée à côté de ladite partie solide (46), une partie de base (52) et une partie en angle (54) intermédiaire entre ladite première partie (50) et ladite partie de base (52) de sorte que ladite partie de base (52) est décalée en côté par rapport à ladite partie solide (46) ;
    la création d'un moule (80) autour du coeur en céramique (14) et de l'élément central en métal réfractaire (10) ;
    la fonte de ladite partie de déflecteur d'air (42) ; et le retrait dudit élément central réfractaire (10) de façon à laisser une pluralité de fentes de refroidissement (30) le long d'un côté de pression (40) dans une région d'extrémité (34) de ladite partie de déflecteur d'air (42).
  2. Procédé selon la revendication 1, comprenant en outre le positionnement dudit coeur en céramique (14) par rapport audit moule (80) avec ledit élément central en métal réfractaire (10).
  3. Procédé selon la revendication 1 ou 2, comprenant en outre le retrait dudit coeur en céramique (14) de façon à former ledit passage (15) ainsi que le retrait subséquent dudit élément central en métal réfractaire (10).
  4. Procédé selon la revendication 1, 2 ou 3, comprenant en outre l'usinage d'une pluralité de trous de refroidissement en film (70) dans ladite partie de déflecteur d'air (42) à proximité dudit passage (15) formé par ledit coeur en céramique (14).
  5. Combinaison d'un coeur en céramique (14) servant à former un passage (15) dans une partie de déflecteur d'air (42) et de moyens de stabilisation d'une région d'extrémité (12) dudit coeur en céramique (14), lesdits moyens de stabilisation comprenant un élément central en métal réfractaire (10), dans laquelle ledit élément central en métal réfractaire (10) comprend une partie solide (46) et une pluralité de pattes (48) dépendant de ladite partie solide (46), et chacune desdites pattes (48) ayant une partie en angle (54) et une partie de base (52) et lesdites parties de base (52) desdites pattes (48) étant jointes ensemble par le biais d'une partie inférieure (53).
  6. Élément central en métal réfractaire (10) comprenant une partie solide (46) et une pluralité de pattes espacées (48) dépendant de ladite partie solide (46), chacune desdites pattes (48) ayant une première partie (50) placée à côté de ladite partie solide (46), une partie de base (52) et une partie en angle (54) intermédiaire entre ladite première partie (50) et ladite partie de base (52) de sorte que ladite partie de base (52) est décalée en côté par rapport à ladite partie solide (46).
  7. Élément central en métal réfractaire selon la revendication 6, comprenant en outre une partie inférieure (53) reliant chaque partie de base (52).
EP07254584A 2006-11-30 2007-11-26 Fentes de soufflage à pointe défini par RMC pour pales de turbine Active EP1927414B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10007545.6A EP2246133B1 (fr) 2006-11-30 2007-11-26 Fentes de soufflage à pointe défini par RMC pour pales de turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/606,598 US20080131285A1 (en) 2006-11-30 2006-11-30 RMC-defined tip blowing slots for turbine blades

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP10007545.6A Division EP2246133B1 (fr) 2006-11-30 2007-11-26 Fentes de soufflage à pointe défini par RMC pour pales de turbine
EP10007545.6 Division-Into 2010-07-21

Publications (3)

Publication Number Publication Date
EP1927414A2 EP1927414A2 (fr) 2008-06-04
EP1927414A3 EP1927414A3 (fr) 2008-07-30
EP1927414B1 true EP1927414B1 (fr) 2013-01-23

Family

ID=39106243

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10007545.6A Active EP2246133B1 (fr) 2006-11-30 2007-11-26 Fentes de soufflage à pointe défini par RMC pour pales de turbine
EP07254584A Active EP1927414B1 (fr) 2006-11-30 2007-11-26 Fentes de soufflage à pointe défini par RMC pour pales de turbine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10007545.6A Active EP2246133B1 (fr) 2006-11-30 2007-11-26 Fentes de soufflage à pointe défini par RMC pour pales de turbine

Country Status (3)

Country Link
US (1) US20080131285A1 (fr)
EP (2) EP2246133B1 (fr)
JP (1) JP2008138675A (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9579714B1 (en) 2015-12-17 2017-02-28 General Electric Company Method and assembly for forming components having internal passages using a lattice structure

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7950441B2 (en) * 2007-07-20 2011-05-31 GM Global Technology Operations LLC Method of casting damped part with insert
US8348614B2 (en) 2008-07-14 2013-01-08 United Technologies Corporation Coolable airfoil trailing edge passage
GB0901129D0 (en) * 2009-01-26 2009-03-11 Rolls Royce Plc Rotor blade
US20110020115A1 (en) * 2009-07-27 2011-01-27 United Technologies Corporation Refractory metal core integrally cast exit trench
FR2950825B1 (fr) * 2009-10-01 2011-12-09 Snecma Procede ameliore de fabrication d'un ensemble annulaire aubage de turbomachine a la cire perdue, moule metallique et modele en cire pour la mise en oeuvre d'un tel procede
EP2636466A1 (fr) * 2012-03-07 2013-09-11 Siemens Aktiengesellschaft Noyau de moulage d'un composant creux
US9429027B2 (en) 2012-04-05 2016-08-30 United Technologies Corporation Turbine airfoil tip shelf and squealer pocket cooling
US9284845B2 (en) 2012-04-05 2016-03-15 United Technologies Corporation Turbine airfoil tip shelf and squealer pocket cooling
US9228442B2 (en) 2012-04-05 2016-01-05 United Technologies Corporation Turbine airfoil tip shelf and squealer pocket cooling
US9279331B2 (en) * 2012-04-23 2016-03-08 United Technologies Corporation Gas turbine engine airfoil with dirt purge feature and core for making same
US10100646B2 (en) 2012-08-03 2018-10-16 United Technologies Corporation Gas turbine engine component cooling circuit
CN103028697A (zh) * 2013-01-22 2013-04-10 机械科学研究总院先进制造技术研究中心 一种热冲压模具冷却管道的制造方法
WO2014158277A2 (fr) * 2013-03-04 2014-10-02 Freeman Ted J Procédé de fabrication de profil aérodynamique en composite à matrice céramique de moteur de turbine à gaz
WO2014197061A2 (fr) 2013-03-15 2014-12-11 United Technologies Corporation Trou de refroidissement de film formé de turbine à gaz
CN103286275B (zh) * 2013-05-13 2015-06-17 沈阳黎明航空发动机(集团)有限责任公司 一种单晶导向叶片陶瓷型芯定位方法
EP3060363B1 (fr) 2013-10-24 2021-10-27 Raytheon Technologies Corporation Moulage à noyau perdu pour former des passages de refroidissement
EP3086893B1 (fr) * 2013-12-23 2019-07-24 United Technologies Corporation Cadre structural d'un noyau perdu
US10329916B2 (en) 2014-05-01 2019-06-25 United Technologies Corporation Splayed tip features for gas turbine engine airfoil
CN103990761B (zh) * 2014-05-29 2016-01-20 西安交通大学 一种带有冲击孔结构的空心涡轮叶片制造方法
US10022790B2 (en) 2014-06-18 2018-07-17 Siemens Aktiengesellschaft Turbine airfoil cooling system with leading edge impingement cooling system turbine blade investment casting using film hole protrusions for integral wall thickness control
US10329921B2 (en) 2014-10-24 2019-06-25 United Technologies Corporation Cooling configuration for a component
US10040115B2 (en) * 2014-10-31 2018-08-07 United Technologies Corporation Additively manufactured casting articles for manufacturing gas turbine engine parts
US9726023B2 (en) * 2015-01-26 2017-08-08 United Technologies Corporation Airfoil support and cooling scheme
FR3037829B1 (fr) * 2015-06-29 2017-07-21 Snecma Noyau pour le moulage d'une aube ayant des cavites superposees et comprenant un trou de depoussierage traversant une cavite de part en part
US10099283B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US9987677B2 (en) 2015-12-17 2018-06-05 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10137499B2 (en) 2015-12-17 2018-11-27 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10118217B2 (en) 2015-12-17 2018-11-06 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10150158B2 (en) 2015-12-17 2018-12-11 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10099284B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having a catalyzed internal passage defined therein
US9968991B2 (en) 2015-12-17 2018-05-15 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10099276B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10046389B2 (en) 2015-12-17 2018-08-14 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10226812B2 (en) * 2015-12-21 2019-03-12 United Technologies Corporation Additively manufactured core for use in casting an internal cooling circuit of a gas turbine engine component
US10335853B2 (en) 2016-04-27 2019-07-02 General Electric Company Method and assembly for forming components using a jacketed core
US10286450B2 (en) 2016-04-27 2019-05-14 General Electric Company Method and assembly for forming components using a jacketed core
US10767502B2 (en) 2016-12-23 2020-09-08 Rolls-Royce Corporation Composite turbine vane with three-dimensional fiber reinforcements
US10822959B2 (en) 2017-06-15 2020-11-03 Raytheon Technologies Corporation Blade tip cooling
US20190003316A1 (en) * 2017-06-29 2019-01-03 United Technologies Corporation Helical skin cooling passages for turbine airfoils
CN108971438B (zh) * 2018-08-20 2020-05-15 中国科学院金属研究所 一种单晶涡轮工作叶片陶瓷型芯的定位方法
US11008873B2 (en) 2019-02-05 2021-05-18 Raytheon Technologies Corporation Turbine blade tip wall cooling
CN111136232B (zh) * 2020-02-24 2022-03-25 苏州思赛力热能发展有限公司 一种高强度钢材零部件的软区和硬区的获得方法
US11685123B2 (en) 2020-12-01 2023-06-27 Raytheon Technologies Corporation Erodible support structure for additively manufactured article and process therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6932571B2 (en) * 2003-02-05 2005-08-23 United Technologies Corporation Microcircuit cooling for a turbine blade tip
US6929054B2 (en) * 2003-12-19 2005-08-16 United Technologies Corporation Investment casting cores
US7216689B2 (en) * 2004-06-14 2007-05-15 United Technologies Corporation Investment casting
US7185695B1 (en) * 2005-09-01 2007-03-06 United Technologies Corporation Investment casting pattern manufacture
US7686065B2 (en) * 2006-05-15 2010-03-30 United Technologies Corporation Investment casting core assembly
US20080008599A1 (en) * 2006-07-10 2008-01-10 United Technologies Corporation Integral main body-tip microcircuits for blades

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9579714B1 (en) 2015-12-17 2017-02-28 General Electric Company Method and assembly for forming components having internal passages using a lattice structure

Also Published As

Publication number Publication date
EP1927414A3 (fr) 2008-07-30
EP1927414A2 (fr) 2008-06-04
JP2008138675A (ja) 2008-06-19
EP2246133A1 (fr) 2010-11-03
US20080131285A1 (en) 2008-06-05
EP2246133B1 (fr) 2014-07-09

Similar Documents

Publication Publication Date Title
EP1927414B1 (fr) Fentes de soufflage à pointe défini par RMC pour pales de turbine
US7731481B2 (en) Airfoil cooling with staggered refractory metal core microcircuits
US8292581B2 (en) Air cooled turbine blades and methods of manufacturing
US7744347B2 (en) Peripheral microcircuit serpentine cooling for turbine airfoils
EP2071126B1 (fr) Aubes de turbine et procédé pour fabrication
EP1813776B1 (fr) Microcircuits pour le refroidissement des aubes d'un moteur de turbine à gaz de petite taille
EP2841710B2 (fr) C ur de moteur à turbine à gaz créant une partie de profil aérodynamique extérieure
JP6452736B2 (ja) 一体的な壁厚制御のためのフィルム孔突出部を用いるタービンブレードインベストメント鋳造
EP1936118B1 (fr) Modifications du noyau de coulée des aubes de turbine pour microcircuits à serpentin périphérique
EP1895098B1 (fr) Pale de turbine refroidie améliorée à haute effectivité
US8302668B1 (en) Hybrid core assembly for a casting process
EP2159375B1 (fr) Refroidissement par convection d'un profil d'aube de moteur à turbine, modèle de cire perdue et procédé de fabrication correspondant
EP2565383B1 (fr) Aube munie de canaux de refroidissement
EP1878874B1 (fr) Microcanaux intégrés pour aubes
EP2614902B1 (fr) Noyau pour processus de coulée
US11014145B2 (en) Core assembly including studded spacer
JP2007198377A (ja) 被冷却鋳造部品、被冷却部品製造方法、鋳造部品表面冷却方法、およびガスタービンエンジンエアフォイル構成要素
JP6613803B2 (ja) 翼、これを備えているガスタービン、及び翼の製造方法
EP3124743A1 (fr) Aube de distributeur et procédé de fabrication d'une aube de distributeur
US8186953B1 (en) Multiple piece turbine blade
US10766065B2 (en) Method and assembly for a multiple component core assembly
US3866448A (en) Apparatus for constructing air cooled turbomachinery blading
EP3065896B1 (fr) Procédé de coulage à modèle perdu pour segment d'aube de turbine à gaz
US20200208530A1 (en) Method for making a turbine airfoil
WO2019046036A1 (fr) Procédé pour réaliser un profil aérodynamique de turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090129

17Q First examination report despatched

Effective date: 20090304

AKX Designation fees paid

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007028197

Country of ref document: DE

Effective date: 20130321

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007028197

Country of ref document: DE

Effective date: 20131024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007028197

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007028197

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007028197

Country of ref document: DE

Owner name: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES , US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP., HARTFORD, CONN., US

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007028197

Country of ref document: DE

Owner name: RAYTHEON TECHNOLOGIES CORPORATION (N.D.GES.D.S, US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES DELAWARE), FARMINGTON, CONN., US

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231019

Year of fee payment: 17