EP1925926B1 - Device and method for monitoring the operational capability or validation of a sensor based on an electrode system - Google Patents

Device and method for monitoring the operational capability or validation of a sensor based on an electrode system Download PDF

Info

Publication number
EP1925926B1
EP1925926B1 EP07117525.1A EP07117525A EP1925926B1 EP 1925926 B1 EP1925926 B1 EP 1925926B1 EP 07117525 A EP07117525 A EP 07117525A EP 1925926 B1 EP1925926 B1 EP 1925926B1
Authority
EP
European Patent Office
Prior art keywords
electrode system
sensor
measuring instrument
signal
current measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07117525.1A
Other languages
German (de)
French (fr)
Other versions
EP1925926A1 (en
Inventor
Stefan Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1925926A1 publication Critical patent/EP1925926A1/en
Application granted granted Critical
Publication of EP1925926B1 publication Critical patent/EP1925926B1/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods

Definitions

  • the invention relates to a device and a method for checking the functionality or plausibility of a sensor based on an electrode system according to claim 1 or 6.
  • the concentration of conductive particles can be measured by means of two or more comb-like interdigitated metal electrodes (interdigital electrode system, comb electrode) arranged on an electrically insulating ceramic layer .
  • Sensors based on such a principle, which is to be classified as a collecting principle, are referred to as resistive particle sensors.
  • the measurement of the particle concentration can be carried out by measuring the decreasing in the case of particle accumulation electrical resistance of the two electrodes insulating ceramic layer.
  • the sensor element can be freed of accumulated particles with the aid of an integrated heating device.
  • the temperature is measured by a temperature measuring device, which usually consists of platinum.
  • Such sensors are used by the DE 101 493 33 A1 as well as the WO 2003006976 A2 described.
  • a sensor electrode system apart from removable particles such as soot particles, particles that are difficult or impossible to remove by heating up are also deposited on a sensor electrode system.
  • Such poorly or non-removable particles include, for example, ash particles.
  • the deposition of such poor or non-removable particles leads to symptoms of poisoning and impairment of the function of the sensor.
  • individual arms of the electrode system can be detached or severed during sensor operation. This also leads to an impairment of the functionality of the sensor.
  • a sensor electrode system can not currently be checked for either poisoning or other changes in the electrode system, such as detachment or severing of electrode system arms.
  • a device according to the invention for checking the functionality or plausibility of a sensor based on an interdigital electrode system has the advantage that it ensures a reliable and cost-effective verification of the functionality of a sensor based on an interdigital electrode system and is resistant to poisoning phenomena ,
  • the device according to the invention and the method according to the invention can be used, for example, in a sensor which is located in the exhaust gas flow of a motor vehicle with a diesel engine or an oil heater. Since particulate emissions, in particular of vehicles during driving after passing through an engine or diesel particulate filter (DPF), have to be monitored by law in the near future (On Board Diagnosis, OBD), particulate matter monitoring is of particular interest.
  • DPF diesel particulate filter
  • FIG. 1 shows a sensor 1 based on an interdigital electrode system 2 for the detection of soot particles according to the prior art, which comprises an interdigital electrode system 2, a heater 5 for the regeneration of the sensor and a meandering temperature measuring device 6 made of platinum for determining the temperature of the sensor.
  • the electrode system 2 for measuring the soot particle concentration is connected via a line element 3 to a current measuring instrument 4.
  • Such sensors are constructed such that the electrode system 2, the heating device 5 and the temperature measuring device 6 do not touch, which is conventionally achieved by inserting protective layers 7, 8.
  • FIG. 2 shows a preferred embodiment of a sensor (9) for the detection of particles in a gas stream, in particular of Soot particles in an exhaust gas flow, which comprises an interdigital electrode system 2 for measuring the particle concentration, a heater 5 for the regeneration of the sensor and the activation of the intrinsic conductivity of the sensor and a device according to the invention for checking the functionality or for plausibility of a based on an electrode system sensor 10.
  • the electrode system 2 for measuring the particle concentration is connected via a line element 3 to a current measuring instrument 4 and the electrode system 2, the heating device 5 and the inventive device for checking the functionality or for plausibility of an electrode system based on a sensor 10th are separated by interposed protective layers 7, 8.
  • the device according to the invention for checking the functionality or plausibility of a sensor 10 based on an electrode system comprises a reference electrode system 11, which is connected via a line element 12 to a current measuring instrument 13.
  • a reference electrode system 11 which is connected via a line element 12 to a current measuring instrument 13.
  • the second electrode system 11 serves as a reference electrode and remains de-energized during the measuring operation of the opposite electrode system 2. Only when the device 10 according to the invention is operated is a voltage additionally applied to the reference electrode system 11, and the sensor and the device 10 contained therein are heated via the heating device 5 to one (or more) defined temperature (s).
  • a defined temperature can be achieved by introducing a defined heating power into the heating device or by a temperature measurement in the heating device. Due to the intrinsic conductivity of the electrode systems 2, 11, an electric current flows in each of the two electrode systems 2, 11. The electric current in the electrode system 2 is measured by the current measuring instrument of the electrode system of the sensor 4 and the electric current in the reference electrode system 11 by the current measuring instrument of the reference electrode system 13. The current measuring instrument of the electrode system of the sensor 4 outputs a signal 14 based on the measured current flow and the current measuring instrument of the reference electrode system 13 indicates the measured current flow The comparator 16 compares the signal of the current measurement instrument of the electrode system of the sensor 14 with the signal of the current measurement instrument of the reference electrode system 15.
  • FIG. 3 shown block diagram for a plausibility check invention or Self-diagnosis of a sensor based on an electrode system.
  • the schematic diagram shows that when comparing the signal of the current measuring instrument of the electrode system of the sensor 14 with the signal of the current measuring instrument of the reference electrode system 15, for example the ratio of the signal of the current measuring instrument of the electrode system of the sensor 14 to the signal of the current measuring instrument of the reference electrode system 15 or the difference between the signal of the current measuring instrument of the electrode system of the sensor 14 and the signal of the current measuring instrument of the reference electrode system 15 exceeds a threshold value, the comparator 16 outputs a signal 17, which indicates that the sensor is defective.
  • the subject matter of the present invention is a device for checking the functionality or plausibility of a sensor based on one, in particular interdigital, electrode system, wherein it comprises at least one, in particular interdigital, reference electrode system, for example with at least two, in particular comb-like intermeshing, electrodes.
  • plausibility check means that a specific value, for example a signal, is checked to determine whether it lies within a predefined value range (plausible value range).
  • the reference electrode system preferably consists of an electrically conductive and high-temperature-stable material.
  • "high-temperature-stable” means that the material does not lose any of the properties required for the purpose according to the invention up to a temperature of, for example, about 1200 ° C.
  • Use according to the invention as an electrically conductive material are semiconductors or metals, for example transition metals such as platinum, copper, silver, gold, iron, cobalt, nickel, palladium, ruthenium, iridium, rhodium.
  • the electrically conductive and high temperature stable material is platinum.
  • the reference electrode system can be manufactured by screen printing.
  • the layer thickness of the reference electrode system is in a range of about 1 to about 100 microns.
  • a defined voltage for example in a range of about 10 to, is only applied to the reference electrode system during the checking of the functionality or for plausibility of a sensor based on an electrode system about 70 V applied. Appropriately, therefore, no voltage is applied to the reference electrode system of the device according to the invention during the measuring operation of the sensor.
  • the device according to the invention further comprises, for example via a line element connected to the reference electrode system, current measuring instrument.
  • the device according to the invention further comprises a comparator which, for example, the signal which is output by the current measuring instrument of the reference electrode system and based on the current flow measured in the reference electrode system with a signal output from the current measuring instrument connected to the electrode system of the sensor and on the Current flow measured in the electrode system is based, compares and detects, for example, the sensor as defective as soon as the difference or the ratio of these two signals is above an allowable threshold.
  • a comparator which, for example, the signal which is output by the current measuring instrument of the reference electrode system and based on the current flow measured in the reference electrode system with a signal output from the current measuring instrument connected to the electrode system of the sensor and on the Current flow measured in the electrode system is based, compares and detects, for example, the sensor as defective as soon as the difference or the ratio of these two signals is above an allowable threshold.
  • the threshold value of the difference from the signal output from a current measuring instrument of the reference electrode system and based on the current flow measured in the reference electrode system and the signal output from a current measuring instrument connected to the electrode system of a sensor and based on the current flow measured in the electrode system.
  • the comparator detects the sensor as defective if the difference of the signal of the reference electrode system and the signal of the sensor electrode system is greater than about 200 A or about 100 A or about 50 A, for example, a threshold of about 200 A or about 100 A or about 50 A corresponds.
  • the device furthermore comprises a, in particular insulating, protective layer which, for example, covers at least the surface of the reference electrode system.
  • a protective layer has the advantage that the reference electrode system is resistant to poisoning.
  • the protective layer comprises porous Al 2 O 3 .
  • a further subject matter of the present invention is a method for checking the functionality or plausibility of a sensor based on a, in particular interdigital, electrode system, according to claim 6.
  • the voltage required for measuring the current flow in the reference electrode system is applied before passing through method steps a) to d2) and removed after passing through method steps a) to d2).
  • the senor furthermore comprises at least one insulating layer of an insulating material, for example a ceramic or glass, in particular Al 2 O 3 .
  • the insulating layer has a layer thickness in a range from about 0.01 to about 100 ⁇ m, or from about 0.1 to about 50 ⁇ m, or from about 1 to about 10 ⁇ m.
  • a plate capacitor may be formed on the electrodes of the sensor.
  • a plate capacitor whose plates are preferably formed parallel to the insulating layer, increased capacity can be realized.
  • a plate capacitor is formed with a dielectric, wherein the dielectric may be, for example, Al 2 O 3 .
  • the senor may comprise a catching sleeve which at least partially covers the electrode system.
  • a collecting sleeve is made of a highly insulating material, for example of a ceramic such as Al 2 O 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung eines auf einem Elektrodensystem basierenden Sensors gemäß Patentanspruch 1 bzw. 6.The invention relates to a device and a method for checking the functionality or plausibility of a sensor based on an electrode system according to claim 1 or 6.

Stand der TechnikState of the art

Aus dem Stand der Technik ist bekannt, dass die Konzentration von leitfähigen Partikeln, beispielsweise Rußpartikeln in einem Abgas, mittels zweier oder mehrerer kammartig ineinander greifender metallischer Elektroden (interdigitales Elektrodensystem, Kammelektrode), die auf einer elektrisch isolierenden keramischen Schicht angeordnet sind, gemessen werden kann. Sensoren, die auf einem derartigen Prinzip beruhen, welches als sammelndes Prinzip einzuordnen ist, werden als resistive Partikelsensoren bezeichnet. Die Messung der Teilchenkonzentration kann dabei durch eine Messung des im Fall von Partikelanlagerung abnehmenden elektrischen Widerstandes der die beiden Elektroden trennenden isolierenden keramischen Schicht erfolgen. Zur Regeneration kann das Sensorelement mit Hilfe einer integrierten Heizvorrichtung von angelagerten Partikeln befreit werden. Dabei wird die Temperatur durch eine Temperaturmessvorrichtung gemessen, die üblicherweise aus Platin besteht. Derartige Sensoren werden von der DE 101 493 33 A1 sowie der WO 2003006976 A2 beschrieben.It is known from the prior art that the concentration of conductive particles, for example soot particles in an exhaust gas, can be measured by means of two or more comb-like interdigitated metal electrodes (interdigital electrode system, comb electrode) arranged on an electrically insulating ceramic layer , Sensors based on such a principle, which is to be classified as a collecting principle, are referred to as resistive particle sensors. The measurement of the particle concentration can be carried out by measuring the decreasing in the case of particle accumulation electrical resistance of the two electrodes insulating ceramic layer. For regeneration, the sensor element can be freed of accumulated particles with the aid of an integrated heating device. The temperature is measured by a temperature measuring device, which usually consists of platinum. Such sensors are used by the DE 101 493 33 A1 as well as the WO 2003006976 A2 described.

Neben entfernbaren Partikeln wie Rußpartikeln lagern sich auf einem Sensorelektrodensystem jedoch auch Partikel ab, die durch Aufheizen nur schlecht oder nicht entfernt werden können. Zu derartigen schlecht oder nicht entfernbaren Partikeln zählen beispielsweise Aschepartikel. Die Ablagerung derartiger schlecht oder nicht entfernbarer Partikel führt zu Vergiftungserscheinungen und zur Beeinträchtigung der Funktion des Sensors. Darüber hinaus können während des Sensorbetriebs einzelne Arme des Elektrodensystems abgelöst oder durchtrennt werden. Dies führt ebenfalls einer Beeinträchtigung der die Funktionsfähigkeit des Sensors.
Während des Betriebes kann ein Sensorelektrodensystem jedoch derzeit weder auf Vergiftungserscheinung noch auf andere Änderungen des Elektrodensystems, die beispielsweise auf dem Ablösen oder Durchtrennen von Elektrodensystemarmen beruhen, überprüft werden.
However, apart from removable particles such as soot particles, particles that are difficult or impossible to remove by heating up are also deposited on a sensor electrode system. Such poorly or non-removable particles include, for example, ash particles. The deposition of such poor or non-removable particles leads to symptoms of poisoning and impairment of the function of the sensor. In addition, individual arms of the electrode system can be detached or severed during sensor operation. This also leads to an impairment of the functionality of the sensor.
However, during operation, a sensor electrode system can not currently be checked for either poisoning or other changes in the electrode system, such as detachment or severing of electrode system arms.

Aus der EP 1 624166 A1 ist bereits ein Verfahren zum Betreiben einer Brennkraftmaschine bekannt, bei dem die Beladung eines Abgasstroms mit Rußpartikeln erfasst wird. Dabei wird die Leitfähigkeit zwischen zwei Elektroden eines dem Abgasstrom ausgesetzten Partikelsensors erfasst. Zeitweise wird der Partikelsensor auf eine Temperatur erhitzt, bei der am Partikelsensor angelagerte Rußpartikel verbrennen. Die Leitfähigkeit zwischen den Elektroden des Partikelsensors wird während des Erhitzens erfasst und für eine Bewertung des Zustands des Partikelsensors verwendet.From the EP 1 624166 A1 A method for operating an internal combustion engine is already known, in which the loading of an exhaust gas flow with soot particles is detected. In this case, the conductivity between two electrodes of a particle sensor exposed to the exhaust gas flow is detected. At times, the particle sensor is heated to a temperature at which particulates accumulated on the particulate sensor soot particles burn. The conductivity between the electrodes of the particulate sensor is detected during heating and used for evaluation of the state of the particulate sensor.

Offenbarung der ErfindungDisclosure of the invention Vorteile der ErfindungAdvantages of the invention

Eine erfindungsgemäße Vorrichtung zur Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung eines auf einem interdigitalen Elektrodensystem basierenden Sensors, gemäß Anspruch 1, hat den Vorteil, dass sie eine zuverlässige und kostengünstige Überprüfung der Funktionsfähigkeit eines auf einem interdigitalen Elektrodensystem basierenden Sensors gewährleistet und dabei gegenüber Vergiftungserscheinungen resistent ist.A device according to the invention for checking the functionality or plausibility of a sensor based on an interdigital electrode system, according to claim 1, has the advantage that it ensures a reliable and cost-effective verification of the functionality of a sensor based on an interdigital electrode system and is resistant to poisoning phenomena ,

Der erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren können beispielsweise in einem Sensor, der sich im Abgasstrom eines Kraftfahrzeuges mit einem Dieselmotor oder einer Ölheizung befindet, eingesetzt werden. Da in naher Zukunft der Partikelausstoß, insbesondere von Fahrzeugen während des Fahrbetriebes nach dem Durchlaufen eines Motors bzw. Dieselpartikelfilters (DPF), per gesetzlicher Vorschrift überwacht werden muss (On Board Diagnose, OBD), ist die Überwachung des Partikelausstoßes von besonderem Interesse.The device according to the invention and the method according to the invention can be used, for example, in a sensor which is located in the exhaust gas flow of a motor vehicle with a diesel engine or an oil heater. Since particulate emissions, in particular of vehicles during driving after passing through an engine or diesel particulate filter (DPF), have to be monitored by law in the near future (On Board Diagnosis, OBD), particulate matter monitoring is of particular interest.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Ein Ausführungsbeispiel aus dem Stand der Technik und ein Ausführungsbeispiel der Erfindungen sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.

  • Figur 1 zeigt eine Explosionszeichnung eines auf einem Elektrodensystem basierenden Sensors zur Detektion von Rußpartikeln gemäß dem Stand der Technik.
  • Figur 2 zeigt eine Explosionszeichnung einer bevorzugten Ausführungsform eines Sensors zur Detektion von Teilchen in einem Gasstrom, insbesondere von Rußpartikeln in einem Abgasstrom, mit enthaltener erfindungsgemäßer Vorrichtung zur Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung des Sensors.
  • Figur 3 zeigt ein Prinzipschaltbild für die erfindungsgemäße Plausibilisierung bzw. Eigendiagnose eines auf einem interdigitalen Elektrodensystem basierenden Sensors.
An embodiment of the prior art and an embodiment of the inventions are illustrated in the drawings and explained in more detail in the following description.
  • FIG. 1 shows an exploded view of an electrode system based sensor for the detection of soot particles according to the prior art.
  • FIG. 2 shows an exploded view of a preferred embodiment of a sensor for detecting particles in a gas stream, in particular of soot particles in an exhaust stream, with contained inventive device for checking the functionality or for plausibility of the sensor.
  • FIG. 3 shows a block diagram for the inventive plausibility or self-diagnosis of a sensor based on an interdigital electrode system.

Beschreibung der AbbildungDescription of the picture

Figur 1 zeigt einen auf einem interdigitalen Elektrodensystem 2 basierenden Sensor 1 zur Detektion von Rußpartikeln gemäß dem Stand der Technik, der ein interdigitales Elektrodensystem 2, eine Heizvorrichtung 5 zur Regeneration des Sensors und eine mäanderförmige Temperaturmessvorrichtung 6 aus Platin zur Bestimmung der Temperatur des Sensors umfasst. Dabei ist das Elektrodensystem 2 zur Messung der Rußpartikelkonzentration über ein Leitungselement 3 an ein Strommessinstrument 4 angeschlossen. Solche Sensoren sind derart aufgebaut, dass sich das Elektrodensystem 2, die Heizvorrichtung 5 und die Temperaturmessvorrichtung 6 nicht berühren, was herkömmlicher Weise durch Einfügen von Schutzschichten 7, 8 erreicht wird. FIG. 1 shows a sensor 1 based on an interdigital electrode system 2 for the detection of soot particles according to the prior art, which comprises an interdigital electrode system 2, a heater 5 for the regeneration of the sensor and a meandering temperature measuring device 6 made of platinum for determining the temperature of the sensor. In this case, the electrode system 2 for measuring the soot particle concentration is connected via a line element 3 to a current measuring instrument 4. Such sensors are constructed such that the electrode system 2, the heating device 5 and the temperature measuring device 6 do not touch, which is conventionally achieved by inserting protective layers 7, 8.

Figur 2 zeigt eine bevorzugte Ausführungsform eines Sensors (9) zur Detektion von Teilchen in einem Gasstrom, insbesondere von Rußpartikeln in einem Abgasstrom, der ein interdigitales Elektrodensystem 2 zur Messung der Teilchenkonzentration, eine Heizvorrichtung 5 zur Regeneration des Sensors und zur Aktivierung der Eigenleitfähigkeit des Sensors sowie eine erfindungsgemäße Vorrichtung zur Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung eines auf einem Elektrodensystem basierenden Sensors 10 umfasst. In Analogie zum Stand der Technik ist das Elektrodensystem 2 zur Messung der Teilchenkonzentration über ein Leitungselement 3 an ein Strommessinstrument 4 angeschlossen und das Elektrodensystem 2, die Heizvorrichtung 5 und die erfindungsgemäße Vorrichtung zur Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung eines auf einem Elektrodensystem basierenden Sensors 10 werden durch dazwischen eingefügte Schutzschichten 7, 8 getrennt. Die erfindungsgemäße Vorrichtung zur Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung eines auf einem Elektrodensystem basierenden Sensors 10 umfasst ein Referenzelektrodensystem 11, das über ein Leitungselement 12 an ein Strommessinstrument 13 angeschlossen ist. Das heißt auf beiden Seiten des Sensors befindet sich je ein, insbesondere interdigitales, Elektrodensystem 2, 11, wobei das Elektrodensystem 2 des Sensors zur Messung des durch die Teilchen erzeugten Stroms verwendet wird und während des Messbetriebes mit einer Messspannung versorgt wird. Das zweite Elektrodensystem 11 dient als Referenzelektrode und bleibt während des Messbetriebes des gegenüberliegenden Elektrodensystems 2 spannungslos. Erst beim Betrieb der erfindungsgemäßen Vorrichtung 10 wird zusätzlich an das Referenzelektrodensystem 11 eine Spannung angelegt und der Sensor und die darin enthaltene Vorrichtung 10 über die Heizvorrichtung 5 auf eine (oder mehrere) definierte Temperatur(en) beheizt. Dabei kann eine definierte Temperatur durch das Einbringen einer definierten Heizleistung in die Heizvorrichtung oder durch eine Temperaturmessung in der Heizvorrichtung erzielt werden. Durch die Eigenleitfähigkeit der Elektrodensysteme 2, 11 fließt in jedem der beiden Elektrodensysteme 2, 11 ein elektrischer Strom. Der elektrische Strom in dem Elektrodensystem 2 wird durch das Strommessinstrument des Elektrodensystems des Sensors 4 und der elektrische Strom in dem Referenzelektrodensystem 11 durch das Strommessinstrument des Referenzelektrodensystems 13 gemessen. Das Strommessinstrument des Elektrodensystems des Sensors 4 gibt ein auf dem gemessenen Stromfluss basierendes Signal 14 und das Strommessinstrument des Referenzelektrodensystems 13 gibt ein auf dem gemessenen Stromfluss basierendes Signal 15 an den ebenfalls in der Vorrichtung 10 enthaltenen Komparator 16. Der Komparator 16 vergleicht das Signal des Strommessinstruments des Elektrodensystems des Sensors 14 mit dem Signal des Strommessinstruments des Referenzelektrodensystems 15. FIG. 2 shows a preferred embodiment of a sensor (9) for the detection of particles in a gas stream, in particular of Soot particles in an exhaust gas flow, which comprises an interdigital electrode system 2 for measuring the particle concentration, a heater 5 for the regeneration of the sensor and the activation of the intrinsic conductivity of the sensor and a device according to the invention for checking the functionality or for plausibility of a based on an electrode system sensor 10. Analogously to the prior art, the electrode system 2 for measuring the particle concentration is connected via a line element 3 to a current measuring instrument 4 and the electrode system 2, the heating device 5 and the inventive device for checking the functionality or for plausibility of an electrode system based on a sensor 10th are separated by interposed protective layers 7, 8. The device according to the invention for checking the functionality or plausibility of a sensor 10 based on an electrode system comprises a reference electrode system 11, which is connected via a line element 12 to a current measuring instrument 13. This means that there is one, in particular interdigital, electrode system 2, 11 on both sides of the sensor, the electrode system 2 of the sensor being used to measure the current generated by the particles and being supplied with a measuring voltage during the measuring operation. The second electrode system 11 serves as a reference electrode and remains de-energized during the measuring operation of the opposite electrode system 2. Only when the device 10 according to the invention is operated is a voltage additionally applied to the reference electrode system 11, and the sensor and the device 10 contained therein are heated via the heating device 5 to one (or more) defined temperature (s). In this case, a defined temperature can be achieved by introducing a defined heating power into the heating device or by a temperature measurement in the heating device. Due to the intrinsic conductivity of the electrode systems 2, 11, an electric current flows in each of the two electrode systems 2, 11. The electric current in the electrode system 2 is measured by the current measuring instrument of the electrode system of the sensor 4 and the electric current in the reference electrode system 11 by the current measuring instrument of the reference electrode system 13. The current measuring instrument of the electrode system of the sensor 4 outputs a signal 14 based on the measured current flow and the current measuring instrument of the reference electrode system 13 indicates the measured current flow The comparator 16 compares the signal of the current measurement instrument of the electrode system of the sensor 14 with the signal of the current measurement instrument of the reference electrode system 15.

Der Vergleich des Signals des Strommessinstruments des Elektrodensystems des Sensors 14 mit dem Signal des Strommessinstruments des Referenzelektrodensystems 15 wird ebenfalls in dem in Figur 3 gezeigten Prinzipschaltbild für eine erfindungsgemäße Plausibilisierung bzw.
Eigendiagnose eines auf einem Elektrodensystem basierenden Sensors dargestellt. Das Prinzipschaltbild zeigt, dass, wenn der Vergleich des Signals des Strommessinstruments des Elektrodensystems des Sensors 14 mit dem Signal des Strommessinstruments des Referenzelektrodensystems 15, beispielsweise das Verhältnis des Signals des Strommessinstruments des Elektrodensystems des Sensors 14 zu dem Signal des Strommessinstruments des Referenzelektrodensystems 15 oder die Differenz zwischen dem Signal des Strommessinstruments des Elektrodensystems des Sensors 14 und dem Signal des Strommessinstruments des Referenzelektrodensystems 15, einen Schwellwert überschreitet, der Komparator 16 ein Signal 17 ausgibt, welches anzeigt, dass der Sensor defekt ist.
The comparison of the signal of the current measuring instrument of the electrode system of the sensor 14 with the signal of the current measuring instrument of the reference electrode system 15 is also shown in the FIG. 3 shown block diagram for a plausibility check invention or
Self-diagnosis of a sensor based on an electrode system. The schematic diagram shows that when comparing the signal of the current measuring instrument of the electrode system of the sensor 14 with the signal of the current measuring instrument of the reference electrode system 15, for example the ratio of the signal of the current measuring instrument of the electrode system of the sensor 14 to the signal of the current measuring instrument of the reference electrode system 15 or the difference between the signal of the current measuring instrument of the electrode system of the sensor 14 and the signal of the current measuring instrument of the reference electrode system 15 exceeds a threshold value, the comparator 16 outputs a signal 17, which indicates that the sensor is defective.

Gegenstand der vorliegenden Erfindung ist eine Vorrichtung zur Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung eines auf einem, insbesondere interdigitalen, Elektrodensystem basierenden Sensors, wobei sie mindestens ein, insbesondere interdigitales, Referenzelektrodensystem, beispielsweise mit mindestens zwei, insbesondere kammartig ineinander greifenden, Elektroden, umfasst. Dabei bedeutet der Begriff "Plausibilisierung" im Rahmen der vorliegenden Erfindung, dass ein konkreter Wert, beispielsweise eines Signals, dahingehend kontrolliert wird, ob er in einem vorgegebenen Wertebereich (plausiblen Wertebereich) liegt.The subject matter of the present invention is a device for checking the functionality or plausibility of a sensor based on one, in particular interdigital, electrode system, wherein it comprises at least one, in particular interdigital, reference electrode system, for example with at least two, in particular comb-like intermeshing, electrodes. In the context of the present invention, the term "plausibility check" means that a specific value, for example a signal, is checked to determine whether it lies within a predefined value range (plausible value range).

Vorzugsweise besteht das Referenzelektrodensystem aus einem elektrisch leitfähigen und hochtemperaturstabilen Material. Dabei bedeutet ,,hochtemperaturstabil" im Rahmen der vorliegenden Erfindung, dass das Material bis zu einer Temperatur von beispielsweise etwa 1200 °C keine der für den erfindungsgemäßen Zweck notwendigen Eigenschaften verliert. Für den erfindungsgemäßen Einsatz als elektrisch leitfähiges Material sind Halbleiter oder Metalle, beispielsweise Übergangmetallen wie Platin, Kupfer, Silber, Gold, Eisen, Cobalt, Nickel, Palladium, Ruthenium, Iridium, Rhodium geeignet. Vorzugsweise handelt es sich bei dem elektrisch leitfähigen und hochtemperaturstabilen Material um Platin. Das Referenzelektrodensystem kann mittels Siebdruckverfahren hergestellt werden. Um die Materialkosten für das Referenzelektrodensystem gering zu halten, besteht dieses aus möglichst wenig Material und ist so dünn gestaltet wie es, ohne nachteilige Auswirkungen auf die Messeigenschaften zu haben, möglich ist. Beispielsweise liegt die Schichtdicke des Referenzelektrodensystems in einem Bereich von etwa 1 bis etwa 100 µm.The reference electrode system preferably consists of an electrically conductive and high-temperature-stable material. In the context of the present invention, "high-temperature-stable" means that the material does not lose any of the properties required for the purpose according to the invention up to a temperature of, for example, about 1200 ° C. Use according to the invention as an electrically conductive material are semiconductors or metals, for example transition metals such as platinum, copper, silver, gold, iron, cobalt, nickel, palladium, ruthenium, iridium, rhodium. Preferably, the electrically conductive and high temperature stable material is platinum. The reference electrode system can be manufactured by screen printing. In order to keep the material costs for the reference electrode system low, this consists of as little material as possible and is designed as thin as possible, without having an adverse effect on the measurement properties, is possible. For example, the layer thickness of the reference electrode system is in a range of about 1 to about 100 microns.

Da sich an einem spannungslosen Elektrodensystem, aufgrund der fehlenden Elektrophorese, deutlich weniger Teilchen anlagern können, ist an dem Referenzelektrodensystem nur während der Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung eines auf einem Elektrodensystem basierenden Sensors eine definierte Spannung, beispielsweise in einem Bereich von etwa 10 bis etwa 70 V angelegt. Zweckmäßiger Weise liegt daher während des Messbetriebes des Sensors keine Spannung an dem Referenzelektrodensystem der erfindungsgemäßen Vorrichtung an.Since significantly fewer particles can accumulate on a stress-free electrode system due to the lack of electrophoresis, a defined voltage, for example in a range of about 10 to, is only applied to the reference electrode system during the checking of the functionality or for plausibility of a sensor based on an electrode system about 70 V applied. Appropriately, therefore, no voltage is applied to the reference electrode system of the device according to the invention during the measuring operation of the sensor.

Neben dem Referenzelektrodensystem umfasst die erfindungsgemäße Vorrichtung weiterhin ein, beispielsweise über ein Leitungselement an das Referenzelektrodensystem angeschlossenes, Strommessinstrument.In addition to the reference electrode system, the device according to the invention further comprises, for example via a line element connected to the reference electrode system, current measuring instrument.

Die erfindungsgemäße Vorrichtung umfasst weiterhin einen Komparator, der beispielsweise das Signal, das von dem Strommessinstrument des Referenzelektrodensystems ausgegeben wird und auf dem in dem Referenzelektrodensystem gemessenen Stromfluss basiert, mit einem Signal, das von dem an das Elektrodensystem des Sensors angeschlossenen Strommessinstrument ausgegeben wird und auf dem in dem Elektrodensystem gemessenen Stromfluss basiert, vergleicht und beispielsweise den Sensor als defekt erkennt, sobald die Differenz oder das Verhältnis dieser beiden Signale oberhalb eines zulässigen Schwellwertes liegt.The device according to the invention further comprises a comparator which, for example, the signal which is output by the current measuring instrument of the reference electrode system and based on the current flow measured in the reference electrode system with a signal output from the current measuring instrument connected to the electrode system of the sensor and on the Current flow measured in the electrode system is based, compares and detects, for example, the sensor as defective as soon as the difference or the ratio of these two signals is above an allowable threshold.

Erfindungsgemäß kann der Schwellwert der Differenz von dem Signal, das von einem Strommessinstrument des Referenzelektrodensystems ausgegeben wird und auf dem in dem Referenzelektrodensystem gemessenen Stromfluss basiert, und dem Signal, das von einem an das Elektrodensystem eines Sensors angeschlossenen Strommessinstrument ausgegeben wird und auf dem in dem Elektrodensystem gemessenen Stromfluss basiert, entsprechen. Beispielswiese erkennt der Komparator den Sensor als defekt, wenn die Differenz des Signals des Referenzelektrodensystems und des Signals des Sensorelektrodensystems größer als etwa 200 A oder etwa 100 A oder etwa 50 A ist, was beispielsweise einem Schwellwert von etwa 200 A oder etwa 100 A oder etwa 50 A entspricht.According to the invention, the threshold value of the difference from the signal output from a current measuring instrument of the reference electrode system and based on the current flow measured in the reference electrode system, and the signal output from a current measuring instrument connected to the electrode system of a sensor and based on the current flow measured in the electrode system. For example, the comparator detects the sensor as defective if the difference of the signal of the reference electrode system and the signal of the sensor electrode system is greater than about 200 A or about 100 A or about 50 A, for example, a threshold of about 200 A or about 100 A or about 50 A corresponds.

lm Rahmen einer bevorzugten Ausführungsform der Erfindung umfasst die Vorrichtung weiterhin eine, insbesondere isolierende, Schutzschicht, welche beispielsweise mindestens die Oberfläche des Referenzelektrodensystems abdeckt. Eine solche Schutzschicht hat den Vorteil, dass das Referenzelektrodensystem gegenüber Vergiftungen resistent ist. Beispielsweise umfasst die Schutzschicht poröses Al2O3.Within the scope of a preferred embodiment of the invention, the device furthermore comprises a, in particular insulating, protective layer which, for example, covers at least the surface of the reference electrode system. Such a protective layer has the advantage that the reference electrode system is resistant to poisoning. For example, the protective layer comprises porous Al 2 O 3 .

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung eines auf einem, insbesondere interdigitalen, Elektrodensystem basierenden Sensors, gemäß Anspruch 6.A further subject matter of the present invention is a method for checking the functionality or plausibility of a sensor based on a, in particular interdigital, electrode system, according to claim 6.

Hinsichtlich des im Rahmen des erfindungsgemäßen Verfahrens angewandten Schwellwertes wird ausdrücklich auf die Offenbarung im Zusammenhang mit der erfindungsgemäßen Vorrichtung verwiesen.With regard to the threshold applied in the context of the method according to the invention, reference is expressly made to the disclosure in connection with the device according to the invention.

Im Rahmen einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die für die Messung des Stromflusses in dem Referenzelektrodensystem notwendige Spannung vor dem Durchlaufen der Verfahrensschritte a) bis d2) angelegt und nach dem Durchlaufen der Verfahrensschritte a) bis d2) entfernt.Within the scope of a preferred embodiment of the method according to the invention, the voltage required for measuring the current flow in the reference electrode system is applied before passing through method steps a) to d2) and removed after passing through method steps a) to d2).

lm Hinblick auf das bevorzugte Material, die bevorzugte Schichtdicke und Herstellung des Elektrodensystem und des Referenzelektrodensystems wird ausdrücklich auf die Offenbarung im Zusammenhang mit dem Referenzelektrodensystem der erfindungsgemäßen Vorrichtung verwiesen.With regard to the preferred material, the preferred layer thickness and fabrication of the electrode system and the reference electrode system specifically referred to the disclosure in connection with the reference electrode system of the device according to the invention.

Zweckmäßigerweise umfasst der Sensor weiterhin mindestens eine isolierende Schicht aus einem isolierenden Material, beispielsweise einer Keramik oder Glas, insbesondere Al2O3. Vorteilhafterweise weist die isolierende Schicht eine Schichtdicke in einem Bereich von etwa 0,01 bis etwa 100 µm oder von etwa 0,1 bis etwa 50 µm oder von etwa 1 bis etwa 10 µm auf.Expediently, the sensor furthermore comprises at least one insulating layer of an insulating material, for example a ceramic or glass, in particular Al 2 O 3 . Advantageously, the insulating layer has a layer thickness in a range from about 0.01 to about 100 μm, or from about 0.1 to about 50 μm, or from about 1 to about 10 μm.

Gegebenenfalls kann an den Elektroden des Sensors ein Plattenkondensator ausgebildet sein. Mittels eines derartigen Plattenkondensators, dessen Platten vorzugsweise parallel zu der isolierenden Schicht ausgebildet sind, sind erhöhte Kapazitäten realisierbar. Zweckmäßiger Weise ist ein solcher Plattenkondensator mit einem Dielektrikum ausgebildet, wobei das Dielektrikum beispielsweise Al2O3 sein kann.Optionally, a plate capacitor may be formed on the electrodes of the sensor. By means of such a plate capacitor whose plates are preferably formed parallel to the insulating layer, increased capacity can be realized. Conveniently, such a plate capacitor is formed with a dielectric, wherein the dielectric may be, for example, Al 2 O 3 .

Zur Beruhigung des Gasstroms und damit zur bevorzugten Ablagerung von Teilchen auf dem Substrat und zum Schutz des Elektrodensystems vor einer abrasiven Wirkung der Gasströmung, kann der Sensor eine Fanghülse, die zumindest zum Teil das Elektrodensystem überdeckt, aufweisen. Vorteilhafter Weise besteht eine solche Fanghülse aus einem hochisolierenden Werkstoff, beispielsweise aus einer Keramik wie Al2O3.To calm the gas flow and thus to preferentially deposit particles on the substrate and to protect the electrode system from an abrasive effect of the gas flow, the sensor may comprise a catching sleeve which at least partially covers the electrode system. Advantageously, such a collecting sleeve is made of a highly insulating material, for example of a ceramic such as Al 2 O 3 .

Weitere Vorteile und vorteilhafte Ausgestaltungen des erfindungsgemäßen Gegenstandes sind der Beschreibung, den Zeichnungen und den Patentansprüchen zu entnehmen.Further advantages and advantageous embodiments of the subject invention are described in the description, the drawings and the claims.

Claims (7)

  1. Device (10) for checking the functionality and the plausibility of a sensor (9) for detecting particles in a gas stream, the sensor (9) comprising a first electrode system (2) and a first current measuring instrument (4) connected to the first electrode system (2), the device (10) having a second electrode system (11) which is used as a reference, a second current measuring instrument (13) connected to the second electrode system and a comparator (16), each of the electrode systems (2, 11) being an independently measuring device for measuring the particle concentration, each of which is exposed to the particle stream, and the comparator (16) being set up to compare the signal from the current measuring instrument (4) of the first electrode system (2) with the signal (15) from the current measuring instrument (13) of the second electrode system (11) and to display a signal indicating that the sensor is defective if the result of the comparison exceeds a threshold value.
  2. Device according to Claim 1, characterized in that the second current measuring instrument (13) is connected to the reference electrode system (11) via a line element (12).
  3. Device according to Claim 2, characterized in that the first current measuring instrument (4) can be connected to the first electrode system (2) via a line element (3).
  4. Device according to one of the preceding claims, characterized in that it also comprises a protective layer which covers at least the surface of the reference electrode system (11).
  5. Device according to Claim 4, characterized in that the protective layer comprises porous Al2O3.
  6. Method for checking the functionality and the plausibility of a sensor (9) which is based on an electrode system (2) and is intended to detect particles in a gas stream, the sensor (9) comprising a first electrode system (2) and being connected to a device (10) for checking the functionality and the plausibility of the sensor (9), the device having a second electrode system (11) which is used as a reference,
    the method comprising the following method steps:
    a) measuring the current flow in the first electrode system (2) of the sensor (9) based on an electrode system (2) by means of a current measuring instrument (4) connected to the electrode system (2) of the sensor (9) and
    measuring the current flow in the second electrode system (11) by means of a current measuring instrument (13) connected to the reference electrode system (11),
    b) outputting a signal (14) on the basis of the current flow measured in the electrode system (2) of the sensor (9) by means of the current measuring instrument (4) connected to the electrode system (2) of the sensor (9) and
    outputting a signal (15) on the basis of the current flow measured in the second electrode system (11) by means of the current measuring instrument (13) connected to the second electrode system (11),
    c) comparing the signal (14) output by the current measuring instrument (4) of the electrode system (2) of the sensor (9, 10) with the signal (15) output by the current measuring instrument (13) of the reference electrode system (11) by means of a comparator (16),
    and
    d1) outputting a signal by means of the comparator (16), which signal indicates that the sensor is functional if the result of the comparison in method step c) undershoots a threshold value, or
    d2) outputting a signal by means of the comparator (16), which signal indicates that the sensor is defective if the result of the comparison in method step c) exceeds this threshold value.
  7. Method according to Claim 6, characterized in that the voltage needed to measure the current flow in the reference electrode system (11) is applied before running through method steps a) to d2) and is removed after running through method steps a) to d2).
EP07117525.1A 2006-11-24 2007-09-28 Device and method for monitoring the operational capability or validation of a sensor based on an electrode system Ceased EP1925926B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610055520 DE102006055520A1 (en) 2006-11-24 2006-11-24 Device and method for checking the functionality or plausibility of a sensor based on an interdigital electrode system sensor and a sensor for detecting particles in a gas stream and its use

Publications (2)

Publication Number Publication Date
EP1925926A1 EP1925926A1 (en) 2008-05-28
EP1925926B1 true EP1925926B1 (en) 2015-06-10

Family

ID=39060235

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07117525.1A Ceased EP1925926B1 (en) 2006-11-24 2007-09-28 Device and method for monitoring the operational capability or validation of a sensor based on an electrode system

Country Status (2)

Country Link
EP (1) EP1925926B1 (en)
DE (1) DE102006055520A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047081A1 (en) 2007-10-01 2009-04-02 Robert Bosch Gmbh Method for detecting a degree of poisoning of a particle sensor and particle sensor
DE102009028239A1 (en) 2009-08-05 2011-02-10 Robert Bosch Gmbh Method and device for self-diagnosis of a particle sensor
DE102009028283B4 (en) 2009-08-06 2023-07-27 Robert Bosch Gmbh Method and device for self-diagnosis of a particle sensor
DE102010006708B4 (en) * 2010-02-02 2013-01-17 Continental Automotive Gmbh Diagnostic procedure of a soot sensor
JP2011203093A (en) 2010-03-25 2011-10-13 Denso Corp Gas sensor, and disconnection detection method thereof
DE102010027975A1 (en) 2010-04-20 2011-10-20 Robert Bosch Gmbh Method and device for self-diagnosis of an exhaust gas probe
JP2011232065A (en) 2010-04-26 2011-11-17 Denso Corp Gas sensor
JP2012047722A (en) 2010-07-26 2012-03-08 Denso Corp Particulate matter detection sensor and method for determining abnormality of the sensor
JP5542006B2 (en) * 2010-08-26 2014-07-09 日本碍子株式会社 Particulate matter detector
DE102011006923A1 (en) 2011-04-07 2012-10-11 Robert Bosch Gmbh Device for diagnosing function of collecting particle sensor to determine particle contents in exhaust gas of diesel engine, has particle sensor soot coated with functional layer for converting long chain hydrocarbons
DE102013209872A1 (en) 2013-05-28 2014-12-04 Robert Bosch Gmbh Method and device for operating a particle sensor
KR101547446B1 (en) 2015-06-09 2015-08-26 주식회사 아모텍 Particular matter sensor and exhaust gas purification system using the same
KR101724499B1 (en) 2015-12-11 2017-04-07 현대자동차 주식회사 Particulate matter sensor and measurement method thereof
CN106053308A (en) * 2016-07-07 2016-10-26 中国第汽车股份有限公司 Chip type particulate matter sensor chip for vehicles and method for manufacturing chip type particulate matter sensor chip
JP6601977B2 (en) * 2016-10-12 2019-11-06 株式会社Soken Particulate matter detection sensor and particulate matter detection device
WO2018070344A1 (en) * 2016-10-12 2018-04-19 株式会社デンソー Particulate matter detecting sensor and particulate matter detecting device
JP6957616B2 (en) * 2017-06-27 2021-11-02 京セラ株式会社 Sensor board and sensor device
US20200182768A1 (en) * 2017-08-25 2020-06-11 Kyocera Corporation Sensor board and sensor device including sensor board
CN108020494A (en) * 2017-12-26 2018-05-11 中国科学院合肥物质科学研究院 A kind of heat-resistance type high sensitivity condenser type carbon dust PM rapid measurement devices and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526894A (en) * 1991-07-19 1993-02-02 Mitsubishi Petrochem Co Ltd Acceleration sensor with self-diagnostic circuit
DE4133426A1 (en) * 1991-10-09 1993-04-15 Bosch Gmbh Robert Capacitive sensor circuit providing measurement and function test - has dual mode operation with bridge measurement and separate test voltage for checking functional performance via reference capacitor
DE4432837B4 (en) * 1994-09-15 2004-05-13 Robert Bosch Gmbh Accelerometer and measuring method
DE10133384A1 (en) * 2001-07-10 2003-01-30 Bosch Gmbh Robert Particle detection sensor and method for checking its function
DE10247977A1 (en) * 2002-10-15 2004-04-29 Robert Bosch Gmbh Method and system for checking the functionality of a particle detector
DE102004036388A1 (en) 2004-07-27 2006-03-23 Robert Bosch Gmbh Method for operating an internal combustion engine, in which the loading of an exhaust gas flow with soot particles is detected

Also Published As

Publication number Publication date
EP1925926A1 (en) 2008-05-28
DE102006055520A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
EP1925926B1 (en) Device and method for monitoring the operational capability or validation of a sensor based on an electrode system
EP1844316B1 (en) Sensor element for particle sensors and method for operating the same
EP2864757B1 (en) Method for the functional control of a sensor for detecting particles and sensor for detecting particles
EP1792170B1 (en) Sensor element for particle sensors and method for operating the sensor element
DE102010006708B4 (en) Diagnostic procedure of a soot sensor
WO2009043711A1 (en) Method for the self-diagnosis of a particle sensor, particle sensor suited for performing the method, and the use thereof
EP2145177B1 (en) Sensor and method for detecting particles in a gas flow
DE102009028239A1 (en) Method and device for self-diagnosis of a particle sensor
DE102007021913A1 (en) Method and sensor for detecting particles in a gas stream and their use
DE102009033232A1 (en) Method for the on-vehicle functional diagnosis of a soot sensor and / or for the detection of further constituents in the soot in a motor vehicle
DE102011085421A1 (en) METHOD AND DEVICE FOR DETECTING PARTICLES CONTAINED IN A MEASURING GAS
EP2391878B1 (en) Method and device for measuring the soot load in the exhaust gas systems of diesel engines
DE102009033231A1 (en) Method for on-board function diagnosis of a soot sensor in a motor vehicle and / or for the detection of further components in the soot
DE102007014761A1 (en) Method for operating collecting particle sensors, involves providing with measuring phases, during which particle contained in exhaust gas flow is absorbed at measuring section
WO2006103272A1 (en) Sensor element for particle sensors and method for operating the same
DE102012217428A1 (en) Sensor for the detection of particles
EP2171437B1 (en) Sensor unit for the detection of conductive particles in a flow of gas and methods for the production and use thereof
DE102005016132A1 (en) Exhaust system for internal combustion (IC) engine, makes particulate sensors on upstream side of particulate filter independently operable with respect to their reference conditions
DE102008007664A1 (en) Ceramic heating element for use in electrochemical gas sensor that detects soot particle in exhaust gas of e.g. internal combustion engine, has electric resistor elements arranged parallel to each other in ceramic layer plane
EP2145173B1 (en) Sensor for detecting particles in a gas flow
DE102007046099A1 (en) Sensor element for detection of sooty particles emitted from vehicle, has supply lines comprising measuring electrode supply line insulation, which surrounds supply lines and is arranged over and/or adjacent and below supply lines
DE102006062515A1 (en) Particle filter function monitoring method for exhaust gas system of internal combustion engine i.e. diesel engine, involves measuring concentration of one of nitric oxide and nitrogen dioxide, in exhaust gas mass flow, using sensor
DE102011013544B4 (en) Method and device for operating a particle sensor
WO2008028715A1 (en) Sensor for detecting particles, comprising a test device for checking the nature of an insulating layer
DE102006002111A1 (en) Sensor element for gas sensors for determining concentration of particles in gas mixtures has heating element, which is placed inside sensor element in spatial manner between measuring arrangement and temperature measuring element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081128

17Q First examination report despatched

Effective date: 20081230

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007013975

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007013975

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180921

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180924

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191125

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007013975

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401