EP1925010B1 - Control circuit for a relay - Google Patents

Control circuit for a relay Download PDF

Info

Publication number
EP1925010B1
EP1925010B1 EP06764171A EP06764171A EP1925010B1 EP 1925010 B1 EP1925010 B1 EP 1925010B1 EP 06764171 A EP06764171 A EP 06764171A EP 06764171 A EP06764171 A EP 06764171A EP 1925010 B1 EP1925010 B1 EP 1925010B1
Authority
EP
European Patent Office
Prior art keywords
relay
voltage source
diode
capacitor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06764171A
Other languages
German (de)
French (fr)
Other versions
EP1925010A1 (en
Inventor
Gerald Hörist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1925010A1 publication Critical patent/EP1925010A1/en
Application granted granted Critical
Publication of EP1925010B1 publication Critical patent/EP1925010B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H47/043Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current making use of an energy accumulator

Definitions

  • the invention relates to a drive circuit for a relay, wherein a coil of the relay and a switching element connected in series are supplied by a first voltage source formed by a capacitor and wherein the capacitor is connected via a charging circuit formed from a first diode to an AC voltage source.
  • Control circuits for relays whose coil is connected in series with only one switching element to a voltage source known from the prior art.
  • a relay is activated and deactivated by switching the switching element, for example a transistor, on and off.
  • a freewheeling circuit is provided with a diode in the rule.
  • the rectifier circuit For connecting a coil of a relay to an AC voltage network, a rectifier circuit is used in the prior art.
  • the rectifier circuit consists of a diode and a capacitor.
  • the diode is only permeable to the positive half-waves of the alternating voltage.
  • the capacitor charges up increasingly with each positive half-cycle, at least the exciter voltage of the relay having to be reached in order for the relay to attract when the switching element is switched on.
  • relays that serve the state of the art in inverters for connecting alternative power sources to a 230V AC network. These are, for example, photovoltaic systems or fuel cells, for their economic use, a high overall efficiency is required. High holding power of the relay have a negative effect on the overall efficiency.
  • the object of the invention is to provide a comparison with the prior art improved drive circuit for a relay.
  • this is done according to claim 1 in an inverter with a drive circuit of the type mentioned, wherein an additional DC voltage source is provided, which is connected via a second diode in parallel to the first voltage source.
  • an additional DC voltage source is provided, which is connected via a second diode in parallel to the first voltage source.
  • the charging circuit in series with the first diode comprises a resistor which limits the charging current of the capacitor. This will prevent the current from the charging circuit, the capacitor with the switching element continuously recharges and thus keeps at the high level of the AC voltage source.
  • a corresponding limitation of the charging current allows a discharge of the capacitor across the coil of the relay up to a voltage level corresponding to the voltage value of the additional DC voltage source minus the voltage drop across the second diode.
  • the current for the further holding of the relay is thus taken from the DC voltage source except for the small proportion of the charging current.
  • the voltage of the DC voltage source is less than the required excitation voltage of the relay and thus causes a lower holding power.
  • the DC source must supply enough current to prevent the relay from dropping.
  • An advantageous construction of the drive circuit provides that the coil is connected with a first terminal via the resistor, the first diode and the capacitor to a conductor of the AC voltage source and via the second diode to the DC voltage source and with a second terminal via the switching element with a Reference potential is connected and that the two terminals of the coil via a third diode for demagnetization are interconnected.
  • the coil demagnetizes after switching off the switching element via the third diode and is ready for the next cycle.
  • the switching element it is advantageous to arrange a Zener diode parallel to the capacitor. This has a lower breakdown voltage than the peak value of the pulsed rectified AC voltage. The voltage to be switched by the switching element is then limited to this breakdown voltage, so that a cost-effective Switching element can be used, since then not the full peak value of the pulsed rectified AC voltage must be switched from this.
  • the relay in the exemplary embodiment is used, for example, as a switch for connecting a power source to a 230V AC mains.
  • the power circuit is not shown for clarity.
  • the 230V AC network with a conductor (L1 network ) and a neutral as the reference potential (N network ) also forms the AC voltage source to which the drive circuit via a charging circuit consisting of a diode 5 and a resistor 7 (eg 400kOhm) is connected.
  • This charging circuit charges a capacitor 4 (eg 4.7 ⁇ F).
  • the capacitor 4 forms a first voltage source, to which the coil 1 of the relay is connected to a downstream switching element 2.
  • the switching element 2 is, for example, a transistor.
  • the base of the transistor is connected via a further resistor 3 to a control signal S.
  • This control signal S is, for example, a square wave voltage between 0V and plus 5V.
  • the switching element 2 is switched off when the control signal S has a value of 0V.
  • Zener diode 9 is arranged parallel to the capacitor 4, a Zener diode 9 is arranged.
  • the voltage applied to the switching element 2 voltage is limited to the breakdown voltage of the zener diode 9, whereby the switching element 2 can be dimensioned correspondingly small. It is also possible to connect several zener diodes in series to achieve a higher breakdown voltage (eg 4 x 62V).
  • the coil 1 of the relay is connected in parallel to the capacitor 4 via a second diode 8 to a further DC voltage source U.
  • the anode of the diode 8 is connected to the DC voltage source U.
  • the DC voltage source U supplies, for example, a constant voltage value of 15V.
  • relay circuits are used in devices that include additional circuitry for control, reporting or measuring tasks. Conveniently, then as a DC voltage source U is a positive potential at a point of these additional circuitry available; There is then no additional effort to provide the DC voltage source U.
  • the coil 1 is demagnetized after switching off of the switching element. 2
  • the capacitor 4 charges via the charging circuit.
  • the diode 5 of the charging circuit is permeable to the positive half-waves of the AC voltage source, the other two diodes 6 and 8 are blocked.
  • the capacitor 4 charges so long until the voltage across the capacitor 4 corresponds to the breakdown voltage of the zener diode 9 and this is permeable or if the switching element turns on before reaching the breakdown voltage. It is important to ensure that the voltage across the capacitor 4 reaches at least the excitation voltage of the relay so that this can be tightened.
  • the control signal S changes to plus 5V
  • the switching element 2 turns on and pulls the positive potential of the capacitor 4 via the coil 1 of the relay to the reference potential N network .
  • the current flow through the coil 1 empties the capacitor 4 until the positive potential applied to the capacitor 4 corresponds to the voltage of the DC voltage source U less the voltage drop at the second diode 8.
  • the second diode 8 is then permeable, arranged parallel to the coil 1 third diode 6 blocks further.
  • the capacitor 4 retains its voltage potential and the current through the coil 1 is taken from the DC voltage source U except for the portion of the charging current which continues to flow. The holding power is thus largely covered by the DC voltage source U.
  • this type of holding current supply for example, for relays of the Finder 62.22.8.230.4300 or Tyco Electronics RM900271, can achieve a reduction of the holding power from approx. 2.8VA to 0.1W.
  • the control signal S changes back to 0V and the switching element 2 switches off.
  • the relay drops out.
  • the demagnetization of the coil 1 flows in the forward direction of the third diode 6 through the coil 1 until the magnetization energy is reduced and thus the diode 6 blocks again.
  • the capacitor 4 is then charged again for the next turn on the charging circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)
  • Selective Calling Equipment (AREA)

Abstract

The invention relates to relates to a control circuit for a relay. A coil (1) of the relay and a switch element (2) connected in series thereto are supplied by a first voltage source configured by a capacitor (4). Said capacitor (4) is connected to an AC voltage source via a charging connection configured from a first diode (5). The inventive control circuit also comprises an additional DC voltage source (U) which is connected in parallel to the first voltage source via a second diode (8). The current for maintaining the relay in the picked-up state is partially taken from the additional DC voltage source (U), thereby reducing the power taken from the first voltage source.

Description

Die Erfindung betrifft eine Ansteuerungsschaltung für ein Relais, wobei eine Spule des Relais und ein dazu in Reihe geschaltetes Schaltelement von einer durch einen Kondensator gebildeten ersten Spannungsquelle versorgt sind und wobei der Kondensator über eine aus einer ersten Diode gebildeten Ladeschaltung mit einer Wechselspannungsquelle verbunden ist.The invention relates to a drive circuit for a relay, wherein a coil of the relay and a switching element connected in series are supplied by a first voltage source formed by a capacitor and wherein the capacitor is connected via a charging circuit formed from a first diode to an AC voltage source.

Ansteuerungsschaltungen für Relais, deren Spule in Reihe mit nur einem Schaltelement an eine Spannungsquelle angeschaltet ist, kennt man aus dem Stand der Technik. Bei diesen einfach aufgebauten Schaltungen wird ein Relais durch Ein- und Ausschalten des Schaltelements, beispielsweise eines Transistors, aktiviert und deaktiviert. Zur Entmagnetisierung der Relaisspule nach dem Abschalten des Schaltelements ist in der Regel eine Freilaufschaltung mit einer Diode vorgesehen.Control circuits for relays whose coil is connected in series with only one switching element to a voltage source, known from the prior art. In these simple circuits, a relay is activated and deactivated by switching the switching element, for example a transistor, on and off. For demagnetization of the relay coil after switching off the switching element, a freewheeling circuit is provided with a diode in the rule.

Zur Anschaltung einer Spule eines Relais an ein Wechselspannungsnetz wird nach dem Stand der Technik eine Gleichrichterschaltung eingesetzt. Im einfachsten Fall besteht die Gleichrichterschaltung aus einer Diode und einem Kondensator. Die Diode ist dabei nur für die positiven Halbwellen der Wechselspannung durchlässig. Der Kondensator lädt sich bei abgeschaltetem Schaltelement mit jeder positiven Halbwelle zunehmend auf, wobei zumindest die Erregerspannung des Relais erreicht werden muss, damit das Relais beim Einschalten des Schaltelements anzieht.For connecting a coil of a relay to an AC voltage network, a rectifier circuit is used in the prior art. In the simplest case, the rectifier circuit consists of a diode and a capacitor. The diode is only permeable to the positive half-waves of the alternating voltage. When the switching element is switched off, the capacitor charges up increasingly with each positive half-cycle, at least the exciter voltage of the relay having to be reached in order for the relay to attract when the switching element is switched on.

Schaltet das Schaltelement ein, beginnt Strom durch die Spule des Relais zu fließen und das Relais zieht nach einer Ansprechzeit im Bereich weniger Millisekunden an. Bei weiterhin fließendem Strom wird das Relais im angezogenen Zustand gehalten. Die Halteleistung liefert dabei die Wechselspannungsquelle, indem der Kondensator über die Diode laufend nachgeladen wird. Auf diese Weise erreichen beispielsweise Relais, die als Schalter in einem 230V Wechselspannungsnetz dienen, Halteleistungen von einigen Watt.When the switching element turns on, current begins to flow through the coil of the relay and the relay picks up after a response time in the range of a few milliseconds. If the current continues to flow, the relay is kept in the attracted state. The holding power supplies the AC voltage source by the capacitor via the diode is continuously recharged. In this way, for example, relays that serve as switches in a 230V AC network reach holding powers of a few watts.

Das trifft auch auf Relais zu, die nach dem Stand der Technik in Wechselrichtern zum Anschalten von alternativen Stromquellen an ein 230V Wechselspannungsnetz dienen. Dabei handelt es sich beispielsweise um Photovoltaikanlagen oder Brennstoffzellen, für deren wirtschaftlichen Einsatz ein hoher Gesamtwirkungsgrad gefordert ist. Hohe Halteleistungen der Relais wirken sich dabei negativ auf den Gesamtwirkungsgrad aus.This also applies to relays that serve the state of the art in inverters for connecting alternative power sources to a 230V AC network. These are, for example, photovoltaic systems or fuel cells, for their economic use, a high overall efficiency is required. High holding power of the relay have a negative effect on the overall efficiency.

Aufgabe der Erfindung ist es, eine gegenüber dem Stand der Technik verbesserte Ansteuerungsschaltung für ein Relais anzugeben.The object of the invention is to provide a comparison with the prior art improved drive circuit for a relay.

Erfindungsgemäß geschieht dies entsprechend Anspruch 1 bei einem Wechselrichter mit einer Ansteuerungsschaltung der eingangs genannten Art, wobei eine zusätzliche Gleichspannungsquelle vorgesehen ist, welche über eine zweite Diode parallel zu der ersten Spannungsquelle geschaltet ist. Der Vorteil liegt dabei im einfachen Schaltungsaufbau mit nur einem Schaltelement und darin, dass eine der beiden Spannungsquellen für die Bereitstellung der Erregerspannung und die andere Spannungsquelle für die Lieferung des Haltestromes optimierbar ist. So stellt beispielsweise die erste Spannungsquelle die erforderliche Erregerspannung bereit und die zusätzliche Gleichspannungsquelle liefert einen Großteil des Haltestromes. Der Spannungswert der zusätzlichen Gleichspannungsquelle bestimmt dann im Wesentlichen die verbrauchte Halteleistung.According to the invention, this is done according to claim 1 in an inverter with a drive circuit of the type mentioned, wherein an additional DC voltage source is provided, which is connected via a second diode in parallel to the first voltage source. The advantage lies in the simple circuit design with only one switching element and in that one of the two voltage sources for the provision of the excitation voltage and the other voltage source for the delivery of the holding current can be optimized. For example, the first voltage source provides the required excitation voltage and the additional DC voltage source provides a majority of the holding current. The voltage value of the additional DC voltage source then essentially determines the consumed holding power.

Dabei ist es vorteilhaft, wenn die Ladeschaltung in Reihe zur ersten Diode einen Widerstand umfasst, der den Ladestrom des Kondensators begrenzt. Damit wird verhindert, dass der Strom aus der Ladeschaltung den Kondensator bei eingeschaltetem Schaltelement laufend nachlädt und so auf dem hohen Niveau der Wechselspannungsquelle hält. Eine entsprechende Begrenzung des Ladestromes ermöglicht eine Entladung des Kondensators über die Spule des Relais bis auf ein Spannungsniveau, das dem Spannungswert der zusätzlichen Gleichspannungsquelle abzüglich des Spannungsabfalls an der zweiten Diode entspricht.It is advantageous if the charging circuit in series with the first diode comprises a resistor which limits the charging current of the capacitor. This will prevent the current from the charging circuit, the capacitor with the switching element continuously recharges and thus keeps at the high level of the AC voltage source. A corresponding limitation of the charging current allows a discharge of the capacitor across the coil of the relay up to a voltage level corresponding to the voltage value of the additional DC voltage source minus the voltage drop across the second diode.

Der Strom für das weitere Halten des Relais wird somit bis auf den geringen Anteil des Ladestroms der Gleichspannungsquelle entnommen. Die Spannung der Gleichspannungsquelle ist dabei geringer als die erforderliche Erregerspannung des Relais und bewirkt somit eine geringere Halteleistung. Die Gleichspannungsquelle muss allerdings genügend Strom liefern, damit das Relais nicht abfällt.The current for the further holding of the relay is thus taken from the DC voltage source except for the small proportion of the charging current. The voltage of the DC voltage source is less than the required excitation voltage of the relay and thus causes a lower holding power. However, the DC source must supply enough current to prevent the relay from dropping.

Ein vorteilhafter Aufbau der Ansteuerungsschaltung sieht vor, dass die Spule mit einem ersten Anschluss über den Widerstand, die erste Diode und den Kondensator an einen Leiter der Wechselspannungsquelle und über die zweiten Diode an die Gleichspannungsquelle angeschaltet ist und mit einem zweiten Anschluss über das Schaltelement mit einem Bezugspotenzial verbunden ist und dass die beiden Anschlüsse der Spule über eine dritte Diode zur Entmagnetisierung miteinander verbunden sind. Durch diese Anordnung entmagnetisiert sich die Spule nach dem Abschalten des Schaltelements über die dritte Diode und ist für den nächsten Zyklus bereit.An advantageous construction of the drive circuit provides that the coil is connected with a first terminal via the resistor, the first diode and the capacitor to a conductor of the AC voltage source and via the second diode to the DC voltage source and with a second terminal via the switching element with a Reference potential is connected and that the two terminals of the coil via a third diode for demagnetization are interconnected. By this arrangement, the coil demagnetizes after switching off the switching element via the third diode and is ready for the next cycle.

Für die Auslegung des Schaltelements ist es vorteilhaft, parallel zum Kondensator eine Zenerdiode anzuordnen. Diese hat eine niedrigere Durchbruchspannung als der Scheitelwert der pulsierenden gleichgerichteten Wechselspannung. Die vom Schaltelement zu schaltende Spannung wird dann auf diese Durchbruchspannung begrenzt, sodass ein kostengünstiges Schaltelement zum Einsatz kommen kann, da von diesem dann nicht der volle Scheitelwert der pulsierenden gleichgerichteten Wechselspannung geschaltet werden muss.For the design of the switching element, it is advantageous to arrange a Zener diode parallel to the capacitor. This has a lower breakdown voltage than the peak value of the pulsed rectified AC voltage. The voltage to be switched by the switching element is then limited to this breakdown voltage, so that a cost-effective Switching element can be used, since then not the full peak value of the pulsed rectified AC voltage must be switched from this.

Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügte Figur erläutert. Es zeigt in schematischer Darstellung:

  • Fig. 1 Beispielhafte Anordnung einer Ansteuerungsschaltung
The invention will now be described by way of example with reference to the accompanying figure. It shows in a schematic representation:
  • Fig. 1 Exemplary arrangement of a drive circuit

Das Relais im Ausführungsbeispiel dient beispielsweise als Schalter zur Anschaltung einer Stromquelle an ein 230V Wechselspannungsnetz. Der Leistungskreis ist der Übersichtlichkeit halber nicht dargestellt. Das 230V Wechselspannungsnetz mit einem Leiter (L1Netz) und einem Nullleiter als Bezugspotenzial (NNetz) bildet auch die Wechselspannungsquelle, an die die Ansteuerungsschaltung über eine Ladeschaltung, bestehend aus einer Diode 5 und einem Widerstand 7 (z.B. 400kOhm), angeschlossen ist. Über diese Ladeschaltung wird ein Kondensator 4 (z.B. 4,7µF) aufgeladen.The relay in the exemplary embodiment is used, for example, as a switch for connecting a power source to a 230V AC mains. The power circuit is not shown for clarity. The 230V AC network with a conductor (L1 network ) and a neutral as the reference potential (N network ) also forms the AC voltage source to which the drive circuit via a charging circuit consisting of a diode 5 and a resistor 7 (eg 400kOhm) is connected. This charging circuit charges a capacitor 4 (eg 4.7μF).

Der Kondensator 4 bildet eine erste Spannungsquelle, an die die Spule 1 des Relais mit einem nachgeschalteten Schaltelement 2 angeschlossen ist. Das Schaltelement 2 ist beispielsweise ein Transistor. Die Basis des Transistors liegt über einen weiteren Widerstand 3 an einem Steuersignal S an. Dieses Steuersignal S ist zum Beispiel eine Rechteckspannung zwischen 0V und plus 5V. Das Schaltelement 2 ist ausgeschalten, wenn das Steuersignal S einen Wert von 0V aufweist.The capacitor 4 forms a first voltage source, to which the coil 1 of the relay is connected to a downstream switching element 2. The switching element 2 is, for example, a transistor. The base of the transistor is connected via a further resistor 3 to a control signal S. This control signal S is, for example, a square wave voltage between 0V and plus 5V. The switching element 2 is switched off when the control signal S has a value of 0V.

Parallel zum Kondensator 4 ist eine Zenerdiode 9 angeordnet. Die am Schaltelement 2 anliegende Spannung wird auf die Durchbruchspannung der Zenerdiode 9 begrenzt, wodurch das Schaltelement 2 entsprechend klein dimensioniert werden kann. Es können auch mehrere Zenerdioden in Reihe geschaltet werden, um eine höhere Durchbruchspannung zu erreichen (z.B. 4 x 62V).Parallel to the capacitor 4, a Zener diode 9 is arranged. The voltage applied to the switching element 2 voltage is limited to the breakdown voltage of the zener diode 9, whereby the switching element 2 can be dimensioned correspondingly small. It is also possible to connect several zener diodes in series to achieve a higher breakdown voltage (eg 4 x 62V).

Die Spule 1 des Relais ist parallel zum Kondensator 4 über eine zweite Diode 8 an eine weitere Gleichspannungsquelle U angeschaltet. Dabei ist die Anode der Diode 8 mit der Gleichspannungsquelle U verbunden. Die Gleichspannungsquelle U liefert beispielsweise einen konstanten Spannungswert von 15V.The coil 1 of the relay is connected in parallel to the capacitor 4 via a second diode 8 to a further DC voltage source U. In this case, the anode of the diode 8 is connected to the DC voltage source U. The DC voltage source U supplies, for example, a constant voltage value of 15V.

In der Regel werden Relaisschaltungen in Vorrichtungen eingesetzt, die zusätzliche Schaltungsanordnungen für Steuer-, Melde- oder Messaufgaben umfassen. Günstigerweise steht dann als Gleichspannungsquelle U ein positives Potenzial an einem Punkt dieser zusätzlichen Schaltungsanordnungen zur Verfügung; es entsteht dann kein zusätzlicher Aufwand zur Bereitstellung der Gleichspannungsquelle U.In general, relay circuits are used in devices that include additional circuitry for control, reporting or measuring tasks. Conveniently, then as a DC voltage source U is a positive potential at a point of these additional circuitry available; There is then no additional effort to provide the DC voltage source U.

Über eine parallel zur Spule 1 des Relais angeordnete dritte Diode 6 entmagnetisiert die Spule 1 nach Abschaltung des Schaltelements 2.About a parallel to the coil 1 of the relay arranged third diode 6, the coil 1 is demagnetized after switching off of the switching element. 2

Bei ausgeschaltetem Schaltelement 2 (Steuersignal S gleich 0V) lädt sich der Kondensator 4 über die Ladeschaltung auf. Die Diode 5 der Ladeschaltung ist dabei für die positiven Halbwellen der Wechselspannungsquelle durchlässig, die beiden anderen Dioden 6 und 8 sind gesperrt. Der Kondensator 4 lädt dabei so lange, bis die Spannung am Kondensator 4 der Durchbruchspannung der Zenerdiode 9 entspricht und diese durchlässig wird oder wenn vor dem Erreichen der Durchbruchspannung das Schaltelement einschaltet. Dabei ist darauf zu achten, dass die Spannung am Kondensator 4 zumindest die Erregerspannung des Relais erreicht, damit dieses Anziehen kann.When switching element 2 is switched off (control signal S = 0 V), the capacitor 4 charges via the charging circuit. The diode 5 of the charging circuit is permeable to the positive half-waves of the AC voltage source, the other two diodes 6 and 8 are blocked. The capacitor 4 charges so long until the voltage across the capacitor 4 corresponds to the breakdown voltage of the zener diode 9 and this is permeable or if the switching element turns on before reaching the breakdown voltage. It is important to ensure that the voltage across the capacitor 4 reaches at least the excitation voltage of the relay so that this can be tightened.

Zum Anziehen des Relais wechselt das Steuersignal S auf plus 5V, das Schaltelement 2 schaltet ein und zieht das positive Potenzial des Kondensators 4 über die Spule 1 des Relais auf das Bezugspotenzial NNetz. Es fließt Strom durch die Spule 1 und nach dem Verstreichen einer Ansprechzeit zieht das Relais an.To attract the relay, the control signal S changes to plus 5V, the switching element 2 turns on and pulls the positive potential of the capacitor 4 via the coil 1 of the relay to the reference potential N network . Current flows through the coil 1 and after the elapse of a response time, the relay picks up.

Der Stromfluss durch die Spule 1 entleert den Kondensator 4 so lange, bis das am Kondensator 4 anliegende positive Potenzial der Spannung der Gleichspannungsquelle U abzüglich des Spannungsabfalls an der zweiten Diode 8 entspricht. Die zweite Diode 8 wird dann durchlässig, die parallel zur Spule 1 angeordnete dritte Diode 6 sperrt weiterhin. Der Kondensator 4 behält sein Spannungspotenzial und der Strom durch die Spule 1 wird bis auf den Anteil des weiterhin fließenden Ladestroms aus der Gleichspannungsquelle U entnommen. Die Halteleistung wird also zum Großteil aus der Gleichspannungsquelle U abgedeckt.The current flow through the coil 1 empties the capacitor 4 until the positive potential applied to the capacitor 4 corresponds to the voltage of the DC voltage source U less the voltage drop at the second diode 8. The second diode 8 is then permeable, arranged parallel to the coil 1 third diode 6 blocks further. The capacitor 4 retains its voltage potential and the current through the coil 1 is taken from the DC voltage source U except for the portion of the charging current which continues to flow. The holding power is thus largely covered by the DC voltage source U.

Gegenüber herkömmlichen Relaisansteuerungen lässt sich mit dieser Art der Haltestrombereitstellung zum Beispiel für Relais des Fabrikats Finder 62.22.8.230.4300 oder Tyco Electronics RM900271 eine Reduktion der Halteleistung von ca. 2,8VA auf 0,1W erreichen.Compared with conventional relay controls, this type of holding current supply, for example, for relays of the Finder 62.22.8.230.4300 or Tyco Electronics RM900271, can achieve a reduction of the holding power from approx. 2.8VA to 0.1W.

Zum Abfallen des Relais wechselt das Steuersignal S wieder auf 0V und das Schaltelement 2 schaltet aus. Nach eine kurzen Abfallzeit, in der die Spule entmagnetisiert, fällt das Relais ab. Der Entmagnetisierungsstrom der Spule 1 fließt dabei in Durchlassrichtung der dritten Diode 6 so lange durch die Spule 1, bis die Magnetisierungsenergie abgebaut ist und damit die Diode 6 erneut sperrt. Der Kondensator 4 wird dann wieder für das nächste Einschalten über die Ladeschaltung aufgeladen.To drop the relay, the control signal S changes back to 0V and the switching element 2 switches off. After a short fall time, in which the coil demagnetizes, the relay drops out. The demagnetization of the coil 1 flows in the forward direction of the third diode 6 through the coil 1 until the magnetization energy is reduced and thus the diode 6 blocks again. The capacitor 4 is then charged again for the next turn on the charging circuit.

Claims (4)

  1. Inverter including a relay for connecting alternative current sources to an AC voltage network and a control circuit for the relay, with a coil (1) of the relay and a switching element (2) connected in series thereto being supplied by a first voltage source formed by a capacitor (4) and with the capacitor (4) being connected to the AC voltage network by way of a charging circuit formed from a first diode (5),
    characterised in that
    an additional DC voltage source (U) is provided, which is connected in parallel to the first voltage source by way of a second diode (8).
  2. Inverter according to claim 1, characterised in that the charging circuit includes a resistor (7).
  3. Inverter according to claim 1 or 2, characterised in that the coil (1) with a first terminal is connected to a conductor (L1 network ) of the AC voltage source by way of the resistor (7), the first diode (5) and the capacitor (4) and to the DCvoltage source (U) by way of the second diode (8) and to a second terminal by way of the switching element (2) with a reference potential (N netork ) and that the two terminals of the coil are connected to one another by way of a third diode (6) for demagnetisation.
  4. Inverter according to one of claims 1 to 3, characterised in that a Zener diode (9) is arranged in parallel to the capacitor (4).
EP06764171A 2005-09-14 2006-07-14 Control circuit for a relay Not-in-force EP1925010B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005043884A DE102005043884B4 (en) 2005-09-14 2005-09-14 Control circuit for a relay
PCT/EP2006/064252 WO2007031356A1 (en) 2005-09-14 2006-07-14 Control circuit for a relay

Publications (2)

Publication Number Publication Date
EP1925010A1 EP1925010A1 (en) 2008-05-28
EP1925010B1 true EP1925010B1 (en) 2010-11-17

Family

ID=37076322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06764171A Not-in-force EP1925010B1 (en) 2005-09-14 2006-07-14 Control circuit for a relay

Country Status (4)

Country Link
EP (1) EP1925010B1 (en)
AT (1) ATE488854T1 (en)
DE (2) DE102005043884B4 (en)
WO (1) WO2007031356A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE474363T1 (en) 2008-06-18 2010-07-15 Sma Solar Technology Ag CIRCUIT ARRANGEMENT WITH A BISTABLE RELAY BETWEEN A MAINS AND AN INVERTER
CN112992605B (en) * 2021-05-06 2021-08-06 深圳市永联科技股份有限公司 Isolation unit and related product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2109580A1 (en) * 1971-03-01 1972-09-14 Noller W High-speed excitation of DC-fed electromagnets
AT359564B (en) * 1978-09-08 1980-11-25 Siemens Ag Oesterreich ACTIVATION AND HOLDING CIRCUIT FOR SELF-HOLDING RELAYS
DE2929261A1 (en) * 1979-07-17 1981-02-05 Licentia Gmbh Relay operating circuit for high resistance power source - has relay operating RC circuit initiated by second RC circuit which switches transistor
US4326133A (en) * 1979-09-06 1982-04-20 Rospatch Corporation Control circuit for alternately actuating a pair of loads
DE19604208C1 (en) * 1996-02-06 1997-07-10 Rowenta Werke Gmbh Low-loss DC voltage supply circuit e.g. for small domestic appliance relay circuit
DE29812029U1 (en) * 1998-07-07 1998-11-05 Bucher Siegfried Dipl Ing Fh Electromechanical relay

Also Published As

Publication number Publication date
DE502006008351D1 (en) 2010-12-30
ATE488854T1 (en) 2010-12-15
DE102005043884B4 (en) 2009-05-07
DE102005043884A1 (en) 2007-03-22
WO2007031356A1 (en) 2007-03-22
EP1925010A1 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
DE102007061978B4 (en) Circuit arrangement for providing a voltage supply for a transistor driver circuit
EP0136968B1 (en) Control device for driving an electromagnet with a starting current followed by a holding current
EP2243212A2 (en) Circuit arrangement and control circuit for a power supply unit, computer power supply unit and method for switching a power supply unit
DE102015116995A1 (en) Power factor correction circuit and method of operation
WO2011038969A2 (en) Free-wheeling circuit
EP1527470A1 (en) Control circuit for an electromagnetic drive
EP2141781A1 (en) Switching device with a bistable relay between a network and an inverter
DE112004002917B4 (en) Circuit arrangement for driving a contactor and its use in a DC link converter
EP1925010B1 (en) Control circuit for a relay
DE10301954A1 (en) Electric power supply device installed in a vehicle
WO2002015374A1 (en) Circuit and electric device comprising an inductive charge and a throttle transducer
DE2309598A1 (en) DRIVE FOR TIME SWITCHES OR THE SAME
DE102011107739B4 (en) Circuit arrangement for driving a relay and remote controllable mains voltage switching device so
DE19614816C1 (en) Electronic switched network supply stage
DE2948054A1 (en) Power supply circuit for portable appliances - has pulsed supply switch controlled according to mains voltage level
EP2208400A1 (en) Switchable current supply for auxiliary current circuits in a current converter
EP0130411B1 (en) Electronic switching power supply
DE102015120658A1 (en) Method and device for controlling an electrical or electronic switching element
EP0551895A1 (en) Braking circuit with low loss
EP2755450A2 (en) Remote control of a lamp
EP0320605B1 (en) Electronic switching power supply with an inductance dc-dc converter
DE2616138C3 (en) Converter made up of a DC motor and an AC generator
EP1992060B1 (en) Device and method for dc voltage supply of electronic control circuits for electric motors
EP3268972A2 (en) Reduced-component high-speed disconnection of an electronically controlled contactor
DE3637338A1 (en) Electrical power supply circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006008351

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101117

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110217

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110317

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110317

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006008351

Country of ref document: DE

Effective date: 20110818

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110714

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120726

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150918

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160613

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006008351

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 488854

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170714