EP1922514B1 - Flexible graphite flooring heat spreader - Google Patents
Flexible graphite flooring heat spreader Download PDFInfo
- Publication number
- EP1922514B1 EP1922514B1 EP06813618.3A EP06813618A EP1922514B1 EP 1922514 B1 EP1922514 B1 EP 1922514B1 EP 06813618 A EP06813618 A EP 06813618A EP 1922514 B1 EP1922514 B1 EP 1922514B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flooring
- graphite
- heat spreader
- high density
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 221
- 229910002804 graphite Inorganic materials 0.000 title claims description 181
- 239000010439 graphite Substances 0.000 title claims description 181
- 238000009408 flooring Methods 0.000 title claims description 78
- 238000010438 heat treatment Methods 0.000 claims description 55
- 239000000758 substrate Substances 0.000 claims description 51
- 239000002245 particle Substances 0.000 claims description 39
- 238000012546 transfer Methods 0.000 claims description 22
- 239000011888 foil Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 7
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 239000013529 heat transfer fluid Substances 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 239000004568 cement Substances 0.000 claims description 2
- 239000011121 hardwood Substances 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims description 2
- 239000004570 mortar (masonry) Substances 0.000 claims description 2
- 238000003892 spreading Methods 0.000 claims description 2
- 230000007480 spreading Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 65
- 238000004049 embossing Methods 0.000 description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 28
- 229910052802 copper Inorganic materials 0.000 description 27
- 239000010949 copper Substances 0.000 description 27
- 229910021389 graphene Inorganic materials 0.000 description 24
- 239000000463 material Substances 0.000 description 22
- 229920005989 resin Polymers 0.000 description 19
- 239000011347 resin Substances 0.000 description 19
- 239000000446 fuel Substances 0.000 description 18
- 238000009830 intercalation Methods 0.000 description 18
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 17
- 239000007770 graphite material Substances 0.000 description 15
- 230000002687 intercalation Effects 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 13
- 239000003570 air Substances 0.000 description 11
- 238000003490 calendering Methods 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- -1 mat Chemical compound 0.000 description 8
- 229910021382 natural graphite Inorganic materials 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 238000004299 exfoliation Methods 0.000 description 7
- 230000017525 heat dissipation Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 210000003850 cellular structure Anatomy 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 238000005056 compaction Methods 0.000 description 4
- 238000007723 die pressing method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005087 graphitization Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- NXQMCAOPTPLPRL-UHFFFAOYSA-N 2-(2-benzoyloxyethoxy)ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOC(=O)C1=CC=CC=C1 NXQMCAOPTPLPRL-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000004794 expanded polystyrene Substances 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000000138 intercalating agent Substances 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- QLOKJRIVRGCVIM-UHFFFAOYSA-N 1-[(4-methylsulfanylphenyl)methyl]piperazine Chemical compound C1=CC(SC)=CC=C1CN1CCNCC1 QLOKJRIVRGCVIM-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 1
- 229940044613 1-propanol Drugs 0.000 description 1
- QINYBRXZAIWZBM-UHFFFAOYSA-N 2-(3-oxobutanoylamino)benzoic acid Chemical class CC(=O)CC(=O)NC1=CC=CC=C1C(O)=O QINYBRXZAIWZBM-UHFFFAOYSA-N 0.000 description 1
- FKOKUHFZNIUSLW-UHFFFAOYSA-N 2-Hydroxypropyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(C)O FKOKUHFZNIUSLW-UHFFFAOYSA-N 0.000 description 1
- XDZMPRGFOOFSBL-UHFFFAOYSA-N 2-ethoxybenzoic acid Chemical class CCOC1=CC=CC=C1C(O)=O XDZMPRGFOOFSBL-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- ALKYHXVLJMQRLQ-UHFFFAOYSA-N 3-Hydroxy-2-naphthoate Chemical compound C1=CC=C2C=C(O)C(C(=O)O)=CC2=C1 ALKYHXVLJMQRLQ-UHFFFAOYSA-N 0.000 description 1
- OCISOSJGBCQHHN-UHFFFAOYSA-N 3-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC(O)=CC2=C1 OCISOSJGBCQHHN-UHFFFAOYSA-N 0.000 description 1
- NIOAVQYSSKOCQP-UHFFFAOYSA-N 4-hydroxynaphthalene-2-carboxylic acid Chemical compound C1=CC=CC2=CC(C(=O)O)=CC(O)=C21 NIOAVQYSSKOCQP-UHFFFAOYSA-N 0.000 description 1
- NYYMNZLORMNCKK-UHFFFAOYSA-N 5-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1O NYYMNZLORMNCKK-UHFFFAOYSA-N 0.000 description 1
- SMAMQSIENGBTRV-UHFFFAOYSA-N 5-hydroxynaphthalene-2-carboxylic acid Chemical compound OC1=CC=CC2=CC(C(=O)O)=CC=C21 SMAMQSIENGBTRV-UHFFFAOYSA-N 0.000 description 1
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical compound C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 1
- FSXKKRVQMPPAMQ-UHFFFAOYSA-N 7-hydroxynaphthalene-2-carboxylic acid Chemical compound C1=CC(O)=CC2=CC(C(=O)O)=CC=C21 FSXKKRVQMPPAMQ-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- QSACCXVHEVWNMX-UHFFFAOYSA-N N-acetylanthranilic acid Chemical class CC(=O)NC1=CC=CC=C1C(O)=O QSACCXVHEVWNMX-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- VZFUCHSFHOYXIS-UHFFFAOYSA-N cycloheptane carboxylic acid Natural products OC(=O)C1CCCCCC1 VZFUCHSFHOYXIS-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- IQDXNHZDRQHKEF-UHFFFAOYSA-N dialuminum;dicalcium;dioxido(oxo)silane Chemical compound [Al+3].[Al+3].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O IQDXNHZDRQHKEF-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid group Chemical group C(CCCCC)(=O)O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 150000005209 naphthoic acids Chemical class 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N pentanoic acid group Chemical group C(CCCC)(=O)O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical class OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229960003424 phenylacetic acid Drugs 0.000 description 1
- 239000003279 phenylacetic acid Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229940093625 propylene glycol monostearate Drugs 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/12—Tube and panel arrangements for ceiling, wall, or underfloor heating
- F24D3/14—Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
- F24D3/148—Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor with heat spreading plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D13/00—Electric heating systems
- F24D13/02—Electric heating systems solely using resistance heating, e.g. underfloor heating
- F24D13/022—Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/14—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/02—Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/145—Carbon only, e.g. carbon black, graphite
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/26—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
- H05B3/262—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/26—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
- H05B3/267—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an organic material, e.g. plastic
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
- H05B3/36—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/08—Electric heater
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/003—Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/014—Heaters using resistive wires or cables not provided for in H05B3/54
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/017—Manufacturing methods or apparatus for heaters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/026—Heaters specially adapted for floor heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/032—Heaters specially adapted for heating by radiation heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- the present invention relates to a graphite article having predetermined anisotropic characteristics, such as anisotropic ratio. More particularly, the invention relates to an article formed from flakes of graphite which have been intercalated and exfoliated and formed into an article having a ratio of in-plane conductivity to through-plane conductivity that has been predetermined and controllably effected.
- the article may be a heat spreader for use as part of a radiant flooring heating system or the like.
- a process for preparing the inventive article is also presented.
- Natural graphite is considered a uniquely advantageous material, since it combines desirable properties such as electrical and thermal conductivity and formability with relatively low weight, especially compared to metals like copper or stainless steel.
- graphite articles have been proposed for various applications, including thermal management in electronics (specifically, thermal interface materials, heat spreaders and heat sinks), PEM fuel cell components like flow field plates and gas diffusion layers, and as a component of floor heating systems.
- thermal management becomes an increasingly important element of the design of electronic products.
- performance reliability and life expectancy of electronic equipment are inversely related to the component temperature of the equipment. For instance, a reduction in the operating temperature of a device such as a typical silicon semiconductor can correspond to an exponential increase in the reliability and life expectancy of the device. Therefore, to maximize the life-span and reliability of a component, maintaining the device operating temperature within the control limits set by the designers is of paramount importance.
- Heat sinks are components that facilitate heat dissipation from the surface of a heat source, such as a heat-generating electronic component, to a cooler environment, usually air.
- a heat source such as a heat-generating electronic component
- a heat sink seeks to increase the heat transfer efficiency between the components and the ambient air primarily by increasing the surface area that is in direct contact with the air. This allows more heat to be dissipated and thus lowers the device operating temperature.
- the primary purpose of a heat sink is to help maintain the device temperature below the maximum allowable temperature specified by its designer/manufacturer.
- heat sinks are formed of a metal, especially copper or aluminum, due to the ability of copper to readily absorb and transfer hear about its entire structure.
- copper heat sinks are formed with fins or other structures to increase the surface area of the heat sink, with air being forced across or through the copper fins (such as by a fan) to effect heat dissipation from the electronic component, through the copper heat sink and then to the air.
- pure copper weighs 8.96 grams per cubic centimeter (g/cm 3 ) and pure aluminum weighs 2.70 g/cm 3 (compare with graphite in the form disclosed herein, which typically weighs between about 0.4 and 1.8g/cm 3 ).
- graphite in the form disclosed herein, which typically weighs between about 0.4 and 1.8g/cm 3 .
- several heat sinks need to be arrayed on, e.g. , a circuit board to dissipate heat from a variety of components on the board. If copper heat sinks are employed, the sheer weight of copper on the board can increase the chances of the board cracking or of other equally undesirable effects, and increases the weight of the component itself.
- copper is a metal and thus has surface irregularities and deformations common to metals, and it is likely that the surface of the electronic component to which a copper heat sink is being joined is also metal or another relatively rigid material such as aluminum oxide or a ceramic material, making a complete connection between a copper heat sink and the component, so as to maximize heat transfer from the component to the copper heat sink, can be difficult without a relatively high pressure mount, which is undesirable since damage to the electronic component could result.
- oxide layers which are unavoidable in metals, can add a significant barrier to heat transfer, yet are not formed with graphite.
- An ion exchange membrane fuel cell more specifically a proton exchange membrane (PEM) fuel cell, produces electricity through the chemical reaction of hydrogen and oxygen in the air.
- PEM proton exchange membrane
- electrodes denoted as anode and cathode surround a polymer electrolyte and form what is conventionally referred to as a membrane electrode assembly, or MEA.
- MEA membrane electrode assembly
- the electrodes serve the dual function of gas diffusion layer, or GDL, within the fuel cell.
- GDL gas diffusion layer
- a catalyst material stimulates hydrogen molecules to split into hydrogen atoms and then, at the membrane, the atoms each split into a proton and an electron. The electrons are utilized as electrical energy.
- the protons migrate through the electrolyte and combine with oxygen and electrons to form water.
- a PEM fuel cell is advantageously formed of a membrane electrode assembly sandwiched between two graphite flow field plates.
- the membrane electrode assembly consists of random-oriented carbon fiber paper electrodes (anode and cathode) with a thin layer of a catalyst material, particularly platinum or a platinum group metal coated on isotropic carbon particles, such as lamp black, bonded to either side of a proton exchange membrane disposed between the electrodes.
- a catalyst material particularly platinum or a platinum group metal coated on isotropic carbon particles, such as lamp black
- the membrane Since the membrane is an insulator, the electrons travel through an external circuit in which the electricity is utilized, and join with protons at the cathode.
- An air stream on the cathode side is one mechanism by which the water formed by combination of the hydrogen and oxygen can be removed. Combinations of such fuel cells are used in a fuel cell stack to provide the desired voltage.
- WO 02/081190 A1 describes a graphite article having predetermined anisotropic characteristics.
- US 5, 022, 459 A describes a flexible hosing for circulation of a heat transfer fluid to effect heat exchange within a concrete or other type of slab.
- the hosing can have a locating and thawing wire embedded within it.
- US 5, 879, 491 A describes a method of installing a floor heating apparatus in which pipes for circulating heat medium liquid are located on a floor base structure and are covered by a flowable floor substrate material.
- a heat spreader may comprise a sheet which requires a maximum of thermal conductivity in the in-plane direction of the sheet (i.e. , along the major surfaces of the sheet) in order to effectively spread heat as rapidly as possible.
- a gas diffusion layer (which can also function as an electrode, as noted above) for an electrochemical fuel cell, also generally in the form of a sheet, may require a certain degree of through-plane ( i.e. , between its major surfaces) electrical conductivity to assist in directing current flow, while still desiring as much in-plane thermal and electrical conductivity as possible.
- Graphite is made up of layer planes of hexagonal arrays or networks of carbon atoms. These layer planes of hexagonally arranged carbon atoms are substantially flat and are oriented or ordered so as to be substantially parallel and equidistant to one another.
- the substantially flat, parallel equidistant sheets or layers of carbon atoms usually referred to as graphene layers or basal planes, are linked or bonded together and groups thereof are arranged in crystallites.
- Highly ordered graphites consist of crystallites of considerable size: the crystallites being highly aligned or oriented with respect to each other and having well ordered carbon layers. In other words, highly ordered graphites have a high degree of preferred crystallite orientation. It should be noted that graphites possess anisotropic structures and thus exhibit or possess many properties that are highly directional e.g. thermal and electrical conductivity and fluid diffusion.
- graphites may be characterized as laminated structures of carbon, that is, structures consisting of superposed layers or laminae of carbon atoms joined together by weak van der Waals forces.
- two axes or directions are usually noted, to wit , the "c" axis or direction and the “a” axes or directions.
- the "c” axis or direction may be considered as the direction perpendicular to the carbon layers.
- the “a” axes or directions may be considered as the directions parallel to the carbon layers or the directions perpendicular to the "c” direction.
- the graphites suitable for manufacturing flexible graphite sheets possess a very high degree of orientation.
- Natural graphites can be chemically or electrochemically treated so that the spacing between the superposed carbon layers or laminae can be appreciably opened up so as to provide a marked expansion in the direction perpendicular to the layers, that is, in the "c" direction, and thus form an expanded or intumesced graphite structure in which the laminar character of the carbon layers is substantially retained.
- Graphite flake which has been expanded, and more particularly expanded so as to have a final thickness or "c" direction dimension which is as much as about 80 or more times the original "c” direction dimension can be formed without the use of a binder into cohesive or integrated sheets of expanded graphite, e.g . mat, webs, papers, strips, tapes, or the like (typically referred to as "flexible graphite”).
- the formation of graphite particles which have been expanded to have a final thickness or "c” dimension which is as much as about 80 or more times the original "c” direction dimension into integrated flexible sheets by compression, without the use of any binding material, is believed to be possible due to the mechanical interlocking, or cohesion, which is achieved between the voluminously expanded graphite particles.
- the sheet material has also been found to possess a high degree of anisotropy with respect to thermal and electrical conductivity and fluid diffusion, comparable to the natural graphite starting material due to orientation of the expanded graphite particles substantially parallel to the opposed faces of the sheet resulting from compression. Sheet material thus produced has excellent flexibility, good strength and a very high degree of orientation.
- the process of producing flexible, binderless anisotropic graphite sheet material comprises compressing or compacting under a predetermined load and in the absence of a binder, expanded graphite particles which have a "c" direction dimension which is as much as about 80 or more times that of the original particles so as to form a substantially flat, flexible, integrated graphite sheet.
- the expanded graphite particles that generally are worm-like or vermiform in appearance, once compressed, will maintain the compression set and alignment with the opposed major surfaces of the sheet.
- the density and thickness of the sheet material can be varied by controlling the degree of compression.
- the density of the sheet material can be within the range of from about 0.08g/cm 3 to about 2.0 g/cm 3 .
- the flexible graphite sheet material exhibits an appreciable degree of anisotropy due to the alignment of graphite particles parallel to the major opposed, parallel surfaces of the sheet.
- the thickness, i.e. the direction perpendicular to the opposed, parallel sheet surfaces comprises the "c" direction and the directions ranging along the length and width, i.e. along or parallel to the opposed, major surfaces comprise the "a" directions and the thermal, electrical and fluid diffusion properties of the sheet are very different, by orders of magnitude typically, for the "c" and "a” directions.
- the conductivity of anisotropic flexible graphite sheet is high in the direction parallel to the major faces of the flexible graphite sheet ("a" direction), and substantially less in the direction transverse to the major surfaces ("c" direction) of the flexible graphite sheet.
- the thermal conductivity of a flexible graphite sheet in a direction parallel to the major surfaces of the flexible graphite sheet is relatively high, while it is relatively low in the "c" direction transverse to the major surfaces.
- anisotropic ratio is meant, with respect to either thermal or electrical conductivity, the ratio of in-plane conductivity to through-plane conductivity.
- the invention presented is a graphite article comprising flakes of natural graphite which have been exfoliated and compressed into a graphite article having predetermined anisotropic characteristics, such as anisotropic ratio, more preferably an anisotropic ratio between about 2 and about 250 (with respect to thermal anisotropy) or between about 200 and about 5000 (with respect to electrical anisotropy).
- anisotropic ratio of the inventive article (with respect to thermal conductivity, electrical conductivity or a balance of thermal and electrical conductivity in a controlled manner) can be produced by controlled directional alignment of the graphene layers.
- a process for producing a finished graphite article having predetermined anisotropic characteristics involves determining the desired anisotropic characteristics for a finished flexible graphite article; intercalating and then exfoliating flakes of graphite to form exfoliated graphite particles; forming a substrate graphite article by compressing the exfoliated graphite particles into a coherent article formed of graphene layers; directionally aligning the graphene layers in the substrate graphite article to provide a finished graphite article having the desired anisotropic characteristics.
- a flooring system comprising a flooring substrate, a heating or cooling element in heat transfer relationship with the flooring substrate, and a heat spreader in heat transfer relationship with the flooring substrate.
- the heat spreader includes a layer of flexible graphite material overlying the flooring substrate.
- a floor covering overlies the layer of flexible graphite material. Temperature variations across an exposed surface of the floor covering are reduced by the presence of the layer of flexible graphite material which functions as a heat spreader.
- Graphite is a crystalline form of carbon comprising atoms covalently bonded in flat layered planes with weaker bonds between the planes.
- an intercalant of, e.g. a solution of sulfuric and nitric acid, the crystal structure of the graphite reacts to form a compound of graphite and the intercalant.
- the treated particles of graphite are hereafter referred to as "particles of intercalated graphite.”
- the intercalant within the graphite decomposes and volatilizes, causing the particles of intercalated graphite to expand in dimension as much as about 80 or more times its original volume in an accordion-like fashion in the "c" direction, i.e. in the direction perpendicular to the crystalline planes of the graphite.
- the exfoliated graphite particles are vermiform in appearance, and are therefore commonly referred to as worms.
- the worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and can also be provided with small transverse openings by deforming mechanical impact.
- Graphite starting materials suitable for use in the present invention include highly graphitic carbonaceous materials capable of intercalating organic and inorganic acids as well as halogens and then expanding when exposed to heat. These highly graphitic carbonaceous materials most preferably have a degree of graphitization of about 1.0.
- the graphite starting materials used in the present invention may contain non-carbon components so long as the crystal structure of the starting materials maintains the required degree of graphitization and they are capable of exfoliation.
- any carbon-containing material, the crystal structure of which possesses the required degree of graphitization and which can be intercalated and exfoliated is suitable for use with the present invention.
- Such graphite preferably has an ash content of less than about twenty-five, more preferably less than about ten, weight percent.
- the graphite employed for the present invention will have a purity of at least about 94%. In the most preferred embodiment, the graphite employed will have a purity of at least about 99%.
- Shane et al. A common method for manufacturing graphite sheet is described by Shane et al. in U.S. Patent No. 3,404,061 , the disclosure of which is incorporated herein by reference.
- natural graphite flakes are intercalated by dispersing the flakes in a solution containing e.g., a mixture of nitric and sulfuric acid, advantageously at a level of about 20 to about 300 parts by weight of intercalant solution per 100 parts by weight of graphite flakes (pph).
- the intercalation solution contains oxidizing and other intercalating agents known in the art.
- Examples include those containing oxidizing agents and oxidizing mixtures, such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, e.g. trifluoroacetic acid, and a strong oxidizing agent soluble in the organic acid.
- an electric potential can be used to bring about oxidation of the graphite.
- Chemical species that can be introduced into the graphite crystal using electrolytic oxidation include sulfuric acid as well as other acids.
- the intercalating agent is a solution of a mixture of sulfuric acid, or sulfuric acid and phosphoric acid, and an oxidizing agent, i.e. nitric acid, perchloric acid, chromic acid, potassium permanganate, hydrogen peroxide, iodic or periodic acids, or the like.
- the intercalation solution can also possibly contain metal halides such as ferric chloride, and ferric chloride mixed with sulfuric acid, or a halide, such as bromine as a solution of bromine and sulfuric acid or bromine in an organic solvent.
- the quantity of intercalation solution may range from about 20 to about 150 pph and more typically about 50 to about 120 pph. After the flakes are intercalated, any excess solution is drained from the flakes and the flakes are water-washed. Alternatively, the quantity of the intercalation solution may be limited to between about 10 and about 50 pph, which permits the washing step to be eliminated as taught and described in U.S. Patent No. 4,895,713 , the disclosure of which is also herein incorporated by reference.
- the particles of graphite flake treated with intercalation solution can optionally be contacted, e.g. by blending, with a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25°C and 125°C.
- a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25°C and 125°C.
- Suitable specific organic agents include hexadecanol, octadecanol, 1-octanol, 2-octanol, decylalcohol, 1, 10 decanediol, decylaldehyde, 1-propanol, 1,3 propanediol, ethyleneglycol, polypropylene glycol, dextrose, fructose, lactose, sucrose, potato starch, ethylene glycol monostearate, diethylene glycol dibenzoate, propylene glycol monostearate, glycerol monostearate, dimethyl oxylate, diethyl oxylate, methyl formate, ethyl formate, ascorbic acid and lignin-derived compounds, such as sodium lignosulfate.
- the amount of organic reducing agent is suitably from about 0.5 to 4% by weight of the particles of graphite flake.
- an expansion aid applied prior to, during or immediately after intercalation can also provide improvements. Among these improvements can be reduced exfoliation temperature and increased expanded volume (also referred to as "worm volume").
- An expansion aid in this context will advantageously be an organic material sufficiently soluble in the intercalation solution to achieve an improvement in expansion. More narrowly, organic materials of this type that contain carbon, hydrogen and oxygen, preferably exclusively, may be employed. Carboxylic acids have been found especially effective.
- a suitable carboxylic acid useful as the expansion aid can be selected from aromatic, aliphatic or cycloaliphatic, straight chain or branched chain, saturated and unsaturated monocarboxylic acids, dicarboxylic acids and polycarboxylic acids which have at least 1 carbon atom, and preferably up to about 15 carbon atoms, which is soluble in the intercalation solution in amounts effective to provide a measurable improvement of one or more aspects of exfoliation.
- Suitable organic solvents can be employed to improve solubility of an organic expansion aid in the intercalation solution.
- saturated aliphatic carboxylic acids are acids such as those of the formula H(CH 2 ) n COOH wherein n is a number of from 0 to about 5, including formic, acetic, propionic, butyric, pentanoic; hexanoic, and the like.
- the anhydrides or reactive carboxylic acid derivatives such as alkyl esters can also be employed.
- alkyl esters are methyl formate and ethyl formate.
- Sulfuric acid, nitric acid and other known aqueous intercalants have the ability to decompose formic acid, ultimately to water and carbon dioxide.
- dicarboxylic acids are aliphatic dicarboxylic acids having 2-12 carbon atoms, in particular oxalic acid, fumaric acid, malonic acid, maleic acid, succinic acid, glutaric acid, adipic acid, 1,6-pentanedicarboxylic acid, 1,6-hexanedicarboxylic acid, 1,10-decanedicarboxylic acid, cyclohexane-1,4-dicarboxylic acid and aromatic dicarboxylic acids such as phthalic acid or terephthalic acid.
- alkyl esters are dimethyl oxylate and diethyl oxylate.
- Representative of cycloaliphatic acids is cyclohexane carboxylic acid and of aromatic carboxylic acids are benzoic acid, naphthoic acid, anthranilic acid, p-aminobenzoic acid, salicylic acid, o-, m- and p-tolyl acids, methoxy and ethoxybenzoic acids, acetoacetamidobenzoic acids and, acetamidobenzoic acids, phenylacetic acid and naphthoic acids.
- hydroxy aromatic acids are hydroxybenzoic acid, 3-hydroxy-1-naphthoic acid, 3-hydroxy-2-naphthoic acid, 4-hydroxy-2-naphthoic acid, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid and 7-hydroxy-2-naphthoic acid.
- Prominent among the polycarboxylic acids is citric acid.
- the intercalation solution will be aqueous and will preferably contain an amount of expansion aid of from about 1 to 10%, the amount being effective to enhance exfoliation.
- the expansion aid can be admixed with the graphite by suitable means, such as a V-blender, typically in an amount of from about 0.2% to about 10% by weight of the graphite flake.
- the blend After intercalating the graphite flake, and following the blending of the intercalant coated intercalated graphite flake with the organic reducing agent, the blend is exposed to temperatures in the range of 25° to 125°C to promote reaction of the reducing agent and intercalant coating.
- the heating period is up to about 20 hours, with shorter heating periods, e.g., at least about 10 minutes, for higher temperatures in the above-noted range. Times of one half hour or less, e.g. , on the order of 10 to 25 minutes, can be employed at the higher temperatures.
- the thus treated particles of graphite are sometimes referred to as "particles of intercalated graphite.”
- the particles of intercalated graphite Upon exposure to high temperature, e.g. temperatures of at least about 160°C and especially about 700°C to 1000°C and higher, the particles of intercalated graphite expand as much as about 80 to 1000 or more times their original volume in an accordion-like fashion in the c-direction, i.e. in the direction perpendicular to the crystalline planes of the constituent graphite particles.
- the expanded, i.e. exfoliated, graphite particles are vermiform in appearance, and are therefore commonly referred to as worms.
- the worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and/or provided with small transverse openings by deforming mechanical impact.
- Flexible graphite sheet and foil are coherent, with good handling strength, and are suitably compressed, e.g. by roll-pressing, to a thickness of about 0.075 mm to 3.75 mm and a typical density of about 0.1 to 2.0 grams per cubic centimeter g/cm 3 .
- ceramic additives can be blended with the intercalated graphite flakes as described in U.S. Patent No. 6,902,762 (which is incorporated herein by reference) to provide enhanced resin impregnation in the final flexible graphite product.
- the additives include ceramic fiber particles having a length of about 0.15 to 1.5 millimeters. The width of the particles is suitably from about 0.04 to 0.004 mm.
- the ceramic fiber particles are non-reactive and non-adhering to graphite and are stable at temperatures up to about 1100°C, preferably about 1400°C or higher.
- Suitable ceramic fiber particles are formed of macerated quartz glass fibers, carbon and graphite fibers, zirconia, boron nitride, silicon carbide and magnesia fibers, naturally occurring mineral fibers such as calcium metasilicate fibers, calcium aluminum silicate fibers, aluminum oxide fibers and the like.
- the flexible graphite sheet can also, at times, be advantageously treated with resin and the absorbed resin, after curing, enhances the moisture resistance and handling strength, i.e. stiffness, of the flexible graphite sheet, as well as “fixing” the graphite structure as formed (especially the “aligned” graphene layers).
- Suitable resin content is preferably at least about 5% by weight, more preferably about 10 to 35% by weight, and suitably up to about 60% by weight.
- Resins found especially useful in the practice of the present invention include acrylic-, epoxy- and phenolic-based resin systems, or mixtures thereof.
- Suitable epoxy resin systems include those based on diglycidyl ether of bisphenol A (DGEBA) and other multifunctional resin systems; phenolic resins that can be employed include resole and novolak phenolics.
- the resin system is solvated to facilitate application into the flexible graphite sheet.
- the flexible graphite sheet is passed through a vessel and impregnated with the resin system from, e.g. spray nozzles, the resin system advantageously being "pulled through the mat" by means of a vacuum chamber.
- the resin is thereafter preferably dried, reducing the tack of the resin.
- flexible graphite sheet has an anisotropic ratio, with respect to thermal conductivity, of between about 20-30 (i.e. , about 150-200 watts per meter-°C (W/m°C) for the in-plane direction vs. about 7 W/m°C for the through-plane direction); typical anisotropic ratios with respect to electrical conductivity are in the range of about 1600 to 2000 ( i.e ., about 125,000 siemens/meter (S/m) for in-plane electrical conductivity vs. about 70 S/m for through-plane electrical conductivity).
- W/m°C watts per meter-°C
- typical anisotropic ratios with respect to electrical conductivity are in the range of about 1600 to 2000 (i.e ., about 125,000 siemens/meter (S/m) for in-plane electrical conductivity vs. about 70 S/m for through-plane electrical conductivity).
- S/m siemens/meter
- a thermal anisotropic ratio of at least about 40, and more preferably at least about 70, would be highly desirable for heat spreader applications.
- a thermal anisotropic ratio of at least about 160 is most preferred.
- an electrical anisotropic ratio of at least about 2200 is desirable for many applications, in order to maximize directional current flow while still maintaining the weight advantages of the use of graphite.
- a fuel cell component will have an electrical anisotropic ratio of less than about 1500, combined with a thermal anisotropic ratio of greater than about 70.
- a graphite article specifically an article formed of compressed particles of exfoliated graphite, can be produced so as to have predetermined anisotropic characteristics, more particularly, a predetermined anisotropic ratio.
- the article is produced so as to have controlled directional alignment of the graphene layers. More specifically, the greater the directional alignment of graphene layers, the higher the anisotropic ratio.
- Directional alignment of the graphene layers can be accomplished by, inter alia , control of the flake size of the flakes of graphite prior to intercalation and exfoliation; molding of the exfoliated graphite particles to form the finished graphite article; mechanically altering the orientation of the particles of the graphite article (effected, for instance, by compaction of the substrate graphite article, the application of shear force to the substrate flexible graphite article, embossing of the graphite article, localized impaction of the graphite article, or the combination thereof); or combinations thereof.
- the use of smaller flakes prior to intercalation and exfoliation creates a graphite article having reduced directional alignment of its graphene layers (and, thus, a lower anisotropic ratio than observed with larger flakes).
- the application of pressure through compaction such as through die pressing using, for instance, a reciprocal platen or flat press
- shear force such as through calendering or roll pressing
- the specific manner of pressure application is relevant: the application of shear force to the article creates a greater degree of directional alignment and, therefore, higher anisotropic ratio than compaction which creates a lesser degree of directional alignment, and, therefore, a relatively lower anisotropic ratio.
- the anisotropic ratio of a graphite article it can be formed using graphite flake sized such that at least about 70% by weight passes through an 80 mesh screen (referred to as -80 mesh) (unless otherwise indicated, all references to mesh sizes herein are to U.S. standard screens).
- the graphite flake can be sized such that at least about 50% by weight passes through an 80 mesh screen but not a 140 mesh screen (referred to as 80 x 140 mesh) and has a moisture content of no greater than about 1.0%.
- the smaller the flake the less directional alignment and, thus, the smaller anisotropic ratio. Therefore, to achieve an even smaller anisotropic ratio (i.e. , greater isotropy), flake sized such that it passes through a 140 mesh screen is preferred.
- Molding of a graphite article can also control the directional alignment of the constituent graphene layers. Molding is generally accomplished under pressures which can range from about 7 megaPascals (mPa) to about 700 mPa or higher, with the higher pressures creating greater directional alignment of the graphene layers.
- pressures can range from about 7 megaPascals (mPa) to about 700 mPa or higher, with the higher pressures creating greater directional alignment of the graphene layers.
- Mechanical alteration of the alignment of the graphene layers through the application of pressure can also be used advantageously to control and adjust the morphology and functional characteristics of the final graphite article, and thus the directional alignment of its graphene layers. More particularly, the application of pressure can be tailored to achieve the desired characteristics, to the extent possible. Pressure can increase the in-plane thermal conductivity of the graphite article to conductivities which are equal to or even greater than that of pure copper, while the density remains a fraction of that of pure copper. Moreover, the anisotropic ratio of the resulting "aligned" articles is substantially higher than for the "pre-aligned" articles, ranging from at least about 70 to up to about 160 and higher (with respect to thermal anisotropy).
- a resin-impregnated flexible graphite sheet can be formed so as to be relatively void-free, to optimize electrical and thermal conductivities for fuel cell applications. This can be accomplished, for instance, by calendering or compacting the sheet so as to have a relatively void-free condition (as indicated, for instance, by a density of at least about 1.5 g/cm 3 , depending on resin content), which leads to production of an article having a relatively high thermal anisotropic ratio (potentially on the order of about 160 or higher).
- a higher void condition is preferred, which is indicated by a density in the range of about 0.4 to about 1.4 g/cm 3 for a graphite article saturated with resin for rigidity in application and to fix the final morphology.
- FIGs. 1 , 1(A) photomicrographs of a cross section of a wall of each of two sheets prepared using the process of the present invention are presented.
- the sheet of Fig. 1 was calendered to a relatively void-free condition prior to embossing.
- the sheet of Fig. 1(A) was not brought to a void-free condition prior to embossing.
- the differences in morphology i.e. , directional alignment
- the graphene layers are more aligned with (i.e., parallel to) the surfaces of the wall.
- an embossing apparatus 10 for accomplishing this generally comprises two opposed elements 20 and 30, at least one of which is an embossing element 20, and has an embossing pattern thereon.
- the embossing pattern is formed by arraying a series of walls 22, having tops, or lands, 22a having a predetermined height from the surface of embossing element 20, separated by channel floors 24, about the surface of embossing element 20.
- channel floors 24 are in fact the surface of embossing element 20.
- Landing element 30 preferably comprises a generally flat-surfaced element against which embossing element 20 operates to force the embossing pattern onto the resin-impregnated flexible graphite sheet.
- the impact surface 32 of landing element 30 can also have textures or other artifacts to facilitate the embossing process or apply a desired texture or pattern to the non-embossed surface of the flexible graphite sheet.
- Embossing element 20 and landing element 30 can comprise rollers, plates, a combination thereof, or other structures, provided they are capable of cooperating to emboss a pattern on a flexible graphite sheet, and preferably comprise rollers, as shown in Fig. 2(C) .
- Embossing element 20 and landing element 30 are arrayed in embossing apparatus 10 such that surface 32 of landing element 30 is separated from channel floors 24 of embossing element 20 by a distance "d" which is at least equal to the height of walls 22.
- surface 32 of landing element 30 is separated from channel floors 24 of embossing element 20 by distance "d" which is equal to the height of walls 22 plus the desired thickness of the embossed flexible graphite sheet 100 at the location of sheet floors of flexible graphite sheet 100, ( i.e. , between the walls of sheet 100).
- the calendered and resin-impregnated flexible graphite sheet 100a is formed so as to have a thickness in the region of the embossing pattern prior to embossing which is less than distance "d", but greater than the distance between surface 32 of landing element 30 and walls 22 of embossing element 20, as illustrated in Fig. 2 .
- material i.e. , graphite and resin
- sheet 100a flow from the area of sheet 100a which encounters pressure from lands 22a of walls 22 of embossing element 20 pressing against sheet 100a to the gap 24a between sheet 100a and channel floors 24 of embossing element 20, as illustrated in Figs. 2-2(B) .
- Yet another manner of providing engineered directional alignment of the graphene layers of a graphite article is through mechanical alteration of the graphene layers in specified regions of the article.
- the regions are mechanically altered by localized impaction of a surface of a graphite article, such as a flexible graphite sheet, to transversely deform the surface and displace graphite within the sheet at a plurality of locations and subsequently pressing the deformed, impacted surface to a planar surface.
- a planar surface 30 of flexible graphite sheet 100a of Fig. 3 can be transversely deformed, advantageously in a continuous pattern, by mechanically impacting the planar surface 110 with penetration to a predetermined depth, e.g., 1/8 to 1/2 of the thickness of sheet 100a, to displace graphite within the sheet 100a, such as by means of a device 40 such as shown in Fig. 5 which includes a roller 75, having grooves 50 and ridges 60, co-acting with smooth surfaced roller 80 (alternate deformation patterns are illustrated in Figs. 4(A) - 4(C) .
- the resulting article is illustrated in the side elevation view of Fig 6 .
- the misalignment of the graphite particles is due to displacement of graphite entirely within flexible graphite sheet 100a resulting from mechanical impact.
- the transversely deformed article of Fig. 6 is compressed, e.g. by roll-pressing, to restore the surface 30 to a planar condition as illustrated in Fig. 6(A) .
- sheet 100a has a region 70, adjacent planar surface 30, in which expanded graphite particles 800 are substantially unaligned with parallel, planar opposed surfaces 30, 40, resulting in a reduced anisotropic ratio ( i.e. , greater isotropy).
- Fig. 6(A) after restoring surface 30 to a planar condition, sheet 100a has a region 70, adjacent planar surface 30, in which expanded graphite particles 800 are substantially unaligned with parallel, planar opposed surfaces 30, 40, resulting in a reduced anisotropic ratio ( i.e. , greater isotropy).
- a flexible graphite sheet 10 can be transversely deformed at both opposed surfaces 30, 40 either sequentially or simultaneously, and subsequently compressed to provide planar, parallel opposed surfaces 30, 40 as shown in Fig. 7(A) .
- the article of Fig. 7(A) has region 70 of substantially unaligned expanded graphite particles respectively adjacent both of the parallel, planar surfaces 30, 40, resulting in yet further reduced anisotropy.
- a plurality of the thusly-prepared flexible graphite sheets may optionally be laminated into a unitary article, such as a block or other desirable shape.
- the anisotropic flexible sheets of compressed particles of exfoliated graphite can be laminated with a suitable adhesive, such as pressure sensitive or thermally activated adhesive, therebetween.
- a suitable adhesive such as pressure sensitive or thermally activated adhesive
- the adhesive chosen should balance bonding strength with minimizing thickness, and be capable of maintaining adequate bonding at the service temperature of the electronic component for which heat dissipation is sought.
- Suitable adhesives would be known to the skilled artisan, and include phenolic resins.
- the "a" direction extending parallel to the planar direction of the crystal structure of the graphite of the anisotropic flexible sheets of compressed particles of exfoliated graphite which form this embodiment of the laminated article are oriented to direct heat from the electronic component for which heat dissipation is desired, in the desired direction.
- the anisotropic nature of the graphite sheet directs the heat from the external surface of the electronic component ( i.e. , in the "a" direction along the graphite sheet), and is not degraded by the presence of the adhesive.
- Such a laminate generally has a density of about 1.1 to about 1.35g/cm 3 and a thermal conductivity in the in-plane ( i.e.
- the typical laminate therefore has a thermal anisotropic ratio, or ratio of in-plane thermal conductivity to through-plane thermal conductivity, of about 44 to about 63).
- the values of thermal conductivity in the in-plane and through-plane directions of the laminate can be manipulated by altering the directional alignment of the graphene layers of the flexible graphite sheets used to form the laminate, or by altering the directional alignment of the graphene layers of the laminate itself after it has been formed.
- the in-plane thermal conductivity of the laminate is increased, while the through-plane thermal conductivity of the laminate is decreased, this resulting in an increase of the thermal anisotropic ratio of the laminate to at least about 70, and preferably at least about 110.
- the thermal anisotropic ratio of the laminate is increased to at least about 160.
- this directional alignment of the graphene layers can be achieved is by the application of pressure to the component flexible graphite sheets, either by calendaring the sheets ( i.e. , through the application of shear force) or by die pressing or reciprocal platen pressing ( i.e. , through the application of compaction), with calendaring more effective at producing directional alignment. For instance, by calendaring the sheets to a density of 1.7 g/cm 3 .
- the in-plane thermal conductivity is increased from about 240 W/m°C to about 450 W/m°C or higher, and the through-plane thermal conductivity is decreased from about 23 W/m°C to about 2 W/m°C, thus greatly increasing the thermal anisotropic ratio of the individual sheets (from about 10 to about 225) and, by extension, the laminate formed therefrom.
- the directional alignment of the graphene layers which make up the laminate in gross is increased, such as by the application of pressure, resulting in a density greater than the starting density of the component flexible graphite sheets that make up the laminate.
- a final density for the laminated article of at least about 1.4 g/cm 3 , more preferably at least about 1.6g/cm 3 , and up to about 2.0 g/cm 3 can be obtained in this manner.
- the pressure can be applied by conventional means, such as by die pressing or calendaring. Pressures of at least about 60 megapascals (MPa) are preferred, with pressures of at least about 550 MPa, and more preferably at least about 700 MPa, needed to achieve densities as high as 2.0 g/cm 3 .
- the thermal anisotropic ratio of the resulting "aligned" laminates are substantially higher than the "pre-aligned” laminates, ranging from at least about 70 to up to about 160 and higher. Additionally, the resulting aligned, laminate also exhibits increased strength, as compared to a non-"aligned" laminate.
- the alignment process can create differing degrees of alignment within the laminate, providing further control, and permitting the manipulation, of the anisotropy of the article.
- the resulting aligned laminate can then be pressed or formed into a desired shape (indeed, the alignment process can form the laminate into a desired shape), or machined.
- the shaped, aligned laminate can be used as a thermal solution, such as a thermal interface, a heat spreader and/or a heat sink, and directionally dissipate heat from a heat source, such as an electrical component, potentially at least as well as copper without copper's weight disadvantages.
- Fig. 8 schematically illustrates a flooring system 100 which is part of a space or room 102 of a building 104.
- the interior space 102 of building 104 is defined by a plurality of planar boundary structures such as the flooring system 100, walls 106 and 108, and a ceiling 110.
- the present invention is described primarily in the context of the flooring system 100, it will be understood that the principles hereof may be applied to heating or cooling systems embedded in any of the boundary structures such as walls 106 or 108 or ceiling 110.
- the flooring system 100 includes a flooring substrate 112.
- a heating or cooling element 114 is in heat transfer relationship with the flooring substrate 112. Although the following description primarily refers to a heating element 114, it will be understood that this includes cooling elements.
- the element 114 could more generally be referred to as a heat transfer element which can either heat or cool.
- Heating element 114 may be any available type of heating or cooling element, including but not limited to electrical resistance wiring heating elements and tubing networks for carrying heat transfer fluids.
- the flooring substrate 112 can be any conventional flooring substrate of a type suitable for use with the selected heating element. Suitable heating elements 114 and flooring substrates 112 are described in further detail below.
- a heat spreader 116 which comprises a layer of flexible graphite material, is in heat transfer relationship with the flooring substrate 112, and preferably, overlies and engages the flooring substrate 112. It will be appreciated, however, that heat spreader 116 could optionally be embedded in or even underlie certain types of flooring substrates and still achieve the advantages of the present invention.
- a floor covering 118 overlies the heat spreader 116. It will be appreciated that floor covering 118 need not directly engage heat spreader 116, and may be separated therefrom by various layers, such as padding for a carpet for example. In fact, as noted above, the heat spreader 116 can even be embedded in or located below the flooring substrate 112. Thus when one layer is described as overlying another, that does not require that they engage each other, unless further specific language so states. As further described below, the floor covering 118 may be any conventional floor covering including but not limited to vinyl flooring, carpet, hardwood flooring, and ceramic tile.
- a layer of insulating material 120 underlies the flooring substrate 112 and/or the heating element 114 and insulates the same from a ground surface 122, or a space underneath the floor.
- the floor covering 118 has an exposed surface 124 which is exposed to the interior of room 102 and upon which human occupants of the room 102 would walk.
- the heat spreader 116 comprised of the layer of flexible graphite material has two opposed major surfaces 126 and 128 which may also be referred to top and bottom surfaces 126 and 128, respectively. Heat spreader 116 has a thickness 130 defined between the surfaces 126 and 128.
- the layer of flexible graphite material has a first thermal conductivity or heat conductivity parallel to the planar surfaces 126 and 128 and a second thermal conductivity normal to the planar surfaces 126 and 128. As described in detail above, the thermal conductivity of the flexible graphite sheet parallel to surfaces 126 and 128 is greater than the thermal conductivity normal to those surfaces.
- the ratio of these thermal conductivities can be described as an anisotropic ratio, which preferably has a value of at least 2.0. More preferably the anisotropic ratio is in the range of from about 2 to about 250. Still more preferably the anisotropic ratio is at least about 30.
- the heat conductivity normal to the planar surfaces 126 and 128 is at least about 2 W/m°C, and the heat conductivity parallel to the surfaces 126 and 128 is at least about 140 W/m°C.
- the material from which the heat spreader 116 is constructed is a relatively lightweight material which has a density of at least about 0.08 g/cm 3 . More preferably the material has a density of at least about 0.6 g/m 3 .
- the flexible graphite material of layer 116 may be impregnated with resin as described above.
- the flexible graphite layer 116 may be a laminate comprising a plurality of flexible graphite sheets each of which comprises a directionally aligned graphene layer.
- the flooring substrate 112 and heating elements 114 may be any conventional radiant floor heating system.
- the heating elements 114 may be electrical resistance wiring heating elements such as those utilized in ThermoTile TM radiant floor heating systems available from ThermoSoft International Corporation-of Buffalo Grove, IL.
- Such electrical resistance wiring type heating elements 114 are typically utilized with flooring substrates 112 of a type in which the heating element 114 can be completely embedded.
- the electrical resistance type heating elements 114 will typically be embedded in a flooring substrate 112 comprising a layer of cement.
- Electrical resistance wiring type heating elements 114 may also be attached to a metal flooring layer, such as aluminum which aids in spreading the heat through the floor.
- the electrical resistance type heating element 114 will typically be embedded in a flooring substrate 112 comprising a layer of thin-set mortar.
- a heating element 114 of the type comprising a tubing network for carrying a heat transfer fluid such as hot water it may for example be of the type available from Uponor Wirsbo Company of Apple Valley, Minnesota.
- Such systems typically use cross-linked polyethylene (PEX) tubing, which may for example be embedded in a concrete flooring substrate 112.
- PEX polyethylene
- Tubing type heating elements 114 may also be utilized with conventional wooden flooring substrates as shown in Fig. 10 .
- the tubing is attached to the underside 132 of a conventional plywood or oriented strand board wooden sub floor 136 which spans conventional wooden floor stringers 138.
- the wooden sub floor 136 and stringers 138 comprise the flooring substrate 112 of Figs. 8 and 9 .
- the heat spreader 116 could be below the sub floor 136, but above heating elements 114 as shown in Fig. 11 .
- the optional insulating layer 120 may be any suitable insulation.
- One system for insulation 120 which is particularly designed for use with radiant heating systems is the EPS "Expanded Polystyrene" insulation system available from Benchmark Foam, Inc., of Watertown, South Dakota.
- EPS Expanded Polystyrene insulation system available from Benchmark Foam, Inc., of Watertown, South Dakota.
- Such an insulating layer prevents loss of heat from the heaving element 114 to the ground surface 122 or to a room space below the floor if the floor is not at ground level.
- the electrical resistance type heating elements 114 maybe utilized with wooden floors in place of the tubing type heating elements, analogous to the layouts shown in Figs. 10 and 11 .
- the flooring substrate 112 associated with the heating element 114 may be constructed using graphite materials.
- a graphite substrate 112 may be formed by any of the processes described above such as molding or other compression techniques to provide any desired anisotropic properties.
- the graphite flooring substrate 112 may be made up by lamination of thinner layers of flexible graphite material as described above.
- the heat spreader 116 may be constructed integrally with the flooring substrate 112.
- the flooring system 100 or any other boundary structure such as wall 106 or ceiling 110 of building 104 utilizing the present invention is preferably formed by placing the heat spreader 116 over the flooring substrate 112.
- this is accomplished by providing the heat spreader 116 in rolls of flexible sheet-like material and unrolling the sheet 116 from the roll to cover the flooring substrate 112.
- the heat spreader layer 116 may be placed in direct engagement with any of the flooring substrates 112 previously described.
- the heat spreader layer 116 may also be in indirect heat transfer engagement with the flooring substrate 112, if a thermal interface, adhesive layer, or other material is placed therebetween for the purpose of improving the physical bond and the thermal transfer between the substrate 112 and heat spreader 116.
- the heat spreader could be below the heating element.
- the flexible graphite material making up heat spreader 116 can be provided in relatively rigid sheets in the form of tiles or the like which can be described as generally planar elements.
- adjacent edges of the tiles or planar elements are place closely adjacent the like edges of adjacent such elements, and preferably the adjacent edges abut though they need not do so in every case.
- the heating element 114 When the heating element 114 is operated to provide heat to the flooring system 100, the heat energy from the heating element 114 moves generally in an upward direction and is transferred to the heat spreader 116, which due to its preferential heat transfer conductivity in the lateral direction spreads the heat energy laterally generally parallel to the major surfaces 126 and 128, thus providing a more uniformly distributed heat to the floor covering 118 and to the room space 102 than would be provided in the absence of the heat spreader 116.
- heating elements 114 are generally constructed in the form of a plurality of serpentine runs of either electrical heating element or fluid tubing throughout the flooring substrate 112. With prior art systems, it has been necessary to place those serpentine runs of the heating elements 114 relatively close together due to the fact that the flooring substrate 112 and floor covering 118 traditionally used do not provide much lateral transfer of heat. It will be appreciated that by the use of the heat spreader 116 of the present invention, the heating elements 114 may be spread more widely apart, while still achieving a much-improved uniformity of heat distribution across the flooring system 100, thus reducing the cost of manufacture and installation of the heating element 114.
- the heating element 114 is replaced with a cooling element.
- the heat spreader 116 functions to move heat energy out of the room and to the cooling elements.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Carbon And Carbon Compounds (AREA)
- Fuel Cell (AREA)
- Floor Finish (AREA)
Description
- The present invention relates to a graphite article having predetermined anisotropic characteristics, such as anisotropic ratio. More particularly, the invention relates to an article formed from flakes of graphite which have been intercalated and exfoliated and formed into an article having a ratio of in-plane conductivity to through-plane conductivity that has been predetermined and controllably effected. The article may be a heat spreader for use as part of a radiant flooring heating system or the like. A process for preparing the inventive article is also presented.
- With the development of more and more sophisticated technological components, such as electronic components capable of increasing processing speeds and higher frequencies and fuel cell components requiring specific thermal and electrical conductivity, natural graphite has become a material a choice for certain components. Natural graphite is considered a uniquely advantageous material, since it combines desirable properties such as electrical and thermal conductivity and formability with relatively low weight, especially compared to metals like copper or stainless steel. As such, graphite articles have been proposed for various applications, including thermal management in electronics (specifically, thermal interface materials, heat spreaders and heat sinks), PEM fuel cell components like flow field plates and gas diffusion layers, and as a component of floor heating systems.
- With the increased need for heat dissipation from microelectronic devices, thermal management becomes an increasingly important element of the design of electronic products. As noted, both performance reliability and life expectancy of electronic equipment are inversely related to the component temperature of the equipment. For instance, a reduction in the operating temperature of a device such as a typical silicon semiconductor can correspond to an exponential increase in the reliability and life expectancy of the device. Therefore, to maximize the life-span and reliability of a component, maintaining the device operating temperature within the control limits set by the designers is of paramount importance.
- Heat sinks are components that facilitate heat dissipation from the surface of a heat source, such as a heat-generating electronic component, to a cooler environment, usually air. In many typical situations, heat transfer between the solid surface of the component and the air is the least efficient within the system, and the solid-air interface thus represents the greatest barrier for heat dissipation. A heat sink seeks to increase the heat transfer efficiency between the components and the ambient air primarily by increasing the surface area that is in direct contact with the air. This allows more heat to be dissipated and thus lowers the device operating temperature. The primary purpose of a heat sink is to help maintain the device temperature below the maximum allowable temperature specified by its designer/manufacturer.
- Typically, heat sinks are formed of a metal, especially copper or aluminum, due to the ability of copper to readily absorb and transfer hear about its entire structure. In many applications, copper heat sinks are formed with fins or other structures to increase the surface area of the heat sink, with air being forced across or through the copper fins (such as by a fan) to effect heat dissipation from the electronic component, through the copper heat sink and then to the air.
- Limitations exist, however, with the use of copper heat sinks. One limitation relates to copper's relative isotropy -- that is, the tendency of a copper structure to distribute heat relatively evenly about the structure. The isotropy of copper means that heat transmitted to a copper heat sink becomes distributed about the structure rather than being directed to the fins where most efficient transfer to the air occurs. This can reduce the efficiency of heat dissipation using a copper heat sink. In addition, the use of copper or aluminum heat sinks can present a problem because of the weight of the metal, particularly when the heating area is significantly smaller than that of the heat sink. For instance, pure copper weighs 8.96 grams per cubic centimeter (g/cm3) and pure aluminum weighs 2.70 g/cm3 (compare with graphite in the form disclosed herein, which typically weighs between about 0.4 and 1.8g/cm3). In many applications, several heat sinks need to be arrayed on, e.g., a circuit board to dissipate heat from a variety of components on the board. If copper heat sinks are employed, the sheer weight of copper on the board can increase the chances of the board cracking or of other equally undesirable effects, and increases the weight of the component itself. In addition, since copper is a metal and thus has surface irregularities and deformations common to metals, and it is likely that the surface of the electronic component to which a copper heat sink is being joined is also metal or another relatively rigid material such as aluminum oxide or a ceramic material, making a complete connection between a copper heat sink and the component, so as to maximize heat transfer from the component to the copper heat sink, can be difficult without a relatively high pressure mount, which is undesirable since damage to the electronic component could result. Moreover, oxide layers, which are unavoidable in metals, can add a significant barrier to heat transfer, yet are not formed with graphite.
- An ion exchange membrane fuel cell, more specifically a proton exchange membrane (PEM) fuel cell, produces electricity through the chemical reaction of hydrogen and oxygen in the air. Within the fuel cell, electrodes denoted as anode and cathode surround a polymer electrolyte and form what is conventionally referred to as a membrane electrode assembly, or MEA. Oftentimes, the electrodes serve the dual function of gas diffusion layer, or GDL, within the fuel cell. A catalyst material stimulates hydrogen molecules to split into hydrogen atoms and then, at the membrane, the atoms each split into a proton and an electron. The electrons are utilized as electrical energy. The protons migrate through the electrolyte and combine with oxygen and electrons to form water.
- A PEM fuel cell is advantageously formed of a membrane electrode assembly sandwiched between two graphite flow field plates. Conventionally, the membrane electrode assembly consists of random-oriented carbon fiber paper electrodes (anode and cathode) with a thin layer of a catalyst material, particularly platinum or a platinum group metal coated on isotropic carbon particles, such as lamp black, bonded to either side of a proton exchange membrane disposed between the electrodes. In operation, hydrogen flows through channels in one of the flow field plates to the anode, where the catalyst promotes its separation into hydrogen atoms and thereafter into protons that pass through the membrane and electrons that flow through an external load. Air flows through the channels in the other flow field plate to the cathode, where the oxygen in the air is separated into oxygen atoms, which joins with the protons through the proton exchange membrane and the electrons through the circuit, and combine to form water.
- Since the membrane is an insulator, the electrons travel through an external circuit in which the electricity is utilized, and join with protons at the cathode. An air stream on the cathode side is one mechanism by which the water formed by combination of the hydrogen and oxygen can be removed. Combinations of such fuel cells are used in a fuel cell stack to provide the desired voltage.
- Recently, the use of natural graphite materials have been suggested for use as certain components of a PEM fuel cell. For example; gas diffusion layers and flow field plates made from flexible graphite sheets, such as Grafcell™ advanced flexible graphite materials, available from Graftech Inc. of Lakewood, Ohio, have been employed or disclosed for use in fuel cells.
- Prior heating systems utilizing expanded graphite materials have been proposed in
U.S. Patents Nos. 5,288,429 ;5,247,005 ; and5,194,198 ; the details of which are incorporated herein by reference. The graphite materials used in those systems have been constructed so that they have generally isotropic thermal conductivities. -
DE 27 05 146 A1 describes an under floor heating system in which a heat transfer layer has upwardly open grooves in which a pipe carrying a heating medium can run. The upper surface of the heat transfer layer has an aluminum or copper coating. -
WO 02/081190 A1 -
US 5, 022, 459 A describes a flexible hosing for circulation of a heat transfer fluid to effect heat exchange within a concrete or other type of slab. The hosing can have a locating and thawing wire embedded within it. -
US 5, 879, 491 A describes a method of installing a floor heating apparatus in which pipes for circulating heat medium liquid are located on a floor base structure and are covered by a flowable floor substrate material. - The different applications for graphite articles discussed above, as well as others not specifically addressed herein, require differing characteristics for optimization. For instance, a heat spreader may comprise a sheet which requires a maximum of thermal conductivity in the in-plane direction of the sheet (i.e., along the major surfaces of the sheet) in order to effectively spread heat as rapidly as possible. As a comparison, a gas diffusion layer (which can also function as an electrode, as noted above) for an electrochemical fuel cell, also generally in the form of a sheet, may require a certain degree of through-plane (i.e., between its major surfaces) electrical conductivity to assist in directing current flow, while still desiring as much in-plane thermal and electrical conductivity as possible.
- Graphite is made up of layer planes of hexagonal arrays or networks of carbon atoms. These layer planes of hexagonally arranged carbon atoms are substantially flat and are oriented or ordered so as to be substantially parallel and equidistant to one another. The substantially flat, parallel equidistant sheets or layers of carbon atoms, usually referred to as graphene layers or basal planes, are linked or bonded together and groups thereof are arranged in crystallites. Highly ordered graphites consist of crystallites of considerable size: the crystallites being highly aligned or oriented with respect to each other and having well ordered carbon layers. In other words, highly ordered graphites have a high degree of preferred crystallite orientation. It should be noted that graphites possess anisotropic structures and thus exhibit or possess many properties that are highly directional e.g. thermal and electrical conductivity and fluid diffusion.
- Briefly, graphites may be characterized as laminated structures of carbon, that is, structures consisting of superposed layers or laminae of carbon atoms joined together by weak van der Waals forces. In considering the graphite structure, two axes or directions are usually noted, to wit, the "c" axis or direction and the "a" axes or directions. For simplicity, the "c" axis or direction may be considered as the direction perpendicular to the carbon layers. The "a" axes or directions may be considered as the directions parallel to the carbon layers or the directions perpendicular to the "c" direction. The graphites suitable for manufacturing flexible graphite sheets possess a very high degree of orientation.
- As noted above, the bonding forces holding the parallel layers of carbon atoms together are only weak van der Waals forces. Natural graphites can be chemically or electrochemically treated so that the spacing between the superposed carbon layers or laminae can be appreciably opened up so as to provide a marked expansion in the direction perpendicular to the layers, that is, in the "c" direction, and thus form an expanded or intumesced graphite structure in which the laminar character of the carbon layers is substantially retained.
- Graphite flake which has been expanded, and more particularly expanded so as to have a final thickness or "c" direction dimension which is as much as about 80 or more times the original "c" direction dimension, can be formed without the use of a binder into cohesive or integrated sheets of expanded graphite, e.g. mat, webs, papers, strips, tapes, or the like (typically referred to as "flexible graphite"). The formation of graphite particles which have been expanded to have a final thickness or "c" dimension which is as much as about 80 or more times the original "c" direction dimension into integrated flexible sheets by compression, without the use of any binding material, is believed to be possible due to the mechanical interlocking, or cohesion, which is achieved between the voluminously expanded graphite particles.
- In addition to flexibility, the sheet material, as noted above, has also been found to possess a high degree of anisotropy with respect to thermal and electrical conductivity and fluid diffusion, comparable to the natural graphite starting material due to orientation of the expanded graphite particles substantially parallel to the opposed faces of the sheet resulting from compression. Sheet material thus produced has excellent flexibility, good strength and a very high degree of orientation.
- Briefly, the process of producing flexible, binderless anisotropic graphite sheet material, e.g. web, paper, strip, tape, foil, mat, or the like, comprises compressing or compacting under a predetermined load and in the absence of a binder, expanded graphite particles which have a "c" direction dimension which is as much as about 80 or more times that of the original particles so as to form a substantially flat, flexible, integrated graphite sheet. The expanded graphite particles that generally are worm-like or vermiform in appearance, once compressed, will maintain the compression set and alignment with the opposed major surfaces of the sheet. The density and thickness of the sheet material can be varied by controlling the degree of compression. The density of the sheet material can be within the range of from about 0.08g/cm3 to about 2.0 g/cm3. The flexible graphite sheet material exhibits an appreciable degree of anisotropy due to the alignment of graphite particles parallel to the major opposed, parallel surfaces of the sheet. In roll pressed anisotropic sheet material, the thickness, i.e. the direction perpendicular to the opposed, parallel sheet surfaces comprises the "c" direction and the directions ranging along the length and width, i.e. along or parallel to the opposed, major surfaces comprise the "a" directions and the thermal, electrical and fluid diffusion properties of the sheet are very different, by orders of magnitude typically, for the "c" and "a" directions.
- With respect to electrical properties, the conductivity of anisotropic flexible graphite sheet is high in the direction parallel to the major faces of the flexible graphite sheet ("a" direction), and substantially less in the direction transverse to the major surfaces ("c" direction) of the flexible graphite sheet. With respect to thermal properties, the thermal conductivity of a flexible graphite sheet in a direction parallel to the major surfaces of the flexible graphite sheet is relatively high, while it is relatively low in the "c" direction transverse to the major surfaces.
- Given the different uses to which graphite articles produced from flexible graphite sheet are applied, it would be highly advantageous to predetermine or control the anisotropic ratio of the article, in order to optimize certain functional characteristics of the graphite articles for the particular end use. By anisotropic ratio is meant, with respect to either thermal or electrical conductivity, the ratio of in-plane conductivity to through-plane conductivity.
- The invention presented is a graphite article comprising flakes of natural graphite which have been exfoliated and compressed into a graphite article having predetermined anisotropic characteristics, such as anisotropic ratio, more preferably an anisotropic ratio between about 2 and about 250 (with respect to thermal anisotropy) or between about 200 and about 5000 (with respect to electrical anisotropy). The anisotropic ratio of the inventive article (with respect to thermal conductivity, electrical conductivity or a balance of thermal and electrical conductivity in a controlled manner) can be produced by controlled directional alignment of the graphene layers. This can be accomplished, for instance, by control of the flake size of the flakes of graphite prior to intercalation and exfoliation; molding of the exfoliated graphite particles to form the finished graphite article; mechanically altering the orientation of the particles of the graphite article (effected, for instance, by impaction of the graphite article, the application of shear force to the flexible graphite article, embossing of the flexible graphite article, localized impaction of the graphite article, or the combination thereof); or combinations of any of the foregoing.
- In another aspect of the invention, a process for producing a finished graphite article having predetermined anisotropic characteristics is presented. The process involves determining the desired anisotropic characteristics for a finished flexible graphite article; intercalating and then exfoliating flakes of graphite to form exfoliated graphite particles; forming a substrate graphite article by compressing the exfoliated graphite particles into a coherent article formed of graphene layers; directionally aligning the graphene layers in the substrate graphite article to provide a finished graphite article having the desired anisotropic characteristics.
- In another aspect of the invention, a flooring system is provided comprising a flooring substrate, a heating or cooling element in heat transfer relationship with the flooring substrate, and a heat spreader in heat transfer relationship with the flooring substrate. The heat spreader includes a layer of flexible graphite material overlying the flooring substrate. A floor covering overlies the layer of flexible graphite material. Temperature variations across an exposed surface of the floor covering are reduced by the presence of the layer of flexible graphite material which functions as a heat spreader.
- The present invention will be better understood and its advantages more apparent in view of the following detailed description, especially when read with reference to the appended drawings, wherein:
-
Figures 1 ,1(A) are photomicrographs, at a magnification of 50x of a cross-section of one of the walls of an embossed flexible graphite sheet prepared in accordance with the present inventions, showing morphologies achievable using void-free (Fig. 1 ) and non-void-free (Fig. 1(A) ) flexible graphite sheet; -
Figure 2 is a partial cross-sectional view of an embodiment of an embossing apparatus useful to produce the flexible graphite sheets ofFigs. 1 ,1(A) ; -
Figure 2(A) is a partial cross-sectional view of an embodiment of the embossing apparatus ofFig. 2 , seen immediately as embossing begins; -
Figure 2(B) is the embossing apparatus ofFig. 2 , seen as embossing occurs; -
Figure 2(C) shows a perspective view of the embossing apparatus ofFig. 2 ; -
Figure 3 is an enlarged sketch of a cross-section of a flexible graphite sheet; -
Figures 4(A) - 4(C) are sketches of a flexible graphite sheet showing different patterns of localized impaction; -
Figure 5 shows a perspective view of an apparatus for effecting the localized surface impaction of the sheet ofFig. 3 ; -
Figure 6 is an enlarged sketch of the sheet ofFig. 5 after compression. -
Figure 6(A) is a side elevation view of the sheet ofFig. 6 subsequent to compression of the deformed surfaces to planar form; -
Figure 7 is an enlarged side elevation view of the sheet ofFig. 3 which is transversely deformed at both opposed surfaces; and -
Figures 7(A) is a side elevation view of the sheet ofFig. 7 subsequent to compression of the deformed surfaces to planar form. -
Figure 8 is a schematic side elevation cut-away view of a heated flooring system utilizing the flexible graphite heat spreader of the present invention. -
Figure 9 is a perspective view of the flooring system ofFigure 8 having adjacent layers cut away to illustrate the details of each. -
Figure 10 is a schematic elevation sectioned view of an alternative type of flooring substrate having a wooden sub floor to which a tubing network is attached. -
Figure 11 shows another version of a flooring substrate having a wooden floor. - Graphite is a crystalline form of carbon comprising atoms covalently bonded in flat layered planes with weaker bonds between the planes. By treating particles of graphite, such as natural graphite flake, with an intercalant of, e.g. a solution of sulfuric and nitric acid, the crystal structure of the graphite reacts to form a compound of graphite and the intercalant. The treated particles of graphite are hereafter referred to as "particles of intercalated graphite." Upon exposure to high temperature, the intercalant within the graphite decomposes and volatilizes, causing the particles of intercalated graphite to expand in dimension as much as about 80 or more times its original volume in an accordion-like fashion in the "c" direction, i.e. in the direction perpendicular to the crystalline planes of the graphite. The exfoliated graphite particles are vermiform in appearance, and are therefore commonly referred to as worms. The worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and can also be provided with small transverse openings by deforming mechanical impact.
- Graphite starting materials suitable for use in the present invention include highly graphitic carbonaceous materials capable of intercalating organic and inorganic acids as well as halogens and then expanding when exposed to heat. These highly graphitic carbonaceous materials most preferably have a degree of graphitization of about 1.0. As used in this disclosure, the term "degree of graphitization" refers to the value g according to the formula:
- The graphite starting materials used in the present invention may contain non-carbon components so long as the crystal structure of the starting materials maintains the required degree of graphitization and they are capable of exfoliation. Generally, any carbon-containing material, the crystal structure of which possesses the required degree of graphitization and which can be intercalated and exfoliated, is suitable for use with the present invention. Such graphite preferably has an ash content of less than about twenty-five, more preferably less than about ten, weight percent. Most preferably, the graphite employed for the present invention will have a purity of at least about 94%. In the most preferred embodiment, the graphite employed will have a purity of at least about 99%.
- A common method for manufacturing graphite sheet is described by
Shane et al. in U.S. Patent No. 3,404,061 , the disclosure of which is incorporated herein by reference. In the typical practice of the Shane et al. method, natural graphite flakes are intercalated by dispersing the flakes in a solution containing e.g., a mixture of nitric and sulfuric acid, advantageously at a level of about 20 to about 300 parts by weight of intercalant solution per 100 parts by weight of graphite flakes (pph). The intercalation solution contains oxidizing and other intercalating agents known in the art. Examples include those containing oxidizing agents and oxidizing mixtures, such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, e.g. trifluoroacetic acid, and a strong oxidizing agent soluble in the organic acid. Alternatively, an electric potential can be used to bring about oxidation of the graphite. Chemical species that can be introduced into the graphite crystal using electrolytic oxidation include sulfuric acid as well as other acids. - In a preferred embodiment, the intercalating agent is a solution of a mixture of sulfuric acid, or sulfuric acid and phosphoric acid, and an oxidizing agent, i.e. nitric acid, perchloric acid, chromic acid, potassium permanganate, hydrogen peroxide, iodic or periodic acids, or the like. The intercalation solution can also possibly contain metal halides such as ferric chloride, and ferric chloride mixed with sulfuric acid, or a halide, such as bromine as a solution of bromine and sulfuric acid or bromine in an organic solvent.
- The quantity of intercalation solution may range from about 20 to about 150 pph and more typically about 50 to about 120 pph. After the flakes are intercalated, any excess solution is drained from the flakes and the flakes are water-washed. Alternatively, the quantity of the intercalation solution may be limited to between about 10 and about 50 pph, which permits the washing step to be eliminated as taught and described in
U.S. Patent No. 4,895,713 , the disclosure of which is also herein incorporated by reference. - The particles of graphite flake treated with intercalation solution can optionally be contacted, e.g. by blending, with a reducing organic agent selected from alcohols, sugars, aldehydes and esters which are reactive with the surface film of oxidizing intercalating solution at temperatures in the range of 25°C and 125°C. Suitable specific organic agents include hexadecanol, octadecanol, 1-octanol, 2-octanol, decylalcohol, 1, 10 decanediol, decylaldehyde, 1-propanol, 1,3 propanediol, ethyleneglycol, polypropylene glycol, dextrose, fructose, lactose, sucrose, potato starch, ethylene glycol monostearate, diethylene glycol dibenzoate, propylene glycol monostearate, glycerol monostearate, dimethyl oxylate, diethyl oxylate, methyl formate, ethyl formate, ascorbic acid and lignin-derived compounds, such as sodium lignosulfate. The amount of organic reducing agent is suitably from about 0.5 to 4% by weight of the particles of graphite flake.
- The use of an expansion aid applied prior to, during or immediately after intercalation can also provide improvements. Among these improvements can be reduced exfoliation temperature and increased expanded volume (also referred to as "worm volume"). An expansion aid in this context will advantageously be an organic material sufficiently soluble in the intercalation solution to achieve an improvement in expansion. More narrowly, organic materials of this type that contain carbon, hydrogen and oxygen, preferably exclusively, may be employed. Carboxylic acids have been found especially effective. A suitable carboxylic acid useful as the expansion aid can be selected from aromatic, aliphatic or cycloaliphatic, straight chain or branched chain, saturated and unsaturated monocarboxylic acids, dicarboxylic acids and polycarboxylic acids which have at least 1 carbon atom, and preferably up to about 15 carbon atoms, which is soluble in the intercalation solution in amounts effective to provide a measurable improvement of one or more aspects of exfoliation. Suitable organic solvents can be employed to improve solubility of an organic expansion aid in the intercalation solution.
- Representative examples of saturated aliphatic carboxylic acids are acids such as those of the formula H(CH2)nCOOH wherein n is a number of from 0 to about 5, including formic, acetic, propionic, butyric, pentanoic; hexanoic, and the like. In place of the carboxylic acids, the anhydrides or reactive carboxylic acid derivatives such as alkyl esters can also be employed. Representative of alkyl esters are methyl formate and ethyl formate. Sulfuric acid, nitric acid and other known aqueous intercalants have the ability to decompose formic acid, ultimately to water and carbon dioxide. Because of this, formic acid and other sensitive expansion aids are advantageously contacted with the graphite flake prior to immersion of the flake in aqueous intercalant. Representative of dicarboxylic acids are aliphatic dicarboxylic acids having 2-12 carbon atoms, in particular oxalic acid, fumaric acid, malonic acid, maleic acid, succinic acid, glutaric acid, adipic acid, 1,6-pentanedicarboxylic acid, 1,6-hexanedicarboxylic acid, 1,10-decanedicarboxylic acid, cyclohexane-1,4-dicarboxylic acid and aromatic dicarboxylic acids such as phthalic acid or terephthalic acid. Representative of alkyl esters are dimethyl oxylate and diethyl oxylate. Representative of cycloaliphatic acids is cyclohexane carboxylic acid and of aromatic carboxylic acids are benzoic acid, naphthoic acid, anthranilic acid, p-aminobenzoic acid, salicylic acid, o-, m- and p-tolyl acids, methoxy and ethoxybenzoic acids, acetoacetamidobenzoic acids and, acetamidobenzoic acids, phenylacetic acid and naphthoic acids. Representative of hydroxy aromatic acids are hydroxybenzoic acid, 3-hydroxy-1-naphthoic acid, 3-hydroxy-2-naphthoic acid, 4-hydroxy-2-naphthoic acid, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid and 7-hydroxy-2-naphthoic acid. Prominent among the polycarboxylic acids is citric acid.
- The intercalation solution will be aqueous and will preferably contain an amount of expansion aid of from about 1 to 10%, the amount being effective to enhance exfoliation. In the embodiment wherein the expansion aid is contacted with the graphite flake prior to or after immersing in the aqueous intercalation solution, the expansion aid can be admixed with the graphite by suitable means, such as a V-blender, typically in an amount of from about 0.2% to about 10% by weight of the graphite flake.
- After intercalating the graphite flake, and following the blending of the intercalant coated intercalated graphite flake with the organic reducing agent, the blend is exposed to temperatures in the range of 25° to 125°C to promote reaction of the reducing agent and intercalant coating. The heating period is up to about 20 hours, with shorter heating periods, e.g., at least about 10 minutes, for higher temperatures in the above-noted range. Times of one half hour or less, e.g., on the order of 10 to 25 minutes, can be employed at the higher temperatures.
- The thus treated particles of graphite are sometimes referred to as "particles of intercalated graphite." Upon exposure to high temperature, e.g. temperatures of at least about 160°C and especially about 700°C to 1000°C and higher, the particles of intercalated graphite expand as much as about 80 to 1000 or more times their original volume in an accordion-like fashion in the c-direction, i.e. in the direction perpendicular to the crystalline planes of the constituent graphite particles. The expanded, i.e. exfoliated, graphite particles are vermiform in appearance, and are therefore commonly referred to as worms. The worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and/or provided with small transverse openings by deforming mechanical impact.
- Flexible graphite sheet and foil are coherent, with good handling strength, and are suitably compressed, e.g. by roll-pressing, to a thickness of about 0.075 mm to 3.75 mm and a typical density of about 0.1 to 2.0 grams per cubic centimeter g/cm3. From about 1.5-30% by weight of ceramic additives can be blended with the intercalated graphite flakes as described in
U.S. Patent No. 6,902,762 (which is incorporated herein by reference) to provide enhanced resin impregnation in the final flexible graphite product. The additives include ceramic fiber particles having a length of about 0.15 to 1.5 millimeters. The width of the particles is suitably from about 0.04 to 0.004 mm. The ceramic fiber particles are non-reactive and non-adhering to graphite and are stable at temperatures up to about 1100°C, preferably about 1400°C or higher. Suitable ceramic fiber particles are formed of macerated quartz glass fibers, carbon and graphite fibers, zirconia, boron nitride, silicon carbide and magnesia fibers, naturally occurring mineral fibers such as calcium metasilicate fibers, calcium aluminum silicate fibers, aluminum oxide fibers and the like. - The flexible graphite sheet can also, at times, be advantageously treated with resin and the absorbed resin, after curing, enhances the moisture resistance and handling strength, i.e. stiffness, of the flexible graphite sheet, as well as "fixing" the graphite structure as formed (especially the "aligned" graphene layers). Suitable resin content is preferably at least about 5% by weight, more preferably about 10 to 35% by weight, and suitably up to about 60% by weight. Resins found especially useful in the practice of the present invention include acrylic-, epoxy- and phenolic-based resin systems, or mixtures thereof. Suitable epoxy resin systems include those based on diglycidyl ether of bisphenol A (DGEBA) and other multifunctional resin systems; phenolic resins that can be employed include resole and novolak phenolics. Typically, but not necessarily, the resin system is solvated to facilitate application into the flexible graphite sheet. In a typical resin impregnation step, the flexible graphite sheet is passed through a vessel and impregnated with the resin system from, e.g. spray nozzles, the resin system advantageously being "pulled through the mat" by means of a vacuum chamber. The resin is thereafter preferably dried, reducing the tack of the resin.
- It is generally accepted that flexible graphite sheet has an anisotropic ratio, with respect to thermal conductivity, of between about 20-30 (i.e., about 150-200 watts per meter-°C (W/m°C) for the in-plane direction vs. about 7 W/m°C for the through-plane direction); typical anisotropic ratios with respect to electrical conductivity are in the range of about 1600 to 2000 (i.e., about 125,000 siemens/meter (S/m) for in-plane electrical conductivity vs. about 70 S/m for through-plane electrical conductivity). As noted above, however, the ability to "engineer" or predetermine the anisotropic ratio for specific end uses would be highly advantageous. For instance, a thermal anisotropic ratio of at least about 40, and more preferably at least about 70, would be highly desirable for heat spreader applications. In fact, for most heat management applications, including heat sinks and thermal interfaces, a thermal anisotropic ratio of at least about 160 is most preferred.
- Likewise, an electrical anisotropic ratio of at least about 2200 is desirable for many applications, in order to maximize directional current flow while still maintaining the weight advantages of the use of graphite. In addition, for electrochemical fuel cell components, it is desirable to achieve a balance between electrical and thermal anisotropic ratios, to optimize current flow while efficiently ridding the fuel cell of heat. Most desirably, a fuel cell component will have an electrical anisotropic ratio of less than about 1500, combined with a thermal anisotropic ratio of greater than about 70.
- To that end, a graphite article, specifically an article formed of compressed particles of exfoliated graphite, can be produced so as to have predetermined anisotropic characteristics, more particularly, a predetermined anisotropic ratio. To do so, the article is produced so as to have controlled directional alignment of the graphene layers. More specifically, the greater the directional alignment of graphene layers, the higher the anisotropic ratio. Directional alignment of the graphene layers can be accomplished by, inter alia, control of the flake size of the flakes of graphite prior to intercalation and exfoliation; molding of the exfoliated graphite particles to form the finished graphite article; mechanically altering the orientation of the particles of the graphite article (effected, for instance, by compaction of the substrate graphite article, the application of shear force to the substrate flexible graphite article, embossing of the graphite article, localized impaction of the graphite article, or the combination thereof); or combinations thereof.
- For instance, the use of smaller flakes prior to intercalation and exfoliation creates a graphite article having reduced directional alignment of its graphene layers (and, thus, a lower anisotropic ratio than observed with larger flakes). Contrariwise, the application of pressure through compaction (such as through die pressing using, for instance, a reciprocal platen or flat press) or shear force (such as through calendering or roll pressing) tends to increase directional alignment (and, thus, the anisotropic ratio), although the specific manner of pressure application is relevant: the application of shear force to the article creates a greater degree of directional alignment and, therefore, higher anisotropic ratio than compaction which creates a lesser degree of directional alignment, and, therefore, a relatively lower anisotropic ratio.
- For example, and more specifically, to decrease the anisotropic ratio of a graphite article, it can be formed using graphite flake sized such that at least about 70% by weight passes through an 80 mesh screen (referred to as -80 mesh) (unless otherwise indicated, all references to mesh sizes herein are to U.S. standard screens). Indeed, the graphite flake can be sized such that at least about 50% by weight passes through an 80 mesh screen but not a 140 mesh screen (referred to as 80 x 140 mesh) and has a moisture content of no greater than about 1.0%. In fact, the smaller the flake, the less directional alignment and, thus, the smaller anisotropic ratio. Therefore, to achieve an even smaller anisotropic ratio (i.e., greater isotropy), flake sized such that it passes through a 140 mesh screen is preferred.
- Molding of a graphite article, specifically, forcing expanded graphite particles (with or without resin) into a mold by isostatic or die pressing, can also control the directional alignment of the constituent graphene layers. Molding is generally accomplished under pressures which can range from about 7 megaPascals (mPa) to about 700 mPa or higher, with the higher pressures creating greater directional alignment of the graphene layers.
- Mechanical alteration of the alignment of the graphene layers through the application of pressure can also be used advantageously to control and adjust the morphology and functional characteristics of the final graphite article, and thus the directional alignment of its graphene layers. More particularly, the application of pressure can be tailored to achieve the desired characteristics, to the extent possible. Pressure can increase the in-plane thermal conductivity of the graphite article to conductivities which are equal to or even greater than that of pure copper, while the density remains a fraction of that of pure copper. Moreover, the anisotropic ratio of the resulting "aligned" articles is substantially higher than for the "pre-aligned" articles, ranging from at least about 70 to up to about 160 and higher (with respect to thermal anisotropy).
- Mechanical alteration of graphene layer alignment can also be effected through embossing, especially when combined with void control. More particularly, especially when the graphite article is intended for use as a component in an electrochemical fuel cell, a resin-impregnated flexible graphite sheet can be formed so as to be relatively void-free, to optimize electrical and thermal conductivities for fuel cell applications. This can be accomplished, for instance, by calendering or compacting the sheet so as to have a relatively void-free condition (as indicated, for instance, by a density of at least about 1.5 g/cm3, depending on resin content), which leads to production of an article having a relatively high thermal anisotropic ratio (potentially on the order of about 160 or higher). Where a lower anisotropic ratio is desired, such as in certain heat spreader applications, a higher void condition is preferred, which is indicated by a density in the range of about 0.4 to about 1.4 g/cm3 for a graphite article saturated with resin for rigidity in application and to fix the final morphology.
- Referring now to
Figs. 1 ,1(A) , photomicrographs of a cross section of a wall of each of two sheets prepared using the process of the present invention are presented. The sheet ofFig. 1 was calendered to a relatively void-free condition prior to embossing. The sheet ofFig. 1(A) was not brought to a void-free condition prior to embossing. The differences in morphology (i.e., directional alignment) are apparent. It can readily be seen inFig. 1 that the graphene layers are more aligned with (i.e., parallel to) the surfaces of the wall. Indeed, an "inverted triangle" region is evident at the upper portion of the wall and there appears a line of intersection where the graphite flow fronts meet, essentially dividing the internal structure of the wall into relatively symmetric parts. When this is contrasted with the wall ofFig. 1(A) , the structure created by embossing/void control is apparent. As would be familiar to the skilled artisan, the relative amount of structure in an embossed flexible graphite wall can and will lead to differing anisotropic properties, as described above. - As illustrated in
Figs. 2-2(C) , anembossing apparatus 10 for accomplishing this generally comprises twoopposed elements embossing element 20, and has an embossing pattern thereon. The embossing pattern is formed by arraying a series ofwalls 22, having tops, or lands, 22a having a predetermined height from the surface of embossingelement 20, separated bychannel floors 24, about the surface of embossingelement 20. Typically,channel floors 24 are in fact the surface of embossingelement 20. Landingelement 30 preferably comprises a generally flat-surfaced element against which embossingelement 20 operates to force the embossing pattern onto the resin-impregnated flexible graphite sheet. Theimpact surface 32 oflanding element 30 can also have textures or other artifacts to facilitate the embossing process or apply a desired texture or pattern to the non-embossed surface of the flexible graphite sheet. - Embossing
element 20 andlanding element 30 can comprise rollers, plates, a combination thereof, or other structures, provided they are capable of cooperating to emboss a pattern on a flexible graphite sheet, and preferably comprise rollers, as shown inFig. 2(C) . Embossingelement 20 andlanding element 30 are arrayed inembossing apparatus 10 such thatsurface 32 oflanding element 30 is separated fromchannel floors 24 ofembossing element 20 by a distance "d" which is at least equal to the height ofwalls 22. Indeed, in the most preferred embodiment,surface 32 oflanding element 30 is separated fromchannel floors 24 ofembossing element 20 by distance "d" which is equal to the height ofwalls 22 plus the desired thickness of the embossedflexible graphite sheet 100 at the location of sheet floors offlexible graphite sheet 100, (i.e., between the walls of sheet 100). - The calendered and resin-impregnated
flexible graphite sheet 100a is formed so as to have a thickness in the region of the embossing pattern prior to embossing which is less than distance "d", but greater than the distance betweensurface 32 oflanding element 30 andwalls 22 ofembossing element 20, as illustrated inFig. 2 . During embossing, material (i.e., graphite and resin) insheet 100a flow from the area ofsheet 100a which encounters pressure fromlands 22a ofwalls 22 ofembossing element 20 pressing againstsheet 100a to the gap 24a betweensheet 100a andchannel floors 24 ofembossing element 20, as illustrated inFigs. 2-2(B) . This "rearrangement" of the graphite/resin of calendered and resin-impregnatedflexible graphite sheet 100a is surprising, and leads to an embossedflexible graphite sheet 100, havingsheet floors 102 and sheet lands 104 which form a channel pattern corresponding to the embossing pattern of embossing element 20 (as shown inFigs. 2 and 2(A) ). - Yet another manner of providing engineered directional alignment of the graphene layers of a graphite article is through mechanical alteration of the graphene layers in specified regions of the article. The regions are mechanically altered by localized impaction of a surface of a graphite article, such as a flexible graphite sheet, to transversely deform the surface and displace graphite within the sheet at a plurality of locations and subsequently pressing the deformed, impacted surface to a planar surface.
- For example, a
planar surface 30 offlexible graphite sheet 100a ofFig. 3 can be transversely deformed, advantageously in a continuous pattern, by mechanically impacting theplanar surface 110 with penetration to a predetermined depth, e.g., 1/8 to 1/2 of the thickness ofsheet 100a, to displace graphite within thesheet 100a, such as by means of adevice 40 such as shown inFig. 5 which includes aroller 75, havinggrooves 50 andridges 60, co-acting with smooth surfaced roller 80 (alternate deformation patterns are illustrated inFigs. 4(A) - 4(C) . The resulting article is illustrated in the side elevation view ofFig 6 . The misalignment of the graphite particles (and, therefore, the graphene layers) is due to displacement of graphite entirely withinflexible graphite sheet 100a resulting from mechanical impact. The transversely deformed article ofFig. 6 is compressed, e.g. by roll-pressing, to restore thesurface 30 to a planar condition as illustrated inFig. 6(A) . With reference toFig. 6(A) , after restoringsurface 30 to a planar condition,sheet 100a has aregion 70, adjacentplanar surface 30, in which expandedgraphite particles 800 are substantially unaligned with parallel, planaropposed surfaces Fig. 7 , aflexible graphite sheet 10 can be transversely deformed at bothopposed surfaces opposed surfaces Fig. 7(A) . The article ofFig. 7(A) hasregion 70 of substantially unaligned expanded graphite particles respectively adjacent both of the parallel,planar surfaces - Practice of the invention as described above permits control of the anisotropic characteristics of a graphite article. In this way, the article can be engineered so as to have optimized characteristics for each specific end use, whether it be heat management for electronic components or improved thermal and electrical management for fuel cell components or as a heat spreader in a flooring system.
- In the practice of the present invention, a plurality of the thusly-prepared flexible graphite sheets may optionally be laminated into a unitary article, such as a block or other desirable shape. The anisotropic flexible sheets of compressed particles of exfoliated graphite can be laminated with a suitable adhesive, such as pressure sensitive or thermally activated adhesive, therebetween. The adhesive chosen should balance bonding strength with minimizing thickness, and be capable of maintaining adequate bonding at the service temperature of the electronic component for which heat dissipation is sought. Suitable adhesives would be known to the skilled artisan, and include phenolic resins.
- Most preferably, the "a" direction extending parallel to the planar direction of the crystal structure of the graphite of the anisotropic flexible sheets of compressed particles of exfoliated graphite which form this embodiment of the laminated article are oriented to direct heat from the electronic component for which heat dissipation is desired, in the desired direction. In this way, the anisotropic nature of the graphite sheet directs the heat from the external surface of the electronic component (i.e., in the "a" direction along the graphite sheet), and is not degraded by the presence of the adhesive. Such a laminate generally has a density of about 1.1 to about 1.35g/cm3 and a thermal conductivity in the in-plane (i.e., "a") direction of about 220 to about 250 and through-plane (i.e., "c") direction of about 4 to about 5. The typical laminate therefore has a thermal anisotropic ratio, or ratio of in-plane thermal conductivity to through-plane thermal conductivity, of about 44 to about 63).
- The values of thermal conductivity in the in-plane and through-plane directions of the laminate can be manipulated by altering the directional alignment of the graphene layers of the flexible graphite sheets used to form the laminate, or by altering the directional alignment of the graphene layers of the laminate itself after it has been formed. In this way, the in-plane thermal conductivity of the laminate is increased, while the through-plane thermal conductivity of the laminate is decreased, this resulting in an increase of the thermal anisotropic ratio of the laminate to at least about 70, and preferably at least about 110. Most preferably, the thermal anisotropic ratio of the laminate is increased to at least about 160.
- One of the ways this directional alignment of the graphene layers can be achieved is by the application of pressure to the component flexible graphite sheets, either by calendaring the sheets (i.e., through the application of shear force) or by die pressing or reciprocal platen pressing (i.e., through the application of compaction), with calendaring more effective at producing directional alignment. For instance, by calendaring the sheets to a density of 1.7 g/cm3. as opposed to 1.1 g/cm3, the in-plane thermal conductivity is increased from about 240 W/m°C to about 450 W/m°C or higher, and the through-plane thermal conductivity is decreased from about 23 W/m°C to about 2 W/m°C, thus greatly increasing the thermal anisotropic ratio of the individual sheets (from about 10 to about 225) and, by extension, the laminate formed therefrom.
- Alternatively, once the laminate is formed, the directional alignment of the graphene layers which make up the laminate in gross is increased, such as by the application of pressure, resulting in a density greater than the starting density of the component flexible graphite sheets that make up the laminate. Indeed, a final density for the laminated article of at least about 1.4 g/cm3, more preferably at least about 1.6g/cm3, and up to about 2.0 g/cm3 can be obtained in this manner. The pressure can be applied by conventional means, such as by die pressing or calendaring. Pressures of at least about 60 megapascals (MPa) are preferred, with pressures of at least about 550 MPa, and more preferably at least about 700 MPa, needed to achieve densities as high as 2.0 g/cm3.
- Surprisingly, increasing the directional alignment of the graphene layers can increase the in-plane thermal conductivity of the graphite laminate to conductivities which are equal to or even greater than that of purse copper, while the density remains a fraction of that of pure copper. Moreover, the thermal anisotropic ratio of the resulting "aligned" laminates are substantially higher than the "pre-aligned" laminates, ranging from at least about 70 to up to about 160 and higher. Additionally, the resulting aligned, laminate also exhibits increased strength, as compared to a non-"aligned" laminate.
- Depending on the intended end-use of the aligned article, the alignment process can create differing degrees of alignment within the laminate, providing further control, and permitting the manipulation, of the anisotropy of the article.
- The resulting aligned laminate can then be pressed or formed into a desired shape (indeed, the alignment process can form the laminate into a desired shape), or machined. The shaped, aligned laminate can be used as a thermal solution, such as a thermal interface, a heat spreader and/or a heat sink, and directionally dissipate heat from a heat source, such as an electrical component, potentially at least as well as copper without copper's weight disadvantages.
-
Fig. 8 schematically illustrates aflooring system 100 which is part of a space orroom 102 of abuilding 104. Theinterior space 102 of building 104 is defined by a plurality of planar boundary structures such as theflooring system 100,walls ceiling 110. Although the present invention is described primarily in the context of theflooring system 100, it will be understood that the principles hereof may be applied to heating or cooling systems embedded in any of the boundary structures such aswalls ceiling 110. - The
flooring system 100 includes aflooring substrate 112. A heating orcooling element 114 is in heat transfer relationship with theflooring substrate 112. Although the following description primarily refers to aheating element 114, it will be understood that this includes cooling elements. Theelement 114 could more generally be referred to as a heat transfer element which can either heat or cool. -
Heating element 114 may be any available type of heating or cooling element, including but not limited to electrical resistance wiring heating elements and tubing networks for carrying heat transfer fluids. Theflooring substrate 112 can be any conventional flooring substrate of a type suitable for use with the selected heating element.Suitable heating elements 114 andflooring substrates 112 are described in further detail below. - A
heat spreader 116 which comprises a layer of flexible graphite material, is in heat transfer relationship with theflooring substrate 112, and preferably, overlies and engages theflooring substrate 112. It will be appreciated, however, thatheat spreader 116 could optionally be embedded in or even underlie certain types of flooring substrates and still achieve the advantages of the present invention. - A floor covering 118 overlies the
heat spreader 116. It will be appreciated that floor covering 118 need not directly engageheat spreader 116, and may be separated therefrom by various layers, such as padding for a carpet for example. In fact, as noted above, theheat spreader 116 can even be embedded in or located below theflooring substrate 112. Thus when one layer is described as overlying another, that does not require that they engage each other, unless further specific language so states. As further described below, the floor covering 118 may be any conventional floor covering including but not limited to vinyl flooring, carpet, hardwood flooring, and ceramic tile. - Optionally, a layer of insulating
material 120 underlies theflooring substrate 112 and/or theheating element 114 and insulates the same from aground surface 122, or a space underneath the floor. - As best illustrated in the perspective view of
Fig. 9 , the floor covering 118 has an exposedsurface 124 which is exposed to the interior ofroom 102 and upon which human occupants of theroom 102 would walk. - The
heat spreader 116 comprised of the layer of flexible graphite material has two opposedmajor surfaces bottom surfaces Heat spreader 116 has athickness 130 defined between thesurfaces planar surfaces planar surfaces surfaces - Typically, the heat conductivity normal to the
planar surfaces surfaces - It is noted that for a heat conductivity normal to the
planar surfaces - Also as described above the material from which the
heat spreader 116 is constructed is a relatively lightweight material which has a density of at least about 0.08 g/cm3. More preferably the material has a density of at least about 0.6 g/m3. - Optionally, the flexible graphite material of
layer 116 may be impregnated with resin as described above. - Also, the
flexible graphite layer 116 may be a laminate comprising a plurality of flexible graphite sheets each of which comprises a directionally aligned graphene layer. - The
flooring substrate 112 andheating elements 114 may be any conventional radiant floor heating system. - For example, the
heating elements 114 may be electrical resistance wiring heating elements such as those utilized in ThermoTile ™ radiant floor heating systems available from ThermoSoft International Corporation-of Buffalo Grove, IL. - Such electrical resistance wiring
type heating elements 114 are typically utilized withflooring substrates 112 of a type in which theheating element 114 can be completely embedded. - For example, if the floor covering 118 is to be vinyl flooring or carpet, the electrical resistance
type heating elements 114 will typically be embedded in aflooring substrate 112 comprising a layer of cement. - Electrical resistance wiring
type heating elements 114 may also be attached to a metal flooring layer, such as aluminum which aids in spreading the heat through the floor. - Alternatively, if the floor covering 118 is to be ceramic type, the electrical resistance
type heating element 114 will typically be embedded in aflooring substrate 112 comprising a layer of thin-set mortar. - If a
heating element 114 of the type comprising a tubing network for carrying a heat transfer fluid such as hot water is selected, it may for example be of the type available from Uponor Wirsbo Company of Apple Valley, Minnesota. Such systems typically use cross-linked polyethylene (PEX) tubing, which may for example be embedded in aconcrete flooring substrate 112. Such systems may also use other tubing materials such as copper. - Tubing
type heating elements 114 may also be utilized with conventional wooden flooring substrates as shown inFig. 10 . In such cases, the tubing is attached to theunderside 132 of a conventional plywood or oriented strand boardwooden sub floor 136 which spans conventionalwooden floor stringers 138. In this embodiment thewooden sub floor 136 andstringers 138 comprise theflooring substrate 112 ofFigs. 8 and9 . Optionally theheat spreader 116 could be below thesub floor 136, but aboveheating elements 114 as shown inFig. 11 . - The optional insulating
layer 120 may be any suitable insulation. One system forinsulation 120 which is particularly designed for use with radiant heating systems is the EPS "Expanded Polystyrene" insulation system available from Benchmark Foam, Inc., of Watertown, South Dakota. Such an insulating layer prevents loss of heat from the heavingelement 114 to theground surface 122 or to a room space below the floor if the floor is not at ground level. - Also, the electrical resistance
type heating elements 114 maybe utilized with wooden floors in place of the tubing type heating elements, analogous to the layouts shown inFigs. 10 and 11 . - Alternatively, the
flooring substrate 112 associated with theheating element 114 may be constructed using graphite materials. Such agraphite substrate 112 may be formed by any of the processes described above such as molding or other compression techniques to provide any desired anisotropic properties. Additionally, thegraphite flooring substrate 112 may be made up by lamination of thinner layers of flexible graphite material as described above. Furthermore, when utilizing aflooring substrate 112 constructed utilizing graphite materials, theheat spreader 116 may be constructed integrally with theflooring substrate 112. - The
flooring system 100 or any other boundary structure such aswall 106 orceiling 110 of building 104 utilizing the present invention is preferably formed by placing theheat spreader 116 over theflooring substrate 112. - In one preferred embodiment this is accomplished by providing the
heat spreader 116 in rolls of flexible sheet-like material and unrolling thesheet 116 from the roll to cover theflooring substrate 112. Theheat spreader layer 116 may be placed in direct engagement with any of theflooring substrates 112 previously described. Theheat spreader layer 116 may also be in indirect heat transfer engagement with theflooring substrate 112, if a thermal interface, adhesive layer, or other material is placed therebetween for the purpose of improving the physical bond and the thermal transfer between thesubstrate 112 andheat spreader 116. Also, as noted above, the heat spreader could be below the heating element. - Optionally, the flexible graphite material making up
heat spreader 116 can be provided in relatively rigid sheets in the form of tiles or the like which can be described as generally planar elements. In this case adjacent edges of the tiles or planar elements are place closely adjacent the like edges of adjacent such elements, and preferably the adjacent edges abut though they need not do so in every case. - When the
heating element 114 is operated to provide heat to theflooring system 100, the heat energy from theheating element 114 moves generally in an upward direction and is transferred to theheat spreader 116, which due to its preferential heat transfer conductivity in the lateral direction spreads the heat energy laterally generally parallel to themajor surfaces room space 102 than would be provided in the absence of theheat spreader 116. - It will be appreciated that regardless of what type of
heating element 114 is utilized,such heating elements 114 are generally constructed in the form of a plurality of serpentine runs of either electrical heating element or fluid tubing throughout theflooring substrate 112. With prior art systems, it has been necessary to place those serpentine runs of theheating elements 114 relatively close together due to the fact that theflooring substrate 112 and floor covering 118 traditionally used do not provide much lateral transfer of heat. It will be appreciated that by the use of theheat spreader 116 of the present invention, theheating elements 114 may be spread more widely apart, while still achieving a much-improved uniformity of heat distribution across theflooring system 100, thus reducing the cost of manufacture and installation of theheating element 114. - All of the above description is also applicable to use of the described system to cool rather than heat a room space. For the cooling context, the
heating element 114 is replaced with a cooling element. Theheat spreader 116 functions to move heat energy out of the room and to the cooling elements. - The above description is intended to enable the person skilled in the art to practice the invention. It is not intended to detail all of the possible variations and modifications that will become apparent to the skilled worker upon reading the description. It is intended, however, that all such modifications and variations be included within the scope of the invention that is defined by the following claims. The claims are intended to cover the indicated elements and steps in any arrangement or sequence that is effective to meet the objectives intended for the invention, unless the context specifically indicates the contrary.
Claims (13)
- A flooring system (100), comprising:a flooring substrate (112);a heating or cooling element (114) in heat transfer relationship with said flooring substrate (112); characterized in that the flooring system comprisesa high density, anisotropic graphite foil heat spreader (116), in heat transfer relationship with said flooring substrate (112), said high density, anisotropic graphite foil heat spreader (116) comprising a layer of compressed particles of exfoliated graphite having a density of at least 0.6 g/cm3a floor covering (118) overlying said high density, anisotropic graphite foil heat spreader (116), whereby temperature variations across an exposed surface of said floor covering (118) are reduced by the presence of said high density, anisotropic graphite foil heat spreader (116).
- The flooring system (100) of claim 1, wherein said high density, anisotropic graphite foil heat spreader (116) overlies said flooring substrate (112).
- The flooring system (100) of claim 1 or claim 2, wherein said high density, anisotropic graphite foil heat spreader (116) has two opposed major planar surfaces (126, 128) and a first heat conductivity parallel to said planar surfaces (126, 128) and a second heat conductivity normal to said planar surfaces (126, 128), a ratio of said first heat conductivity to said second heat conductivity defining an anisotropic ratio of at least about 30.
- The flooring (100) system of claim 3, wherein said heat conductivity parallel to said planar surfaces (126, 128) is at least about 140W/m°C.
- The flooring system (100) of any one of claims 1 to 4, wherein said high density anisotropic graphite foil heat spreader (116) further comprises an adhesive.
- The flooring system (100) of any one of claims 1 to 5, wherein said high density, anisotropic graphite foil heat spreader (116) is embossed with a continuous pattern.
- The flooring system (100) of any one of claims 1 to 6, wherein said heating element (114) comprises an electrical resistance wiring heating element.
- The flooring system (100) of any one of claims 1 to 7, wherein said flooring substrate (112) comprises a layer of cement or thin set mortar in which said heating element (114) is embedded.
- The flooring system (100) of any one of claims 1 to 8, wherein said floor covering (118) is selected from the group consisting of vinyl, carpet, hardwood, and ceramic tile.
- The flooring system (100) of any one of claims 1 to 9, wherein said heating or cooling element (114) comprises a tubing network for carrying a heat transfer fluid.
- The flooring system (100) of claim 10, wherein said flooring substrate (112) comprises a wooden sub floor (136) to which the tubing network is attached.
- The flooring system (100) of any one of claims 1 to 11, further comprising a layer of insulating material (120) underlying said flooring substrate (112).
- A method of heating a space (102) of a building (104) which comprises the following steps(a) providing a flooring system (100), comprising:a flooring substrate (112);a heating element (114) in heat transfer relationship with said flooring substrate (112);a high density, anisotropic graphite foil heat spreader (116), in heat transfer relationship with said flooring substrate (112), said high density, anisotropic graphite foil heat spreader (116) comprising a layer of compressed particles of exfoliated graphite having a density of at least 0.6 g/cm3 and a heat conductivity parallel to the planar surfaces (126, 128) of the high density, anisotropic graphite foil heat spreader (116) of at least 140 W/m°C;a floor covering (118) overlying said high density, anisotropic graphite foil heat spreader (116), whereby temperature variations across an exposed surface of said floor covering (118) are reduced by the presence of said high density, anisotropic graphite foil heat spreader (116);(b) operating said heating element (114) such that it creates heat energy; characterized in that it further comprises the following step(c) laterally spreading said heat energy across said flooring system (100) via said high density, anisotropic graphite foil heat spreader (116), thus providing a more uniformly distributed heat to said space (102) than would be provided in the absence of said high density, anisotropic graphite foil heat spreader (116).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/220,349 US8382004B2 (en) | 2001-04-04 | 2005-09-06 | Flexible graphite flooring heat spreader |
PCT/US2006/032673 WO2007030309A2 (en) | 2005-09-06 | 2006-08-21 | Flexible graphite flooring heat spreader |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1922514A2 EP1922514A2 (en) | 2008-05-21 |
EP1922514A4 EP1922514A4 (en) | 2015-01-07 |
EP1922514B1 true EP1922514B1 (en) | 2016-02-03 |
Family
ID=37836339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06813618.3A Not-in-force EP1922514B1 (en) | 2005-09-06 | 2006-08-21 | Flexible graphite flooring heat spreader |
Country Status (7)
Country | Link |
---|---|
US (2) | US8382004B2 (en) |
EP (1) | EP1922514B1 (en) |
JP (1) | JP2009508786A (en) |
KR (1) | KR101009500B1 (en) |
CN (1) | CN101326406B (en) |
CA (1) | CA2621391C (en) |
WO (1) | WO2007030309A2 (en) |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8382004B2 (en) * | 2001-04-04 | 2013-02-26 | Graftech International Holdings Inc. | Flexible graphite flooring heat spreader |
PL1749805T3 (en) * | 2005-08-04 | 2016-06-30 | Sgl Carbon Se | Gypsum-based building material with enhanced thermal conductivity and electromagnetic shielding. |
CN101449374B (en) * | 2006-06-08 | 2011-11-09 | 国际商业机器公司 | Highly heat conductive, flexible sheet and its manufacture method |
US20090101306A1 (en) | 2007-10-22 | 2009-04-23 | Reis Bradley E | Heat Exchanger System |
DE102007053225A1 (en) * | 2007-11-06 | 2009-05-07 | Sgl Carbon Ag | Temperature control body for photovoltaic modules |
EP2116778B1 (en) * | 2008-05-09 | 2016-03-16 | Kronoplus Technical AG | Heatable fitting system |
EP2169317B8 (en) * | 2008-09-25 | 2016-08-31 | Roth Werke GmbH | Multi-layer board |
IT1396655B1 (en) * | 2009-02-13 | 2012-12-14 | Montanari | FLOOR CELL HEATING SYSTEM. |
JP5588619B2 (en) * | 2009-03-11 | 2014-09-10 | 一丸ファルコス株式会社 | pH-responsive liposome |
US20100314081A1 (en) * | 2009-06-12 | 2010-12-16 | Reis Bradley E | High Temperature Graphite Heat Exchanger |
US20130192793A1 (en) * | 2009-12-31 | 2013-08-01 | Sgl Carbon Se | Device for temperature control of a room |
US20110253694A1 (en) * | 2010-04-16 | 2011-10-20 | Nunzio Consiglio | Radiant Heating Tile System |
US9775196B2 (en) * | 2010-07-20 | 2017-09-26 | University Of Houston | Self-heating concrete using carbon nanofiber paper |
US9404665B1 (en) * | 2010-08-30 | 2016-08-02 | Khart Panels LLC | Radiant panel system having increased efficiency |
US8773856B2 (en) * | 2010-11-08 | 2014-07-08 | Graftech International Holdings Inc. | Method of making an electronic device |
KR200465820Y1 (en) | 2011-01-25 | 2013-03-18 | 정진화 | Bedclothing with health supporting |
KR101252176B1 (en) * | 2011-02-17 | 2013-04-05 | (주)나노솔루션테크 | Heating/cooling apparatus for wafer chuck and wafer bonder comprising the same |
US9797664B2 (en) | 2012-02-20 | 2017-10-24 | Neograf Solutions, Llc | Composite heat spreader and battery module incorporating the same |
ES2383865B2 (en) * | 2012-03-08 | 2012-11-06 | Anguiano Poliuretanos, S.L. | Decorative radiator with integrated water circuit |
DE102012204124A1 (en) | 2012-03-15 | 2013-09-19 | Sgl Carbon Se | Thermally conductive composite element based on expanded graphite |
US20150122244A1 (en) * | 2012-06-08 | 2015-05-07 | Graphite Energy N.V. | Solar energy receiver |
KR101244449B1 (en) * | 2012-06-13 | 2013-03-18 | (주)이테크 | Lower warmer device for deck in ships |
GB201214909D0 (en) | 2012-08-21 | 2012-10-03 | Gregory Bruce | Improved radiant heat transfer through the interior cladding of living spaces |
KR101920722B1 (en) | 2012-08-21 | 2018-11-21 | 삼성전자주식회사 | Method of preventing charge accumulation in manufacture of semiconductor device |
US9829202B2 (en) * | 2012-09-11 | 2017-11-28 | University of Alaska Anchorage | Systems and methods for heating concrete structures |
CN103213973B (en) * | 2013-03-22 | 2015-06-24 | 青岛南墅泰星石墨制品有限公司 | Method for preparing flexible highly oriented graphite heat conduction material |
CN103267315B (en) * | 2013-05-29 | 2014-09-24 | 福建省乐普陶板制造有限公司 | Recycled constant-temperature ceramic floor integrated system |
US10060635B2 (en) * | 2013-08-17 | 2018-08-28 | Bruce Gregory | Heat transfer through interior cladding of living spaces |
EP3044530A4 (en) * | 2013-09-12 | 2017-03-08 | Renew Group Private Limited | System and method of using graphene enriched products for distributing heat energy |
US20150096719A1 (en) * | 2013-10-04 | 2015-04-09 | Specialty Minerals (Michigan) Inc. | Apparatus for Dissipating Heat |
US9706684B2 (en) | 2013-12-26 | 2017-07-11 | Terrella Energy Systems Ltd. | Exfoliated graphite materials and composite materials and devices for thermal management |
US9700968B2 (en) * | 2013-12-26 | 2017-07-11 | Terrella Energy Systems Ltd. | Apparatus and methods for processing exfoliated graphite materials |
CN103925639A (en) * | 2014-04-28 | 2014-07-16 | 王文华 | Heat homogenizing method based on heat conducting graphite film for floor heating |
US20160212886A1 (en) * | 2015-01-20 | 2016-07-21 | Michael Nikkhoo | Wearable display with bonded graphite heatpipe |
US10444515B2 (en) | 2015-01-20 | 2019-10-15 | Microsoft Technology Licensing, Llc | Convective optical mount structure |
WO2016180278A1 (en) * | 2015-05-08 | 2016-11-17 | 宁波信远工业集团有限公司 | Wave-to-heat conversion structure and application thereof |
CN105003945A (en) * | 2015-06-12 | 2015-10-28 | 苏州邦多纳碳纤维科技有限公司 | Graphene heat conduction floor and manufacturing method thereof |
CN105120634B (en) * | 2015-09-06 | 2017-11-14 | 张永锋 | A kind of high conduction heat radiator |
ITUB20154205A1 (en) * | 2015-10-07 | 2017-04-07 | Walter Zamprogno | RADIANT SYSTEM FOR HEATING AND COOLING ROOMS |
DE102015222322A1 (en) * | 2015-11-12 | 2017-05-18 | Robert Bosch Gmbh | Method for producing an electric heater |
CN105444252B (en) * | 2015-12-08 | 2018-06-19 | 三峡大学 | A kind of high heat conduction graphite film ground heating system |
CN105889707A (en) * | 2016-06-06 | 2016-08-24 | 无锡市翱宇特新科技发展有限公司 | Overwater pipeline heat preservation device |
CN106131983A (en) * | 2016-08-10 | 2016-11-16 | 陈庚 | A kind of for hotting mask and preparation method thereof and heating plant |
CN106211380A (en) * | 2016-08-10 | 2016-12-07 | 陈庚 | A kind of for hotting mask and preparation method thereof and heating plant |
US10138340B2 (en) * | 2016-10-11 | 2018-11-27 | Palo Alto Research Center Incorporated | Low volatility, high efficiency gas barrier coating for cryo-compressed hydrogen tanks |
US10604929B2 (en) | 2016-11-01 | 2020-03-31 | United States Gypsum Company | Fire resistant gypsum board comprising expandable graphite and related methods and slurries |
IT201600114685A1 (en) * | 2016-11-14 | 2018-05-14 | Silcart Spa | DEVICE FOR THE SUPPORT AND FIXING OF HEATING PIPELINES OF A HEATING SYSTEM PLACED IN UNDERWOODS, WALLS OR CEILINGS OF BUILDINGS |
CA3039632A1 (en) * | 2016-12-06 | 2018-06-14 | Neograf Solutions, Llc | Energy regulating system and methods using same |
US10425989B2 (en) | 2016-12-20 | 2019-09-24 | Goodrich Corporation | Heated floor panels with thermally conductive and electrically insulating fabric |
EP3369874B1 (en) * | 2017-03-01 | 2023-09-06 | Matteo Casprini | A modular floating screed with incorporated heating elements |
KR102137032B1 (en) | 2017-05-10 | 2020-07-23 | 엘지전자 주식회사 | A composition for carbon composite and a carbon heater manufactured by using the same |
CN110573601A (en) | 2017-05-11 | 2019-12-13 | 埃科莱布美国股份有限公司 | Compositions and methods for floor cleaning or rehabilitation |
KR102004035B1 (en) | 2017-05-26 | 2019-07-25 | 엘지전자 주식회사 | A carbon heating element |
CN107631129A (en) * | 2017-10-31 | 2018-01-26 | 湖南国盛石墨科技有限公司 | A kind of continous way graphite Ashestos plate factory supplies mixed grind induction system |
CN108081909A (en) * | 2017-12-20 | 2018-05-29 | 厦门伟特思汽车科技有限公司 | A kind of new integral new-energy passenger constant temperature heating control system |
US11840013B2 (en) | 2018-02-27 | 2023-12-12 | Matthews International Corporation | Graphite materials and devices with surface micro-texturing |
CN108532868B (en) * | 2018-02-27 | 2021-05-18 | 亚细亚建筑材料股份有限公司 | Composite slurry applied to decorative plate with heating function |
JP6899600B2 (en) * | 2018-06-05 | 2021-07-07 | 株式会社大木工藝 | Sheet material for interior materials |
CN108800273B (en) * | 2018-06-20 | 2019-04-19 | 广州珠江装修工程有限公司 | A kind of dry and wet composite type energy-saving floor and its heating means |
CN109232950B (en) * | 2018-08-03 | 2020-06-09 | 清华大学 | High-strength high-conductivity bending-resistant graphite foil and preparation method thereof |
CN109921051A (en) * | 2019-02-22 | 2019-06-21 | 佛山科学技术学院 | A kind of ultrathin flexible graphite bi-polar plate and preparation method thereof |
WO2020185945A1 (en) * | 2019-03-12 | 2020-09-17 | Nikola Corporation | Pressurized vessel heat shield and thermal pressure relief system |
US11428476B2 (en) * | 2020-09-04 | 2022-08-30 | Photon Vault, Llc | Thermal energy storage and retrieval system |
JPWO2022209004A1 (en) * | 2021-03-30 | 2022-10-06 | ||
CN116221801B (en) * | 2023-05-08 | 2023-08-11 | 四川暖佳尚品暖通设备有限公司 | Double-color superconductive floor heating module and injection molding method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788152A (en) | 1995-03-15 | 1998-08-04 | Alsberg; Terry Wayne W. | Floor heating system |
US20020166658A1 (en) | 2001-04-04 | 2002-11-14 | Graftech Inc. | Graphite-based thermal dissipation component |
EP1512933A2 (en) | 2003-09-04 | 2005-03-09 | Sgl Carbon Ag | Heat conduction plate made of expanded graphite and method of fabrication thereof |
EP1688684A1 (en) | 2005-01-12 | 2006-08-09 | Sgl Carbon Ag | Absorber part for a solarthermical flat type collector |
Family Cites Families (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US181859A (en) * | 1876-09-05 | Improvement in warming floors | ||
US1742159A (en) * | 1922-03-11 | 1929-12-31 | Cons Car Heating Co Inc | Electric heating system |
US1534221A (en) * | 1924-03-10 | 1925-04-21 | Arthur J Kercher | Electric floor heater |
US2422685A (en) * | 1944-03-27 | 1947-06-24 | Clay Products Ass | Radiant heating for buildings |
US2533409A (en) * | 1947-01-28 | 1950-12-12 | Reuben S Tice | Electrical heating system |
US2503601A (en) * | 1949-03-05 | 1950-04-11 | Reuben S Tice | Electric floor heating system |
US2544547A (en) * | 1949-03-21 | 1951-03-06 | Charles A Vogel | Electrically heated floor mat |
US2619580A (en) * | 1951-05-10 | 1952-11-25 | Stanley M Pontiere | Electrically heated floor cover |
US2783639A (en) * | 1952-10-29 | 1957-03-05 | Henry H Werner | Concrete slab and embedded duct structure |
US3223825A (en) * | 1958-03-21 | 1965-12-14 | Chester I Williams | Electric grid floor heating system |
US3037746A (en) * | 1958-11-10 | 1962-06-05 | Wesley L Williams | Floor covering for radiant heating installations |
GB991581A (en) * | 1962-03-21 | 1965-05-12 | High Temperature Materials Inc | Expanded pyrolytic graphite and process for producing the same |
GB1035216A (en) * | 1962-03-28 | 1966-07-06 | Gert Deventer | Method of and apparatus for fabricating self-lubricating articles or components, and articles or components made by the method |
US3255337A (en) * | 1963-09-23 | 1966-06-07 | Arnold F Willat | Electrical heating pad for floors |
US3584198A (en) * | 1968-02-29 | 1971-06-08 | Matsushita Electric Works Ltd | Flexible electric surface heater |
US3573122A (en) * | 1968-08-23 | 1971-03-30 | Dow Chemical Co | Preparation of conductive materials |
US3697728A (en) * | 1968-12-13 | 1972-10-10 | Air Plastic Service Gmbh | Heating devices |
US3627988A (en) * | 1969-04-01 | 1971-12-14 | Electrotex Dev Ltd | Electrical heating elements |
US3780250A (en) * | 1971-11-02 | 1973-12-18 | Chisso Corp | Apparatus for heating the surface of constructions |
AR209169A1 (en) * | 1975-06-09 | 1977-03-31 | Duerst F | A FLOOR HEATING INSTALLATION USING HOT WATER |
US4011989A (en) * | 1975-08-14 | 1977-03-15 | Diggs Richard E | Metal building with integrated hot water heating system |
DE2705146A1 (en) | 1977-02-08 | 1978-08-10 | Hermann Maier | Underfloor heating support with insulating and covering layers - has upper aluminium or copper layer and lower felt or asbestos layer |
US4212348A (en) * | 1977-04-04 | 1980-07-15 | Toshiyuki Kobayashi | Heat-radiating floor board |
DE3137410C1 (en) * | 1981-09-19 | 1986-06-19 | MERO-Werke Dr.-Ing. Max Mengeringhausen, GmbH & Co, 8700 Würzburg | Raised floor |
SE8307187L (en) * | 1983-12-28 | 1985-06-29 | Ingestroem Curt Holger | SET FOR ENVIRONMENTAL REGULATION IN A RESIDENTIAL HOUSE |
US4907739A (en) * | 1986-04-22 | 1990-03-13 | Gyp-Crete Corporation | Heating method and apparatus |
EP0250345B1 (en) * | 1986-06-16 | 1991-03-13 | Le Carbone Lorraine | Thermal contact with a high transfer modulus, and uses in cooling a structure exposed to an intense thermal flux |
US4779673A (en) * | 1986-09-16 | 1988-10-25 | Chiles Daniel T | Flexible hose heat exchanger construction |
US4817707A (en) * | 1986-09-26 | 1989-04-04 | Ryowa Corporation | Heating soft floor mat |
DE3722017A1 (en) | 1987-02-13 | 1988-08-25 | Hans Josef May | Structural element for radiant panel heating or cooling systems (concealed heating or cooling systems) |
DE3706759A1 (en) | 1987-03-03 | 1988-09-15 | Dirk Seyfert | Graphite surface covering also for domestic space heating, with or without dieelectric properties of the graphite surface material |
US4895713A (en) * | 1987-08-31 | 1990-01-23 | Union Carbide Corporation | Intercalation of graphite |
JP2597337B2 (en) * | 1988-10-03 | 1997-04-02 | 株式会社タナカホームズ | Floor structure and floor construction method |
US5022459A (en) * | 1988-12-06 | 1991-06-11 | Chiles Daniel T | Flexible hose heat exchanger construction with combination locating and thawing wire |
DE4016710A1 (en) * | 1990-05-24 | 1991-11-28 | Bayer Ag | METHOD FOR PRODUCING MOLDED PARTS |
US5131458A (en) * | 1991-03-25 | 1992-07-21 | Davis Energy Group, Inc. | Modular back side radiant heating panels with spring retention devices |
DE4117074A1 (en) * | 1991-05-25 | 1992-11-26 | Bayer Ag | METHOD FOR PRODUCING MOLDED BODIES |
DE4117077A1 (en) * | 1991-05-25 | 1992-11-26 | Bayer Ag | METHOD FOR PRODUCING MOLDED BODIES |
SE9101794L (en) * | 1991-06-12 | 1992-12-13 | Haakan Rodin | HEATABLE FLOOR |
US6152377A (en) * | 1992-06-30 | 2000-11-28 | Fiedrich; Joachim | Radiant floor and wall hydronic heating system tubing attachment to radiant plate |
US5292065A (en) * | 1992-06-30 | 1994-03-08 | Joachim Fiedrich | Radiant floor and wall hydronic heating systems |
US5454428A (en) * | 1993-11-22 | 1995-10-03 | Radiant Engineering, Inc. | Hydronic radiant heat distribution panel and system |
US5957378A (en) * | 1994-03-08 | 1999-09-28 | Fiedrich; Joachim | Radiant floor and wall hydronic heating systems |
EP0786570A4 (en) * | 1994-10-11 | 1999-05-06 | Yuki Japan Co Ltd | Method of installing floor heating apparatus |
US6910526B1 (en) * | 1995-10-06 | 2005-06-28 | Barcol-Air Ag | Contact element and ceiling element for a heating and cooling ceiling |
US5871151A (en) * | 1995-12-12 | 1999-02-16 | Fiedrich; Joachim | Radiant hydronic bed warmer |
FR2754740B1 (en) * | 1996-10-21 | 1998-12-04 | Elf Aquitaine | ACTIVE COMPOSITE WITH LAMINATED STRUCTURE COMPRISING AN ACTIVE AGENT IN THE FORM OF GRANULES |
US5902762A (en) * | 1997-04-04 | 1999-05-11 | Ucar Carbon Technology Corporation | Flexible graphite composite |
US5931381A (en) * | 1997-05-23 | 1999-08-03 | Fiedrich; Joachim | For radiant floor, wall and ceiling hydronic heating and/or cooling systems using metal plates that are heated or cooled by attached tubing that is fed hot or cold water, techniques of improving performance and avoiding condensation when cooling |
US6188839B1 (en) * | 1997-07-22 | 2001-02-13 | Ronald J. Pennella | Radiant floor heating system with reflective layer and honeycomb panel |
US6330980B1 (en) * | 1997-11-03 | 2001-12-18 | Joachim Fiedrich | Dry installation of a radiant floor or wall hydronic heating system, metal radiating plates that attach to the edges of side-by-side boards and provide metal slots for holding hot water tubing |
US5908573A (en) * | 1997-12-30 | 1999-06-01 | Bask Technologies Llc | Electric floor heating system |
GB9814835D0 (en) * | 1998-07-08 | 1998-09-09 | Europ Org For Nuclear Research | A thermal management board |
US6923631B2 (en) * | 2000-04-12 | 2005-08-02 | Advanced Energy Technology Inc. | Apparatus for forming a resin impregnated flexible graphite sheet |
JP2001012067A (en) | 1999-04-27 | 2001-01-16 | Sekisui Chem Co Ltd | Soundproof warm-water heating floor |
US6270016B1 (en) * | 1999-05-07 | 2001-08-07 | Joachim Fiedrich | Radiant floor, wall and ceiling hydronic cooling systems and heating and cooling systems, using metal plates that are heated or cooled by attached tubing that is fed hot or cold water, modular panels hinged together in a set of panels |
US6182903B1 (en) * | 1999-05-07 | 2001-02-06 | Joachim Fiedrich | Radiant floor wall and ceiling hydronic heating and/or cooling systems, using modular panels hinged together in sets of panels, staggering the positions of panels in the sets so that sets are interlocking |
JP2001132960A (en) * | 1999-11-09 | 2001-05-18 | Osaka Gas Co Ltd | Floor heating panel |
SE518872C2 (en) * | 2000-01-28 | 2002-12-03 | Polyohm Ab | Appliance for floor heating |
JP2001227757A (en) * | 2000-02-16 | 2001-08-24 | Osaka Gas Co Ltd | Floor heating panel |
US6482520B1 (en) * | 2000-02-25 | 2002-11-19 | Jing Wen Tzeng | Thermal management system |
US6841250B2 (en) * | 2000-02-25 | 2005-01-11 | Advanced Energy Technology Inc. | Thermal management system |
GB0007000D0 (en) * | 2000-03-22 | 2000-05-10 | Int Concept Technologies Nv | Composite building components |
JP3839637B2 (en) * | 2000-04-03 | 2006-11-01 | 三菱化学産資株式会社 | Foldable floor heating panel |
US6922963B2 (en) * | 2000-06-05 | 2005-08-02 | Bondo Corporation | Moisture and condensation barrier for building structures |
US6347748B1 (en) * | 2001-01-26 | 2002-02-19 | Water Works Radiant Technologies, Inc. | Plumbing assembly for hydronic heating system and method of installation |
US20020157818A1 (en) * | 2001-04-04 | 2002-10-31 | Julian Norley | Anisotropic thermal solution |
US20020164483A1 (en) * | 2001-04-04 | 2002-11-07 | Mercuri Robert Angelo | Graphite article having predetermined anisotropic characteristics and process therefor |
US8382004B2 (en) * | 2001-04-04 | 2013-02-26 | Graftech International Holdings Inc. | Flexible graphite flooring heat spreader |
US6777086B2 (en) * | 2001-08-31 | 2004-08-17 | Julian Norley | Laminates prepared from impregnated flexible graphite sheets |
US6746768B2 (en) * | 2001-12-26 | 2004-06-08 | Advanced Energy Technology Inc. | Thermal interface material |
US6667100B2 (en) * | 2002-05-13 | 2003-12-23 | Egc Enterprises, Inc. | Ultra-thin flexible expanded graphite heating element |
DE10222227B4 (en) * | 2002-05-16 | 2006-07-06 | Bernhardt, Gerold | Concrete ceiling and use of the same for tempering buildings, as a floor slab, building ceiling or floor slab |
US20040026525A1 (en) * | 2002-05-20 | 2004-02-12 | Joachim Fiedrich | In radiant wall and ceiling hydronic room heating or cooling systems, using tubing that is fed hot or cold water, the tubing is embedded in gypsum or cement wallboard in intimate thermal contact therewith so that the wallboard heats or cools the room |
US6805298B1 (en) * | 2002-06-14 | 2004-10-19 | Warm Brothers, Inc. | Modular cementitous thermal panels for radiant heating |
JP2004125341A (en) | 2002-10-07 | 2004-04-22 | Takehara Tsutomu | Floor heating device for tatami mat |
US6726115B1 (en) * | 2003-01-13 | 2004-04-27 | Watts Radiant, Inc. | Radiant heating system for subfloor installation |
ITRM20030234A1 (en) * | 2003-05-12 | 2004-11-13 | Mkm Srl | UNDER FLOOR SYSTEM FOR THE DISTRIBUTION OF HEAT. |
JP3948000B2 (en) * | 2003-08-26 | 2007-07-25 | 松下電器産業株式会社 | High thermal conductivity member, method for manufacturing the same, and heat dissipation system using the same |
US7140426B2 (en) * | 2003-08-29 | 2006-11-28 | Plascore, Inc. | Radiant panel |
US20050238835A1 (en) * | 2004-04-24 | 2005-10-27 | Chien-Min Sung | Graphite composite thermal sealants and associated methods |
US20060068205A1 (en) * | 2004-09-24 | 2006-03-30 | Carbone Lorraine Composants | Composite material used for manufacturing heat exchanger fins with high thermal conductivity |
US7799428B2 (en) * | 2004-10-06 | 2010-09-21 | Graftech International Holdings Inc. | Sandwiched thermal solution |
WO2006051782A1 (en) * | 2004-11-09 | 2006-05-18 | Shimane Prefectural Government | Metal base carbon fiber composite material and method for production thereof |
US20060188723A1 (en) * | 2005-02-22 | 2006-08-24 | Eastman Kodak Company | Coating compositions containing single wall carbon nanotubes |
KR100628031B1 (en) * | 2005-07-27 | 2006-09-26 | (주) 나노텍 | Thermally improve conductive carbon sheet base on mixed carbon material of expanded graphite powder and carbon nano tube powder |
KR100783867B1 (en) * | 2005-12-08 | 2007-12-10 | 현대자동차주식회사 | Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same |
-
2005
- 2005-09-06 US US11/220,349 patent/US8382004B2/en not_active Expired - Fee Related
-
2006
- 2006-08-21 CN CN2006800356842A patent/CN101326406B/en not_active Expired - Fee Related
- 2006-08-21 EP EP06813618.3A patent/EP1922514B1/en not_active Not-in-force
- 2006-08-21 CA CA2621391A patent/CA2621391C/en not_active Expired - Fee Related
- 2006-08-21 WO PCT/US2006/032673 patent/WO2007030309A2/en active Application Filing
- 2006-08-21 JP JP2008530069A patent/JP2009508786A/en active Pending
- 2006-09-06 KR KR1020060085763A patent/KR101009500B1/en active IP Right Grant
-
2012
- 2012-12-14 US US13/714,483 patent/US20130099013A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788152A (en) | 1995-03-15 | 1998-08-04 | Alsberg; Terry Wayne W. | Floor heating system |
US20020166658A1 (en) | 2001-04-04 | 2002-11-14 | Graftech Inc. | Graphite-based thermal dissipation component |
EP1512933A2 (en) | 2003-09-04 | 2005-03-09 | Sgl Carbon Ag | Heat conduction plate made of expanded graphite and method of fabrication thereof |
EP1688684A1 (en) | 2005-01-12 | 2006-08-09 | Sgl Carbon Ag | Absorber part for a solarthermical flat type collector |
Also Published As
Publication number | Publication date |
---|---|
WO2007030309A3 (en) | 2007-11-22 |
EP1922514A2 (en) | 2008-05-21 |
CN101326406A (en) | 2008-12-17 |
US8382004B2 (en) | 2013-02-26 |
WO2007030309A2 (en) | 2007-03-15 |
CA2621391C (en) | 2015-01-06 |
CA2621391A1 (en) | 2007-03-15 |
US20060272796A1 (en) | 2006-12-07 |
CN101326406B (en) | 2011-11-23 |
EP1922514A4 (en) | 2015-01-07 |
JP2009508786A (en) | 2009-03-05 |
KR101009500B1 (en) | 2011-01-18 |
KR20070027478A (en) | 2007-03-09 |
US20130099013A1 (en) | 2013-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1922514B1 (en) | Flexible graphite flooring heat spreader | |
US20020164483A1 (en) | Graphite article having predetermined anisotropic characteristics and process therefor | |
US6673289B2 (en) | Manufacture of materials from graphite particles | |
US20050189673A1 (en) | Treatment of flexible graphite material and method thereof | |
US20060225874A1 (en) | Sandwiched thermal article | |
WO2006033808A2 (en) | Sandwiched finstock | |
US6663807B2 (en) | Process for complex shape formation using flexible graphite sheets | |
EP1794530A2 (en) | Heat riser | |
US6613252B2 (en) | Molding of materials from graphite particles | |
US20040072055A1 (en) | Graphite article useful as a fuel cell component substrate | |
US7108917B2 (en) | Variably impregnated flexible graphite material and method | |
US20030108731A1 (en) | Molding of fluid permeable flexible graphite components for fuel cells | |
US6716381B2 (en) | Process for preparing embossed flexible graphite article | |
US7341781B2 (en) | Material useful for preparing embossed flexible graphite article | |
US20050104243A1 (en) | Method of forming impressions in a flexible graphite material | |
US20050136187A1 (en) | Method of improving adhesion of a coating to a flexible graphite material | |
WO2002084760A2 (en) | Material and process useful for preparing embossed flexible graphite article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080215 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20141204 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24D 5/10 20060101AFI20141128BHEP Ipc: F28F 13/18 20060101ALI20141128BHEP Ipc: F24D 3/14 20060101ALI20141128BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GRAFTECH INTERNATIONAL HOLDINGS INC. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28F 13/18 20060101ALI20150921BHEP Ipc: F24D 5/10 20060101AFI20150921BHEP Ipc: H05B 3/14 20060101ALI20150921BHEP Ipc: F28F 13/14 20060101ALI20150921BHEP Ipc: F24D 13/02 20060101ALI20150921BHEP Ipc: F28F 21/02 20060101ALI20150921BHEP Ipc: H05B 3/00 20060101ALI20150921BHEP Ipc: F24D 3/14 20060101ALI20150921BHEP Ipc: H05B 3/36 20060101ALI20150921BHEP Ipc: H05B 3/26 20060101ALI20150921BHEP Ipc: E04F 13/00 20060101ALI20150921BHEP Ipc: E04C 1/00 20060101ALI20150921BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151015 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20151124 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 773875 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006047903 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20160203 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 773875 Country of ref document: AT Kind code of ref document: T Effective date: 20160203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160603 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602006047903 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: SGL CARBON SE Effective date: 20161103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160821 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160821 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160821 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602006047903 Country of ref document: DE Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602006047903 Country of ref document: DE Owner name: NEOGRAF SOLUTIONS, LLC (N.D. GESETZEN DES STAA, US Free format text: FORMER OWNER: GRAFTECH INTERNATIONAL HOLDINGS INC., INDEPENDENCE, OHIO, US |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: NEOGRAF SOLUTIONS, LLC |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: FP Effective date: 20160211 Ref country code: BE Ref legal event code: HC Owner name: NEOGRAF SOLUTIONS, LLC; US Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: ADVANCED ENERGY TECHNOLOGIES LLC Effective date: 20171207 Ref country code: BE Ref legal event code: PD Owner name: ADVANCED ENERGY TECHNOLOGIES LLC; US Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: GRAFTECH INTERNATIONAL HOLDINGS INC. Effective date: 20171207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060821 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 602006047903 Country of ref document: DE |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20181023 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200825 Year of fee payment: 15 Ref country code: FI Payment date: 20200827 Year of fee payment: 15 Ref country code: DE Payment date: 20200827 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20200827 Year of fee payment: 15 Ref country code: SE Payment date: 20200827 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006047903 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |