EP1921301A2 - Abgasrückführungsanordnung - Google Patents

Abgasrückführungsanordnung Download PDF

Info

Publication number
EP1921301A2
EP1921301A2 EP07019452A EP07019452A EP1921301A2 EP 1921301 A2 EP1921301 A2 EP 1921301A2 EP 07019452 A EP07019452 A EP 07019452A EP 07019452 A EP07019452 A EP 07019452A EP 1921301 A2 EP1921301 A2 EP 1921301A2
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
valve body
inlet
radiator
inlet channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07019452A
Other languages
English (en)
French (fr)
Other versions
EP1921301A3 (de
EP1921301B1 (de
Inventor
Hans-Patrick Nolze
Istvan Nemeth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Publication of EP1921301A2 publication Critical patent/EP1921301A2/de
Publication of EP1921301A3 publication Critical patent/EP1921301A3/de
Application granted granted Critical
Publication of EP1921301B1 publication Critical patent/EP1921301B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine

Definitions

  • the invention relates to an exhaust gas recirculation arrangement with the features in the preamble of patent claim 1.
  • Exhaust gas recirculation (EGR) with electromotive, continuously variable flow control is mandatory to meet current and future emission standards for direct injection gasoline and diesel engines.
  • EGR exhaust gas recirculation
  • part of the burned exhaust gas is taken from the exhaust manifold and fed back to the intake mixture via a pipe on the intake manifold.
  • EGR valve With an electronically actuated EGR valve, the EGR rate is continuously adjusted to the demand calculated by the engine control with the required dynamics. In this way, a portion of the exhaust gas is burned twice and the desired effects for reducing NOx emissions are achieved.
  • Diesel engines require due to the much higher recirculation rates and the associated higher temperatures of Ansauggemisches additionally a liquid-air heat exchanger to reduce the exhaust gas temperature of about 450 ° C to 150 ° C to 200 ° C.
  • Such EGR coolers have a pneumatic bypass flap, with which the cooler in the Cold operation can be switched off. In this way it is ensured that the exhaust gas temperature necessary for the full function in the catalytic converter and in a soot particle filter is reached as quickly as possible after the cold start of the engine. It is known to manufacture the cooler and the bypass flap made of stainless steel and to combine it into a structural unit. In addition, however, a valve for regulating the amount of exhaust gas required to be placed either in front of or behind the radiator is required.
  • a rotary flap valve is used with a rotatable valve plate mounted on an axle, which can be swiveled by a maximum of 90 °.
  • the second type of valve is a plunger valve, in which via a translational stroke of the plunger, a lift height corresponding cross section in the exhaust pipe is released to the exhaust gas flow.
  • the present invention seeks to combine the functions of a cooler bypass setting and the function of volume control in space-saving manner in a combined actuator.
  • a cooler which is coupled to a valve housing, which has in known manner an inlet channel and an outlet channel for the exhaust gas to be supplied to and removed from the cooler.
  • a driven by an actuator valve body is arranged, which serves on the one hand to change the flow rate of the exhaust gas in the radiator, on the other hand, but also takes over the bypass control. Through this valve body can be determined whether the exhaust gas should flow through the radiator or not.
  • valve body is a piston displaceable linearly within a valve housing, through which the interior of the valve housing is divided into an inlet chamber and an outlet chamber, wherein the cooler inlet is connected to the inlet chamber of the radiator inlet and to the outlet chamber.
  • the essential feature of this arrangement is the orientation of the inlet channel, which opens transversely to the stroke direction of the valve body in the interior and thereby at least partially from a peripheral lateral surface of the valve body, i. also completely lockable.
  • the inlet channel is therefore not closed as usual by the piston surface, but by the piston skirt surface.
  • the Kolbenober- and -unterseite are respectively facing the inlet and outlet chamber, so that they are fluid-tightly sealed against each other.
  • the inlet chamber can be made smaller and at the same time the outlet chamber can be enlarged.
  • the outlet chamber can also be made smaller and the inlet chamber can be enlarged at the same time. Since the inlet channel is at least partially released by a displacement of the valve body, exhaust gas flows either into the inlet chamber or directly into the outlet chamber, bypassing the radiator.
  • the special feature is that over a partial coverage of the inlet channel not only the deflection direction the exhaust gas within the valve housing, but also the amount of exhaust gas can be controlled.
  • the EGR assembly may be made of stainless steel or e.g. made of cast steel and is therefore heat resistant executable, as a valve body made of aluminum. Since the coolers are usually made of stainless steel, the same materials can be used for the radiator and arranged on the radiator valve unit. Another advantage is that the actuator in the form of an electric actuator can be attached directly to the valve housing. The actuator can be integrated directly into a cover that covers the inlet chamber of the valve body.
  • valve body In principle, it is possible within the scope of the invention to make the interior of the valve housing non-circular. However, it is considered expedient to design the piston-shaped valve body cylindrical, as well as cylindrical sealant are used in this way.
  • the valve body should have an upper and a lower seal, which are arranged at a distance from one another which is greater than the diameter or the height of the inlet channel measured in the stroke direction. In this way it is possible to position the area of the valve body lying between the seals in such a way that the inlet channel is completely blocked. In any case, however, it is ensured that exhaust gases can not pass directly from the inlet chamber to the outlet chamber or directly from the outlet chamber to the inlet chamber, bypassing the radiator.
  • the intake passage is wider than high, with the height of the intake passage being measured in the lift direction.
  • the inlet channel may e.g. be configured slot-shaped and thereby distribute over a larger segment of the housing. In this way it is possible to use in a very space-saving design valve body with low height, thereby saving space and weight.
  • the amount of exhaust gas flowing into the valve housing is regulated by the position of the valve body.
  • the inlet channel is arranged at an angle between 60 ° and 90 ° to the stroke direction.
  • the thickness of the valve body or of the piston is dimensioned so that it completely releases the cross-section of the inlet channel in the bypass position, in which exhaust gas flows directly into the outlet chamber.
  • the valve body should be positionable so that the inlet channel is completely free.
  • the inlet channel is therefore advantageously arranged centrally between the radiator inlet and the radiator outlet, wherein the inlet duct is preferably arranged opposite the radiator inlet and the radiator outlet for flow and design reasons.
  • FIG. 1 shows the basic structure of the EGR arrangement 1 according to the invention, consisting of a cooler 2 and a valve housing 3 with an actuator 4.
  • the valve housing 3 is cylindrical or has a cylindrically shaped interior 5, which is divided into an inlet chamber 6 above and an outlet chamber 8 below the piston-shaped valve body 7. Via a slot-shaped inlet channel 9, as can be seen in Figures 1 and 5, the interior 5 of the valve housing 3 at an intermediate level exhaust gas is supplied, which is supplied depending on the position of the valve body 7 either the inlet chamber 6 or the outlet 8. From the inlet chamber 6, the exhaust gas passes through a radiator inlet 10 into the interior of the radiator 2, where it is diverted in a U-shape and fed to a radiator outlet 11 which opens below the piston-shaped valve body 7 into the outlet chamber 8.
  • the outlet chamber 8 is connected to the end face of the cylindrical interior 5 with an outlet channel 12, via which the exhaust gas can again emerge from the valve housing 3.
  • the basic flow paths of the exhaust gas within the EGR arrangement can be recognized on the basis of the arrows drawn in FIGS. 3 and 4.
  • valve body 7 is located at its bottom in the image plane dead center and is therefore extended maximum. In this position, exhaust gas can flow in via the inlet channel 9 exclusively into the inlet chamber 6 and is thus completely fed to the radiator 2. The valve body 7 is thus in a cooling position.
  • valve body 7 is in its top dead center in the image plane, so that the cooler inlet 10 is blocked and the inlet channel 9 opens into the outlet chamber 8, so that the exhaust gas is supplied directly to the outlet channel 12 in accordance with the arrows shown.
  • the radiator 2 is completely bypassed in this position of the valve body 7. In principle, intermediate positions between the bypass position and the cooling position in Figures 3 and 4 are possible.
  • the valve body 7 is dimensioned such that its lateral surface 13 completely covers the mouth of the inlet channel 9 and seals by means of an upper and lower seal 14, 15 in each case opposite the inlet chamber 6 and the outlet chamber 7 (FIG. 2).
  • valve body 7 If the valve body 7 is displaced upwards only slightly from this central position, a partial region of the inlet channel 9 is released, so that a small amount of exhaust gas can be supplied to the outlet chamber 8. In this way, not only the exhaust gas direction, but also the amount of exhaust gas can be controlled with a single valve body 7. In addition, only a single actuator 4 is required, which drives a piston rod 16 which passes through the inlet chamber 6. Conversely, via a slight deflection of the valve body 7 down a metered amount of exhaust gas can be supplied to the radiator 2.
  • Decisive in the exhaust gas recirculation arrangement is that the inlet channel 9 is arranged transversely to the stroke direction H in the central region between the radiator inlet 10 and the radiator outlet 11.
  • the intake passage 9 is slightly inclined to the moving axis of the valve body 7. In this way, the amount of exhaust gas can be better dosed.
  • FIG. 6 An exemplary representation of the opening cross section of the inlet channel plotted against the position of the valve body (piston stroke) can be found in FIG. 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Fluid-Driven Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

Abgasrückführungsanordnung mit einem Kühler (2) und einem Ventilgehäuse (3), welches einen Einlasskanal (9) und einen Auslasskanal (8) für das dem Kühler (2) zu- und abzuleitende Abgas aufweist. In dem Ventilgehäuse (3) ist ein von einem Stellantrieb (4) angetriebener kolbenförmiger Ventilkörper (7) angeordnet. Der Ventilkörper (7) unterteilt den Innenraum (5) des Ventilgehäuses (3) in eine Einlasskammer (6) und eine Auslasskammer (8), an welche der Kühlereinlass (10) und der Kühlerauslass (11) angeschlossen sind. Der Einlasskanal (9) ist quer zur Hubrichtung (H) des Ventilkörpers (7) angeordnet, sodass er von einer umfangsseitigen Mantelfläche (13) des Ventilkörpers (7) zumindest teilweise sperrbar ist. Auf diese Weise kann über einen einzigen Ventilkörper (7) sowohl die Strömungsrichtung als auch die Strömungsmenge eingestellt werden.

Description

  • Die Erfindung betrifft eine Abgasrückführungsanordnung mit den Merkmalen im Oberbegriff des Patentanspruchs 1.
  • Eine Abgasrückführung (AGR) mit einer elektromotorischen, stufenlos geregelten Durchflussregulierung ist zum Erreichen der derzeitigen und zukünftigen Abgasnormen bei direkt einspritzenden Otto- und Dieselmotoren zwingend erforderlich. Bei der Abgasrückführung wird ein Teil des verbrannten Abgases am Auspuffkrümmer entnommen und dem Ansauggemisch über eine Rohrleitung am Ansaugkrümmer wieder zugeführt. Mit einem elektronisch betätigten AGR-Ventil wird die AGR-Rate stufenlos an den von der Motorsteuerung errechneten Bedarf mit der geforderten Dynamik angepasst. Auf diese Weise wird ein Teil des Abgases zweimal verbrannt und es werden die gewünschten Effekte zur Reduzierung der NOx-Emissionen erreicht.
  • Dieselmotoren benötigen aufgrund der deutlich höheren Rückführungsraten und den damit verbundenen höheren Temperaturen des Ansauggemisches zusätzlich einen Flüssigkeits-Luft-Wärmetauscher, um die Abgastemperatur von ca. 450 °C auf 150°C bis 200 °C zu senken. Derartige AGR-Kühler verfügen über eine pneumatische Bypassklappe, mit der der Kühler im Kaltbetrieb ausgeschaltet werden kann. Auf diese Weise wird gewährleistet, dass die für die volle Funktion notwendige Abgastemperatur im Katalysator und in einem Russpartikelfilter nach dem Kaltstart des Motors schnellstmöglich erreicht wird. Es ist bekannt, den Kühler und die Bypassklappe aus Edelstahl zu fertigen und zu einer Baueinheit zu kombinieren. Zusätzlich ist jedoch ein Ventil zur Mengenregulierung des Abgases erforderlich, das entweder vor oder hinter dem Kühler angeordnet wird.
  • Derzeit werden hauptsächlich zwei Arten von elektrisch betriebenen Ventilen verwendet. Zum einen kommt ein rotatorisches Klappenventil zum Einsatz mit einem auf einer Achse gelagerten, drehbaren Ventilteller, der um maximal 90° geschwenkt werden kann. Die zweite Art eines Ventils ist ein Stößelventil, bei welchem über eine translatorische Hubbewegung des Stößels ein der Hubhöhe entsprechender Querschnitt im Abgasrohr zur Abgasdurchströmung freigegeben wird.
  • Nachteilig bei den bekannten Ventilanordnungen ist, dass zum einen ein Stellelement vorgesehen sein muss, um beispielsweise eine Bypassklappe in die gewünschte Position zu bringen. Zusätzlich ist jedoch ein zweites Ventil zur Mengenregulierung des Abgases erforderlich. Diese zwei getrennten Baugruppen müssen unabhängig voneinander angesteuert werden, was viele bewegliche Teile und eine entsprechende Anzahl von Lagerstellen für die Ventilkörper erforderlich macht. Hinzu kommt der erhöhte Bauraumbedarf durch zwei voneinander unabhängige Aktuatoren, nämlich einer Unterdruckdose für die Bypassklappe und einem elektrischen, stufenlosen Versteller für das Ventil zur Mengenregulierung des Abgasstroms.
  • Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, die Funktionen einer Kühlerbypasseinstellung und die Funktion der Mengenregulierung in bauraumsparender Weise in einem kombinierten Stellelement zu vereinen.
  • Diese Aufgabe ist bei einer Abgasrückführungsanordnung (AGR-Anordnung) mit den Merkmalen des Patentanspruchs 1 gelöst.
  • Vorteilhafte Weiterbildungen des Erfindungsgedankens sind Gegenstand der Unteransprüche.
  • Bei der erfindungsgemäßen AGR-Anordnung ist ein Kühler vorgesehen, der mit einem Ventilgehäuse gekoppelt ist, welches in bekannter Weise einen Einlasskanal und einen Auslasskanal für das dem Kühler zu- und abzuleitende Abgas aufweist. Im Ventilgehäuse ist ein von einem Stellantrieb angetriebener Ventilkörper angeordnet, der einerseits zur Veränderung der Durchflussmenge des Abgases im Kühler dient, andererseits aber auch die Bypassregelung übernimmt. Durch diesen Ventilkörper kann festgelegt werden, ob das Abgas durch den Kühler strömen soll oder nicht.
  • Es ist weiterhin vorgesehen, dass der Ventilkörper ein linear innerhalb eines Ventilgehäuses verschiebbarer Kolben ist, durch welchen der Innenraum des Ventilgehäuses in eine Einlasskammer und eine Auslasskammer unterteilt ist, wobei an die Einlasskammer der Kühlereinlass und an die Auslasskammer der Kühlerauslass angeschlossen ist. Das wesentliche bei dieser Anordnung ist die Orientierung des Einlasskanals, der quer zur Hubrichtung des Ventilkörpers in den Innenraum mündet und dadurch von einer umfangsseitigen Mantelfläche des Ventilkörpers zumindest teilweise, d.h. auch vollständig sperrbar ist. Der Einlasskanal wird also nicht wie üblicherweise von der Kolbenoberfläche verschlossen, sondern von der Kolbenmantelfläche.
  • Die Kolbenober- und -unterseite sind jeweils der Einlass- bzw. Auslasskammer zugewandt, so dass diese fluiddicht gegeneinander abgedichtet sind. Je nach Stellung des Ventilkörpers kann die Einlasskammer verkleinert und zeitgleich die Auslasskammer vergrößert werden. Umgekehrt kann auch die Auslasskammer verkleinert und gleichzeitig die Einlasskammer vergrößert werden. Da durch eine Verlagerung des Ventilkörpers der Einlasskanal zumindest teilweise freigegeben wird, strömt Abgas entweder in die Einlasskammer oder unmittelbar unter Umgehung des Kühlers in die Auslasskammer. Das besondere ist, dass über eine teilweise Bedeckung des Einlasskanals nicht nur die Auslenkungsrichtung des Abgases innerhalb des Ventilgehäuses, sondern zudem die Menge des Abgases geregelt werden kann.
  • Auf diese Weise ist im Rahmen der Erfindung nur ein einziges Stellelement erforderlich, das entsprechend wenig Lagerstellen benötigt, ein geringeres Gewicht hat und zudem weniger Bauraum benötigt als zwei separate Ventilanordnungen einschließlich der zugehörigen Stellantriebe und deren Steuerung. Die erfindungsgemäße AGR-Anordnung ist auch bei einer eventuell später notwendigen Kühlung der Abgasrückführung in einem Ottomotor verwendbar.
  • Die AGR-Anordnung kann aus Edelstahl oder z.B. aus Gussstahl gefertigt sein und ist daher hitzebeständiger ausführbar, als Ventilgehäuse aus Aluminium. Da auch die Kühler in der Regel aus Edelstahl bestehen, können für den Kühler und die an dem Kühler angeordnete Ventileinheit gleiche Materialien verwendet werden. Als weiterer Vorteil ist zu nennen, dass der Stellantrieb in Form eines elektrischen Aktuators unmittelbar an dem Ventilgehäuse befestigt sein kann. Der Stellantrieb kann direkt in einen Deckel integriert werden, der die Einlasskammer des Ventilgehäuses bedeckt.
  • Grundsätzlich ist es im Rahmen der Erfindung möglich, den Innenraum des Ventilgehäuses unrund zu gestalten. Es wird jedoch als zweckmäßig angesehen, den kolbenförmigen Ventilkörper zylindrisch auszugestalten, da auf diese Weise auch zylindrische Dichtmittel zum Einsatz kommen. Grundsätzlich soll der Ventilkörper eine obere und eine untere Dichtung aufweisen, die in einem Abstand zueinander angeordnet sind, der größer ist als der Durchmesser bzw. die in Hubrichtung gemessene Höhe des Einlasskanals. Auf diese Weise ist es möglich, den zwischen den Dichtungen liegenden Bereich des Ventilkörpers so zu positionieren, dass der Einlasskanal vollständig gesperrt wird. In jedem Fall ist aber sichergestellt, dass Abgase nicht unmittelbar von der Einlasskammer zur Auslasskammer bzw. unmittelbar von der Auslasskammer zur Einlasskammer unter Umgehung des Kühlers übertreten können.
  • Um die Höhe des Kolbens in Grenzen zu halten, ohne den Querschnitt des Einlasskanals zu sehr zu reduzieren, ist vorgesehen, dass der Einlasskanal breiter als hoch ist, wobei die Höhe des Einlasskanals in Hubrichtung gemessen wird. Der Einlasskanal kann z.B. schlitzförmig konfiguriert sein und sich dadurch über ein größeres Segment des Gehäuses verteilen. Auf diese Weise ist es möglich, in sehr Platz sparender Bauweise Ventilkörper mit geringer Höhe einzusetzen und dadurch Bauraum und Gewicht zu sparen.
  • Wie bereits erwähnt, wird die Abgasmenge, die in das Ventilgehäuse einströmt, über die Stellung des Ventilkörpers geregelt. Dieser gibt je nach Stellung einen definierten Querschnitt des zur besseren Mengenregulierung vorzugsweise schräg angeordneten Einlasskanals frei. Das bedeutet, dass der Einlasskanal in einem Winkel zwischen 60° und 90° zur Hubrichtung angeordnet ist. Selbstverständlich ist die Dicke des Ventilkörpers bzw. des Kolbens so bemessen, dass er in der Bypassstellung, in welcher Abgas unmittelbar in die Auslasskammer einströmt, den Querschnitt des Einlasskanals vollständig freigibt. Umgekehrt soll der Ventilkörper auch in der Kühlstellung, in welcher das Abgas vollständig in die Einlasskammer und von dort in den Kühler einströmt, so positionierbar sein, dass der Einlasskanal vollständig frei ist. Der Einlasskanal ist daher vorteilhafterweise mittig zwischen dem Kühlereinlass und dem Kühlerauslass angeordnet, wobei der Einlasskanal aus strömungstechnischen und konstruktiven Gründen vorzugsweise dem Kühlereinlass und dem Kühlerauslass gegenüberliegend angeordnet ist.
  • Die Erfindung wird nachfolgend anhand des in den Figuren 1 bis 5 dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
  • Figur 1
    eine perspektivische Ansicht einer AGR-Anordnung;
    Figur 2
    einen Längsschnitt durch die AGR-Anordnung der Figur 1, wobei sich der Ventilkörper in der Mittelstellung befindet;
    Figur 3
    einen Längsschnitt durch die AGR-Anordnung der Figur 1, bei welcher sich der Ventilkörper in einer Kühlstellung befindet;
    Figur 4
    einen Längsschnitt durch eine AGR-Anordnung der Figur 1, bei welcher sich der Ventilkörper in einer Bypassstellung befindet;
    Figur 5
    eine Seitenansicht der AGR-Anordnung zur Darstellung der Ein- und Ausgangsöffnungen und
    Figur 6
    ein Diagramm, in welchem der Öffnungsquerschnitt des Einslasskanals über dem Hub des Ventilkörpers (Kolbenhub) aufgetragen ist.
  • In Figur 1 ist der grundsätzliche Aufbau der erfindungsgemäßen AGR-Anordnung 1 zu erkennen, bestehend aus einem Kühler 2 und einem Ventilgehäuse 3 mit einem Stellantrieb 4.
  • Anhand der Figuren 2 bis 4 wird die Funktionsweise dieser AGR-Anordnung deutlich. Das Ventilgehäuse 3 ist zylindrisch gestaltet bzw. weist einen zylindrisch gestalteten Innenraum 5 auf, der sich in eine Einlasskammer 6 oberhalb und eine Auslasskammer 8 unterhalb des kolbenförmigen Ventilkörpers 7 gliedert. Über einen schlitzförmigen Einlasskanal 9, wie er in Figur 1 bzw. 5 zu erkennen ist, wird dem Innenraum 5 des Ventilgehäuses 3 in mittlerer Höhe Abgas zugeführt, das je nach Stellung des Ventilkörpers 7 entweder der Einlasskammer 6 oder der Auslasskammer 8 zugeführt wird. Von der Einlasskammer 6 gelangt das Abgas durch einen Kühlereinlass 10 in den Innenraum des Kühlers 2, wird dort U-förmig umgeleitet und einem Kühlerauslass 11 zugeführt, der unterhalb des kolbenförmigen Ventilkörpers 7 in die Auslasskammer 8 mündet. Die Auslasskammer 8 ist stirnseitig des zylindrischen Innenraums 5 mit einem Auslasskanal 12 verbunden, über welchen das Abgas wieder aus dem Ventilgehäuse 3 austreten kann. Anhand der in den Figuren 3 und 4 eingezeichneten Pfeile sind die grundsätzlichen Strömungswege des Abgases innerhalb der AGR-Anordnung erkennbar.
  • In Figur 3 befindet sich der Ventilkörper 7 an seinem in der Bildebene unteren Totpunkt und ist daher maximal ausgefahren. In dieser Position kann Abgas über den Einlasskanal 9 ausschließlich in die Einlasskammer 6 einströmen und wird damit vollständig dem Kühler 2 zugeleitet. Der Ventilkörper 7 befindet sich folglich in einer Kühlstellung.
  • In Figur 4 befindet sich der Ventilkörper 7 in seinem in der Bildebene oberen Totpunkt, so dass der Kühlereinlass 10 blockiert ist und der Einlasskanal 9 in die Auslasskammer 8 mündet, so dass das Abgas entsprechend der eingezeichneten Pfeile unmittelbar dem Auslasskanal 12 zugeführt wird. Der Kühler 2 wird bei dieser Stellung des Ventilkörpers 7 vollständig umgangen. Grundsätzlich sind auch Zwischenstellungen zwischen der Bypassposition und der Kühlposition in den Figuren 3 und 4 möglich. Der Ventilkörper 7 ist so bemessen, dass seine Mantelfläche 13 die Mündung des Einlasskanals 9 vollständig bedeckt und mittels einer oberen und unteren Dichtung 14, 15 jeweils gegenüber der Einlasskammer 6 und der Auslasskammer 7 abdichtet (Figur 2). Wird der Ventilkörper 7 nur geringfügig aus dieser Mittelposition nach oben verlagert, wird ein Teilbereich des Einlasskanals 9 freigegeben, so dass eine geringe Menge Abgas der Auslasskammer 8 zugeführt werden kann. Auf diese Weise kann nicht nur die Abgasrichtung, sondern auch die Abgasmenge mit einem einzigen Ventilkörper 7 gesteuert werden. Zudem ist nur ein einziger Stellantrieb 4 erforderlich, welcher eine Kolbenstange 16 antreibt, die die Einlasskammer 6 durchsetzt. Umgekehrt kann über eine geringfügige Auslenkung des Ventilkörpers 7 nach unten eine dosierte Abgasmenge dem Kühler 2 zugeführt werden.
  • Entscheidend bei der erfindungsgemäßen Abgasrückführungsanordnung ist, dass der Einlasskanal 9 quer zur Hubrichtung H im mittleren Bereich zwischen dem Kühlereinlass 10 und dem Kühlerauslass 11 angeordnet ist. Bei diesem Ausführungsbeispiel ist der Einlasskanal 9 leicht zur Bewegungsachse des Ventilkörpers 7 geneigt. Auf diese Weise lässt sich die Abgasmenge besser dosieren.
  • Eine exemplarische Darstellung des Öffnungsquerschnitts des Einlasskanals aufgetragen über der Position des Ventilkörpers (Kolbenhub) findet sich in Figur 6.
  • Bezugszeichen:
  • 1 -
    Abgasrückführungsanordnung
    2 -
    Kühler
    3 -
    Ventilgehäuse
    4 -
    Stellantrieb
    5 -
    Innenraum
    6 -
    Einlasskammer
    7 -
    Ventilkörper
    8 -
    Auslasskammer
    9 -
    Einlasskanal
    10 -
    Kühlereinlass
    11 -
    Kühlerauslass
    12 -
    Auslasskanal
    13 -
    Mantelfläche
    14 -
    Dichtung
    15 -
    Dichtung
    16 -
    Kolbenstange
    H -
    Hubrichtung

Claims (6)

  1. Abgasrückführungsanordnung mit einem Kühler (2) und einem Ventilgehäuse (3), welches einen Einlasskanal (9) und einen Auslasskanal (8) für das dem Kühler (2) zu- und abzuleitende Abgas aufweist, wobei in dem Ventilgehäuse (3) ein von einem Stellantrieb (4) angetriebener Ventilkörper (7) angeordnet ist, zur Veränderung der Durchflussmenge des Abgases im Kühler (2), dadurch gekennzeichnet, dass der Ventilkörper (7) ein linear innerhalb des Ventilgehäuses (3) verlagerbarer Kolben ist, durch welchen der Innenraum (5) des Ventilgehäuses (3) in eine Einlasskammer (6) und eine Auslasskammer (8) unterteilt ist, wobei der Kühlereinlass (10) an die Einlasskammer (6) angeschlossen ist und der Kühlerauslass (11) an die Auslasskammer (8) angeschlossen ist und wobei der Einlasskanal (9) quer zur Hubrichtung (H) des Ventilkörpers (7) in den Innenraum (5) mündet und von einer umfangsseitigen Mantelfläche (13) des Ventilkörpers (7) zumindest teilweise sperrbar ist.
  2. Abgasrückführungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Ventilkörper (7) eine obere und eine untere Dichtung (14, 15) aufweist, deren Abstand größer ist als die in Hubrichtung (H) gemessene Höhe des Einlasskanals (9).
  3. Abgasrückführungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Einlasskanal (9) in einem Winkel zwischen 60° und 90° zur Hubrichtung (H) steht.
  4. Abgasrückführungsanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Einlasskanal (9) breiter als hoch ist, wobei die Höhe des Einlasskanals (9) in Hubrichtung (H) gemessen wird.
  5. Abgasrückführungsanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Stellantrieb (4) ein elektrischer Aktuator ist, der unmittelbar an dem Ventilgehäuse (3) befestigt ist.
  6. Abgasrückführungsanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der kolbenförmige Ventilkörper (7) zylindrisch ist.
EP07019452.7A 2006-11-09 2007-10-04 Abgasrückführungsanordnung Expired - Fee Related EP1921301B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006053205A DE102006053205A1 (de) 2006-11-09 2006-11-09 Abgasrückführungsanordnung

Publications (3)

Publication Number Publication Date
EP1921301A2 true EP1921301A2 (de) 2008-05-14
EP1921301A3 EP1921301A3 (de) 2012-04-11
EP1921301B1 EP1921301B1 (de) 2013-12-25

Family

ID=39036329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07019452.7A Expired - Fee Related EP1921301B1 (de) 2006-11-09 2007-10-04 Abgasrückführungsanordnung

Country Status (2)

Country Link
EP (1) EP1921301B1 (de)
DE (1) DE102006053205A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104747324A (zh) * 2015-04-25 2015-07-01 无锡隆盛科技股份有限公司 旁通式egr冷却器
CN104775945A (zh) * 2015-04-25 2015-07-15 无锡隆盛科技股份有限公司 汽车发动机用egr阀集成装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008032884B4 (de) 2008-07-14 2018-09-20 Mahle International Gmbh Ventileinrichtung, Wärmetauscher und Aufladesystem zur Aufladung einer Brennkraftmaschine mit einem Ladefluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363013A1 (de) * 2002-05-15 2003-11-19 Behr GmbH & Co. KG Wärmeübertrager
FR2872862A1 (fr) * 2004-07-09 2006-01-13 Renault Sas Dispositif de commande pour un circuit de recirculation de gaz d'echappement d'un moteur a combustion interne

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363013A1 (de) * 2002-05-15 2003-11-19 Behr GmbH & Co. KG Wärmeübertrager
FR2872862A1 (fr) * 2004-07-09 2006-01-13 Renault Sas Dispositif de commande pour un circuit de recirculation de gaz d'echappement d'un moteur a combustion interne

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104747324A (zh) * 2015-04-25 2015-07-01 无锡隆盛科技股份有限公司 旁通式egr冷却器
CN104775945A (zh) * 2015-04-25 2015-07-15 无锡隆盛科技股份有限公司 汽车发动机用egr阀集成装置

Also Published As

Publication number Publication date
EP1921301A3 (de) 2012-04-11
EP1921301B1 (de) 2013-12-25
DE102006053205A1 (de) 2008-05-15

Similar Documents

Publication Publication Date Title
EP2527614B1 (de) Saugrohr für einen Verbrennungsmotor
DE69911432T2 (de) Abgasrückfürungseinrichtung
DE19854461C1 (de) Verbrennungsmotor, insbesondere Verbrennungsmotor für Fahrzeuge, mit einer Abgasrückführung
EP1132609A2 (de) Abgaswärmetauscher in einer Abgasrückführungsanordnung
DE19809124A1 (de) Steuervorrichtung für den Kühl- und Heizungskreislauf einer Brennkraftmaschine
DE102010002233A1 (de) Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
DE102011053664B4 (de) Niederdruck-Umführ-AGR-Vorrichtung
DE112014000854T5 (de) Niederdruck-Abgasrezirkulationsmodul
DE2303007A1 (de) Ventil fuer die steuerung der rueckgefuehrten abgasmenge in einer einrichtung zur abgasrueckfuehrung
EP1921301B1 (de) Abgasrückführungsanordnung
EP1787049A1 (de) Ventil, insbesondere drehkolbenventil, und abgasrückführsystem mit einem solchen ventil
DE69720340T2 (de) Kreiselventilationsgerät mit verbesserter Leistung mit wenigstens zwei Saugöffnungen und Ventilationsverfahren
EP1746263B1 (de) Wärmeübertragerventileinrichtung
EP1703115B1 (de) Thermostatventil mit integriertem AGR-Ventil
EP0949414B1 (de) Luftansaugkanalsystem für eine Brennkraftmaschine
AT522272A1 (de) Brennkraftmaschine
DE102010006037A1 (de) Ventilvorrichtung für eine Verbrennungskraftmaschine
EP2466103B1 (de) Abgasrückführmodul für eine Verbrennungskraftmaschine
DE19909433C1 (de) Brennkraftmaschine mit Abgasrückführung
DE102004025185B4 (de) Luftansaugkanalsystem für Verbrennungskraftmaschinen
DE102017117719A1 (de) Drosselventilbaugruppe
EP3224466B1 (de) Ventilvorrichtung zur abgasrückführung an einem verbrennungsmotor
EP2785997B1 (de) Stellklappenvorrichtung für eine turboladereinheit
DE102016211724B4 (de) AGR-Kühler-Anordnung mit selektiv tätigem Bypassventil
DE102009036284A1 (de) Ventilvorrichtung für eine Verbrennungskraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 25/07 20060101AFI20120308BHEP

17P Request for examination filed

Effective date: 20120404

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BENTELER AUTOMOBILTECHNIK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012623

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012623

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012623

Country of ref document: DE

Effective date: 20140926

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141004

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161020

Year of fee payment: 10

Ref country code: DE

Payment date: 20161027

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012623

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031