EP1911671B1 - Appareil de plongée en circuit et apparail de plongée à air comprimé dotés d'un entraînement autonome et utilisation de différents mélanges de gaz inerte - Google Patents

Appareil de plongée en circuit et apparail de plongée à air comprimé dotés d'un entraînement autonome et utilisation de différents mélanges de gaz inerte Download PDF

Info

Publication number
EP1911671B1
EP1911671B1 EP20070018653 EP07018653A EP1911671B1 EP 1911671 B1 EP1911671 B1 EP 1911671B1 EP 20070018653 EP20070018653 EP 20070018653 EP 07018653 A EP07018653 A EP 07018653A EP 1911671 B1 EP1911671 B1 EP 1911671B1
Authority
EP
European Patent Office
Prior art keywords
breathing
oxygen
gas
diving
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20070018653
Other languages
German (de)
English (en)
Other versions
EP1911671A1 (fr
Inventor
Gueorgui Todorov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102006046397A external-priority patent/DE102006046397A1/de
Application filed by Individual filed Critical Individual
Publication of EP1911671A1 publication Critical patent/EP1911671A1/fr
Application granted granted Critical
Publication of EP1911671B1 publication Critical patent/EP1911671B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • B63C11/22Air supply carried by diver
    • B63C11/24Air supply carried by diver in closed circulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/28Heating, e.g. of divers' suits, of breathing air

Definitions

  • the invention relates to a circuit diving device (rebreather) with its own drive system for a rational movement of a diver under water with opportunities to use different breathing gas mixtures in different depth ranges to optimize the dive and shorten the following decompression time.
  • Such a diving device with its own drive system and gas supply with different breathing gas mixtures is of great interest. It allows the diver not only to penetrate deeply under water with little loss of power and breathing gas, but to significantly shorten the corresponding decompression time by immersion depth and ground time by gas exchange of inert gases such as nitrogen, argon, helium, in different composition with oxygen.
  • inert gases such as nitrogen, argon, helium
  • the diver also has the opportunity to move quickly under water and to perform different underwater observations or work. Such devices are all the more necessary if a larger radius of action, extensive equipment and longer dive time are needed.
  • the protection against cold is to pay more attention in long, deep dives, you also need heating for the diving equipment and the breathing gas, especially when diving with helium-oxygen gas mixture.
  • a diver Normally, a diver also wastes a lot of precious energy (physical strength, breathing gas) and time to swim from his base to the site with his own strength.
  • Antriebsagregate known, which are integrated in a circulation device.
  • the new rebreather is characterized by the fact that on the basis of the known until now diving equipment, which is based on the principle of semi-closed or closed circuit with self-mixing electronics, a further development to provide these devices with the possibility of underwater to shorten the following after a long decompression time by diving gas more than 40 meters and thus to make deeper dives possible for scuba divers and secondly to significantly increase diving safety.
  • the first variant is based on the principle of semi-closed circulation and consists of mouthpiece or helmet, inhalation tube, inhalation bag, exhalation tube, exhalation bag, CO-2 absorption filter, four constant-dose nozzles with possibility precisely metered amounts of breathing gas
  • the first variant is based on the principle of semi-closed circulation and consists of mouthpiece or helmet, inhalation tube, inhalation bag, exhalation tube, exhalation bag, CO-2 absorption filter, four constant-dose nozzles with possibility precisely metered amounts of breathing gas
  • feed two breathing gas inlets around the circuit when necessary three oxygen sensors to measure the partial pressure of oxygen, one helium measurement sensor and one CO-2 measurement sensor, four Steel pressure bottles, three of which are filled with three different breathing gas mixtures of inert gases, such as nitrogen, argon and helium with different content of oxygen and a steel pressure bottle filled with pure oxygen.
  • the second variant is based on the principle of the closed circuit and the difference with the first variant is that instead of four constant dose nozzles all sensors are connected to two microprocessors which control the oxygen content and if necessary in the circuit precisely controlled amounts of pure oxygen or different Inert gases, such as nitrogen, argon or helium, filled in four different steel pressure cylinders, fed through four solenoid solenoid valves.
  • the two variants of the new diving device also have a ceramic immersion heater, which is supplied with DC 12V-24V and 50-150 watts or more power with automatic switch-off. This heating cartridge has the task to heat the breathing gas, especially when using helium-oxygen gas mixture to a temperature of 32 ° -33 ° C.
  • the diving device also has its own drive unit consisting of one or more batteries of the lead-acid type, Nickel-cadmium, nickel metal hydride, lithium zones or other types, where the batteries can be replaced or supplemented with a fuel cell, connected to a housing with electric motor for DC 12V-48V / 0.7 to 3 KW and a compact turbine with nozzle for fast drive.
  • This drive unit is with the rebreather first under water and uncoupled and worn by the diver when leaving the water by hand to minimize the weight of the scuba on the back of the diver
  • a very elementary variant of the same design consisting of only the main body with two constant dose nozzles, CO-2 absorption filter, pressure equalization bag and hoses with mouthpiece can be used as a backup tool for upgrading existing compressed air submersible, for better use of air supply and extension the dive time.
  • the new circuit diving device offers new possibilities and new safety aspects in modern technical diving.
  • the new circuit diving device with possibilities for breathing gas changes under water and its own drive system works in the following way:
  • three different compositions of inert gases with different Oxygen content filled under high pressure 220-300 bar For example, 10% oxygen, 30% nitrogen and 60% helium are filled in the steel bottle (9).
  • 10% oxygen and 90% helium is filled in the steel bottle (9).
  • the steel bottle (10) is filled with air and the steel bottle (55) with 100% oxygen.
  • the four steel cylinders (9, 10, 56 and 55) have their own pressure reducing valves (25, 27, 40, 42) where the pressure of the breathing gas is reduced to 10 bar above ambient pressure.
  • the steel bottles (9, 10 and 56) are individually connected to the regulator valve (19). During the dipping process, the diver first opens the steel pressure bottle (10) filled with air to a depth of 40- 50 meters diving. By connection (17) the bottle (10) is connected to the constant dosage nozzle (14) and through this nozzle air comes into the chamber (7), precisely metered, eg 10-12 liters per minute.
  • the regulator valve (19) Under the pressure of the water the regulator valve (19) also opens and fills with the appropriate breathing gas the mixing chamber (7) until the pressure is equalized.
  • the two pressure compensation bags (20) are also used.
  • the chamber (7) can be opened by disconnecting from the lower part (49) to replace the CO-2 absorption filter (6) before the dive.
  • the diver When reaching a depth of 50 - 60 meters, the diver closes the steel bottle (10) with the twist grip and opens by turning handle de steel bottle (9), filled with breathing gas mixture 10% oxygen, 30% nitrogen and 60% helium. In this way, he switches the device on this breathing gas mixture and performs the gas exchange for a depth of 160-180 meters.
  • the chamber (7) Through compound (18) he fed the chamber (7) through constant dose nozzle (15) constantly with the breathing gas mixture at a flow rate of 18 - 20 liters per minute.
  • the regulator valve (19) is further fed with the same breathing gas mixture.
  • the diver closes the bottle (9) by turning the handle and opens the steel bottle (56) filled with breathing gas mixture of 10% oxygen and 90% helium.
  • the breathing gas flows through connection (47) to the constant-dose nozzle (51) and from there at a flow rate of 30-40 liters per minute into the chamber (7).
  • the CO-2 absorption filter (6) In this chamber is the CO-2 absorption filter (6) and the ceramic radiator (8, 57) with automatic switch-off.
  • the radiator can be set for a certain breathing gas temperature, for. B. 32 ° C, which is constantly held.
  • the radiator is supplied with DC 12V / 24V from the battery (21)
  • the diver inhales through the inhalation tube (2) and inhalation bag (5) and through the exhalation tube (3) and exhalation bag (58) out into the chamber (7), there closes the circuit.
  • the pressure compensation bag (20) is provided with a pressure relief valve (59), also exhalation bag (58), where the excess breathing gas escapes into the surrounding water.
  • One or more oxygen sensors (4) constantly measure the oxygen content of the respiratory gas in the chamber (7) and give the diver information on the display (37), even light or acoustic signal in case of interference.
  • the CO-2 sensors (11) give diver information about the CO-2 salaries
  • the helium sensor (54) gives information about the helium content in the chamber (7).
  • This chamber is hermetically sealed. In the event of a fall, for whatever reason, water should enter this chamber (7), it is important for the health of the diver to remove this water, otherwise the CO-2 filter may be damaged or toxic gases may be generated. This is what the
  • Decompression stop computer is supported. At this depth he closes the steel bottle (56) and opens the steel bottle (9). Then it rises to a depth of 80 meters, closes the steel bottle (9) and opens the steel bottle (10). Although air is now pouring from this bottle into the chamber (7), the remnants of the previous gas mixture mix with the air and the danger of nitrogen narcosis is low.
  • the diver After a necessary decompression stop at the appropriate depth and when reaching a depth of 60 meters, the diver closes the steel bottle (10) and opens the steel bottle (55), which is filled with 100% oxygen. Through the reducing valve (42), the oxygen flows to the constant-dose nozzle (50) and at a flow rate of 1.4 liters per minute into the chamber (7) where it joins the remaining breathing gas mixture.
  • the diver has the opportunity to slowly increase the oxygen content in the chamber (7) at the corresponding depth 50, 40, 30, 20, 15, 10 meters by operating the direct connection (53) to the chamber (7). From a depth of 9 meters the diver can through the connection (53) flush the chamber (7) with pure oxygen and fill up to the end of the decompression time and reach the surface.
  • the diver can at any time directly use the breathing gas from the steel cylinders (9, 10 and 56) on the principle of the open system with a breathing machine.
  • the gas exchange with different inert gases is carried out by the microprocessors (30, 36) themselves after prepared and stored program.
  • the three connections of steel pressure cylinders (9, 10 and 56) between the respective solenoid valves and the mixing chamber (7) also supply gas to the regulator valve (19) for pressure equalization.
  • the microprocessors (30, 36) switch both solenoid valves (24) - for nitrogen and (43) for oxygen, whereby of both gases certain quantities in the Include chamber (7), corresponding to the permissible partial pressure of oxygen of the depth.
  • the dive from 60 meters to 200 meters and back to 80 meters depth can be done with the self-mixing electronics with inert gas helium from steel bottle (9) in conjunction with oxygen from the steel bottle (55).
  • the device can be fed with inert gas from steel bottle (10) - nitrogen and oxygen from bottle (55), with the microprocessors (30, 36) slowly the previous Replace inert gas with new ones.
  • inert gas is fed argon from bottle (56) and oxygen from bottle (55) into chamber (7), with the microprocessors slowly increasing the oxygen content by 30% to the corresponding depth to 70 Increase%, 80% and 90%.
  • the unit will be switched to using pure oxygen from the steel bottle (55) until reaching the surface.
  • the diver may have his own propulsion unit, consisting of an accumulator box or fuel cell box (21) connected to an electric motor chute (33) Use 12V / 48V with a power of 0.7 to 3 KW and equipped with a turbine (34) and nozzle (35).
  • the batteries may be of the lead acid, nickel cadmium, nickel metal hydride, lithium ion or other type, which on the one hand are powerful enough, on the other hand compact and light in weight.
  • the Antriebsagregat underwater can be coupled in and out with locking mechanism and by means of a carrying handle (60) in the hand to be worn.
  • the weight of the drive unit can be between 15 and 25 kilograms.
  • Underwater has the entire diving equipment including the drive unit neutral buoyancy.
  • All parts of the diving equipment can be packed in a fiberglass sheath be housed in a streamlined shape for better protection and design.
  • FIG. 4 A very simple and cheap version of the device, shown in Fig. 4 , constructed with the smallest possible diameter in cross section (possibly 14 - 16 cm) consisting only of the mouthpiece (1), on and
  • Exhalation tubes (2, 3), the chamber (7), the CO-2 filter (6), and the lower part (49) with pressure compensation bag (20) with pressure relief valve (59), two constant dose nozzles (14, 50) and regulator valve (19), optionally also battery pack (21) and drive unit (32), can be purchased and used as an accessory by all divers who have a compressed air diving device with double-pack steel cylinders. These divers can modernize their equipment and upgrade for longer dives and higher diving safety, while attaching and connecting this variant of the new scuba diving equipment via their normal scuba tanks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Claims (5)

  1. Appareil respiratoire de plongée avec son propre système de mise en marche, fonctionnant sur le principe du cycle semi-fermé de respiration, qui se caracterise par le fait que dans un cercle, constitué d'un embouchoir (1) ou d'un casque, d'un tube gaufré d'aspiration (2), d'une pochette d'aspiration (5), d'un tube gaufré d'expiration (3), d'une pochette d'expiration (58), d'une caméra de mixage à fermeture hermétique et permettant son ouverture (7) avec un filtre CO2 d'absorption (6) ; vers cette caméra (7) sont branchées quatre buses de dosage constant (14, 15, 50 et 51), montées sur le corps inférieur (49), la buse (14) assurant un dosage précis du gaz de respiration (débit) de 10-12 litres par minute, la buse (15) fournit du gaz de respiration d'un débit de 18-20 litres par minute, la buse (51) fournit du gaz de respiration d'un débit de 30-40 litres ou plus par minute ; la buse (50) est pour de l'oxygène pur d'un débit de 1,4 litres par minute ; chaque buse possède son propre connexion à une valve de réduction de la pression (25, 27, 40 et 42) ; ces valves, de leur part, sont connectées aux bouteilles de gaz en acier respectives sous pression (10, 9, 56 et 55), la bouteille de gaz (55) contenant de l'oxygène pur, les bouteilles d'acier (9, 10 et 56) contiennent des mélanges de respiration préparés à l'avance de différents gaz inertes, comme l'azote, l'argon, l'hélium; ces gaz sont mixés avec de différentes proportions (en pourcentage) d'oxygène sous haute pression - 220-300 bars ou plus, dont le but est le changement des gaz de respiration et l'optimisation de l'approvisionnement en mélanges de respiration à des profondeurs différentes lors de la plongée, réduisant, de telle manière, le temps de décompression ; les trois bouteilles d'acier (9, 10 et 56) sont connectées à la valve de réglage (19), servant à égaliser la pression du gaz de respiration avec la pression extérieure dans la caméra (7) ; la caméra de mixage (7) est connectée également à deux pochettes pour l'égalisation de la pression (20), une valve d'évacuation (59) étant reliée à la pochette (20) et à la pochette d'expiration (58) ; les pochettes (20), les buses (14, 15, 50 et 51), la valve de réglage (19) et le système de vidange de l'eau avec une valve d'évacuation (46) sont montées sur le corps inférieur (49), qui, de sa part, est connecté hermétiquement à la caméra de mixage (7) ; le corps inférieur (49) accueille également la boîte des accumulateurs ou la cellule chimique du fuel (21) ; le corps inférieur s'inonde librement par l'eau qui l'entoure ; un ou plusieurs senseurs de mesure du pourcentage de l'oxygène (4), un senseur (11) pour la mesure du contenu en CO2, un senseur (54) pour la mesure du contenu en hélium sont montés vers la caméra de mixage (7) ; les senseurs servent pour le contrôle des mélanges de respiration par l'intermédiaire d'un panneau d'affichage (37), équipé de signalisations sonore et lumineuse, qui se mettent en marche en cas de perturbation ; les quatre bouteilles en acier (9, 10, 55 et 56) sont connectées à l'aide de valves (22, 23, 44 et 45) en vue à un approvisionnement manuel en gaz de respiration de la caméra de mixage (7) ; ainsi, la caméra de mixage (7) peut, en cas de besoin, être lavée par le gaz respectif ; l'appareil respiratoire est constitué de trois parties principales: une caméra de mixage (7), un corps inférieur (49) et un système de mise en marche (21 et 32) ; les quatre bouteilles en acier (9, 10, 55 et 56) sont fixées sur le corps inférieur (49).
  2. Appareil respiratoire de plongée, fonctionnant sur le principe du cycle complètement fermé de respiration, qui se caracterise par le fait que dans un cercle, constitué d'un embouchoir (1) ou d'un casque, d'un tube gaufré d'aspiration (2), d'une pochette d'aspiration (5), d'une caméra de mixage (7), montée hermétiquement sur le corps inférieur (49), d'un filtre d'absorption de CO2 (6), d'une pochette d'expiration (58) avec d'une valve d'évacuation (59), d'un tube gaufré d'expiration (3) ; les quatre bouteilles d'acier avec du gaz sous pression (9, 10, 55 et 56) sont liées par l'intermédiaire d'une connexion à la valve de réglage pour l'égalisation de la pression (19); une bouteille d'acier (9) contient de l'hélium pur, une bouteille (10) contient de l'air ou de l'azote, une bouteille d'acier (56) contient un mélange d'argon et d'oxygène ou de l'argon pur et une bouteille d'acier (55) contient de l'oxygène pur ; le mixage des gaz de respiration et la création de mélanges de respiration s'effectuant dans une caméra de mixage (7), de l'oxygène étant introduit dans celle-ci par la valve magnéto-solénoïdale (43), de l'hélium par la valve magnéto-solénoïdale (29), de l'air ou de l'azote par la valve magnéto-solénoïdale (24) et de l'argon par la valve magnéto-solénoïdale (38) ; ce processus s'effectue et se gère par deux microprocesseurs (29 et 36), alimentés par du courant constant venant de ses propres piles ou des piles du système de mise en marche ; a l'aide de trois senseurs pour l'oxygène (4), un pour l'hélium (11) et un pour le CO2 (54), la proportion, en pourcentage, de l'oxygène et de l'hélium dans le système est mesuré, cette proportion étant suivie par le plongeur sur un panneau d'affichage (37) ; de là, celui-ci s'informe des perturbations par l'intermédiaire des signaux lumineux et sonore ; après la plongée à une profondeur limitée et l'accomplissement d'un travail lors du retour à la surface et après l'accomplissement de la décompression, un changement de différents mélanges de respiration est possible ; ce changement de mélanges de gaz inertes comme l'azote, l'argon et l'hélium, est contrôlé par les deux microprocesseurs (29 et 36), en combinant, en proportions différentes avec l'oxygène pour la réduction de la décompression, à partir de neuf mètres la fourniture d'oxygène pur seul se branchant seulement.
  3. Appareil respiratoire de plongée, fonctionnant sur le principe du cycle semi-fermé ou fermé de respiration, conformément à la description dans les revendications 1 et 2, qui se caracterise par le fait d'être équipé de son propre système de mise en marche, constitué: d'une boîte (21) avec compensation (égalisation) de la pression avec du gaz; des piles d'accumulateur du type plomb-acide, nickel-cadmium, nickel-métal-hydride, lithium-ion ou d'un autre type ou d'une cellule REM chimique de fuel à refroidissement d'eau, alimentée par de l'oxygène pur d'une bouteille d'acier (55) et de l'hydrogène pur d'un volume de métal-hydride ou d'une bouteille d'acier supplémentaire ou d'un conteneur de stockage ; cette unité est liée directement à un corps (32), refermant un moteur électrique 12V/48V (33), d'une puissance de 0,7 à 3 KW ; le moteur électrique peut être immergé dans l'eau ou être hermétiquement isolé par compensation de la pression avec gaz et connecté à une turbine (34) et une buse (35), ou mettant en marche un propulseur ; la gestion du moteur électrique (33) et sa connexion aux piles (21) s'effectue par l'intermédiaire du dispositif de gestion (un interrupteur) (31) ; le système de mise en marche représente un tout et peut être connecté au ou déconnecté du corps inférieur de l'appareil respiratoire (49) à l'aide d'un dispositif de verrouillage et la portée par la main par l'intermédiaire d'une poignée (60) afin de réduire le poids de l'appareil respiratoire avant la plongée ou lors du retour du plongeur à la surface.
  4. Appareil respiratoire à cycle semi-fermé ou fermé de respiration, conformément à la description dans les revendications 1 et 2, qui se caracterise par le fait que dans la caméra de mixage (7) deux ou plusieurs corps céramiques de chauffage (8 et 57) à 12V/24V, alimentés par du courant constant du système de mise en marche (21) ont été montés, avec une possibilité de réglage en degré par l'intermédiaire du guidage (31), et équipés d'une automatique autoverrouillante ; l'objectif des corps de chauffage est le réchauffement, sur demande, jusqu'à une température de 34 °C des gaz de respiration dans la caméra (7).
  5. Appareil respiratoire à cycle semi-fermé ou fermé de respiration, conformément à la description dans la revendication 1, qui se caracterise par le fait que dans une variante élémentaire à diamètre et section minimum, constituée d'un embouchoir (1), d'un tube d'aspiration (2), d'une caméra de mixage (7), d'une valve d'évacuation (59), montée sur le corps inférieur (49), d'un filtre d'absorption de CO2 (6), d'un tube d'expiration (3), de deux buses de dosage constant (14 et 50) avec les connexions nécessaires, d'une pochette d'égalisation de la pression (20), d'une valve de réglage (19) avec connexion, d'une pile à courant constant dans le corps (21) ; en cas de nécessité, le système de mise en marche (32) peut y être également ajouté ; cette unité est montée sur un appareil respiratoire à deux bouteilles d'air comprimé, les bouteilles d'acier étant connectées aux buses de dosage constant (14 et 50) et la valve de réglage (19) par l'intermédiaire des valves de réduction de la pression ; ainsi, la restructuration de chaque appareil respiratoire à deux bouteilles d'air comprimé est possible dans un appareil à cycle semi-fermé de respiration, visant le prolongement du temps de séjour dans l'eau et la croissance de la sécurité lors de la plongée à un prix réduit.
EP20070018653 2006-09-22 2007-09-22 Appareil de plongée en circuit et apparail de plongée à air comprimé dotés d'un entraînement autonome et utilisation de différents mélanges de gaz inerte Not-in-force EP1911671B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006046397A DE102006046397A1 (de) 2006-09-22 2006-09-22 Kreislauf-Tauchgerät (Rebreather) mit eigenem Antriebssystem und Verwendung von unterschiedlichen Inertgasgemische
DE102007045395A DE102007045395A1 (de) 2006-09-22 2007-09-21 Pressluft-Tauchgerät (SCUBA) mit eigenem Antriebssystem (Hydrojet)

Publications (2)

Publication Number Publication Date
EP1911671A1 EP1911671A1 (fr) 2008-04-16
EP1911671B1 true EP1911671B1 (fr) 2010-07-21

Family

ID=39111859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070018653 Not-in-force EP1911671B1 (fr) 2006-09-22 2007-09-22 Appareil de plongée en circuit et apparail de plongée à air comprimé dotés d'un entraînement autonome et utilisation de différents mélanges de gaz inerte

Country Status (1)

Country Link
EP (1) EP1911671B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11993353B2 (en) 2018-04-24 2024-05-28 La Spirotechnique Industrielle Et Commerciale Breathing apparatus for scuba diving with semi-closed circuit gas recycling

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109229308A (zh) * 2018-09-30 2019-01-18 天津市鹏天工贸有限公司 自携不减压的双供气系统封闭式循环潜水呼吸器
JP2023040320A (ja) * 2020-02-28 2023-03-23 国立研究開発法人海洋研究開発機構 動力伝達機構
CN112141302A (zh) * 2020-10-06 2020-12-29 徐兰萍 一项用于水下潜水的大漂式氧气瓶装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524444A (en) * 1966-03-11 1970-08-18 Air Reduction Underwater gas supply system and method of operation
US3329118A (en) 1966-03-23 1967-07-04 Gary Aqua Peller Corp Battery operated propulsion unit for swimmers
US4014384A (en) * 1974-04-02 1977-03-29 Douglas Larry Marcus Breathing gas heater for use by a diver comprising double walled cylinder and inner container filled with hot liquid prior to use
US4236546A (en) * 1978-10-23 1980-12-02 The United States Of America As Represented By The Secretary Of The Navy Electronic breathing mixture control
SE455189B (sv) * 1979-05-18 1988-06-27 Nils Olof Helmer Berglund Apparat for vermning av andningsgas for dykare
IL136936A0 (en) 1997-12-23 2001-06-14 Aquadyn Underwater Technologie Detachable propulsion unit for a scuba tank
GB2382572B (en) * 2001-11-30 2005-08-17 Martin John Parker Apparatus for a carbon dioxide scrubber and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11993353B2 (en) 2018-04-24 2024-05-28 La Spirotechnique Industrielle Et Commerciale Breathing apparatus for scuba diving with semi-closed circuit gas recycling

Also Published As

Publication number Publication date
EP1911671A1 (fr) 2008-04-16

Similar Documents

Publication Publication Date Title
EP1911671B1 (fr) Appareil de plongée en circuit et apparail de plongée à air comprimé dotés d'un entraînement autonome et utilisation de différents mélanges de gaz inerte
CA2313763C (fr) Procede et dispositif pour produire, traiter et fournir de facon autonome du gaz respiratoire destine a des profondeurs extremes
US7740418B2 (en) Buoyancy-based, underwater propulsion system and method
NZ582157A (en) SCUBA diving safety device including means to automatically fill an inflatable diving jacket if no breath is being drawn
CN108216528A (zh) 一种穿戴式潜水装备
DE102006046397A1 (de) Kreislauf-Tauchgerät (Rebreather) mit eigenem Antriebssystem und Verwendung von unterschiedlichen Inertgasgemische
WO2004024485A2 (fr) Systeme d'alimentation en liquide de batterie
US20170253311A1 (en) Regulator for underwater breathing apparatus
DE2648141A1 (de) Tieftauchsystem mit geschlossenem atemgaskreislauf
DE19716749B4 (de) Schwimmtauchgerät
CN106198033A (zh) 一种卫星发动机比冲在轨计算方法
CN2933464Y (zh) 正压氧气呼吸器
EP0674918A1 (fr) Dispositif d'oxygène chimique
CN207843272U (zh) 一种穿戴式潜水装备
CN211504782U (zh) 一种用于湿地生态污水处理监测的取样装置
CN213854475U (zh) 减压氮气供给系统
CN210739956U (zh) 低温液体贮罐增压结构
DE102019113063A1 (de) Austauschbare Kartusche, Kartuschen-System und Verfahren zum Verbinden von Kartuschen
CN216986098U (zh) 一种水下用安全自救装置
CN215333098U (zh) 一种用于膨胀水柜的加药装置
CN220164726U (zh) 油罐装置
CN211732494U (zh) 一种颜料放线机
CN215048730U (zh) 潜水艇净水器
CN114447538B (zh) 一种用于并联直流电源铅酸电池在线核容补液冷却装置
WO2023134832A1 (fr) Dispositif et procédé d'alimentation en air respiratoire sous l'eau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081016

RTI1 Title (correction)

Free format text: CLOSED LOOP DIVING APPARATUS AND COMPRESSED AIR DIVING APPARATUS WITH ITS OWN DRIVE MECHANISM AND USE OF DIFFERENT GAS MIXTURES

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

17Q First examination report despatched

Effective date: 20100203

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007004462

Country of ref document: DE

Date of ref document: 20100902

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100721

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

BERE Be: lapsed

Owner name: TODOROV, GUEORGUI

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101022

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

26N No opposition filed

Effective date: 20110426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004462

Country of ref document: DE

Effective date: 20110426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120316

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120206

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110122

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007004462

Country of ref document: DE

Effective date: 20130403

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 474765

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120922