EP1905034B1 - Auf virtuellen quellenpositionsinformationen basierte quantisierung und dequantisierung von kanalniveauunterschieden - Google Patents

Auf virtuellen quellenpositionsinformationen basierte quantisierung und dequantisierung von kanalniveauunterschieden Download PDF

Info

Publication number
EP1905034B1
EP1905034B1 EP06783342A EP06783342A EP1905034B1 EP 1905034 B1 EP1905034 B1 EP 1905034B1 EP 06783342 A EP06783342 A EP 06783342A EP 06783342 A EP06783342 A EP 06783342A EP 1905034 B1 EP1905034 B1 EP 1905034B1
Authority
EP
European Patent Office
Prior art keywords
cld
quantization
vsli
spatial
channel audio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06783342A
Other languages
English (en)
French (fr)
Other versions
EP1905034A1 (de
EP1905034A4 (de
Inventor
Jeong Il Seo
Kyeong Ok Kang
Jin Woo Hong
Kwang Ki Kim
Seung Kwon Beack
Min Soo Hahn
Sang Bae Chon
Koeng Mo Sung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060066822A external-priority patent/KR100755471B1/ko
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of EP1905034A1 publication Critical patent/EP1905034A1/de
Publication of EP1905034A4 publication Critical patent/EP1905034A4/de
Application granted granted Critical
Publication of EP1905034B1 publication Critical patent/EP1905034B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing

Definitions

  • the present invention relates to Spatial Audio Coding (SAC) of a multi-channel audio signal and decoding of an audio bitstream generated by the SAC, and more particularly, to efficient quantization and dequantization of Channel Level Difference (CLD) used as a spatial parameter when SAC-based encoding of a multi-channel audio signal is performed.
  • SAC Spatial Audio Coding
  • CLD Channel Level Difference
  • the SAC approach is an encoding approach for improving transmission efficiency by encoding N number of multi-channel audio signals (N>2) using both a down-mix signal, which is mixed into mono or stereo, and a set of ancillary spatial parameters, which represent a human perceptual characteristic of the multi-channel audio signal.
  • the spatial parameters can include Channel Level Difference (CLD) representing a level difference between two channels according to time-frequency, Inter-channel Correlation/Coherence (ICC) representing correlation or coherence between two channels according to time-frequency, Channel Prediction Coefficient (CPC) for making it possible to reproduce a third channel from two channels by prediction, and so on.
  • CLD Channel Level Difference
  • ICC Inter-channel Correlation/Coherence
  • CPC Channel Prediction Coefficient
  • the CLD is a core element in restoring a power gain of each channel, and is extracted in various ways in the process of SAC encoding. As illustrated in FIG. 1A , on the basis of one reference channel, the CLD is expressed by a power ratio of the reference channel to each of the other channels. For example, if there are six channel signals L, R, C, LFE, Ls and Rs, five power ratios can be obtained based on one reference channel, and CLD1 through CLD5 correspond to levels obtained by applying a base-10 logarithm to each of the five power ratios.
  • a multi-channel is divided into a plurality of channel pairs, and each of the channel pairs is analyzed on the basis of stereo, and, in each analysis step, one CLD value is extracted.
  • This is carried out by step-by-step use of a plurality of One-To-Two (OTT) modules, which take two input channels to one output channel.
  • OTT One-To-Two
  • any one of the input stereo signals is recognized as a reference channel, and a base-10 logarithmic value of a power ratio of the reference channel to the other channel is output as a CLD value.
  • the CLD value has a dynamic range between - ⁇ and + ⁇ . Hence, to express the CLD value with a finite number of bits, efficient quantization is required.
  • CLD quantization is performed by using a normalized quantization table.
  • An example of such a quantization table is given in the SAC standard document (see page 41, Table 57).
  • the dynamic range of the CLD value is limited to a predetermined level or less.
  • quantization error is introduced, and thus spectrum information is distorted.
  • the dynamic range of the CLD value will be limited to the range between -25 dB and +25 dB.
  • the present invention is directed to Channel Level Difference (CLD) quantization and dequantization methods capable of minimizing sound deterioration in the process of Spatial Audio Coding (SAC)-based encoding of a multi-channel audio signal.
  • CLD Channel Level Difference
  • SAC Spatial Audio Coding
  • the present invention is also directed to CLD quantization and dequantization methods capable of minimizing sound deterioration using advantages of quantization of Virtual Source Location Information (VSLI), which is replaceable with CLD, in the process of SAC-based encoding of a multi-channel audio signal.
  • VSLI Virtual Source Location Information
  • the present invention is directed to improving quality of sound without additional complexity by providing a VSLI-based CLD quantization table, which can be replaced by a CLD quantization table used for CLD quantization and dequantization in a Moving Picture Experts Group (MPEG)-4 SAC system.
  • MPEG Moving Picture Experts Group
  • a first aspect of the present invention provides a method for quantizing a Channel Level Difference (CLD) parameter used as a spatial parameter when Spatial Audio coding (SAC)-based encoding of an N-channel audio signal (N>1) is performed in accordance with claim 1.
  • CLD Channel Level Difference
  • SAC Spatial Audio coding
  • a second aspect of the present invention provides a computer-readable recording medium in accordance with claim 12.
  • a third aspect of the present invention provides a method for encoding an N-channel audio signal (N>1) based on Spatial Audio Coding (SAC) in accordance with claim 13.
  • N N-channel audio signal
  • SAC Spatial Audio Coding
  • a fourth aspect of the present invention provides an apparatus for encoding an N-channel audio signal (N>1) based on Spatial Audio Coding (SAC) in accordance with claim 14.
  • N N-channel audio signal
  • SAC Spatial Audio Coding
  • a fifth aspect of the present invention provides a method for dequantizing an encoded Channel Level Difference (CLD) quantization value when an encoded N-channel audio bitstream (N>1) is decoded based on Spatial Audio coding (SAC) in accordance with claim 17.
  • CLD Channel Level Difference
  • a sixth aspect of the present invention provides a computer-readable recording medium in accordance with claim 22.
  • a seventh aspect of the present invention provides a method for decoding an encoded N-channel audio bitstream (N>1) based on Spatial Audio Coding (SAC) in accordance with claim 23.
  • N N-channel audio bitstream
  • SAC Spatial Audio Coding
  • the VSLI-based CLD quantization table created according to the present invention can replace the CLD quantization table used in an existing SAC system.
  • FIG. 2 schematically illustrates a configuration of a spatial audio coding (SAC) system to which the present invention is to be applied.
  • the SAC system can be divided into an encoding part of generating, encoding and transmitting a down-mix signal and spatial parameters from an N-channel audio signal and a decoding part of restoring the N-channel audio signal from the down-mix signal and spatial parameters transmitted from the encoding part.
  • the encoding part includes an SAC encoder 210, an audio encoder 220, a spatial parameter quantizer 230, and a spatial parameter encoder 240.
  • the decoding part includes an audio decoder 250, a spatial parameter decoder 260, a spatial parameter dequantizer 270, and an SAC decoder 280.
  • the SAC encoder 210 generates a down-mix signal from the input N-channel audio signal and analyzes spatial characteristics of the N-channel audio signal, thereby extracting spatial parameters such as Channel Level Difference (CLD), Inter-channel Correlation/Coherence (ICC), and Channel Prediction Coefficient (CPC).
  • CLD Channel Level Difference
  • ICC Inter-channel Correlation/Coherence
  • CPC Channel Prediction Coefficient
  • N (N > 1) multi-channel signal input into the SAC encoder 210 is decomposed into frequency bands by means of an analysis filter bank.
  • a quadrature mirror filter (QMF) is used. Spatial characteristics related to spatial perception are analyzed from sub-band signals, and spatial parameters such as CLD, ICC, and CPC are selectively extracted according to an encoding operation mode. Further, the sub-band signals are down-mixed and converted into a down-mix signal of a time domain by means of a QMF synthesis bank.
  • the down-mix signal may be replaced by a down-mix signal which is pre-produced by an acoustic engineer (or wan artistic/hand-mixed down-mix signal).
  • the SAC encoder 210 adjusts and transmits the spatial parameters on the basis of the pre-produced down-mix signal, thereby optimizing multi-channel restoration at the decoder.
  • the audio encoder 220 compresses the down-mix signal generated by the SAC encoder 210 or the artistic down-mix signal by using an existing audio compression technique (e.g. Moving Picture Experts Group (MPEG)-4, Advanced Audio Coding (AAC), MPEG-4 High Efficiency Advanced Audio Coding (HE-AAC), MPEG-4 Bit Sliced Arithmetic Coding (BSAC) etc.), thereby generating a compressed audio bitstream.
  • MPEG Moving Picture Experts Group
  • AAC Advanced Audio Coding
  • HE-AAC MPEG-4 High Efficiency Advanced Audio Coding
  • BSAC MPEG-4 Bit Sliced Arithmetic Coding
  • the spatial parameter quantizer 230 is provided with a quantization table, which is to be used to quantize each of the CLD, ICC and CPC. As described below, in order to minimize sound deterioration caused by quantizing the CLD using an existing normalized CLD quantization table, a Virtual Source Location Information (VSLI)-based CLD quantization table can be used in the spatial parameter quantizer 230.
  • VSLI Virtual Source Location Information
  • the spatial parameter encoder 240 performs entropy encoding in order to compress the spatial parameters quantized by the spatial parameter quantizer 230, and preferably performs Huffman encoding on quantization indexes of the spatial parameters using a Huffman codebook. As described below, the present invention proposes a new Huffman codebook in order to maximize transmission efficiency of CLD quantization indexes.
  • the audio decoder 250 decodes the audio bitstream compressed through the existing audio compression technique (e.g. MPEG-4, AAC, MPEG-4 HE-AAC, MPEG-4 BSAC, etc.).
  • the existing audio compression technique e.g. MPEG-4, AAC, MPEG-4 HE-AAC, MPEG-4 BSAC, etc.
  • the spatial parameter decoder 260 and the spatial parameter dequantizer 270 are modules for performing the inverse of the quantization and encoding performed by the spatial parameter quantizer 230 and the spatial parameter encoder 240.
  • the spatial parameter decoder 260 decodes the encoded quantization indexes of the spatial parameters on the basis of the Huffman codebook, and the spatial parameter dequantizer 270 obtains the spatial parameters corresponding to the quantization indexes from the quantization table.
  • the VSLI-based CLD quantization table and the Huffman codebook proposed in the present invention are used for the processes of decoding and dequantization of the spatial parameters.
  • the SAC decoder 280 restores the N multi-channel audio signals by synthesis of the audio bitstream decoded by the audio decoder 250 and the spatial parameters obtained by the spatial parameter dequantizer 270.
  • the SAC system can provide compatibility with an existing mono or stereo audio coding system.
  • the present invention is concerned with providing both the CLD quantization capable of minimizing sound deterioration resulting from quantization by utilizing advantages of the quantization of the VSLI representing a spatial audio image of the multi-channel audio signal.
  • the present invention is based on the fact that, in expressing an azimuth angle of the spatial audio image, human ears have difficulty in recognizing an error of 3° or less.
  • the VSLI expressed with the azimuth angle has a limited dynamic range of 90°, so that quantization error caused by limitation of the dynamic range upon quantization can be avoided.
  • the CLD quantization table is designed on the basis of the advantages of the quantization of the VSLI, sound deterioration resulting from the quantization can be minimized.
  • FIGS. 3A and 3B are views for explaining a concept of VSLI serving as a reference of CLD quantization in accordance with the present invention.
  • FIG. 3A illustrates a stereo speaker environment in which two speakers are located at an angle of 60°
  • FIG. 3B is a view in which a stereo audio signal in the stereo speaker environment of FIG. 3A is represented by power of a down-mixed signal and by VSLI.
  • the stereo or multi-channel audio signal can be represented by the magnitude vector of a down-mix audio signal and the VSLI that can be obtained by analyzing the each channel power of the multi-channel audio signals.
  • the multi-channel audio signal represented in this way can be restored by projecting the magnitude vector according to the location vector of a sound source.
  • the VSLI calculated in this way has a value between A L and A R .
  • P L and P R can be restored from the VSLI as follows: First, the VSLI is mapped to a value, VSLI', between 0° and 90° using a Constant Power Panning (CPP) rule, as in Equation 3.
  • CCPP Constant Power Panning
  • P L and P R are calculated using Equations 4 and 5.
  • P L P D ⁇ cos VSLI ′ 2
  • P R P D ⁇ sin VSLI ′ 2
  • the subject matter of the present invention concerns applying the advantages of quantization of the VSLI to quantization of the spatial parameter, the CLD.
  • the CLD can be expressed as in Equation 6.
  • CLD 10 ⁇ log 10 ⁇ P R P L
  • the CLD can be derived from the VSLI according to Equation 7.
  • the CLD can be obtained by taking the natural logarithm, instead of the base-10 logarithm, of the VSLI.
  • Equations 7 and 8 can be directly used as spatial parameters of a general SAC system.
  • the CLD has a dynamic range between - ⁇ and + ⁇ , problems occur in performing quantization using a finite number of bits.
  • the main problem is quantization error caused by limitation of the dynamic range. Because all dynamic ranges of the CLD cannot be expressed with only a finite number of bits, the dynamic range of the CLD is limited to a predetermined level or less. As a result, quantization error is introduced, and the spectrum information is distorted. If 5 bits are used for the CLD quantization, the dynamic range of the CLD is limited to between -25 dB and +25 dB.
  • the VSLI has a finite dynamic range of 90°, such quantization error caused by limitation of the dynamic range upon quantization can be avoided.
  • the CLD quantization value using the VSLI can be calculated by taking a base-10 logarithm or natural logarithm.
  • e rather than 10 is used as the base when spectrum information is restored by using the CLD value. Table 3.
  • the CLD quantization values and the CLD quantization decision levels are expressed as integers by taking the base-10 logarithm, it can be seen that there is a problem that some of the CLD quantization values are identical to some of the CLD quantization decision levels.
  • the CLD quantization values and decision levels using the natural logarithm are preferably used for actual quantization.
  • the CLD quantization values are derived by taking the natural logarithm rather than the base-10 logarithm of the VSLI.
  • the VSLI-based CLD quantization table created in this way is employed in the spatial parameter quantizer 230 and the spatial parameter dequantizer 270 of the SAC system illustrated in FIG. 2 , so that sound deterioration resulting from the CLD quantization error can be minimized.
  • the present invention proposes a Huffman codebook capable of optimizing Huffman encoding of the CLD quantization indexes derived on the basis of the above-described VSLI-based CLD quantization table.
  • the multi-channel audio signal is processed after being split into sub-bands of a frequency domain by means of a filter bank.
  • a differential coding method is applied to a quantization index of each sub-band, thereby classifying the quantization indexes into the quantization index of the fist sub-band and the other 19 differential indexes between neighboring sub-bands.
  • they may be divided into differential indexes between neighboring frames.
  • a probability distribution is calculated with respect to each of the three types of indexes classified in this way, and then the Huffman coding method is applied to each of the three types of indexes.
  • Huffman codebooks described in Tables 13 and 14 below can be obtained.
  • Table 13 is the Huffman codebook for the index of the first sub-band
  • Table 14 is the Huffman code book for the other indexes between neighboring sub-bands.
  • Table 13 Index Number of Bits Codeword (hexadecimal) Index Number of Bits Codeword (hexadecimal) 0 5 0x17 16 5 0x1d 1 8 0x64 17 5 0x19 2 8 0x65 18 5 0x1c 3 8 0xf0 19 5 0x16 4 8 0xf1 20 5 0x18 5 7 0x33 21 5 0x14 6 7 0x79 22 5 0x13 7 6 0x18 23 5 0x15 8 6 0x22 24 5 0x1b 9 6 0x23 25 5 0x10 10 6 0x3d 26 5 0x0e 11 5 0x0b 27 5 0x0f 12 5 0x12 28 5 0x0d 13 5 0x1a 29 5 0x
  • the Huffman codebooks proposed in the present invention are employed to the spatial parameter encoder 240 and the spatial parameter decoder 260 of the SAC system illustrated in FIG. 2 , so that a bit rate required to transmit the CLD quantization indexes can be reduced.
  • the present invention can be provided as a computer program stored on at least one computer-readable medium in the form of at least one product such as a floppy disk, hard disk, CD ROM, flash memory card, PROM, RAM, ROM, or magnetic tape.
  • the computer program can be written in any programming language such as C, C++, or JAVA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Claims (26)

  1. Kanal-Pegeldifferenz (Channel Level Difference, CLD)-Quantisierungsverfahren zum Quantisieren eines CLD-Parameters, der als ein Raumparameter verwendet wird, wenn Codieren eines Audiosignals mit N-Kanälen (N>1) basierend auf Raumaudiocodierung (Spatial Audio Coding, SAC) durchgeführt wird, wobei das CLD-Quantisierungsverfahren die Schritte umfasst:
    Extrahieren von CLDs für jedes Teilband aus dem Audiosignal mit N-Kanälen; und
    Quantisieren der CLDs durch Bezugnahme auf eine CLD-Quantisierungstabelle, die auf Information bezüglich eines virtuellen Quellenortes (Virtual Source Location Information, VSLI) basiert, welche unter Verwendung von CLD-Quantisierungswerten aufgebaut wird, die von VSLI-Quantisierungswerten des Audiosignals mit N-Kanälen abgeleitet werden,
    wobei die CLD-Quantisierungswerte definiert werden als CLD = 20 log 10 tan VSLI - A L A R - A L × 90
    Figure imgb0029
    oder CLD = 20 log e tan VSLI - A L A R - A L × 90
    Figure imgb0030
    wobei VSLI einen Azimuth-Winkel eines Raumaudiobildes des Audiosignals wiedergibt, und
    AL und AR jeweils die Winkel von linken und rechten Lautsprechern in einer Lautsprecherumgebung sind.
  2. CLD-Quantisierungsverfahren nach Anspruch 1, wobei der VSLI-Quantisierungswert in einem vorbestimmten Quantisierungsintervall innerhalb einer Spanne zwischen 0° und 90° quantisiert wird.
  3. CLD-Quantisierungsverfahren nach Anspruch 2, wobei das vorbestimmte Quantisierungsintervall 3° ist.
  4. CLD-Quantisierungsverfahren nach Anspruch 1, wobei die CLD-Quantisierungswerte von den VSLI-Quantisierungswerten gemäß der folgenden Gleichung abgeleitet werden: CLD = 20 log 10 tan VSLI - A L A R - A L × 90
    Figure imgb0031
  5. CLD-Quantisierungsvertahren nach Anspruch 1, wobei die CLD-Quantisierungswerte von den VSLI-Quantisierungswerten gemäß der folgenden Gleichung abgeleitet werden: CLD = 20 log e tan VSLI - A L A R - A L × 90
    Figure imgb0032
  6. CLD-Quantisierungsverfahren nach Anspruch 1, wobei ein Entscheidungspegel für die CLD-Gluantisierung aus einem VSLI-Entscheidungspegel für VSLI-Quantisierung abgeleitet wird.
  7. CLD-Quantisierungsverfahren nach Anspruch 1, wobei die VSLI-basierte CLD-Quantisierungstabelle wie folgt ist: Index CLD Index CLD Dekadischer Logarithmus Natürlicher Logarithmus Dekadischer Logarithmus Natürlicher Logarithmus -15 -65,1 -150,0 1 0,9 2,0 -14 -25,6 -58,9 2 1,8 4,2 -13 -19,5 -45,0 3 2,7 6,3 -12 -16,0 -36,8 4 3,7 8,6 -11 -13,4 -30,9 5 4,7 10,9 -10 -11,4 -26,3 6 5,8 13,4 -9 -9,7 -22,4 7 7,0 16,1 -8 -8,3 -19,1 8 8,3 19,1 -7 -7,0 -16,1 9 9,7 22,4 -6 -5,8 -13,4 10 11,4 26,3 -5 -4,7 -10,9 11 13,4 30,9 -4 -3,7 -8,6 12 16,0 36,8 -3 -2,7 -6,3 13 19,5 45,0 -2 -1,8 -4,2 14 25,6 58,9 -1 -0,9 -2,0 15 65,1 150,0 0 0,0 0,0
  8. CLD-Quantisierungsverfahren nach Anspruch 7, wobei die VSLI-basierte CLD-Quantisierungstabelle wie folgt auf die CLD-Quantisierungsentscheidungspegel bezogen ist:
    Figure imgb0033
  9. CLD-Quantisierungsverfahren nach Anspruch 1, ferner umfassend den Schritt des Durchführens von Huffman-Codierung auf Quantisierungsindizes der CLD.
  10. CLD-Quantisierungsverfahren nach Anspruch 9, wobei die Huffman-Codierung auf einem Quantisierungsindex eines ersten Teilbandes durch Bezugnahme auf ein Huffmann-Codebuch, welches wie folgt ist, durchgeführt wird: Index Anzahl Bits Codewort (hexadezimal) Index Anzahl Bits Codewort (hexadezimal) 0 5 0x17 16 5 0x1d 1 8 0x64 17 5 0x19 2 8 0x65 18 5 0x1c 3 8 0xf0 19 5 0x16 4 8 0xf1 20 5 0x18 5 7 0x33 21 5 0x14 6 7 0x79 22 5 0x13 7 6 0x18 23 5 0x15 8 6 0x22 24 5 0x1b 9 6 0x23 25 5 0x10 10 6 0x3d 26 5 0x0e 11 5 0x0b 27 5 0x0f 12 5 0x12 28 5 0x0d 13 5 0x1a 29 5 0x0a 14 4 0x04 30 2 0x00 15 5 0x1f
  11. CLD-Quantisierungsverfahren nach Anspruch 10, wobei die Huffman-Codierung auf Quantisierungsindizes der verbleibenden Teilbänder, die andere als das erste Teilband sind, durch Bezugnahme auf ein Huffman-Codebuch, welches wie folgt ist, durchgeführt wird: Index Anzahl Bits Codewort (hexadezimal) Index Anzahl Bits Codewort (hexadezimal) 0 2 0x00003 16 10 0x00206 1 2 0x00001 17 10 0x00006 2 3 0x00005 18 11 0x0040e 3 3 0x00001 19 11 0x0000e 4 4 0x00009 20 12 0x0081f 5 4 0x00001 21 12 0x0001f 6 5 0x00011 22 13 0x0103c 7 5 0x00001 23 13 0x0003d 8 6 0x00021 24 14 0x0207a 9 6 0x00001 25 14 0x00079 10 7 0x00041 26 14 0x00078 11 7 0x00001 27 15 0x040f6 12 8 0x00080 28 16 0x081ef 13 8 0x00000 29 17 0x103dd 14 9 0x00102 30 17 0x103dc 15 9 0x00002
  12. Computerlesbares Aufzeichnungsmedium, auf welchem ein Computerprogramm zum Durchführen des CLD-Quantisierungsverfahren gemäß einem der Ansprüche 1 bis 11 aufgezeichnet ist.
  13. Verfahren zum Codieren eines Audiosignals mit N-Kanälen (N>1) basierend auf Raumaudiocodierung (Spatial Audio Coding, SAC), wobei das Verfahren die Schritte umfasst:
    Heruntermischen und Codieren des Audiosignals mit N-Kanälen;
    Extrahieren von Raumparametern, die Kanal-Pegeldifferenz (Channel Level Difference, CLD), Interkanal-Korrelation/Kohärenz (Inter-channel Correlation/Coherence, ICC) und Kanal-Vorhersage-Koeffizient (Channel Prediction Coefficient, CPC) einschließen, für jedes Teilband aus dem Audiosignal mit N-Kanälen; und
    Quantisieren der extrahierten Raumparameter unter Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 11.
  14. Vorrichtung zum Codieren eines Audiosignals mit N-Kanälen (N>1) basierend auf Raumaudiocodierung (Spatial Audio Coding, SAC), wobei die Vorrichtung umfasst:
    ein SAC-Codierungsmittel zum Heruntermischen des Audiosignals mit N-Kanälen, um ein heruntergemischtes Signal zu erzeugen, und Extrahieren von Raumparametern, die Kanal-Pegeldifferenz (Channel Level Difference, CLD), Interkanal-Korrelation/Kohärenz (Inter-channel Correlation/Coherence, ICC) und Kanal-Vorhersage-Koeffizient (Channel Prediction Coefficient, CPC) einschießen, für jedes Teilband aus dem Audiosignal mit N-Kanälen;
    ein Audiocodierungsmittel zum Erzeugen einer komprimierten Audiobitfolge aus dem heruntergemischten Signal, welches durch das SAC-Codierungsmittel erzeugt ist;
    ein Raumparameter-Quantisierungsmittel zum Quantisieren der Raumparameter, die durch das SAC-Codierungsmittel extrahiert sind; und
    ein Raumparameter-Codierungsmittel zum Codieren der quantisierten Raumparameter,
    wobei das Raumparameter-Quantisierungsmittel die CLD durch Bezugnahme auf eine CLD-Quantisierungstabelle, die auf Information bezüglich eines virtuellen Quellenortes (Virtual Source Location Information, VSLI) basiert, quantisiert, welche unter Verwendung von CLD-Quantisierungswerten aufgebaut ist, die aus VSLI-Quantisierungswerten des Audiosignals mit N-Kanälen abgeleitet sind,
    wobei die CLD-Quantisierungswerte definiert sind als CLD = 20 log 10 tan VSLI - A L A R - A L × 90
    Figure imgb0034

    oder CLD = 20 log e tan VSLI - A L A R - A L × 90
    Figure imgb0035
    wobei VSLI einen Azimuth-Winkel eines Raumaudiobildes des Audiosignals wiedergibt, und
    AL und AR jeweils die Winkel von rechten und linken Lautsprechern in einer Lautsprecherumgebung sind.
  15. Vorrichtung nach Anspruch 14, wobei die VSLI-basierte CLD-Quantisierungstabelle wie folgt ist: Index CLD Index CLD Dekadischer Logarithmus Natürlicher Logarithmus Dekadischer Logarithmus Natürlicher Logarithmus -15 -65,1 -150,0 1 0,9 2,0 -14 -25,6 -58,9 2 1,8 4,2 -13 -19,5 -45,0 3 2,7 6,3 -12 -16,0 -36,8 4 3,7 8,6 -11 -13,4 -30,9 5 4,7 10,9 -10 -11,4 -26,3 6 5,8 13,4 -9 -9,7 -22,4 7 7,0 16,1 -8 -8,3 -19,1 8 8,3 19,1 -7 -7,0 -16,1 9 9,7 22,4 -6 -5,8 -13,4 10 11,4 26,3 -5 -4,7 -10,9 11 13,4 30,9 -4 -3,7 -8,6 12 16,0 36,8 -3 -2,7 -6,3 13 19,5 45,0 -2 -1,8 -4,2 14 25,6 58,9 -1 -0,9 -2,0 15 65,1 150,0 0 0,0 0,0
  16. Vorrichtung nach Anspruch 15, wobei die VSLI-basierte CLD-Quantisierungstabelle wie folgt auf CLD-Quantisierungsentscheidungspegel bezogen ist:
    Figure imgb0036
  17. Verfahren zum Dequantisieren eines codierten Kanal-Pegeldifferenz (CLD)-Quantisierungswertes, wenn eine Bitfolge von Audio mit N-Kanälen (N>1) basierend auf Raumaudiocodierung (Spatial Audio Coding, SAC) decodiert wird, wobei das Verfahren die Schritte umfasst:
    Durchführen von Huffman-Decodierung auf dem codierten CLD-Quantisierungswert; und
    Dequantisieren des decodierten CLD-Quantisierungswertes mittels einer CLD-Quantisierungstabelle, die auf Information bezüglich eines virtuellen Quellenortes (Virtual Source Location Information, VSLI) basiert, welche unter Verwendung von CLD-Quantisierungswerten aufgebaut wird, die von VSLI-Quantisierungswerten des Audiosignals mit N-Kanälen abgeleitet werden,
    wobei die CLD-Quantisierungswerte definiert sind als CLD = 20 log 10 tan VSLI - A L A R - A L × 90
    Figure imgb0037

    oder CLD = 20 log e tan VSLI - A L A R - A L × 90
    Figure imgb0038
    wobei VSLI einen Azimuth-Winkel eines Raumaudiobildes des Audiosignals wiedergibt, und
    AL und AR jeweils die Winkel von linken und rechten Lautsprechern in einer Lautsprecherumgebung sind.
  18. Verfahren nach Anspruch 17, wobei die VSLI-basierte CLD-Quantisierungstabelle wie folgt ist: Index CLD Index CLD Dekadischer Logarithmus Natürlicher Logarithmus Dekadischer Logarithmus Natürlicher Logarithmus -15 -65,1 -150,0 1 0,9 2,0 -14 -25,6 -58,9 2 1,8 4,2 -13 -19,5 -45,0 3 2,7 6,3 -12 -16,0 -36,8 4 3,7 8,6 -11 -13,4 -30,9 5 4,7 10,9 -10 -11,4 -26,3 6 5,8 13,4 -9 -9,7 -22,4 7 7,0 16,1 -8 -8,3 -19,1 8 8,3 19,1 -7 -7,0 -16,1 9 9,7 22,4 -6 -5,8 -13,4 10 11,4 26,3 -5 -4,7 -10,9 11 13,4 30,9 -4 -3,7 -8,6 12 16,0 36,8 -3 -2,7 -6,3 13 19,5 45,0 -2 -1,8 -4,2 14 25,6 58,9 -1 -0,9 -2,0 15 65,1 150,0 0 0,0 0,0
  19. Verfahren nach Anspruch 17, wobei die VSLI-basierte CLD-Quantisierungstabelle wie folgt auf CLD-Quantisierungsentscheidungspegel bezogen ist:
    Figure imgb0039
  20. Verfahren nach Anspruch 17, wobei im Schritt des Durchführens von Huffman-Decodierung auf dem codierten CLD-Quantisierungswert der CLD-Quantisierungswert eines ersten Teilbandes durch Bezugnahme auf ein Huffman-Codebuch, welches wie folgt ist, decodiert wird: Index Anzahl Bits Codewort (hexadezimal) Index Anzahl Bits Codewort (hexadezimal) 0 5 0x17 16 5 0x1d 1 8 0x64 17 5 0x19 2 8 0x65 18 5 0x1c 3 8 0xf0 19 5 0x16 4 8 0xf1 20 5 0x18 5 7 0x33 21 5 0x14 6 7 0x79 22 5 0x13 7 6 0x18 23 5 0x15 8 6 0x22 24 5 0x1b 9 6 0x23 25 5 0x10 10 6 0x3d 26 5 0x0e 11 5 0x0b 27 5 0x0f 12 5 0x12 28 5 0x0d 13 5 0x1a 29 5 0x0a 14 4 0x04 30 2 0x00 15 5 0x1f
  21. Verfahren nach Anspruch 20, wobei die Huffman-Codierung auf Quantisierungsindizes der verbleibenden Teilbänder, die andere als das erste Teilband sind, durch Bezugnahme auf ein Huffman-Codebuch, welches wie folgt ist, durchgeführt wird: Index Anzahl Bits Codewort (hexadezimal) Index Anzahl Bits Codewort (hexadezimal) 0 2 0x00003 16 10 0x00206 1 2 0x00001 17 10 0x00006 2 3 0x00005 18 11 0x0040e 3 3 0x00001 19 11 0x0000e 4 4 0x00009 20 12 0x0081f 5 4 0x00001 21 12 0x0001f 6 5 0x00011 22 13 0x0103c 7 5 0x00001 23 13 0x0003d 8 6 0x00021 24 14 0x0207a 9 6 0x00001 25 14 0x00079 10 7 0x00041 26 14 0x00078 11 7 0x00001 27 15 0x040f6 12 8 0x00080 28 16 0x081ef 13 8 0x00000 29 17 0x103dd 14 9 0x00102 30 17 0x103dc 15 9 0x00002
  22. Computerlesbares Aufzeichnungsmedium, auf welchem ein Computerprogramm zum Durchführen des CLD-Dequantisierungsverfahrens nach einem der Ansprüche 17 bis 21 aufgezeichnet ist.
  23. Verfahren zum Decodieren einer codierten Bitfolge von Audio mit N-Kanälen (N>1) basierend auf Raumaudiocodierung (Spatial Audio Coding, SAC), wobei das Verfahren die Schritte umfasst:
    Decodieren der Bitfolge von Audio mit N-Kanälen;
    Dequantisieren von Quantisierungswerten von wenigstens einem Raumparameter, der zusammen mit der codierten Bitfolge von Audio mit N-Kanälen empfangen wird, unter Verwendung des Verfahrens nach einem der Ansprüche 17 bis 21; und
    Synthetisieren der decodierten Bitfolge von Audio mit N-Kanälen basierend auf dem dequantisierten Raumparameter, um ein Audiosignal mit N-Kanälen wiederherzustellen.
  24. Vorrichtung zum Decodieren einer Bitfolge von Audio mit N-Kanälen (N>1) basierend auf Raumaudiocodierung (Spatial Audio Coding, SAC), wobei die Vorrichtung umfasst:
    Mittel zum Decodieren der codierten Bitfolge von Audio mit N-Kanälen;
    Mittel zum Decodieren von Quantisierungswerten von wenigstens einem Raumparameter, der zusammen mit der codierten Bitfolge von Audio mit N-Kanälen empfangen ist;
    Mittel zum Dequantisieren der Quantisierungswerte des Raumparameters; und
    zum Synthetisieren der decodierten Bitfolge von Audio mit N-Kanälen basierend auf dem dequantisierten Raumparameter, um ein Audiosignal mit N-Kanälen wiederherzustellen,
    wobei das Mittel zum Dequantisieren des Quantisierungswertes von dem Raumparameter einen CLD, der in dem Raumparameter enthalten ist, durch Bezugnahme auf eine CLD-Quantisierungstabelle, die auf Information bezüglich eines virtuellen Quellenortes (Virtual Source Location Information, VSLI) basiert, dequantisiert, welche unter Verwendung von CLD-Quantisierungswerten aufgebaut ist, die von VSLI-Quantisierungswerten des Audiosignals mit N-Kanälen abgeleitet sind,
    wobei die CLD-Quantisierungswerte definiert sind als CLD = 20 log 10 tan VSLI - A L A R - A L × 90
    Figure imgb0040

    oder CLD = 20 log e tan VSLI - A L A R - A L × 90
    Figure imgb0041
    wobei VSLI einen Azimuth-Winkel eines Raumaudiobildes des Audiosignals wiedergibt, und
    AL und AR jeweils die Winkel von linken und rechten Lautsprechern in einer Lautsprecherumgebung sind.
  25. Vorrichtung nach Anspruch 24, wobei die VSLI-basierte CLD-Quantisierungstabelle wie folgt ist: Index CLD Index CLD Dekadischer Logarithmus Natürlicher Logarithmus Dekadischer Logarithmus Natürlicher Logarithmus -15 -65,1 -150,0 1 0,9 2,0 -14 -25,6 -58,9 2 1,8 4,2 -13 -19,5 -45,0 3 2,7 6,3 -12 -16,0 -36,8 4 3,7 8,6 -11 -13,4 -30,9 5 4,7 10,9 -10 -11,4 -26,3 6 5,8 13,4 -9 -9,7 -22,4 7 7,0 16,1 -8 -8,3 -19,1 8 8,3 19,1 -7 -7,0 -16,1 9 9,7 22,4 -6 -5,8 -13,4 10 11,4 26,3 -5 -4,7 -10,9 11 13,4 30,9 -4 -3,7 -8,6 12 16,0 36,8 -3 -2,7 -6,3 13 19,5 45,0 -2 -1,8 -4,2 14 25,6 58,9 -1 -0,9 -2,0 15 65,1 150,0 0 0,0 0,0
  26. Vorrichtung nach Anspruch 25, wobei die VSLI-basierte CLD-Quantisierungstabelle wie folgt auf CLD-Quantisierungsentscheidungspegel bezogen ist:
    Figure imgb0042
EP06783342A 2005-07-19 2006-07-19 Auf virtuellen quellenpositionsinformationen basierte quantisierung und dequantisierung von kanalniveauunterschieden Not-in-force EP1905034B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20050065515 2005-07-19
KR20050096256 2005-10-12
KR1020060066822A KR100755471B1 (ko) 2005-07-19 2006-07-18 가상음원위치정보에 기반한 채널간 크기 차이 양자화 및역양자화 방법
PCT/KR2006/002824 WO2007011157A1 (en) 2005-07-19 2006-07-19 Virtual source location information based channel level difference quantization and dequantization method

Publications (3)

Publication Number Publication Date
EP1905034A1 EP1905034A1 (de) 2008-04-02
EP1905034A4 EP1905034A4 (de) 2009-11-25
EP1905034B1 true EP1905034B1 (de) 2011-06-01

Family

ID=37669008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06783342A Not-in-force EP1905034B1 (de) 2005-07-19 2006-07-19 Auf virtuellen quellenpositionsinformationen basierte quantisierung und dequantisierung von kanalniveauunterschieden

Country Status (2)

Country Link
EP (1) EP1905034B1 (de)
WO (1) WO2007011157A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098458B2 (ja) * 2007-06-20 2012-12-12 カシオ計算機株式会社 音声符号化装置、音声符号化方法、及び、プログラム
KR101613975B1 (ko) 2009-08-18 2016-05-02 삼성전자주식회사 멀티 채널 오디오 신호의 부호화 방법 및 장치, 그 복호화 방법 및 장치
WO2011097903A1 (zh) 2010-02-11 2011-08-18 华为技术有限公司 多声道信号编码、解码方法、装置及编解码系统
CN102157151B (zh) 2010-02-11 2012-10-03 华为技术有限公司 一种多声道信号编码方法、解码方法、装置和系统
US9055371B2 (en) 2010-11-19 2015-06-09 Nokia Technologies Oy Controllable playback system offering hierarchical playback options
US9313599B2 (en) * 2010-11-19 2016-04-12 Nokia Technologies Oy Apparatus and method for multi-channel signal playback
US9456289B2 (en) 2010-11-19 2016-09-27 Nokia Technologies Oy Converting multi-microphone captured signals to shifted signals useful for binaural signal processing and use thereof
JP5775637B2 (ja) 2011-08-04 2015-09-09 ドルビー・インターナショナル・アーベー パラメトリック・ステレオを使った改善されたfmステレオ電波受信機
CN104335599A (zh) 2012-04-05 2015-02-04 诺基亚公司 柔性的空间音频捕捉设备
US10635383B2 (en) 2013-04-04 2020-04-28 Nokia Technologies Oy Visual audio processing apparatus
US9706324B2 (en) 2013-05-17 2017-07-11 Nokia Technologies Oy Spatial object oriented audio apparatus
GB2575632A (en) * 2018-07-16 2020-01-22 Nokia Technologies Oy Sparse quantization of spatial audio parameters
GB2593672A (en) * 2020-03-23 2021-10-06 Nokia Technologies Oy Switching between audio instances

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016473A (en) * 1998-04-07 2000-01-18 Dolby; Ray M. Low bit-rate spatial coding method and system
US20030035553A1 (en) * 2001-08-10 2003-02-20 Frank Baumgarte Backwards-compatible perceptual coding of spatial cues
ES2323294T3 (es) * 2002-04-22 2009-07-10 Koninklijke Philips Electronics N.V. Dispositivo de decodificacion con una unidad de decorrelacion.
JP4212591B2 (ja) * 2003-06-30 2009-01-21 富士通株式会社 オーディオ符号化装置

Also Published As

Publication number Publication date
EP1905034A1 (de) 2008-04-02
EP1905034A4 (de) 2009-11-25
WO2007011157A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
EP1905034B1 (de) Auf virtuellen quellenpositionsinformationen basierte quantisierung und dequantisierung von kanalniveauunterschieden
US11727944B2 (en) Apparatus and method for stereo filling in multichannel coding
KR100755471B1 (ko) 가상음원위치정보에 기반한 채널간 크기 차이 양자화 및역양자화 방법
US11955131B2 (en) Apparatus and method for encoding or decoding a multi-channel signal
KR101976757B1 (ko) 포스트 다운믹스 신호를 지원하는 다객체 오디오 부호화 장치 및 복호화 장치
US7627480B2 (en) Support of a multichannel audio extension
US7620554B2 (en) Multichannel audio extension
KR101428487B1 (ko) 멀티 채널 부호화 및 복호화 방법 및 장치
USRE46082E1 (en) Method and apparatus for low bit rate encoding and decoding
US8515770B2 (en) Method and apparatus for encoding and decoding excitation patterns from which the masking levels for an audio signal encoding and decoding are determined
US20080252510A1 (en) Method and Apparatus for Encoding/Decoding Multi-Channel Audio Signal
EP2270774B1 (de) Verlustloser mehrkanaliger Audio-codec
KR20070098930A (ko) 근접-투명 또는 투명 멀티-채널 인코더/디코더 구성
JP3487250B2 (ja) 符号化音声信号形式変換装置
KR20070035410A (ko) 멀티 채널 오디오 신호의 공간 정보 부호화/복호화 방법 및장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20091026

17Q First examination report despatched

Effective date: 20100108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 19/00 20060101AFI20101125BHEP

Ipc: G10L 19/02 20060101ALI20101125BHEP

RTI1 Title (correction)

Free format text: VIRTUAL SOURCE LOCATION INFORMATION BASED CHANNEL LEVEL DIFFERENCE QUANTIZATION AND DEQUANTIZATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006022287

Country of ref document: DE

Effective date: 20110714

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110912

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110902

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

26N No opposition filed

Effective date: 20120302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006022287

Country of ref document: DE

Effective date: 20120302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R088

Ref document number: 602006022287

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160614

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006022287

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201