EP1904813A2 - Sensor unit for fluids - Google Patents

Sensor unit for fluids

Info

Publication number
EP1904813A2
EP1904813A2 EP06775703A EP06775703A EP1904813A2 EP 1904813 A2 EP1904813 A2 EP 1904813A2 EP 06775703 A EP06775703 A EP 06775703A EP 06775703 A EP06775703 A EP 06775703A EP 1904813 A2 EP1904813 A2 EP 1904813A2
Authority
EP
European Patent Office
Prior art keywords
sensor unit
sensor
fluid
unit
measuring probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06775703A
Other languages
German (de)
French (fr)
Inventor
Oliver Betz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
systec Controls Mess- und Regeltechnik GmbH
Original Assignee
systec Controls Mess- und Regeltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by systec Controls Mess- und Regeltechnik GmbH filed Critical systec Controls Mess- und Regeltechnik GmbH
Publication of EP1904813A2 publication Critical patent/EP1904813A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/46Pitot tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/50Correcting or compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter

Definitions

  • Hot-melt anemometers are known for measuring mass flow. In this
  • the gas flow is passed over a heated surface of the sensor.
  • the flowing gas cools the heated surface.
  • the value of this cooling is the starting point for the determination of the mass flow.
  • the static pressure, the differential pressure and the temperature must be known. According to the invention, these variables are detected by individual sensors which are located in an integrated unit and detected by the individual sensors
  • Values are then processed in an integrated processing unit.
  • the sensor unit outputs to a subsequent control unit from a value that already takes into account other parameters and / or physical constants.
  • part of the computing power is advantageously done in the sensor unit and relieves the control unit.
  • it is contemplated to integrate a further sensor, which allows an analysis of Fluidzusaminen Anlagen. This makes it possible, e.g. Determine pollutant loads of engine exhaust.
  • Advantageous Effects The listed measured variables are required, for example, for the optimized control of an internal combustion engine.
  • the optimized control of an internal combustion engine In particular, in this application, the
  • Figure 2 shows the sensor unit in the bottom view
  • the sensor unit 1 has a measuring probe 2, which comes into contact with the fluid and a housing part 3, which is located outside of the fluid.
  • the housing part 3 are the individual not visible here sensors and the computing unit.
  • the sensor unit 1 is provided to be attached directly to a fluid-carrying line. Through an opening in the fluid-carrying line, the probe 2 can protrude into the fluid flow.
  • a seal 5 is provided, which seals the opening.
  • the measuring probe 2 is at least partially designed as a dynamic pressure probe 4.
  • Fluid has a direction of flow according to the arrow S.
  • a storage area 6 is formed by a storage area 6 depending on the flow
  • Pressure difference at two measuring openings. 2 is a view from below of the sensor unit 1. In this illustration, one recognizes the two measuring openings 7a and 7b of the dynamic pressure probe. At the lower end of the storage area 6 there is a further measuring opening 8 for detecting the static pressure. The measuring opening 8 is arranged so that the fluid flows laminar past her.
  • a temperature sensor 9 Also in the measuring mode 2 is a temperature sensor 9.
  • Temperature sensor is located near the surface in the measuring mode 2, whereby it can quickly detect changes in temperature of the fluid.
  • the temperature sensor 9 is located in the storage area. This storage area consists of relatively little material and therefore follows promptly the temperature changes of the fluid.
  • the temperature sensor 9 is arranged at a position at which the fluid flows past laminar. In this way, it is avoided that particles transported in the fluid outside of the measuring probe 2 form an insulating layer, which falsifies the temperature measurement.
  • the mass flow of a fluid can be determined.
  • the housing of the sensor unit completely or at least partially in the region of the measuring probe 2 with a surface which has a so-called nanostructure.
  • This nanostructure ensures that particles transported in the fluid can not permanently settle on the surface of the measuring probe.
  • FIG. 3 A particularly simple embodiment of the measuring probe with regard to the manufacturing outlay is shown in FIG. 3.
  • slots 10 are present in the probe. In the selected representation, only one of the slots is visible. These slots are each in the outer wall of the two channels leading to the differential pressure sensor in the housing part. The connecting wall between the two channels is unchanged and is used as a storage area.
  • the length of the slots results in a certain mean value function when the flow velocity of the fluid is different at different locations of the slot.
  • the one arithmetic unit and the sensors for the dynamic differential pressure and the sensor for the static pressure are housed protected.
  • To the arithmetic unit is also the temperature sensor 9 and / or the
  • Gas analysis sensor connected.
  • the arithmetic unit outputs a measured value which results from the individual values of the various sensors.
  • the arithmetic unit is designed to be flexible and can be adapted to different requirements of subsequent control units.
  • the invention is industrially applicable in many fields in which a long-term stability of the measured values is important.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The static pressure, the differential pressure, and the temperature must be known in order to be able to determine the mass flow rate, the volumetric flow under standard conditions, or the enthalpy flow of a fluid. According to the invention, said variables are detected by individual sensors located in an integrated unit, and the values detected by the individual sensors are then processed in an arithmetic unit that is also integrated. Said sensor unit outputs a value which also takes other parameters and/or physical constants into account to a control unit that is connected downstream, whereby some of the computing is advantageously done in the sensor unit while some load is relieved from the control unit.

Description

Beschreibungdescription
Sensoreinheit für Fluide Technisches GebietSensor unit for fluids Technical area
[0001] Die Erfindung betrifft das technische Gebiet der Messung von Massenstrom oderThe invention relates to the technical field of measuring mass flow or
Normvolumenstrom und/oder Wärmefracht und/oder Schadstofffracht einesStandard volume flow and / or heat load and / or pollutant load of a
Fluids.Fluid.
Stand der Technik [0002] Zur Messung des Massenstroms sind Heißfilm-Anemometer bekannt. Bei diesemBackground Art Hot-melt anemometers are known for measuring mass flow. In this
Typ von Sensor wird der Gasstrom über eine beheizte Fläche des Sensors geleitet.Type of sensor, the gas flow is passed over a heated surface of the sensor.
Durch das strömende Gas erfolgt eine Abkühlung der beheizten Fläche. Der Wert dieser Abkühlung ist die Ausgangsbasis für die Ermittlung des Massenstroms. [0003] Durch das Gas werden oftmals auch Partikel oder Kondensate befördert, die zuThe flowing gas cools the heated surface. The value of this cooling is the starting point for the determination of the mass flow. By the gas particles or condensates are often transported to the
Ablagerungen auf den beheizten Flächen führen, wodurch nachteilig während derDeposits on the heated surfaces, thereby adversely affecting the
Einsatzdauer ein Drift der Messwerte entsteht. Offenbarung der Erfindung Technische Aufgabe [0004] Es ist Aufgabe der Erfindung einen Sensor zur Messung des Massenstroms zu schaffen, bei dem Partikel oder Kondensate im Fluid keinen Drift der Messwerte verursachen. Technische Lösung [0005] Die Überlegungen, die zur Entstehung der vorliegenden Erfindung führten gingen davon aus, dass bei einem Sensor, der keine Flächen aufweist, an welchen dasDuration of use a drift of the measured values arises. DISCLOSURE OF THE INVENTION Technical Problem It is an object of the invention to provide a sensor for measuring the mass flow, in which particles or condensates in the fluid do not cause a drift of the measured values. Technical Solution The considerations which led to the development of the present invention assumed that in the case of a sensor which has no surfaces to which the
Fluid und die rnitgeführten Partikel vorbeiströmen prinzipiell keine Ablagerungen entstehen können. [0006] Die Erfindung basiert auf dem Prinzip der Staudrucksondenmessung, bei welcher in Abhängigkeit von der Geschwindigkeit und der Dichte des Fluids ein reproduzierbarer Differenzdruck entsteht. [0007] Um den Massenstrom, den Normvolumenstrom oder den Enthalpiestrom einesIn principle, fluid and the conducted particles flow past no deposits. The invention is based on the principle of the dynamic pressure probe measurement, in which, depending on the speed and the density of the fluid, a reproducible differential pressure. To the mass flow, the standard volume flow or the enthalpy of a
Fluids ermitteln zu können, müssen der statische Druck, der Differenzdruck und die Temperatur bekannt sein. [0008] Erfindungsgemäß werden diese Größen durch einzelne Sensoren, die sich in einer integrierten Einheit befinden erfasst und die von den einzelnen Sensoren erfasstenTo be able to determine fluids, the static pressure, the differential pressure and the temperature must be known. According to the invention, these variables are detected by individual sensors which are located in an integrated unit and detected by the individual sensors
Werte werden anschließend in einer ebenfalls integrierten Recheneinheit verarbeitet. [0009] Die Sensoreinheit gibt an eine nachfolgende Regeleinheit einen Wert ab, der auch schon andere Parameter und/oder physikalische Konstanten berücksichtigt.Values are then processed in an integrated processing unit. The sensor unit outputs to a subsequent control unit from a value that already takes into account other parameters and / or physical constants.
Hierdurch wird vorteilhaft ein Teil der Rechenleistung in der Sensoreinheit erledigt und die Regeleinheit entlastet. [0010] In einer Weiterbildung der Erfindung ist es vorgesehen, einen weiteren Sensor zu integrieren, der eine Analyse der Fluidzusaminensetzung ermöglicht. Hierdurch ist es möglich, z.B. Schadstofffrachten von Motorabgasen zu ermitteln. Vorteilhafte Wirkungen [0011] Die aufgeführten Messgrößen werden beispielsweise zur optimierten Steuerung eines Verbrennungsmotors benötigt. Da insbesondere bei dieser Anwendung dasAs a result, part of the computing power is advantageously done in the sensor unit and relieves the control unit. In one embodiment of the invention, it is contemplated to integrate a further sensor, which allows an analysis of Fluidzusaminensetzung. This makes it possible, e.g. Determine pollutant loads of engine exhaust. Advantageous Effects The listed measured variables are required, for example, for the optimized control of an internal combustion engine. In particular, in this application, the
„driften" von Messwerten sehr nachteilige Auswirkungen hat, überwindet die vorliegende Erfindung vorteilhaft die Nachteile des Standes der Technik. [0012] Die Integration aller Sensoren und der Recheneinheit hat den Vorteil einer kompakten, an vielen Orten und vielen Einsatzzwecken einsetzbaren"Drifting" of measured values has very disadvantageous effects, the present invention advantageously overcomes the disadvantages of the prior art The integration of all sensors and the computing unit has the advantage of a compact, usable in many places and many applications
Sensoreinheit mit einer Langzeitstabilität der Messwerte. Kurze Beschreibung der Zeichnungen [0013] Es zeigen dieSensor unit with a long-term stability of the measured values. BRIEF DESCRIPTION OF THE DRAWINGS [0013] FIG
Figur 1 in perspektivischer Darstellung die Sensoreinheit, dieFigure 1 in perspective view of the sensor unit, the
Figur 2 die Sensoreinheit in der Ansicht von unten und dieFigure 2 shows the sensor unit in the bottom view and the
Figur 3 in eine weitere Ausfuhrungsform der Sensoreinheit. [0014] Die Sensoreinheit 1 hat eine Messsonde2, das mit dem Fluid in Berührung kommt und einen Gehäuseteil 3, das sich außerhalb des Fluids befindet. [0015] Im Gehäuseteil 3 befinden sich die einzelnen hier nicht sichtbaren Sensoren und die Recheneinheit. [0016] Die Sensoreinheit 1 ist vorgesehen direkt an eine fluidführende Leitung angebracht zu werden. Durch eine Öffnung in der fluidführenden Leitung kann die Messsonde 2 in den Fluidstrom ragen. An der Unterseite des Gehäuseteils 3 ist eine Dichtung 5 vorgesehen, welche die Öffnung abdichtet. [0017] Die Messsonde 2 ist zumindest teilweise als Staudrucksonde 4 ausgestaltet. DasFigure 3 in a further embodiment of the sensor unit. The sensor unit 1 has a measuring probe 2, which comes into contact with the fluid and a housing part 3, which is located outside of the fluid. In the housing part 3 are the individual not visible here sensors and the computing unit. The sensor unit 1 is provided to be attached directly to a fluid-carrying line. Through an opening in the fluid-carrying line, the probe 2 can protrude into the fluid flow. On the underside of the housing part 3, a seal 5 is provided, which seals the opening. The measuring probe 2 is at least partially designed as a dynamic pressure probe 4. The
Fluid hat eine Strömungsrichtung gemäß des Pfeiles S. In bekannter Weise entsteht durch einen Staubereich 6 ein von der Strömung abhängigerFluid has a direction of flow according to the arrow S. In a known manner is formed by a storage area 6 depending on the flow
Druckunterschied an zwei Messöffnungen. [0018] Die Figur 2 ist eine Sicht von unten auf die Sensoreinheit 1. In dieser Darstellung erkennt man die beiden Messöffnungen 7a und 7b der Staudrucksonde. [0019] Am unteren Ende des Staubereiches 6 befindet sich eine weitere Messöffnung 8 zum Erfassen des statischen Druckes. Die Messöffnung 8 ist so angeordnet, dass das Fluid laminar an ihr vorbeiströmt.Pressure difference at two measuring openings. 2 is a view from below of the sensor unit 1. In this illustration, one recognizes the two measuring openings 7a and 7b of the dynamic pressure probe. At the lower end of the storage area 6 there is a further measuring opening 8 for detecting the static pressure. The measuring opening 8 is arranged so that the fluid flows laminar past her.
[0020] Ebenfalls in der Messsode 2 befindet sich ein Temperatursensor 9. DerAlso in the measuring mode 2 is a temperature sensor 9. Der
Temperatursensor ist oberflächennah in der Messsode 2 angeordnet, wodurch er schnell Temperaturänderungen des Fluids erfassen kann. Im gezeigten Beispiel befindet sich der Temperatursensor 9 in der Staufläche. Diese Staufläche besteht aus relativ wenig Material und folgt daher zeitnah den Temperaturänderungen des Fluids.Temperature sensor is located near the surface in the measuring mode 2, whereby it can quickly detect changes in temperature of the fluid. In the example shown, the temperature sensor 9 is located in the storage area. This storage area consists of relatively little material and therefore follows promptly the temperature changes of the fluid.
[0021] Bevorzugt ist der Temperatursensor 9 an einer Stelle angeordnet, an welcher das Fluid laminar vorbeiströmt. Hierdurch ist es vermieden, dass im Fluid transportierte Partikel außen auf der Messsonde 2 eine isolierende Schicht bilden, die den Temperaturmesswert verfälscht.Preferably, the temperature sensor 9 is arranged at a position at which the fluid flows past laminar. In this way, it is avoided that particles transported in the fluid outside of the measuring probe 2 form an insulating layer, which falsifies the temperature measurement.
[0022] Mit den drei Messgrößen statischer Druck, dynamischer Differenzdruck und Temperatur lässt sich der Massenstrom eines Fluids bestimmen.With the three measured variables static pressure, dynamic differential pressure and temperature, the mass flow of a fluid can be determined.
[0023] Vorteilhaft ist es das Gehäuse der Sensoreinheit ganz oder zumindest teilweise im Bereich der Messsonde 2 mit einer Oberfläche zu versehen, die eine sogenannten Nanostruktur aufweist.It is advantageous to provide the housing of the sensor unit completely or at least partially in the region of the measuring probe 2 with a surface which has a so-called nanostructure.
[0024] Durch diese Nanostruktur wird erreicht, dass im Fluid transportierte Partikel sich nicht dauerhaft auf der Oberfläche der Messsonde festsetzen können.This nanostructure ensures that particles transported in the fluid can not permanently settle on the surface of the measuring probe.
[0025] Eine hinsichtlich des Fertigungsaufwandes besonders einfache Ausführungsform der Messsonde zeigt die Figur 3.A particularly simple embodiment of the measuring probe with regard to the manufacturing outlay is shown in FIG. 3.
[0026] Hier sind in der Messsonde Schlitze 10 vorhanden. In der gewählten Darstellung ist nur einer der Schlitze zu sehen. Diese Schlitze sind jeweils in der Außenwand der beiden Kanälen, die zum Differenzdrucksensor im Gehäuseteil führen. Die Verbindungswand zwischen den beiden Kanälen ist unverändert und findet als Staufläche Verwendung.Here, slots 10 are present in the probe. In the selected representation, only one of the slots is visible. These slots are each in the outer wall of the two channels leading to the differential pressure sensor in the housing part. The connecting wall between the two channels is unchanged and is used as a storage area.
[0027] Durch die Länge der Schlitze ergibt sich eine gewisse Mittelwertfunktion wenn die Fließgeschwindigkeit des Fluids an verschiedenen Stellen des Schlitzes unterschiedlich ist.The length of the slots results in a certain mean value function when the flow velocity of the fluid is different at different locations of the slot.
[0028] Durch die Integration eines zusätzlichen, hier nicht gezeigten Gasanalysesensors lässt sich auch die Schadstoff- oder Kondensatfracht des Fluids bestimmen. Dieser Gasanalysesensor benötigt prinzipbedingt Kontakt zum strömenden Fluid. [0029] Auch wenn dieser Gasanalysesensor einen Drift der Messwerte unterliegt, so ist durch die erfinderische Ausgestaltung der übrigen Sensoren vorteilhaft erreicht, dass nicht alle Sensoren einem Drift unterliegen. Diese Kombination ist in jedem Fall auch neu.By integrating an additional, not shown here Gasanalysensensors also the pollutant or Kondensatfracht of the fluid can be determined. As a matter of principle, this gas analysis sensor requires contact with the flowing fluid. Even if this gas analysis sensor is subject to a drift of the measured values, it is advantageously achieved by the inventive design of the other sensors that not all sensors are subject to drift. This combination is new in any case.
[0030] Im Gehäuseteil 3 sind die eine Recheneinheit und die Sensoren für den dynamischen Differenzdruck und der Sensor für den statischen Druck geschützt untergebracht.In the housing part 3, the one arithmetic unit and the sensors for the dynamic differential pressure and the sensor for the static pressure are housed protected.
[0031] An die Recheneinheit ist auch der Temperatursensor 9 und/oder derTo the arithmetic unit is also the temperature sensor 9 and / or the
Gasanalysesensor angeschlossen. Von der Recheneinheit wird ein Messwert abgegeben, der sich aus den einzelnen Werten der verschiedenen Sensoren ergibt.Gas analysis sensor connected. The arithmetic unit outputs a measured value which results from the individual values of the various sensors.
[0032] Die Recheneinheit ist flexibel gestaltet und lässt sich an unterschiedliche Anforderungen von nachfolgenden Regeleinheiten anpassen.The arithmetic unit is designed to be flexible and can be adapted to different requirements of subsequent control units.
Gewerbliche AnwendbarkeitIndustrial Applicability
[0033] Die Erfindung ist gewerblich in vielen Bereichen anwendbar, in denen eine Langzeitstabilität der Messwerte von Bedeutung ist. The invention is industrially applicable in many fields in which a long-term stability of the measured values is important.

Claims

Ansprüche claims
1. Sensoreinheit für Fluide, bestehend aus einer Messsonde, welche mit dem Fluid in Kontakt steht und einem Gehäuseteil, in welchem Sensoren angeordnet sind dadurch gekennzeichnet, dass in der Messsonde Kanäle (7a, 7b) für das Erfassen des dynamischen Differenzdrucks und ein Kanal (δ) für das Erfassen des statischen Drucks vorhanden sind und diese Kanäle (7a, 7b, 8) mit Sensoren im Gehäuseteil (3) der Sensoreinheit (1) verbunden sind.1. Sensor unit for fluids, consisting of a measuring probe, which is in contact with the fluid and a housing part, in which sensors are arranged, characterized in that in the measuring probe channels (7a, 7b) for detecting the dynamic differential pressure and a channel ( δ) are present for detecting the static pressure and these channels (7a, 7b, 8) are connected to sensors in the housing part (3) of the sensor unit (1).
2. Sensoreinheit nach Anspruch 1, dadurch gekennzeichnet, dass in der Messsonde (2) zusätzlich ein Temperatursensor (9) vorhanden ist.2. Sensor unit according to claim 1, characterized in that in the measuring probe (2) in addition a temperature sensor (9) is present.
3. Sensoreinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in der Messsonde (2) zusätzlich ein Gasanalyse Sensor vorhanden ist.3. Sensor unit according to claim 1 or 2, characterized in that in the measuring probe (2) in addition a gas analysis sensor is present.
4. Sensoreinheit nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dass bei beiden Kanälen (7a, 7b) die zum Differenzdrucksensor im Gehäuseteil führen in der Außenwand Schlitze (10a, 10b) angebracht sind und die zwischen den Kanälen (7a, 7b) verbleibende Wandung (11) als Staufläche Verwendung findet.4. Sensor unit according to one of claims 1 to 3, characterized in that in both channels (7a, 7b) leading to the differential pressure sensor in the housing part in the outer wall slots (10a, 10b) are mounted and between the channels (7a, 7b ) remaining wall (11) is used as a storage area.
5. Sensoreinheit nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Sensoreinheit (1) ganz oder teilweise eine Oberfläche mit einer Nanostruktur aufweist.5. Sensor unit according to one of claims 1 to 4, characterized in that the sensor unit (1) has wholly or partially a surface with a nanostructure.
6. Sensoreinheit nach Anspruch 5 dadurch gekennzeichnet, dass die Messsonde (3) eine Oberfläche mit einer Nanostruktur aufweist. 6. Sensor unit according to claim 5, characterized in that the measuring probe (3) has a surface with a nanostructure.
EP06775703A 2005-07-14 2006-07-13 Sensor unit for fluids Withdrawn EP1904813A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/DE2005/001258 WO2007009409A1 (en) 2005-07-14 2005-07-14 Ram pressure probe
PCT/DE2006/001219 WO2007006297A2 (en) 2005-07-14 2006-07-13 Sensor unit for fluids

Publications (1)

Publication Number Publication Date
EP1904813A2 true EP1904813A2 (en) 2008-04-02

Family

ID=35976586

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05782809.7A Active EP1904812B1 (en) 2005-07-14 2005-07-14 Ram pressure probe
EP06775703A Withdrawn EP1904813A2 (en) 2005-07-14 2006-07-13 Sensor unit for fluids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05782809.7A Active EP1904812B1 (en) 2005-07-14 2005-07-14 Ram pressure probe

Country Status (6)

Country Link
US (2) US7798017B2 (en)
EP (2) EP1904812B1 (en)
CN (2) CN101253394B (en)
DE (3) DE112005003700A5 (en)
HK (2) HK1120858A1 (en)
WO (2) WO2007009409A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007009409A1 (en) * 2005-07-14 2007-01-25 Systec Controls Mess- Und Regelungstechnik Gmbh Ram pressure probe
DE202007005695U1 (en) 2007-04-18 2008-08-28 systec Controls Meß- und Regeltechnik GmbH Pitot tube
WO2009152787A1 (en) * 2008-06-18 2009-12-23 Systec Controls Mess- Und Regelungstechnik Gmbh Dynamic pressure probe with pressure difference amplifier
US9192795B2 (en) * 2011-10-07 2015-11-24 Honeywell International Inc. System and method of calibration in a powered air purifying respirator
CN102518497A (en) * 2011-12-20 2012-06-27 清华大学 Engine exhaust parameter detecting device for matching muffler with engine
US9808656B2 (en) 2012-01-09 2017-11-07 Honeywell International Inc. System and method of oxygen deficiency warning in a powered air purifying respirator
GB2509108A (en) * 2012-12-20 2014-06-25 Taylor Hobson Ltd Method and apparatus for flow measurement
US9701847B2 (en) 2012-12-21 2017-07-11 Mcp Ip, Llc Reinforced powder paint for composites
US8960018B2 (en) * 2013-03-14 2015-02-24 Dieterich Standard, Inc. Pitot tube traverse assembly
CN106017599A (en) * 2016-06-27 2016-10-12 苏州科博思流体科技有限公司 Flanged flowmeter with multiple connecting holes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69917594T2 (en) * 1998-01-05 2005-06-23 United States Environmental Protection Agency MODULAR REAL-TIME EXHAUST GAS FLOWMETER FOR DRIVING VEHICLES AND REPORTING SYSTEM FOR EMISSIONS

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355946A (en) * 1965-01-19 1967-12-05 Lazell Robert Charles Pitot tubes
US3895531A (en) * 1968-02-16 1975-07-22 Robert R Lambert Apparatus for sensing volumetric rate of air flow
US3590637A (en) * 1969-12-17 1971-07-06 William R Brown Flow meter
US3683693A (en) * 1970-10-08 1972-08-15 William R Brown Universal proportional differential pressure producing fluid flow device
US3910113A (en) * 1972-11-20 1975-10-07 William R Brown Method of selectively varying the differential output and overall performance characteristics of a proportional differential pressure producing fluid flow device
US3981193A (en) * 1975-05-23 1976-09-21 Goulet Roger T Fluid pressure sensing apparatus
US4304137A (en) * 1979-05-31 1981-12-08 Honeywell Inc. Air direction insensitive static pressure sensor
US4444060A (en) * 1981-03-06 1984-04-24 Nihon Cambridge Filter Kabushiki Kaisha Fluid pressure sensing apparatus
GB2171526B (en) * 1985-02-27 1988-08-10 British Gas Plc Fluid flow rake monitor probe
US4624146A (en) * 1985-03-05 1986-11-25 Onoda Cement Company, Ltd. Flow rate measurement apparatus
EP0266376B1 (en) * 1986-04-24 1992-01-15 SOMMER, Roland Device and process for measuring the flowrate of a free flow in space
JPS6333663A (en) * 1986-07-28 1988-02-13 Yamatake Honeywell Co Ltd Flow speed measuring apparatus
US4890492A (en) * 1988-09-06 1990-01-02 Emhart Industries, Inc. Differential pressure level sensor with temperature sensing elements
US5001638A (en) * 1989-04-18 1991-03-19 The Boeing Company Integrated aircraft air data system
WO1993013425A1 (en) * 1991-12-23 1993-07-08 National Institute Of Water & Atmospheric Research Limited A flow gauging system
CN2108927U (en) * 1991-12-29 1992-07-01 南昌市惠通电工厂 Differential pressure flow and velocity sensor
US5535633A (en) * 1992-09-23 1996-07-16 Korr Medical Technologies, Inc. Differential pressure sensor for respiratory monitoring
US5443075A (en) * 1993-03-01 1995-08-22 Puritan-Bennett Corporation Flow measuring apparatus
US5438880A (en) * 1994-05-17 1995-08-08 United Technologies Corporation Electrostatic linear airspeed transducer
US5483839A (en) * 1994-12-08 1996-01-16 The United States Of America As Represented By The Secretary Of The Navy Multi-pitot tube assembly
US5736651A (en) * 1996-05-23 1998-04-07 Bowers; James R. High temperature gas flow sensing element
US5773726A (en) * 1996-06-04 1998-06-30 Dieterich Technology Holding Corp. Flow meter pitot tube with temperature sensor
CA2249797C (en) * 1997-10-16 2001-03-27 Yasuo Yamamoto Fluid pressure detector and air flow rate measuring apparatus using same
US5913250A (en) * 1997-10-29 1999-06-15 Fluid Components Intl Pressure compensated thermal flow meter
US6189390B1 (en) * 1998-04-02 2001-02-20 Compliance Instrument, Inc. Method and apparatus for measuring gas velocity or other flow characteristic
FR2779821B1 (en) * 1998-06-15 2000-09-01 Environnement Sa GAS SAMPLING DEVICE FOR A DUCT OR CHIMNEY
US6237426B1 (en) * 1999-02-12 2001-05-29 E.H. Price Limited Airflow sensor
US6425293B1 (en) * 1999-03-13 2002-07-30 Textron Systems Corporation Sensor plug
US6321166B1 (en) * 1999-08-05 2001-11-20 Russell N. Evans Noise reduction differential pressure measurement probe
DE19952314C2 (en) * 1999-10-29 2002-06-20 Abb Patent Gmbh Sensor, in particular sensor with a planar effective sensor surface
EP1244383B1 (en) * 2000-01-07 2005-10-05 Diener AG Precision Machining Device for in vivo measurement of pressures and pressure variations in or on bones
DE10009067A1 (en) * 2000-02-25 2001-08-30 Endress Hauser Gmbh Co Measuring device with rope probe and method for shortening the rope probe
JP3637278B2 (en) * 2000-12-20 2005-04-13 Smc株式会社 2-sensor flow meter
US6487918B1 (en) * 2000-12-22 2002-12-03 Mestek, Inc. Airflow sensor for averaging total pressure
US7010970B2 (en) * 2001-01-12 2006-03-14 Rediniotis Othon K Embedded-sensor multi-hole probes
US6452542B1 (en) * 2001-03-02 2002-09-17 Rosemount Aerospace Inc. Integrated flight management system
CN2474997Y (en) * 2001-04-01 2002-01-30 张庆 Standard air quantity measuring sensor
US6609825B2 (en) * 2001-09-21 2003-08-26 Rosemount Aerospace Inc. Total air temperature probe providing improved anti-icing performance and reduced deicing heater error
KR100432640B1 (en) * 2001-12-05 2004-05-22 차은종 A spirometer using a disposable mouthpiece
US20030145661A1 (en) * 2002-02-06 2003-08-07 Thomas Taranto Gas parameter sensing apparatus and method
US20030172746A1 (en) * 2002-03-15 2003-09-18 Walker Mark A. Airflow Sensor
US7284450B2 (en) * 2002-04-09 2007-10-23 Dieterich Standard, Inc. Averaging orifice primary flow element
DE10253086B4 (en) * 2002-11-13 2005-02-03 Krohne Meßtechnik GmbH & Co KG Schwebekörperdurchflußmeßgerät
US6868741B2 (en) * 2003-03-05 2005-03-22 Veris, Inc. Device and method enabling fluid characteristic measurement utilizing fluid acceleration
EP3190393A1 (en) * 2003-08-18 2017-07-12 Horiba, Ltd.g Emission flow rate measuring method and apparatus
US6883389B2 (en) * 2003-08-21 2005-04-26 Eldridge Products, Inc. Flow averaging tube and method of using same
DE102004008184B4 (en) * 2004-02-19 2006-07-20 Audi Ag Air flow sensor
DE202004005482U1 (en) * 2004-04-02 2005-08-11 systec Controls Meß- und Regeltechnik GmbH Dynamic pressure sensor, has openings at ends of channels arranged so that vertical axis passes through opening surface at angle to direction of flow
DE102004020284B4 (en) * 2004-04-26 2006-12-28 Pötter, Friedrich Pitot tube
US7201067B2 (en) * 2004-09-22 2007-04-10 Kulite Semiconductor Products, Inc. System and method for determining flow characteristics
EP1842035B1 (en) * 2005-01-26 2014-03-05 systec Controls Mess- und Regeltechnik GmbH Dynamic pressure probe
CA2504074C (en) * 2005-04-13 2013-10-22 E. H. Price Limited Airflow sensor
WO2007009409A1 (en) * 2005-07-14 2007-01-25 Systec Controls Mess- Und Regelungstechnik Gmbh Ram pressure probe
US7490510B2 (en) * 2005-10-24 2009-02-17 Ametek, Inc. Multi-function air data sensor
US7828477B2 (en) * 2007-05-14 2010-11-09 Rosemount Aerospace Inc. Aspirated enhanced total air temperature probe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69917594T2 (en) * 1998-01-05 2005-06-23 United States Environmental Protection Agency MODULAR REAL-TIME EXHAUST GAS FLOWMETER FOR DRIVING VEHICLES AND REPORTING SYSTEM FOR EMISSIONS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007006297A2 *

Also Published As

Publication number Publication date
DE112005003700A5 (en) 2008-06-19
CN101253394A (en) 2008-08-27
EP1904812B1 (en) 2014-12-03
US20090217752A1 (en) 2009-09-03
DE202005016862U1 (en) 2006-11-16
US8065925B2 (en) 2011-11-29
CN101253394B (en) 2012-01-25
WO2007006297A3 (en) 2007-08-02
US7798017B2 (en) 2010-09-21
US20090211372A1 (en) 2009-08-27
EP1904812A1 (en) 2008-04-02
WO2007006297A2 (en) 2007-01-18
CN101258385A (en) 2008-09-03
CN101258385B (en) 2013-02-27
HK1120858A1 (en) 2009-04-09
HK1123093A1 (en) 2009-06-05
WO2007009409A1 (en) 2007-01-25
DE112006002455A5 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
EP1904813A2 (en) Sensor unit for fluids
DE69525211T2 (en) Thermal device for measuring air flow
DE102005019581B4 (en) Air flow meter
DE2730770C3 (en) Ultrasonic measuring device for determining the flow velocity of the air in the intake duct of an internal combustion engine
DE19913968A1 (en) Thermal flow sensor for determining the flow of liquid or gas through a pipe involves evaluating temperature of two sensors with the ambient temperature
EP2686644B1 (en) Apparatus for recording at least one property of a fluid medium
EP2142890B1 (en) Device for measuring flowing media
EP2906914A1 (en) Sensor arrangement for determining the moisture content of a fluid medium flowing in a main flow direction
EP3097388A1 (en) Sensor arrangement for determining at least one parameter of a fluid medium flowing through a channel structure
DD209518A5 (en) DEVICE FOR MEASURING EXHAUSED HEAT EMISSIONS
DE102004023919B4 (en) Air flow rate measuring device
DE112012004149T5 (en) Humidity measuring device
EP1296118B1 (en) Device to measure gas consumption
DE102006029215A1 (en) Measuring device for measuring the flow rate of a combustion gas mixture, comprising a correction device
DE102004033049B4 (en) Measuring device for a flow sensor, in particular an air mass sensor for internal combustion engines and method for measuring air flows
EP2976629B1 (en) Sensor device for detecting a humidity of a flowing, liquid medium
DE102008032309B4 (en) Sensor arrangement for measuring the state of a liquid, in particular of oil
DE3104134A1 (en) Flow meter
DE102013207629A1 (en) Optical sensor
DE102021100802A1 (en) FLOW METER, METHOD OF FLOW MEASUREMENT AND PROGRAM OF FLOW MEASUREMENT
DE112020001927T5 (en) FLOW METER
DE102013217382A1 (en) Measuring device and method for measuring a mass flow of a fluid
DE102012211133B4 (en) Sensor arrangement for determining at least one parameter of a fluid medium flowing through a channel
DE10208238B4 (en) Turbomachine housing
DE102008023718B4 (en) Device for measuring a volume flow of a fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080207

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090424

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181220