DE102004020284B4 - Pitot tube - Google Patents

Pitot tube Download PDF

Info

Publication number
DE102004020284B4
DE102004020284B4 DE200410020284 DE102004020284A DE102004020284B4 DE 102004020284 B4 DE102004020284 B4 DE 102004020284B4 DE 200410020284 DE200410020284 DE 200410020284 DE 102004020284 A DE102004020284 A DE 102004020284A DE 102004020284 B4 DE102004020284 B4 DE 102004020284B4
Authority
DE
Germany
Prior art keywords
dollar
flow
dynamic pressure
sword
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE200410020284
Other languages
German (de)
Other versions
DE102004020284A1 (en
Inventor
Friedrich Poetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE200410020284 priority Critical patent/DE102004020284B4/en
Publication of DE102004020284A1 publication Critical patent/DE102004020284A1/en
Application granted granted Critical
Publication of DE102004020284B4 publication Critical patent/DE102004020284B4/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/46Pitot tubes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Eine Staudrucksonde dient der Durchflussmessung von gas-, dampfförmigen und flüssigen Medien. DOLLAR A Herkömmliche Staudrucksonden sind rohrförmig, eckig oder mit Beschleunigungskehren ausgeführt und haben meistens in etwa die gleiche Breite wie Tiefe und verursachen als Störkörper in einer Strömung Wirbel. Dadurch ergeben sich folgende Nachteile: Schwingungsbrüche, relativ hoher bleibender Druckverlust, Mess- und Linearitätsfehler. DOLLAR A Um folgende Vorteile zu erzielen: DOLLAR A a) wirbelfreien Abriss (keine Schwingungen) DOLLAR A a) zum Durchfluss lineare Kennlinie (bessere Genauigkeit) DOLLAR A c) äußerst geringen bleibenden Druckverlust (Energieverlust) wird vorgeschlagen, eine bekannte Staudrucksonde derart weiterzubilden, dass die Strömung durch eine schwertähnliche Formgebung kaum gestört wird und die Vorteile a), b) und c) zur Folge haben. DOLLAR A Das wird erreicht durch eine Staudrucksonde, mit einem flachen, schwertähnlichen Profil (1), welches in der Länge um ein Mehrfaches seiner Breite ausgelegt ist und an der vorderen und hinteren Mantelfläche mit spitzen Winkeln oder runden Bögen (2) versehen ist, wobei eine nutartige Wirkdruckwanne (4), die am Boden flach oder gewölbt ausgeführt ist und an den Enden mit Bögen versehen ist, an der Mündung der Wirkdruckbohrung (3) vorgesehen ist. DOLLAR A Würdigung zum Stand der Technik: DOLLAR A Zwar gibt es nach dem Stand der Technik Staudrucksonden mit flachem, schwertähnlichem Profil und auch solche, die eine Wirkdruckwanne aufweisen, jedoch ist eine Kombination ...A dynamic pressure probe is used to measure the flow of gas, vapor and liquid media. DOLLAR A Conventional dynamic pressure probes are tubular, square or executed with acceleration turns and usually have approximately the same width as depth and cause vortex as a disturbing body in a flow. This results in the following disadvantages: Vibration fractures, relatively high pressure drop, measurement and linearity errors. DOLLAR A To achieve the following advantages: DOLLAR A a) vortex-free demolition (no vibrations) DOLLAR A a) flow linear characteristic (better accuracy) DOLLAR A c) extremely low permanent pressure loss (energy loss) is proposed to develop a known pitot tube in such a way that the flow is hardly disturbed by a sword-like shape and the benefits a), b) and c) result. DOLLAR A This is achieved by a dynamic pressure probe, with a flat, sword-like profile (1) which is designed in length by a multiple of its width and is provided at the front and rear lateral surface with acute angles or round arcs (2) a groove-like differential pressure trough (4), which is designed flat or curved at the bottom and is provided at the ends with arches, at the mouth of the Wirkdruckbohrung (3) is provided. DOLLAR A assessment of the state of the art: DOLLAR A Although there are state-of-the-art dynamic pressure probes with a flat, sword-like profile and also those that have a differential pressure trough, but is a combination ...

Description

Eine Staudrucksonde dient der Durchflussmessung von gas-, dampfförmigen und flüssigen Medien.A Back pressure probe is used for flow measurement of gas, vapor and liquid Media.

Herkömmliche Staudrucksonde sind rohrförmig, eckig, oder mit Beschleunigungskehren ausgeführt und haben meistens in etwa die gleiche Breite wie Tiefe und verursachen als Störkörper in einer Strömung Wirbel, die sich systematisch rechts und links ablösen. Wirbel versetzen herkömmliche Sonde in starke Schwingungen, welche nicht selten zu Schwingungsbrüchen führen. Zudem beeinflussen Wirbel die Linearität zum Durchfluss und beeinflussen die Genauigkeit. Die größeren Anströmflächen herkömmlicher Staudrucksonden verursachen erhebliche bleibende Druckverluste, die fast immer einher gehen mit Energieverlust. Aus der DE 1 875 561 U , der EP 1 296 118 A1 , der US 4 735 100 A und der US 5 379 650 A sind Staudrucksonden mit schwertähnlichen Profil bekannt. Bei der Sonde nach der US 4 343 194 A ist eine Art Wirkdruckwanne vorgesehen. Conventional dynamic pressure probes are tubular, angular, or executed with acceleration sweeps and are usually about the same width as depth and cause vortexes in a flow vortices, which are systematically detached right and left. Vertebrae cause conventional probes to vibrate strongly, which not infrequently leads to vibration fractures. In addition, vortices affect linearity to flow and affect accuracy. The larger inflow surfaces of conventional dynamic pressure probes cause considerable pressure losses, which are almost always associated with energy loss. From the DE 1 875 561 U , of the EP 1 296 118 A1 , of the US Pat. No. 4,735,100 and the US 5,379,650 A are known dynamic pressure probes with sword-like profile. At the probe after the US 4,343,194 A is a kind of differential pressure pan provided.

Um folgende Vorteile zu erzielen :

  • a) wirbelfreien Abriss (keine Schwingungen)
  • a) zum Durchfluss lineare Kennlinie (bessere Genauigkeit)
  • c) äußerst geringen bleibenden Druckverlust (Energieverlust)
wird vorgeschlagen, eine bekannte Staudrucksonde derart weiterzubilden, dass die Strömung durch eine schwertähnliche Formgebung kaum gestört wird und die Vorteile a),b) und c) zur Folge haben.To achieve the following benefits:
  • a) vortex-free demolition (no vibrations)
  • a) linear flow characteristic (better accuracy)
  • c) extremely low pressure loss (loss of energy)
It is proposed to develop a known dynamic pressure probe in such a way that the flow is hardly disturbed by a sword-like shape and have the advantages of a), b) and c) result.

Das wird erreicht durch eine Staudrucksonde, mit einem flachen, schwertähnlichen Profil (1), welches in der Länge um ein Mehrfaches seiner Breite ausgelegt ist und an der vorderen und hinteren Mantelfläche mit spitzen Winkeln oder runden Bögen (2) versehen ist, wobei eine nutartige Wirkdruckwanne (4), die am Boden flach oder gewölbt ausgeführt ist und an den Enden mit Bögen versehen ist, an der Mündung der Wirkdruckbohrung (3) vorgesehen ist.This is achieved by a pitot tube, with a flat, sword-like profile ( 1 ), which is designed in the length of a multiple of its width and on the front and rear lateral surface with acute angles or round arcs ( 2 ), wherein a groove-like differential pressure trough ( 4 ), which is flat or curved at the bottom and provided with bends at the ends, at the mouth of the working pressure bore ( 3 ) is provided.

Bei herkömmlichen Staudrucksonden wird der Wirkdruck meistens durch mehrere Bohrungen aufgenommen und in den Wirkdruckkammern zusammen geführt. Eine exakte Mittelung erfolgt nicht, weil sich der Druck in der Wirkdruckkammern zu niedrigsten anstehenden Druck entspannt. Je länger eine Staudrucksonde ist, umso schlechter wird die für die Genauigkeit wichtige Mittelung des Wirkdruckes. at usual Pitot pressure probes, the differential pressure is usually absorbed by several holes and merged in the differential pressure chambers. An exact averaging does not take place because the pressure in the differential pressure chambers is lowest relaxed pressure. The longer a pitot tube is, the worse for the Accuracy important averaging of the differential pressure.

Deshalb verläuft die Eintauchtiefe der Sonde nach dieser Erfindung nicht mehr über den gesamten Querschnitt: Die Eintauchtiefe beträgt nur noch ca. 36 % zum Außendurchmesser eines inneren Rohrquerschnittes. Die Wirkdruckwanne hat eine Länge von ca. 8 bis 34 % ab äußeren Innendurchmesser. Die Formgebung und die Länge der Wirkdruckwanne, die sich im idealen Messfenster eines Strömungsprofils befindet, bewirken eine Mittelung des Wirkdruckes im Messfenster. Die Messgenauigkeit wird dadurch deutlich verbessert.Therefore extends the immersion depth of the probe according to this invention no longer on the entire cross-section: The immersion depth is only about 36% of the outside diameter an inner tube cross-section. The differential pressure pan has a length of about 8 to 34% from the outer inner diameter. The Shaping and the length the impulse sump, located in the ideal measuring window of a flow profile causes an averaging of the differential pressure in the measurement window. The measuring accuracy is thereby significantly improved.

Claims (1)

Staudrucksonde, mit einem flachen, schwertähnlichen Profil (1), welches in der Länge um ein Mehrfaches seiner Breite ausgelegt ist und an der vorderen und hinteren Mantelfläche mit spitzen Winkeln oder runden Bögen (2) versehen ist, wobei eine nutartige Wirkdruckwanne (4), die am Boden flach oder gewölbt ausgeführt ist und an den Enden mit Bögen versehen ist, an der Mündung der Wirkdruckbohrung (3) vorgesehen ist.Dynamic pressure probe, with a flat, sword-like profile ( 1 ), which is designed in the length of a multiple of its width and on the front and rear lateral surface with acute angles or round arcs ( 2 ), wherein a groove-like differential pressure trough ( 4 ), which is flat or curved at the bottom and provided with bends at the ends, at the mouth of the working pressure bore ( 3 ) is provided.
DE200410020284 2004-04-26 2004-04-26 Pitot tube Expired - Lifetime DE102004020284B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200410020284 DE102004020284B4 (en) 2004-04-26 2004-04-26 Pitot tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410020284 DE102004020284B4 (en) 2004-04-26 2004-04-26 Pitot tube

Publications (2)

Publication Number Publication Date
DE102004020284A1 DE102004020284A1 (en) 2005-11-17
DE102004020284B4 true DE102004020284B4 (en) 2006-12-28

Family

ID=35160322

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200410020284 Expired - Lifetime DE102004020284B4 (en) 2004-04-26 2004-04-26 Pitot tube

Country Status (1)

Country Link
DE (1) DE102004020284B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044659B4 (en) * 2000-09-02 2009-03-19 Hein, Stefan, Dr.-Ing. Volume flow sensor for hydraulic fluids
EP1904812B1 (en) * 2005-07-14 2014-12-03 systec Controls Mess- und Regeltechnik GmbH Ram pressure probe
DE202020102087U1 (en) 2020-04-15 2021-07-16 Postberg + Co. GmbH Measuring probe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1872561U (en) * 1963-03-14 1963-05-22 Metrawatt Ag ACTIVE PRESSURE GENERATOR FOR MEASURING THE FLOW SPEED OF LIQUIDS.
US4343194A (en) * 1977-11-07 1982-08-10 Environmental Elements Corporation Flow sensing apparatus
US4735100A (en) * 1986-05-26 1988-04-05 Nailor-Hart Industries Inc. Fluid flow sensor having multiplying effect
US5379650A (en) * 1992-09-23 1995-01-10 Korr Medical Technologies Inc. Differential pressure sensor for respiratory monitoring
EP1296118A1 (en) * 2001-09-19 2003-03-26 Abb Research Ltd. Device to measure gas consumption

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1872561U (en) * 1963-03-14 1963-05-22 Metrawatt Ag ACTIVE PRESSURE GENERATOR FOR MEASURING THE FLOW SPEED OF LIQUIDS.
US4343194A (en) * 1977-11-07 1982-08-10 Environmental Elements Corporation Flow sensing apparatus
US4735100A (en) * 1986-05-26 1988-04-05 Nailor-Hart Industries Inc. Fluid flow sensor having multiplying effect
US5379650A (en) * 1992-09-23 1995-01-10 Korr Medical Technologies Inc. Differential pressure sensor for respiratory monitoring
EP1296118A1 (en) * 2001-09-19 2003-03-26 Abb Research Ltd. Device to measure gas consumption

Also Published As

Publication number Publication date
DE102004020284A1 (en) 2005-11-17

Similar Documents

Publication Publication Date Title
EP3368867B1 (en) Mems sensor for measuring at least one measurement variable of a fluid
DE102004020284B4 (en) Pitot tube
DE3239126A1 (en) FLOWMETER FOR FLUIDE
DE102009037957A1 (en) Pressure probe
DE69914099T2 (en) Pressure transducer element for high pressure range with a tube with an eccentric bore
AT10954U2 (en) METHOD AND ARRANGEMENT FOR DETERMINING THE FLOW OF A BIDIRECTIONAL, INSTALLANT FLUID FLOW
DE102006019551A1 (en) Mass flowmeter with a vibration sensor and method for eliminating noise from the measurement signal
WO2003021201A1 (en) Corrosion-resistant turbulent flow meter
DE10044659B4 (en) Volume flow sensor for hydraulic fluids
EP2402722B1 (en) Device for measuring the speed of a fluid
DD275171A3 (en) VIBRATION-IMMEDIATE MEASURING SENSOR
DE102014011724B3 (en) Protective tube device for protecting a temperature sensor from contact with a fluid
DE706862C (en) Dynamic pressure measuring device for aircraft
DE768033C (en) Angular accelerometer
DE755801C (en) Measurement method with gases, e.g. B. atmospheric air-filled cavities
DE615246C (en) Device for displaying the fuel consumption in a certain period of time, especially for motor vehicles
DE553433C (en) Device for measuring vibrations
DE721490C (en) Vibration, force or strain gauges
DE21500C (en) Barometer innovations
DE1119527B (en) Flow rate measuring device, especially for drilling fluids
DE102007051420A1 (en) Coriolis mass flowmeter for process engineering plant, has stabilizing element manufactured from material e.g. ferritic high-grade steel, which possesses coefficient of thermal expansion to metal of measuring tube
DE4417332A1 (en) Mass flow measurement device
DE43932C (en) Method and apparatus for the direct measurement of the mean flow velocity in watercourses
DE174070C (en)
DE1252949B (en) Pitot tube assembly

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licences declared
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R073 Re-establishment requested
R124 Re-establishment decision now final