EP1902491A1 - Antenna system with second-order diversity and card for wireless communication apparatus which is equipped with one such device - Google Patents

Antenna system with second-order diversity and card for wireless communication apparatus which is equipped with one such device

Info

Publication number
EP1902491A1
EP1902491A1 EP06794184A EP06794184A EP1902491A1 EP 1902491 A1 EP1902491 A1 EP 1902491A1 EP 06794184 A EP06794184 A EP 06794184A EP 06794184 A EP06794184 A EP 06794184A EP 1902491 A1 EP1902491 A1 EP 1902491A1
Authority
EP
European Patent Office
Prior art keywords
substrate
antenna
inverted
metallization plane
radiating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06794184A
Other languages
German (de)
French (fr)
Inventor
Françoise Le Bolzer
Franck Thudor
Geert Matthys
François BARON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1902491A1 publication Critical patent/EP1902491A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an antenna system with diversity of order 2. It also relates to a wireless communication device card comprising such an antenna system.
  • WIFI-type wireless communication devices In order to overcome these fluctuation problems in the received signals, it is customary to use diversity techniques.
  • One of the widely used solutions in WIFI-type wireless communication devices is to have two receiving antennas and to switch between one or the other of these antennas in order to choose the best one. To ensure good diversity, it is therefore necessary that the two antennas are completely decorrelated. As a result, the antennas must be sufficiently spaced apart from each other.
  • the most commonly used systems in WIFI devices consist of two external antennas dipole type.
  • This solution has the advantage of easy integration since the antennas are then connected to the wireless card by coaxial flexible cables.
  • the cost of this solution is relatively high.
  • the antenna being an external element, it is fragile and can be easily destroyed or damaged.
  • the present invention relates to a very compact second order diversity antenna system, easily integrable on an electronic card for wireless communication apparatus and having significant decorrelating properties.
  • the present invention thus relates to a system of antenna of diversity of order 2 comprising, on the same substrate, first and second radiating elements positioned on two adjacent sides of the substrate near the periphery of said substrate, characterized in that, the substrate comprising a metallization plane, the first and second radiating elements each consist of an inverted type F antenna printed on the metallization plane of the substrate, the first and second radiating elements being positioned on the substrate at the angle formed by the two adjacent sides and being connected to each other at their end connected to the metallization plane.
  • the invention thus defined has the form of an arrowhead (or "Arrowhead" in English).
  • the inverted type F antenna is etched in the metallization plane.
  • the inverted type F antenna is etched in at least two metallization planes of the substrate, each metal plane of the substrate thus etched and forming the body or strand of the antenna F-inverted being connected to each other via vias or metallized holes.
  • the inverted type F antenna is constituted by a conductive strand parallel to one side of the substrate, the conductive strand being extended by an end portion connected to the metallization plane of the substrate, the antenna being connected to a feed line adapted perpendicular to the conductive wire.
  • the resonant frequency of the conductive strand is given by the relation:
  • A.Fres. ⁇ ⁇ eff where c represents the speed of light in a vacuum, ⁇ and f the effective permittivity of the propagation medium, F res the resonance frequency, D1 the length of the conducting strand between its free end and the point of connection with the supply line and H the height between the conductive strand and the metallization plane of the substrate.
  • a slot is made at their ends connected to the metallization plane.
  • the length of this slot can be chosen so that its resonant frequency corresponds to that of the strands of the antenna. This makes it possible to obtain an enlargement of the operating band of the antenna.
  • the present invention also relates to an electronic card for a wireless communication device provided with an antenna system with diversity of order 2 as described above.
  • Figure 1a is a partial perspective view of a first embodiment of a system according to the present invention and Figure 1b is a very schematic representation of the substrate used.
  • FIG. 2 represents the various adaptation and isolation curves of the system of FIG. 1.
  • FIGS. 3 and 4 respectively represent the radiation patterns obtained by exciting one or the other of the antennas of the system of FIG. 1.
  • Figure 5 is a partial perspective view of another embodiment of a system according to the present invention.
  • Figure 6 shows the adaptation and isolation curves of the system of Figure 5.
  • Fig. 7 is a partial perspective view of a third embodiment of the present invention.
  • FIG. 8 represents the adaptation and isolation curves of the embodiment of FIG. 7.
  • FIGS. 9 and 10 represent the radiation patterns obtained by exciting one or the other of the antennas of the system represented in FIG. 7.
  • Fig. 11 shows a partial perspective view of another embodiment of a system according to the present invention.
  • FIG. 12 represents the various adaptation and isolation curves of the system of FIG. 11.
  • Figures 13 and 14 show the radiation patterns obtained by exciting one or the other of the antennas of the system of Figure 11.
  • FIG. 15 represents the adaptation and isolation curves of an antenna system according to the embodiment of FIG. 11 in which the width of the slot has been optimized.
  • Fig. 16 is a partial perspective view of yet another embodiment of an antenna system according to the present invention.
  • antennas 3 and 4 of the inverted F type were produced on a substrate 1 provided at least on its upper face with a conductive layer forming a metallization plane or ground plane 2, two antennas 3 and 4 of the inverted F type were produced. These antennas 3 and 4 are made by etching the ground plane 2 along the periphery of the substrate 1 so that the antennas 3 and 4 are perpendicular to each other while being connected by their ends forming a mass. In this configuration, the antenna system is in the form of an arrowhead.
  • the antenna 3 which has a total length L and is positioned along an edge of the substrate 1 comprises a conductive strand having a first portion 30 of length D1 and a second part 31 of length D2.
  • the portion 31 is extended by a portion 32 forming mass which is connected to the ground plane 2.
  • the two parts 30, 31 are fed by a supply line 33 perpendicular to the conductive strand at the junction point of the parts 30, 31.
  • This power line 33 ends with a port 34 and is adapted to 50 ⁇ .
  • the inverted antenna 4 comprises a conductive strand having a first portion 40 extending through a second portion 41 which is extended by a mass portion 42. This portion 42 is connected to the ground portion 32 of the antenna 3 at an outer corner of the substrate.
  • the parts 40, 41 are fed by a power supply line adapted to 50 ⁇ connected to the port 44.
  • the resonance frequency of antennas 3 or 4 is obtained by the following equation:
  • D1 represents the length of the portions 30 or 40 of the conductive strand
  • represents the height or dimension between the ground plane 2 and the conducting strand
  • c represents the speed of the light in the vacuum
  • ⁇ e ff represents the effective permittivity of the propagation medium
  • F res represents the resonant frequency of the conductive strands.
  • the dimension D2 of the portion 31 or 41 is chosen to play on the input impedance of the resonant portion 30 or 40 of the conductive strand.
  • an increase (respectively a reduction) of D2 will have the effect of reducing (respectively increasing) the input impedance of the resonant strand.
  • the mass portions 32 and 42 are connected to the ground plane. These parts have a length D3 whose value constitutes a degree of freedom to integrate the antenna system to an electronic card. Indeed, this current-free portion can receive fixing studs or other elements, even metal, allowing the integration of the card and the mechanical strength of the assembly.
  • a 3D simulation was performed using a commercial electromagnetic simulator based on the finite element method known as HFSS Ansoft. This simulation was made using a multilayer FR4 substrate having a total thickness of 1.6 mm and a permittivity ⁇ r of 4.4.
  • the stack of the substrate consists of a 4-layer FR4 substrate comprising 2 outer layers of a material known under the name Prepreg of 254 ⁇ m in thickness and an inner layer of FR4 of 889 ⁇ m. thick.
  • the interface between the 3 substrate layers consists of 2 copper inner layers of 35 ⁇ m thick.
  • the 2 outer conductive layers or metallization plane are made with copper of 17.5 .mu.m.
  • the feed line is defined on the upper layers 1 for the signal and ground plane 2 for the mass.
  • the Arrowhead is metallized over the entire thickness of the substrate, as well as for the ground plane.
  • the antenna system of the F-inverted type as represented in FIG. 1 has the following dimensions:
  • a system of this type operates in the 2.4 GHz to 2.5 GHz frequency band.
  • the two F-inverted antennas are identical.
  • the two antennas 3 and 4 may be of different length, so as to operate on different frequency bands.
  • Arrowhead the direction of the arrowhead
  • FIGS. 5 and 6 A variant embodiment of an antenna system in accordance with the present invention will now be described with reference to FIGS. 5 and 6.
  • two antennas of the F-inverted type 3 ', 4' are produced by etching the metallization of a substrate 1 provided with a ground plane 2.
  • the antenna system represented by FIG. FIG. 5 shows, for each antenna 3 'and 4', a ground portion 32 ', 42' whose length D3 has been reduced.
  • a structure of this type has been simulated, as mentioned above, taking for D3 a value of 10 mm.
  • FIGS. 7 to 10 another embodiment of an antenna system according to the present invention.
  • the antennas 3 and 4 of the F-inverted type are identical to the antennas of FIG. 1.
  • FIG. 7 only a part of the ground plane 2 'deposited on the whole of the substrate 1 has been hollowed out.
  • a system of this type has been simulated using a device as mentioned above.
  • the distance e between the ends of the strands and the ground plane 2 ' is 7 mm.
  • FIG. 9 the diversity of the diagrams is maintained, as can be seen in the diagrams of FIGS. 9 and 10 respectively representing the radiation of antenna 3, FIG. 9 and the radiation of FIG. antenna 4, FIG.
  • FIGS. 11 to 15 A variant embodiment of an antenna system in accordance with the present invention will now be described with reference to FIGS. 11 to 15.
  • the two F-inverted antennas were made as in the embodiment of FIG. 1.
  • FIG. 11 A structure as shown in FIG. 11 was simulated using the apparatus mentioned above. In this case, the following dimensions were used for the simulation, namely:
  • the slot 6 has a width of 2 mm and a length of 23 mm.
  • the slot made in the ground plane is a rectangular slot placed in the axis of symmetry of the structure, as shown in Figure 11, so as to maintain the symmetry of the diagrams.
  • FIG. 12 giving the adaptation curves S11, S22 and the isolation curve S21 of the system of FIG. 11, there is an improvement in the insulation between the two ports, this insulation having values up to -22 dB. There is also an adaptation over the entire frequency band around 2.5 GHz.
  • the presence of the slot 6 thus makes it possible to reinforce the decorrelation between the radiation of the antennas 3 and 4, as can be seen in FIGS. 13 and 14 respectively representing the radiation pattern of the antenna 3 and the radiation pattern of the antenna. antenna 4.
  • FIG. 16 there is shown yet another embodiment of an antenna system according to the present invention.
  • a substrate 1 comprising at least one upper conductive layer and one lower conductive layer
  • two antennas of the F-inverted type have been etched by etching a strand 3A on one face and a strand 3B on the other side of the substrate. , likewise for the antenna 4.
  • These strands 3A, 3B or 4A, 4B are connected by vias or metallized holes 3C as shown in FIG. 16.
  • the advantage of this embodiment is the widening of the frequency band of 'a strand.
  • Figure 16 shows an F-inverted type antenna etched on 2 metal layers. However, the invention also applies to antennas etched on several layers connected by metallized holes.
  • an antenna solution is obtained integrating a second order of radiation diversity compatible with the most stringent cost constraints and very easily integrable on a motherboard for a wireless communication device such as a device. type WIFI.
  • the integration of the antenna system described above is possible on any wireless transmission device.
  • the antenna accesses are adapted to 50 ohms and are therefore directly integrable with a SPDT type switch ("Single Port Double Through” in English) or DPDT ("Double Port Double Through” in English) and the overall size of the system is as its use on already existing maps can be considered very easily.

Abstract

The invention relates to an antenna system with second-order diversity, comprising a metallisation plane (2) and first and second radiating elements (3 and 4) on a single substrate (1), each of said radiating elements comprising an inverted-F-type antenna printed on the side of the metallisation plane. Moreover, the first and second elements are positioned perpendicularly to one another close to the periphery of the substrate and are connected at the ends thereof such as to form a mass (32, 42).

Description

SYSTEME D'ANTENNE A DIVERSITE D'ORDRE 2 ET CARTE POUR APPAREIL DE COMMUNICATION SANS FIL MUNIE D'UN TEL SYSTEME 2-D DIVERSITY ANTENNA SYSTEM AND CARD FOR WIRELESS COMMUNICATION APPARATUS PROVIDED WITH SUCH A SYSTEM
La présente invention concerne un système d'antennes à diversité d'ordre 2. Elle concerne aussi une carte pour appareil de communication sans fils comportant un tel système d'antennes.The present invention relates to an antenna system with diversity of order 2. It also relates to a wireless communication device card comprising such an antenna system.
Dans le domaine des communications sans fils, en particulier à l'intérieur d'un local, on observe des phénomènes de multi -trajets. Ces phénomènes peuvent être très pénalisants pour la qualité du signal reçu. On observe en effet des phénomènes d'interférences ainsi que d'évanouissement du signal.In the field of wireless communications, particularly within a room, there are phenomena of multi-projects. These phenomena can be very penalizing for the quality of the signal received. Indeed, phenomena of interference and fading of the signal are observed.
Pour remédier à ces problèmes de fluctuation dans les signaux reçus, on a recours, de manière habituelle, à des techniques de diversité. Une des solutions largement utilisée dans les dispositifs de communication sans fils de type WIFI, consiste à avoir deux antennes de réception et à commuter entre l'une ou l'autre de ces antennes de manière à choisir la meilleure. Pour assurer une bonne diversité, il est donc nécessaire que les deux antennes soient complètement décorrelées. De ce fait, les antennes doivent être suffisamment espacées l'une de l'autre.In order to overcome these fluctuation problems in the received signals, it is customary to use diversity techniques. One of the widely used solutions in WIFI-type wireless communication devices is to have two receiving antennas and to switch between one or the other of these antennas in order to choose the best one. To ensure good diversity, it is therefore necessary that the two antennas are completely decorrelated. As a result, the antennas must be sufficiently spaced apart from each other.
Ainsi, les systèmes les plus couramment utilisés dans les dispositifs WIFI sont constitués de deux antennes externes de type dipôle. Cette solution présente l'avantage d'une intégration aisée puisque les antennes sont alors reliées à la carte sans fil par des câbles souples coaxiaux. Toutefois, le coût de cette solution est relativement élevé. D'autre part, l'antenne étant un élément externe, elle est fragile et peut être facilement détruite ou endommagée.Thus, the most commonly used systems in WIFI devices consist of two external antennas dipole type. This solution has the advantage of easy integration since the antennas are then connected to the wireless card by coaxial flexible cables. However, the cost of this solution is relatively high. On the other hand, the antenna being an external element, it is fragile and can be easily destroyed or damaged.
Pour remédier à ces inconvénients, on a cherché à intégrer l'antenne à la carte sans fil. Différentes techniques ont donc été proposées. Ainsi, dans la demande de brevet US 2003/0210191 publiée le 13 novembre 2003, on décrit une carte électronique comportant à sa périphérie deux antennes de type PIFA (Planar Inverted - F-Antenna ou Antenne planaire de type F inversé). Dans ce cas, les deux antennes de type PIFA sont constituées chacune d'une plaque rayonnante et de deux pattes perpendiculaires l'une formant plan de masse et l'autre formant ligne d'alimentation. Cette antenne présente donc une épaisseur non-négligeable. D'autre part, pour obtenir une bonne décorrélation des antennes, les deux antennes sont espacées l'une de l'autre. De ce fait, le système décrit dans cette demande de brevet reste encombrant et nécessite le report de composants métalliques 3D sur la carte. D'autre part, dans la demande de brevet US 2003/022823 publiée le 4 décembre 2003, on décrit un système d'antennes bi-bande constitué par des antennes de type F inversé réalisées dans la feuille de blindage RF d'un afficheur portable. Comme dans le cas ci-dessus, les antennes sont éloignées les unes des autres pour obtenir une bonne décorrélation desdites antennes.To overcome these drawbacks, we sought to integrate the antenna to the wireless card. Different techniques have been proposed. Thus, in the patent application US 2003/0210191 published November 13, 2003, there is described an electronic card having at its periphery two antennas of PIFA type (Planar Inverted - F-Antenna or Planar Antenna of type F inverted). In this case, the two PIFA type antennas each consist of a radiating plate and two perpendicular tabs, one forming a ground plane and the other forming a feed line. This antenna therefore has a non-negligible thickness. On the other hand, to obtain a good decorrelation of the antennas, the two antennas are spaced apart from each other. As a result, the system described in this patent application remains cumbersome and requires the transfer of 3D metal components onto the card. On the other hand, in the patent application US 2003/022823 published December 4, 2003, describes a dual-band antenna system consists of inverted F-type antennas made in the RF shielding sheet of a portable display . As in the case above, the antennas are distant from each other to obtain good decorrelation of said antennas.
La présente invention concerne un système d'antennes à diversité d'ordre 2 très compact, facilement intégrable sur une carte électronique pour appareil de communication sans fil et présentant des propriétés de décorrélation importantes.The present invention relates to a very compact second order diversity antenna system, easily integrable on an electronic card for wireless communication apparatus and having significant decorrelating properties.
La présente invention concerne donc un système d'antennes à diversité d'ordre 2 comprenant, sur un même substrat, des premier et second éléments rayonnants positionnés sur deux côtés adjacents du substrat près de la périphérie dudit substrat, caractérisé en ce que, le substrat comportant un plan de métallisation, les premier et second éléments rayonnants sont constitués chacun par une antenne de type F inversé imprimée côté plan de métallisation du substrat, les premier et second éléments rayonnants étant positionnés sur le substrat au niveau de l'angle formé par les deux côtés adjacents et étant reliés l'un à l'autre au niveau de leur extrémité reliée au plan de métallisation. L'invention ainsi définie présente la forme d'une tête de flèche (ou « Arrowhead » en langue anglaise).The present invention thus relates to a system of antenna of diversity of order 2 comprising, on the same substrate, first and second radiating elements positioned on two adjacent sides of the substrate near the periphery of said substrate, characterized in that, the substrate comprising a metallization plane, the first and second radiating elements each consist of an inverted type F antenna printed on the metallization plane of the substrate, the first and second radiating elements being positioned on the substrate at the angle formed by the two adjacent sides and being connected to each other at their end connected to the metallization plane. The invention thus defined has the form of an arrowhead (or "Arrowhead" in English).
Malgré la proximité des deux antennes, cette solution, qui permet d'obtenir un système très compact, présente une bonne décorrélation des deux antennes. La qualité de la décorrélation obtenue est loin d'être implicite pour l'homme de l'art qui a plutôt tendance à éloigner les 2 éléments rayonnants ou à ajouter des artifices de masse pour assurer cette décorrélation comme décrit dans les documents de l'art antérieur.Despite the proximity of the two antennas, this solution, which makes it possible to obtain a very compact system, presents a good decorrelation of two antennas. The quality of the decorrelation obtained is far from being implicit to those skilled in the art who tends to move away the two radiating elements or to add mass artifices to ensure this decorrelation as described in the documents of the art. prior.
Selon un premier mode de réalisation, l'antenne de type F inversé est gravée dans le plan de métallisation.According to a first embodiment, the inverted type F antenna is etched in the metallization plane.
Selon un autre mode de réalisation et dans le cas de substrats multicouches, l'antenne de type F inversé est gravée dans au moins 2 plans de métallisation du substrat, chaque plan métallique du substrat ainsi gravé et formant le corps ou brin de l'antenne F-inversée étant relié les uns aux autres par l'intermédiaire de vias ou trous métallisés.According to another embodiment and in the case of multilayer substrates, the inverted type F antenna is etched in at least two metallization planes of the substrate, each metal plane of the substrate thus etched and forming the body or strand of the antenna F-inverted being connected to each other via vias or metallized holes.
D'autre part, l'antenne de type F inversé est constituée par un brin conducteur parallèle à un côté du substrat, le brin conducteur se prolongeant par une partie d'extrémité reliée au plan de métallisation du substrat, l'antenne étant reliée à une ligne d'alimentation adaptée perpendiculaire au brin conducteur.On the other hand, the inverted type F antenna is constituted by a conductive strand parallel to one side of the substrate, the conductive strand being extended by an end portion connected to the metallization plane of the substrate, the antenna being connected to a feed line adapted perpendicular to the conductive wire.
De préférence, la fréquence de résonance du brin conducteur est donnée par la relation :Preferably, the resonant frequency of the conductive strand is given by the relation:
Dl+ H = ° ,D1 + H = °,
A.Fres.^εeff où c représente la vitesse de la lumière dans le vide, εetf la permittivité effective du milieu de propagation, Fres la fréquence de résonance, D1 la longueur du brin conducteur entre son extrémité libre et le point de connexion avec la ligne d'alimentation et H la hauteur entre le brin conducteur et le plan de métallisation du substrat.A.Fres. ^ Ε eff where c represents the speed of light in a vacuum, ε and f the effective permittivity of the propagation medium, F res the resonance frequency, D1 the length of the conducting strand between its free end and the point of connection with the supply line and H the height between the conductive strand and the metallization plane of the substrate.
Selon une autre caractéristique de la présente invention, pour améliorer la décorrélation entre les deux éléments rayonnants, une fente est réalisée au niveau de leurs extrémités reliées au plan de métallisation. La longueur de cette fente peut être choisie pour que sa fréquence de résonance corresponde à celle des brins de l'antenne. Cela permet d'obtenir un élargissement de la bande de fonctionnement de l'antenne. La présente invention concerne aussi une carte électronique pour dispositif de communication sans fil munie d'un système d'antennes à diversité d'ordre 2 tel que décrit ci-dessus.According to another characteristic of the present invention, to improve the decorrelation between the two radiating elements, a slot is made at their ends connected to the metallization plane. The length of this slot can be chosen so that its resonant frequency corresponds to that of the strands of the antenna. This makes it possible to obtain an enlargement of the operating band of the antenna. The present invention also relates to an electronic card for a wireless communication device provided with an antenna system with diversity of order 2 as described above.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description de plusieurs modes de réalisation, cette description étant faite avec référence aux dessins ci-annexés dans lesquels :Other characteristics and advantages of the present invention will appear on reading the description of several embodiments, this description being made with reference to the accompanying drawings in which:
La figure 1a est une vue en perspective partielle d'un premier mode de réalisation d'un système conforme à la présente invention et la figure 1b est une représentation très schématique du substrat utilisé.Figure 1a is a partial perspective view of a first embodiment of a system according to the present invention and Figure 1b is a very schematic representation of the substrate used.
La figure 2 représente les différentes courbes d'adaptation et d'isolation du système de la figure 1.FIG. 2 represents the various adaptation and isolation curves of the system of FIG. 1.
Les figures 3 et 4 représentent respectivement les diagrammes de rayonnement obtenus en excitant l'une ou l'autre des antennes du système de la figure 1.FIGS. 3 and 4 respectively represent the radiation patterns obtained by exciting one or the other of the antennas of the system of FIG. 1.
La figure 5 est une vue en perspective partielle d'un autre mode de réalisation d'un système conforme à la présente invention.Figure 5 is a partial perspective view of another embodiment of a system according to the present invention.
La figure 6 représente les courbes d'adaptation et d'isolation du système de la figure 5.Figure 6 shows the adaptation and isolation curves of the system of Figure 5.
La figure 7 représente une vue en perspective partielle d'un troisième mode de réalisation de la présente invention.Fig. 7 is a partial perspective view of a third embodiment of the present invention.
La figure 8 représente les courbes d'adaptation et d'isolation du mode de réalisation de la figure 7.FIG. 8 represents the adaptation and isolation curves of the embodiment of FIG. 7.
Les figures 9 et 10 représentent les diagrammes de rayonnement obtenus en excitant l'une ou l'autre des antennes du système représenté à la figure 7.FIGS. 9 and 10 represent the radiation patterns obtained by exciting one or the other of the antennas of the system represented in FIG. 7.
La figure 11 représente une vue en perspective partielle d'un autre mode de réalisation d'un système conforme à la présente invention.Fig. 11 shows a partial perspective view of another embodiment of a system according to the present invention.
La figure 12 représente les différentes courbes d'adaptation et d'isolation du système de la figure 11. Les figures 13 et 14 représentent les diagrammes de rayonnement obtenus en excitant l'une ou l'autre des antennes du système de la figure 11.FIG. 12 represents the various adaptation and isolation curves of the system of FIG. 11. Figures 13 and 14 show the radiation patterns obtained by exciting one or the other of the antennas of the system of Figure 11.
La figure 15 représente les courbes d'adaptation et d'isolation d'un système d'antennes selon le mode de réalisation de la figure 11 dans lequel la largeur de la fente a été optimisée.FIG. 15 represents the adaptation and isolation curves of an antenna system according to the embodiment of FIG. 11 in which the width of the slot has been optimized.
La figure 16 représente une vue en perspective partielle d'encore un autre mode de réalisation d'un système d'antennes conforme à la présente invention.Fig. 16 is a partial perspective view of yet another embodiment of an antenna system according to the present invention.
Pour simplifier la description dans les figures, les mêmes éléments portent les mêmes références.To simplify the description in the figures, the same elements bear the same references.
On décrira tout d'abord, avec référence aux figures 1 , 2, 3 et 4, un premier mode de réalisation d'un système d'antennes à diversité d'ordre 2 conforme à la présente invention.First, with reference to FIGS. 1, 2, 3 and 4, a first embodiment of a second order diversity antenna system according to the present invention will be described.
Comme représenté sur la figure 1a, sur un substrat 1 muni au moins sur sa face supérieure d'une couche conductrice formant plan de métallisation ou plan de masse 2, on a réalisé deux antennes 3 et 4 du type F inversé. Ces antennes 3 et 4 sont réalisées en gravant le plan de masse 2 le long de la périphérie du substrat 1 de telle sorte que les antennes 3 et 4 soient perpendiculaires l'une à l'autre tout en étant reliées par leurs extrémités formant masse. Dans cette configuration, le système d'antennes présente la forme d'une tête de flèche (Arrowhead).As shown in FIG. 1a, on a substrate 1 provided at least on its upper face with a conductive layer forming a metallization plane or ground plane 2, two antennas 3 and 4 of the inverted F type were produced. These antennas 3 and 4 are made by etching the ground plane 2 along the periphery of the substrate 1 so that the antennas 3 and 4 are perpendicular to each other while being connected by their ends forming a mass. In this configuration, the antenna system is in the form of an arrowhead.
De manière plus spécifique et comme représenté clairement sur la figure 1a, l'antenne 3 qui présente une longueur totale L et se trouve positionnée le long d'un bord du substrat 1 comporte un brin conducteur présentant une première partie 30 de longueur D1 et une seconde partie 31 de longueur D2. La partie 31 se prolonge par une partie 32 formant masse qui est connectée au plan de masse 2. Les deux parties 30, 31 sont alimentées par une ligne d'alimentation 33 perpendiculaire au brin conducteur, au point de jonction des parties 30, 31. Cette ligne d'alimentation 33 se termine par un port 34 et est adaptée à 50Ω. De manière semblable, l'antenne inversée 4 comporte un brin conducteur présentant une première partie 40 se prolongeant par une seconde partie 41 qui se prolonge par une partie formant masse 42. Cette partie 42 est reliée à la partie formant masse 32 de l'antenne 3 au niveau d'un coin externe du substrat. Les parties 40, 41 sont alimentées par une ligne d'alimentation adaptée à 50Ω reliée au port 44.More specifically, and as clearly shown in FIG. 1a, the antenna 3 which has a total length L and is positioned along an edge of the substrate 1 comprises a conductive strand having a first portion 30 of length D1 and a second part 31 of length D2. The portion 31 is extended by a portion 32 forming mass which is connected to the ground plane 2. The two parts 30, 31 are fed by a supply line 33 perpendicular to the conductive strand at the junction point of the parts 30, 31. This power line 33 ends with a port 34 and is adapted to 50Ω. Of similarly, the inverted antenna 4 comprises a conductive strand having a first portion 40 extending through a second portion 41 which is extended by a mass portion 42. This portion 42 is connected to the ground portion 32 of the antenna 3 at an outer corner of the substrate. The parts 40, 41 are fed by a power supply line adapted to 50Ω connected to the port 44.
Conformément à la présente invention, la fréquence de résonance des antennes 3 ou 4 est obtenue par l'équation suivante :According to the present invention, the resonance frequency of antennas 3 or 4 is obtained by the following equation:
£>1 + H = c—= £> 1 + H = c - =
4.Fres.Jεeff dans laquelle :4.Fres.Jε eff in which:
D1 représente la longueur des parties 30 ou 40 du brin conducteur,D1 represents the length of the portions 30 or 40 of the conductive strand,
Η représente la hauteur ou dimension entre le plan de masse 2 et le brin conducteur, c représente la vitesse de la lumière dans le vide, εeff représente la permittivité effective du milieu de propagation et,Η represents the height or dimension between the ground plane 2 and the conducting strand, c represents the speed of the light in the vacuum, ε e ff represents the effective permittivity of the propagation medium and,
Fres représente la fréquence de résonance des brins conducteurs.F res represents the resonant frequency of the conductive strands.
Dans ce cas, la dimension D2 de la partie 31 ou 41 est choisie de manière à jouer sur l'impédance d'entrée de la partie résonante 30 ou 40 du brin conducteur. Ainsi à fréquence constante, c'est-à-dire pour Η et D1 fixés, une augmentation (respectivement une réduction) de D2 aura pour effet de réduire (respectivement d'augmenter) l'impédance d'entrée du brin résonnant. Les parties formant masse 32 et 42 sont reliées au plan de masse. Ces parties présentent une longueur D3 dont la valeur constitue un degré de liberté pour intégrer le système d'antennes à une carte électronique. En effet, cette partie sans courant peut recevoir des plots de fixation ou autres éléments même métalliques, permettant l'intégration de la carte et la tenue mécanique de l'ensemble.In this case, the dimension D2 of the portion 31 or 41 is chosen to play on the input impedance of the resonant portion 30 or 40 of the conductive strand. Thus at constant frequency, that is to say for fixed Η and D1, an increase (respectively a reduction) of D2 will have the effect of reducing (respectively increasing) the input impedance of the resonant strand. The mass portions 32 and 42 are connected to the ground plane. These parts have a length D3 whose value constitutes a degree of freedom to integrate the antenna system to an electronic card. Indeed, this current-free portion can receive fixing studs or other elements, even metal, allowing the integration of the card and the mechanical strength of the assembly.
On a réalisé une simulation 3D en utilisant un simulateur électromagnétique du commerce basé sur la méthode des éléments finis connus sous la marque HFSS Ansoft. Cette simulation a été faite en utilisant un substrat FR4 multicouches présentant une épaisseur totale de 1.6 mm et une permittivité εr de 4.4. Comme représenté sur la figure 1 B, l'empilage du substrat est constitué d'un substrat FR4 4 couches comportant 2 couches externes d'un matériau connu sous la dénomination Prepreg de 254μm d'épaisseur et d'une couche interne de FR4 de 889μm d'épaisseur. L'interface entre les 3 couches de substrat est constituée de 2 couches internes de cuivre de 35μm d'épaisseur. Les 2 couches conductrices externes ou plan de métallisation sont elles réalisées avec du cuivre de 17,5μm.A 3D simulation was performed using a commercial electromagnetic simulator based on the finite element method known as HFSS Ansoft. This simulation was made using a multilayer FR4 substrate having a total thickness of 1.6 mm and a permittivity εr of 4.4. As represented in FIG. 1B, the stack of the substrate consists of a 4-layer FR4 substrate comprising 2 outer layers of a material known under the name Prepreg of 254 μm in thickness and an inner layer of FR4 of 889 μm. thick. The interface between the 3 substrate layers consists of 2 copper inner layers of 35μm thick. The 2 outer conductive layers or metallization plane are made with copper of 17.5 .mu.m.
La ligne d'alimentation est définie sur les couches supérieures 1 pour le signal et plan de masse 2 pour la masse. Pour la simulation, la tête de flèche (Arrowhead) est métallisée sur toute l'épaisseur du substrat, de même pour le plan de masse.The feed line is defined on the upper layers 1 for the signal and ground plane 2 for the mass. For the simulation, the Arrowhead is metallized over the entire thickness of the substrate, as well as for the ground plane.
Le système d'antennes du type F-inversé tel que représenté sur la figure 1 présente les dimensions suivantes :The antenna system of the F-inverted type as represented in FIG. 1 has the following dimensions:
D1 = 14.4 mmD1 = 14.4 mm
D2 = 12 mmD2 = 12 mm
D3 = 18 mmD3 = 18 mm
H = 6 mmH = 6 mm
W = 2 mmW = 2 mm
L = 45.5 mm.L = 45.5 mm.
Un système de ce type fonctionne dans la bande de fréquences 2.4 GHz à 2.5 GHz.A system of this type operates in the 2.4 GHz to 2.5 GHz frequency band.
Dans le cas de ce mode de réalisation, les deux antennes de type F-inversé sont identiques. Toutefois, il est évident que dans le cadre de la présente invention, les deux antennes 3 et 4 peuvent être de longueur différente, de manière à fonctionner sur des bandes de fréquence différentes.In the case of this embodiment, the two F-inverted antennas are identical. However, it is obvious that in the context of the present invention, the two antennas 3 and 4 may be of different length, so as to operate on different frequency bands.
Les résultats de la simulation donnent les courbes d'adaptation et d'isolation S11 , S22 et S21 représentées à la figure 2. Les courbes S11 et S22 de la figure 2 montrent une adaptation supérieure à -15dB sur les deux ports 32 et 42 sur toute la bande concernée, à savoir 2.4 - 2.5 GHz. D'autre part, l'isolation donnée par la courbe S21 est de -14dB.The results of the simulation give the adaptation and insulation curves S11, S22 and S21 shown in FIG. S22 of Figure 2 show an adaptation greater than -15dB on the two ports 32 and 42 over the entire band concerned, namely 2.4 - 2.5 GHz. On the other hand, the insulation given by curve S21 is -14 dB.
Comme représenté sur les figures 3 et 4 qui montrent respectivement sur la figure 3, le rayonnement de l'antenne 3 et sur la figure 4, le rayonnement de l'antenne 4, les deux diagrammes de rayonnement présentent une bonne décorrélation par rapport à l'axe de symétrie défini par la direction de la flèche (Arrowhead) dans les diagrammes, cette direction correspondant à Phi = -45°.As shown in FIGS. 3 and 4 which respectively show in FIG. 3, the radiation of the antenna 3 and in FIG. 4, the radiation of the antenna 4, the two radiation patterns show a good decorrelation with respect to FIG. axis of symmetry defined by the direction of the arrowhead (Arrowhead) in the diagrams, this direction corresponding to Phi = -45 °.
Ainsi, avec une structure d'antennes à diversité d'ordre 2 très compacte, les deux antennes étant très proches l'une de l'autre et réalisées en utilisant une technologie imprimée, on obtient de manière non implicite pour l'homme de l'art une bonne décorrélation des deux antennes.Thus, with a structure of very compact 2-order diversity antennas, the two antennas being very close to each other and made using a printed technology, we obtain in a non-implicit way for the man of the art a good decorrelation of the two antennas.
On décrira maintenant avec référence aux figures 5 et 6, une variante de réalisation d'un système d'antennes conforme à la présente invention.A variant embodiment of an antenna system in accordance with the present invention will now be described with reference to FIGS. 5 and 6.
Dans ce cas, on réalise deux antennes du type F-inversé 3', 4' en gravant la métallisation d'un substrat 1 muni d'un plan de masse 2. Pour réduire encore plus l'encombrement, le système d'antennes représenté à la figure 5 présente pour chaque antenne 3' et 4', une partie formant masse 32', 42' dont la longueur D3 a été réduite. Une structure de ce type a été simulée, comme mentionné ci-dessus, en prenant pour D3 une valeur de 10 mm.In this case, two antennas of the F-inverted type 3 ', 4' are produced by etching the metallization of a substrate 1 provided with a ground plane 2. To further reduce the bulk, the antenna system represented by FIG. FIG. 5 shows, for each antenna 3 'and 4', a ground portion 32 ', 42' whose length D3 has been reduced. A structure of this type has been simulated, as mentioned above, taking for D3 a value of 10 mm.
Les résultats de la simulation sont donnés par les courbes de la figure 6. Dans ce cas, on obtient des courbes d'adaptation S11 et S22 montrant une adaptation supérieure à -15dB sur la bande de fréquence 2.4 GHz à 2.5 GHz et une courbe d'isolation S21 montant à -12dB, les points de retour masse étant plus rapprochés du fait d'une valeur D3 plus faible.The results of the simulation are given by the curves of FIG. 6. In this case, we obtain adaptation curves S11 and S22 showing an adaptation greater than -15 dB in the frequency band 2.4 GHz to 2.5 GHz and a curve of S21 insulation amounting to -12dB, the mass return points being closer because of a lower value D3.
On décrira maintenant avec référence aux figures 7 à 10, un autre mode de réalisation d'un système d'antennes conforme à la présente invention. Dans ce cas, les antennes 3 et 4 de type F-inversé sont identiques aux antennes de la figure 1. Toutefois, comme représenté sur la figure 7, seule une partie du plan de masse 2' déposé sur l'ensemble du substrat 1 a été évidé. Un système de ce type a été simulé en utilisant un appareil tel que mentionné ci-dessus.Reference will now be made to FIGS. 7 to 10, another embodiment of an antenna system according to the present invention. invention. In this case, the antennas 3 and 4 of the F-inverted type are identical to the antennas of FIG. 1. However, as represented in FIG. 7, only a part of the ground plane 2 'deposited on the whole of the substrate 1 has been hollowed out. A system of this type has been simulated using a device as mentioned above.
Les dimensions simulées dans l'exemple de réalisation de la figure 7 sont les suivantes.The dimensions simulated in the embodiment of Figure 7 are as follows.
D1 = 12.4 mmD1 = 12.4 mm
D2 = 12 mmD2 = 12 mm
D3 = 18 mmD3 = 18 mm
H = 6 mmH = 6 mm
W = 2 mmW = 2 mm
L ≈ 43.5 mm.L ≈ 43.5 mm.
La distance e entre l'extrémité des brins et le plan de masse 2' est de 7 mm.The distance e between the ends of the strands and the ground plane 2 'is 7 mm.
Comme représenté sur les courbes d'adaptation S11, S22 et d'isolation S21 de la figure 8, on note que l'adaptation reste très bonne pour la bande de fréquences autour de 2.5 GHz tandis que l'isolation représentée par la courbe S21 est de -12dB.As shown on the adaptation curves S11, S22 and isolation S21 of FIG. 8, it is noted that the adaptation remains very good for the frequency band around 2.5 GHz whereas the insulation represented by the curve S21 is -12dB.
De manière identique au mode de réalisation représenté à la figure 1 , la diversité des diagrammes est maintenue, comme on le voit sur les diagrammes des figures 9 et 10 représentant respectivement le rayonnement de l'antenne 3, figure 9 et le rayonnement de l'antenne 4, figure 10.Similarly to the embodiment shown in FIG. 1, the diversity of the diagrams is maintained, as can be seen in the diagrams of FIGS. 9 and 10 respectively representing the radiation of antenna 3, FIG. 9 and the radiation of FIG. antenna 4, FIG.
On décrira maintenant avec référence aux figures 11 à 15, une variante de réalisation d'un système d'antennes conforme à la présente invention. Dans ce cas, sur un substrat 1 muni d'un plan de masse 2, on a réalisé les deux antennes de type F-inversé comme dans le mode de réalisation de la figure 1.A variant embodiment of an antenna system in accordance with the present invention will now be described with reference to FIGS. 11 to 15. In this case, on a substrate 1 provided with a ground plane 2, the two F-inverted antennas were made as in the embodiment of FIG. 1.
Toutefois, pour améliorer la décorrélation entre les antennes de type F-inversé 3 et 4, on réalise une gravure du plan de masse au niveau des parties formant masse 32 et 42. Cette gravure forme une fente 6, comme représenté sur la figure 11. Cette gravure permet d'augmenter l'isolation entre les deux antennes de type F-inversé 3 et 4.However, to improve the decorrelation between the F-inverted type antennas 3 and 4, an etching of the ground plane at mass forming parts 32 and 42. This etching forms a slot 6, as shown in FIG. 11. This etching makes it possible to increase the insulation between the two F-inverted type antennas 3 and 4.
Une structure telle que représentée à la figure 11 , a été simulée en utilisant l'appareil mentionné ci-dessus. Dans ce cas, les dimensions suivantes ont été utilisées pour la simulation, à savoir :A structure as shown in FIG. 11 was simulated using the apparatus mentioned above. In this case, the following dimensions were used for the simulation, namely:
D1 = 15.4 mmD1 = 15.4 mm
D2 = 12 mmD2 = 12 mm
D3 = 18 mmD3 = 18 mm
H = 6 mmH = 6 mm
W = 2 mmW = 2 mm
L = 46 mm.L = 46 mm.
La fente 6 présente une largeur de 2 mm et une longueur de 23 mm. La fente réalisée dans le plan de masse est une fente rectangulaire placée dans l'axe de symétrie de la structure, comme représenté sur la figure 11 , de manière à conserver la symétrie des diagrammes.The slot 6 has a width of 2 mm and a length of 23 mm. The slot made in the ground plane is a rectangular slot placed in the axis of symmetry of the structure, as shown in Figure 11, so as to maintain the symmetry of the diagrams.
Sur la figure 12 donnant les courbes d'adaptation S11 , S22 et d'isolation S21 du système de la figure 11 , on note une amélioration de l'isolation entre les deux ports, cette isolation présentant des valeurs jusqu'à -22dB. On note aussi une adaptation sur toute la bande de fréquence autour de 2.5 GHz.In FIG. 12 giving the adaptation curves S11, S22 and the isolation curve S21 of the system of FIG. 11, there is an improvement in the insulation between the two ports, this insulation having values up to -22 dB. There is also an adaptation over the entire frequency band around 2.5 GHz.
La présence de la fente 6 permet donc de renforcer la décorrélation entre le rayonnement des antennes 3 et 4, comme on peut le voir sur les figures 13 et 14 représentant respectivement le diagramme de rayonnement de l'antenne 3 et le diagramme de rayonnement de l'antenne 4.The presence of the slot 6 thus makes it possible to reinforce the decorrelation between the radiation of the antennas 3 and 4, as can be seen in FIGS. 13 and 14 respectively representing the radiation pattern of the antenna 3 and the radiation pattern of the antenna. antenna 4.
Il est possible de dimensionner la fente 6 de manière à ce que sa fréquence de résonance soit proche de celle des antennes 3 et 4. On obtient alors un élargissement de la bande de fonctionnement de l'antenne, comme représenté sur la figure 15. . Par rapport à la structure sans fente, on observe ainsi l'apparition d'un second pic d'adaptation (S11<-10dB) autour de 2.1GHz correspondant à la résonance de la fente et qui concourre à l'adaptation de la structure complète sur toute la bande de 2GHz à 2.5GHz soit une bande passante de 22% contre 16% pour la structure sans fente.It is possible to size the slot 6 so that its resonance frequency is close to that of the antennas 3 and 4. This gives an enlargement of the operating band of the antenna, as shown in Figure 15.. With respect to the structure without slot, we thus observe the appearance of a second adaptation peak (S11 <-10dB) around 2.1GHz corresponding to the resonance of the slot and which contributes to the adaptation of the complete structure over the entire band from 2GHz to 2.5GHz is a bandwidth of 22% against 16% for the structure without slot.
Sur la figure 16, on a représenté encore un autre mode de réalisation d'un système d'antennes conforme à la présente invention. Dans ce cas, sur un substrat 1 comportant au moins une couche conductrice supérieure et une couche conductrice inférieure, on a gravé deux antennes du type F-inversé en gravant un brin 3A sur une face et un brin 3B sur l'autre face du substrat, de même pour l'antenne 4. Ces brins 3A, 3B ou 4A, 4B sont reliés par des vias ou trous métallisés 3C comme représenté sur la figure 16. L'avantage de cette réalisation est l'élargissement de la bande de fréquences d'un brin. La figure 16 représente une antenne de type F-inversé gravée sur 2 couches métalliques. Toutefois, l'invention s'applique aussi à des antennes gravées sur plusieurs couches reliées par des trous métallisés.In Figure 16, there is shown yet another embodiment of an antenna system according to the present invention. In this case, on a substrate 1 comprising at least one upper conductive layer and one lower conductive layer, two antennas of the F-inverted type have been etched by etching a strand 3A on one face and a strand 3B on the other side of the substrate. , likewise for the antenna 4. These strands 3A, 3B or 4A, 4B are connected by vias or metallized holes 3C as shown in FIG. 16. The advantage of this embodiment is the widening of the frequency band of 'a strand. Figure 16 shows an F-inverted type antenna etched on 2 metal layers. However, the invention also applies to antennas etched on several layers connected by metallized holes.
Il est évident pour l'homme de l'art que les modes de réalisation décrits ci-dessus peuvent être modifiés de nombreuses manières. Avec l'invention, on obtient une solution d'antennes intégrant une diversité de rayonnement d'ordre 2 compatible avec les contraintes de coût les plus strictes et très facilement intégrable sur une carte mère pour un dispositif de communication sans fil tel qu'un dispositif de type WIFI. L'intégration du système d'antennes décrit ci-dessus est possible sur tout dispositif de transmission sans fils. Les accès antennes sont adaptés à 50 ohms et sont donc directement intégrables à un commutateur de type SPDT (« Single Port Double Through » en langue anglaise) ou DPDT (« Double Port Double Through » en langue anglaise) et l'encombrement du système est tel que son utilisation sur des cartes déjà existantes peut être envisagée très facilement. It is obvious to those skilled in the art that the embodiments described above can be modified in many ways. With the invention, an antenna solution is obtained integrating a second order of radiation diversity compatible with the most stringent cost constraints and very easily integrable on a motherboard for a wireless communication device such as a device. type WIFI. The integration of the antenna system described above is possible on any wireless transmission device. The antenna accesses are adapted to 50 ohms and are therefore directly integrable with a SPDT type switch ("Single Port Double Through" in English) or DPDT ("Double Port Double Through" in English) and the overall size of the system is as its use on already existing maps can be considered very easily.

Claims

REVENDICATIONS
1 - Système d'antennes à diversité d'ordre 2 comprenant, sur un même substrat (1), des premier et second éléments rayonnants (3,4) positionnés sur deux côtés adjacents du substrat, près de la périphérie dudit substrat, caractérisé en ce que, le substrat (1) comportant un plan de métallisation (2), les premier et second éléments rayonnants sont constitués chacun par une antenne de type F-inversé imprimée côté plan de métallisation du substrat, les premier et second éléments étant positionnés sur le substrat au niveau de l'angle formé par les deux côtés adjacents et étant reliés l'un à l'autre au niveau de leur extrémité reliée au plan de métallisation.A first order diversity antenna system comprising, on the same substrate (1), first and second radiating elements (3,4) positioned on two adjacent sides of the substrate, near the periphery of said substrate, characterized in that that, the substrate (1) having a metallization plane (2), the first and second radiating elements each consist of an F-inverted antenna printed on the metallization plane side of the substrate, the first and second elements being positioned on the substrate at the angle formed by the two adjacent sides and being connected to each other at their end connected to the metallization plane.
2 - Système selon la revendication 1 , caractérisé en ce que chaque antenne de type F-inversé est gravée dans le plan de métallisation.2 - System according to claim 1, characterized in that each antenna type F-inverted is etched in the metallization plane.
3 - Système selon la revendication 1 , caractérisé en ce que chaque antenne de type F-inversé est gravée dans au moins deux plans de métallisation du substrat, les brins ainsi gravés étant reliés par l'intermédiaire de vias ou trous métallisés.3 - System according to claim 1, characterized in that each F-inverted type antenna is etched in at least two metallization planes of the substrate, the strands thus etched being connected via vias or metallized holes.
4 - Système selon l'une des revendications 1 à 3, caractérisé en ce que l'antenne de type F-inversé (3,4) comporte un brin conducteur parallèle (30,31 ;40,41) à un côté du substrat, le brin conducteur se prolongeant par une partie d'extrémité (32,42) reliée au plan de métallisation du substrat, l'antenne étant reliée à une ligne d'alimentation (33,43) adaptée perpendiculaire au brin conducteur.4 - System according to one of claims 1 to 3, characterized in that the antenna type F-inverted (3,4) has a parallel conducting strand (30,31; 40,41) to one side of the substrate, the conductive strand being extended by an end portion (32, 42) connected to the metallization plane of the substrate, the antenna being connected to a feed line (33, 43) adapted perpendicular to the conducting strand.
5 - Système selon la revendication 4, caractérisé en ce que l'antenne présente une fréquence de résonance obtenue à l'aide de la relation : £>i + H =5 - System according to claim 4, characterized in that the antenna has a resonance frequency obtained using the relation: £> i + H =
4.Fresψeff où c représente la vitesse de la lumière dans le vide, εθff la permittivité effective du milieu de propagation, Fres la fréquence de résonance, D1 la longueur du brin conducteur entre son extrémité libre et le point de connexion avec la ligne d'alimentation et Η la hauteur entre le brin conducteur et le plan de métallisation du substrat.4.Fresψ eff where c is the speed of light in vacuum, ε eff the effective permittivity of the propagation medium, F re s resonant frequency, the length D1 of the stranded conductor between its free end and the connection point with the supply line and Η the height between the conductive strand and the metallization plane of the substrate.
6 - Système selon l'une des revendications 1 à 5, caractérisé en ce que la longueur des brins conducteurs de deux éléments rayonnants est identique.6 - System according to one of claims 1 to 5, characterized in that the length of the conductive strands of two radiating elements is identical.
7 - Système selon l'une des revendications 1 à 5, caractérisé en ce que la longueur des brins conducteurs des deux éléments rayonnants est différente.7 - System according to one of claims 1 to 5, characterized in that the length of the conductive strands of the two radiating elements is different.
8 - Système selon l'une des revendications 1 à 7, caractérisé en ce qu'une fente (6) est réalisée entre les deux éléments rayonnants (3,4) au niveau de leurs extrémités reliées au plan de métallisation.8 - System according to one of claims 1 to 7, characterized in that a slot (6) is formed between the two radiating elements (3,4) at their ends connected to the metallization plane.
9 - Système selon la revendication 8, caractérisé en ce que la longueur de la fente est choisie pour que sa fréquence de résonance corresponde à celle d'au moins une antenne (3 ou 4).9 - System according to claim 8, characterized in that the length of the slot is chosen so that its resonant frequency corresponds to that of at least one antenna (3 or 4).
10 - Carte électronique pour dispositif de communication sans fils, caractérisée en ce qu'elle est munie d'un système d'antennes à diversité d'ordre 2 selon l'une des revendications 1 à 9. 10 - Electronic card for wireless communication device, characterized in that it is provided with a second order diversity antenna system according to one of claims 1 to 9.
EP06794184A 2005-07-13 2006-07-13 Antenna system with second-order diversity and card for wireless communication apparatus which is equipped with one such device Withdrawn EP1902491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552194A FR2888675A1 (en) 2005-07-13 2005-07-13 2-D DIVERSITY ANTENNA SYSTEM AND CARD FOR WIRELESS COMMUNICATION APPARATUS PROVIDED WITH SUCH A SYSTEM
PCT/FR2006/001737 WO2007006982A1 (en) 2005-07-13 2006-07-13 Antenna system with second-order diversity and card for wireless communication apparatus which is equipped with one such device

Publications (1)

Publication Number Publication Date
EP1902491A1 true EP1902491A1 (en) 2008-03-26

Family

ID=36143435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06794184A Withdrawn EP1902491A1 (en) 2005-07-13 2006-07-13 Antenna system with second-order diversity and card for wireless communication apparatus which is equipped with one such device

Country Status (7)

Country Link
US (1) US20090073047A1 (en)
EP (1) EP1902491A1 (en)
JP (1) JP2009501468A (en)
KR (1) KR20080025703A (en)
CN (1) CN101223672A (en)
FR (1) FR2888675A1 (en)
WO (1) WO2007006982A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444750B (en) 2006-12-14 2010-04-21 Sarantel Ltd An antenna arrangement
US20100295750A1 (en) * 2007-10-09 2010-11-25 Agency For Science, Technology And Research Antenna for diversity applications
KR101464510B1 (en) * 2007-10-17 2014-11-26 삼성전자주식회사 MIMO antenna apparatus
CN101483279B (en) * 2008-01-12 2012-12-12 旭丽电子(广州)有限公司 Antenna system for production circular polarized wave by PIFA antenna
CN101577364B (en) * 2008-05-05 2012-08-22 广达电脑股份有限公司 Antenna unit
TWI357687B (en) * 2008-07-31 2012-02-01 Avermedia Tech Inc Digital tv antenna
FR2942676A1 (en) * 2009-02-27 2010-09-03 Thomson Licensing COMPACT ANTENNA SYSTEM WITH DIVERSITY OF ORDER 2.
CN101707281A (en) * 2009-11-17 2010-05-12 中兴通讯股份有限公司 Mobile terminal and diversity antenna thereof
KR101102650B1 (en) * 2010-04-28 2012-01-04 서울과학기술대학교 산학협력단 MIMO Antenna for Improving Isolation
US8354967B2 (en) * 2010-05-11 2013-01-15 Sony Ericsson Mobile Communications Ab Antenna array with capacitive coupled upper and lower antenna elements and a peak radiation pattern directed toward the lower antenna element
US9124003B2 (en) * 2013-02-21 2015-09-01 Qualcomm Incorporated Multiple antenna system
US9276319B2 (en) * 2013-05-08 2016-03-01 Apple Inc. Electronic device antenna with multiple feeds for covering three communications bands
CN104241815B (en) * 2013-06-06 2019-03-08 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with the antenna structure
TWI596831B (en) * 2013-07-15 2017-08-21 富智康(香港)有限公司 Wireless communication device
CN104300232A (en) * 2013-07-16 2015-01-21 深圳富泰宏精密工业有限公司 Wireless communication device
US9979096B2 (en) 2013-08-20 2018-05-22 Futurewei Technologies, Inc. System and method for a mobile antenna with adjustable resonant frequencies and radiation pattern
CN104466391A (en) * 2013-09-17 2015-03-25 中国科学院微电子研究所 Beautification antenna used for display frame
EP2860819B1 (en) * 2013-10-11 2016-01-06 Tecom Co., Ltd. Planar array antenna structure
EP3261172B1 (en) * 2016-06-21 2020-07-29 Axis AB Pcb antenna
CN108886196B (en) 2016-09-29 2020-08-25 华为技术有限公司 Terminal
TWI632737B (en) * 2016-10-13 2018-08-11 和碩聯合科技股份有限公司 Multi-band antenna
CN109935962A (en) * 2017-12-15 2019-06-25 西安中兴新软件有限责任公司 A kind of vertical polarization mimo antenna and the terminal with mimo antenna
WO2019208446A1 (en) * 2018-04-26 2019-10-31 株式会社ソニー・インタラクティブエンタテインメント Communication device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9309368D0 (en) * 1993-05-06 1993-06-16 Ncr Int Inc Antenna apparatus
US6518931B1 (en) * 2000-03-15 2003-02-11 Hrl Laboratories, Llc Vivaldi cloverleaf antenna
US6853336B2 (en) * 2000-06-21 2005-02-08 International Business Machines Corporation Display device, computer terminal, and antenna
JP3630622B2 (en) * 2000-08-31 2005-03-16 シャープ株式会社 Pattern antenna and wireless communication apparatus including the same
US6483463B2 (en) * 2001-03-27 2002-11-19 Centurion Wireless Technologies, Inc. Diversity antenna system including two planar inverted F antennas
US6686886B2 (en) * 2001-05-29 2004-02-03 International Business Machines Corporation Integrated antenna for laptop applications
US6624789B1 (en) * 2002-04-11 2003-09-23 Nokia Corporation Method and system for improving isolation in radio-frequency antennas
JP2003338783A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Antenna assembly
JP2004096341A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Antenna apparatus including inverted f antenna with variable resonance frequency
GB0311361D0 (en) * 2003-05-19 2003-06-25 Antenova Ltd Dual band antenna system with diversity
KR100586938B1 (en) * 2003-09-19 2006-06-07 삼성전기주식회사 Internal diversity antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007006982A1 *

Also Published As

Publication number Publication date
CN101223672A (en) 2008-07-16
WO2007006982A1 (en) 2007-01-18
KR20080025703A (en) 2008-03-21
FR2888675A1 (en) 2007-01-19
JP2009501468A (en) 2009-01-15
US20090073047A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
WO2007006982A1 (en) Antenna system with second-order diversity and card for wireless communication apparatus which is equipped with one such device
EP1172885B1 (en) Short-circuit microstrip antenna and dual-band transmission device including that antenna
CA2314826A1 (en) Stacked antenna with resonant structures and multifrequency radiocommunication device including this antenna
EP0923157B1 (en) Antenna realised according to microstrip technique and device incorporating this antenna
EP0108463B1 (en) Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements
EP0924797B1 (en) Multifrequency microstrip antenna and apparatus using the same
EP0714151B1 (en) Broadband monopole antenna in uniplanar printed circuit technology and transmit- and/or receive device with such an antenna
EP0923156B1 (en) Shorted microstrip antenna and apparatus using the same
EP0961344B1 (en) Device for radiocommunication and a slot loop antenna
EP0954055B1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
EP0825673A1 (en) Plane printed antenna with interposed short-circuited elements
EP1225655B1 (en) Dual-band planar antenna and apparatus including such an antenna device
EP1466384B1 (en) Device for receiving and/or emitting electromagnetic waves with radiation diversity
EP3175509B1 (en) Log-periodic antenna with wide frequency band
WO2013092356A1 (en) Test card for printed circuit card in the field of wireless systems
FR2664749A1 (en) Microwave antenna
EP2637254B1 (en) Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna
EP2316149B1 (en) Low-loss compact radiating element
FR2917242A1 (en) IMPROVEMENT TO BROADBAND ANTENNAS.
FR2871619A1 (en) BROADBAND ANTENNA WITH OMNIDIRECTIONAL RADIATION
WO2012095358A1 (en) Dual-polarization and dual-band microstrip antenna
EP3942649B1 (en) Compact directional antenna, device comprising such an antenna
WO2002037606A1 (en) Multiband antenna
FR2943464A1 (en) Radiating element for use on electronically-scanned active antenna of e.g. radar, has slot line and notch formed by absence of metallization surfaces, where element and another element are formed on single multilayer radiofrequency circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130201