EP1896864A1 - Battery state recognition for kfz-accumulators - Google Patents

Battery state recognition for kfz-accumulators

Info

Publication number
EP1896864A1
EP1896864A1 EP06755075A EP06755075A EP1896864A1 EP 1896864 A1 EP1896864 A1 EP 1896864A1 EP 06755075 A EP06755075 A EP 06755075A EP 06755075 A EP06755075 A EP 06755075A EP 1896864 A1 EP1896864 A1 EP 1896864A1
Authority
EP
European Patent Office
Prior art keywords
battery
voltage
group
sub
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06755075A
Other languages
German (de)
French (fr)
Inventor
Christoph Wenger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1896864A1 publication Critical patent/EP1896864A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries

Definitions

  • the invention relates to a method for determining the state of a battery, in particular a vehicle battery, according to the preamble of patent claim 1, as well as a corresponding device according to the preamble of patent claim 7.
  • Conventional vehicle batteries e.g. NiMH or lead-acid batteries typically consist of several series-connected single cells each generating a sub-voltage of a few volts (e.g., 2V). The number of cells determines the rated voltage of the battery. For example, a battery with a rated voltage of 12V includes 6 cells, each about 2V. In on-board networks with higher mains voltage, e.g. 24V or 42V usually several 12V batteries are connected in series.
  • BZE battery condition detection devices
  • the individual cells of a battery or the individual series-connected (12V) batteries do not behave completely the same over their service life. This limits the performance of the overall battery because it can not be discharged until the weakest cell discharges and can not be recharged until the strongest cell is fully charged.
  • it is known not only to analyze the state of the whole battery, but also to determine the state of individual cells or groups of cells. For this purpose, it is necessary to measure the voltage drop across the cells and supply it to the BZE. However, the measuring voltages refer to different reference potentials. For a 24V battery, the z.
  • the reference potential of the first battery (with 24V and 12V terminals) is + 12V with respect to the body, while the reference potential of the second component battery (with 12V terminal voltages and ground) is grounded .
  • This causes difficulties in signal processing, since conventional control devices usually have only signal inputs that are designed for ground as a reference potential.
  • the potential difference must be corrected either in the voltage sensor of the first sub-battery or in the control unit.
  • One way of correcting is e.g. in that the voltage of the first sub-battery (with reference potential + 12V) by means of a differential amplifier to refer to ground.
  • the circuit complexity in this solution is relatively high.
  • An essential idea of the invention is to calculate the battery size (eg the voltage, the state of charge or the internal resistance) of a group of cells whose reference potential is unequal to ground from the voltages of two other groups whose voltages are at the same reference potential, preferably ground, Respectively.
  • the battery size is determined by measuring the voltage dropped across a first cell group and the voltage dropping across a second cell group comprising the first group and the third group, and the battery size of the third group based on the two measured voltages is calculated. This has the significant advantage that the cell voltage of the third group is not measured and thus no voltage signal must be processed with a different reference potential.
  • a cell group may comprise one or more cells according to the invention.
  • a battery state quantity such as a battery state variable, is used here. the state of charge SOC, the. Aging state (or performance) SOH or other state variable, and in particular the external voltage, the internal resistance Ri or any other electrical battery size understood.
  • the voltage drop across the cell group can be calculated from the measured first (Ui) and second (Ug) voltage.
  • the following applies for the third voltage (U2): U2 U g -Ui.
  • another battery size such as the state of charge of the third group can be calculated.
  • the voltages U 2 , U 9 of the first and second cell group are first measured, from each of which a battery size, such as the state of charge, calculated and then calculates the value of this battery size for the third group.
  • the first and second voltages preferably have the same reference potential, in particular ground.
  • the voltage sensor preferably comprises separate sensors for the first and second cell groups.
  • a single voltage sensor could be provided, which can be switched between the first and second group.
  • the voltage sensor preferably comprises a voltage divider which reduces the measurement voltage to a predetermined voltage range.
  • the voltage sensor preferably also includes an A / D converter that samples and digitizes the analog voltage signal.
  • FIG. 1 is a schematic representation of an arrangement for determining a battery state variable according to an embodiment of the invention.
  • Fig. 1 shows an arrangement for determining a battery size, e.g. of the state of charge SOC of a battery 1.
  • the battery 1 here comprises two series-connected 12V accumulators 2a, 2b, each consisting of a plurality of individual cells 1a-1f and 1g-1 l.
  • a mathematical battery model 7 is provided which is stored in a control unit 6 as software.
  • the model 7 can z. B. determine the state of charge SOC of the batteries 2a, 2b or the total battery 1 from the impulse response of the voltages Ui 1 Ib and U 9 to a current pulse. (A small modification of the interconnection could also be used to determine the battery size of individual cells 1a-1 l or cell groups.)
  • the assembly further comprises a first voltage sensor 4, the voltage dropping at the first accumulator 2a voltage Ui and a second voltage sensor 5 that measures the voltage dropping at the overall battery voltage U 1.
  • the analog measured values Ui, U 9 are digitized by means of A / D converters (not shown) and fed digitally to the control unit 6.
  • the current I flowing through the battery 1 is measured by means of a current sensor 3.
  • one or more temperature sensors may be provided.
  • the control unit 6 has here only interfaces that relate to ground. It is therefore not readily possible, the controller 6, the voltage U2, which has a different reference potential supply. In order to nevertheless the voltage U2 or another, to determine battery 2b variable in question the accumulator, the battery model 7 is realized such that the voltage U 2 or the battery size of the accumulator 2b from the voltages Ui and U is calculated. 9 For the voltage U 2, the following applies:
  • U 2 U 9 -Ui From the calculated voltage U 2 , in turn, the impulse response to a current pulse, taking into account the battery current I and the battery temperature T evaluated and thereby the state of charge SOC of the accumulator 2b or another battery size, such as the aging state (SOH) or internal resistance Ri are calculated.
  • SOH aging state
  • Ri internal resistance
  • the battery size (SOC 1 SOH 1 Ri) of the second accumulator 2 b could also be determined without calculation of U 2 by being determined from the corresponding magnitudes of the first accumulator 2 a and the overall battery 1.
  • the state of charge SOC of the first accumulator 2a and of the total battery 1 are determined with the aid of the battery model 7 and from this the charge state SOC of the second accumulator 2b is calculated.
  • another size could be calculated from the state of charge.
  • FIG. 2 again shows the essential method steps for determining the state of charge SOC of the second accumulator 2b in the form of a flow chart.
  • step 10 initially the dropping at the first accumulator 2a voltage Ui and in step 11, the sloping of the total battery voltage U 1 9 are measured by the sensors 4,5 and supplied to the controller. 6
  • the battery model 7 then calculates the voltage U 2 dropping at the second accumulator 2 b in step 12 and, in step 13, determines the state of charge SOC of the second accumulator.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a method for determining the size (U<SUB>2</SUB>, SOC, R<SUB>i</SUB>) of a battery (1), in particular a Kfz-battery, comprising several serially connected cells (1a-1l). The size of the battery is calculated in order to determine the size of the battery for a group of cells (1a-1l), whereby the reference potential thereof is not the same as the mass. Tension (U<SUB>1</SUB>) falling to a first group of cells (2a) and the second tension (U<SUB>g</SUB>) falling to a second group of cells (1), which contains the first group (2a) and a third group (2b), are measured. The size of the battery (U<SUB>2</SUB>, SOC, R<SUB>i</SUB>) of the third group (2b) is calculated based on the measured first and second tensions (U<SUB>1</SUB>, U<SUB>g</SUB>).

Description

Beschreibungdescription
Batteriezustandserkennunq für Kfz-AkkumulatorenBattery condition detection for car accumulators
Die Erfindung betrifft ein Verfahren zum Bestimmen des Zustandes einer Batterie, insbesondere einer Fahrzeugbatterie, gemäß dem Oberbegriff des Patentanspruchs 1 , sowie eine entsprechende Vorrichtung gemäß dem Oberbegriff des Patentanspruchs 7.The invention relates to a method for determining the state of a battery, in particular a vehicle battery, according to the preamble of patent claim 1, as well as a corresponding device according to the preamble of patent claim 7.
Herkömmliche Fahrzeugbatterien (Akkumulatoren), wie z.B. NiMH- oder Blei-Säure- Batterien, bestehen in der Regel aus mehreren in Serie geschalteten Einzelzellen, die jeweils eine Teilspannung von wenigen Volt (z.B. 2V) erzeugen. Die Anzahl der Zellen bestimmt dabei die Nennspannung der Batterie. Eine Batterie mit einer Nennspannung von 12V umfasst beispielsweise 6 Zellen mit jeweils etwa 2V. Bei Bordnetzen mit höherer Netzspannung, z.B. 24V oder 42V werden üblicherweise mehrere 12V-Batterien in Serie geschaltet.Conventional vehicle batteries (accumulators), e.g. NiMH or lead-acid batteries typically consist of several series-connected single cells each generating a sub-voltage of a few volts (e.g., 2V). The number of cells determines the rated voltage of the battery. For example, a battery with a rated voltage of 12V includes 6 cells, each about 2V. In on-board networks with higher mains voltage, e.g. 24V or 42V usually several 12V batteries are connected in series.
Zur Diagnose von Fahrzeugbatterien ist es bekannt, so genannte Batteriezustands- erkennungseinrichtungen (BZE) einzusetzen. Dabei handelt es sich um einen in einem Steuergerät hinterlegten Algorithmus (mathematisches Modell), der aus kontinuierlich gemessenen Betriebsgrößen, wie z.B. dem Batteriestrom, der Batteriespannung und der Batterietemperatur den aktuellen Batteriezustand berechnet. Zur Abschätzung des Ladezustands wertet die BZE z. B. die Impulsantwort der Batterie auf einen Stromimpuls aus.For the diagnosis of vehicle batteries, it is known to use so-called battery condition detection devices (BZE). This is an algorithm stored in a control unit (mathematical model), which consists of continuously measured operating variables, such as, for example, the battery current, the battery voltage and the battery temperature calculates the current battery condition. To estimate the state of charge, the BZE evaluates z. B. the impulse response of the battery to a current pulse.
Auf Grund von Fertigungstoleranzen und verschiedenen äußeren Einflüssen (z.B. unterschiedliche Temperaturen, mechanische Belastung, Alterung, etc.) verhalten sich die einzelnen Zellen einer Batterie bzw. die einzelnen in Serie geschalteten (12V-) Batterien über ihre Lebensdauer nicht völlig gleich. Dadurch wird die Leistungsfähigkeit der Gesamtbatterie limitiert, da sie nicht weiter entladen werden kann, als bis die schwächste Zelle entladen, und nicht weiter aufgeladen werden kann, als bis die stärkste Zelle voll aufgeladen ist. Um das unterschiedliche Verhalten der Einzelzellen bei der Diagnose zu berücksichtigen, ist es bekannt, nicht nur den Zustand der Gesamtbatterie zu analysieren, sondern auch den Zustand von Einzelzellen bzw. Zellgruppen zu bestimmen. Hierzu ist es notwendig, die an den Zellen abfallende Spannung zu messen und der BZE zuzuführen. Die Messspannungen beziehen sich jedoch auf unterschiedliche Bezugspotentiale. Bei einer 24V-Batterie, die z. B. zwei in Serie geschaltete 12V-Batterien umfasst, liegt das Bezugspotential der ersten Batterie (mit den Klemmen 24V und 12V) bei +12V bezogen auf die Karosserie, während das Bezugspotential der zweiten Teilbatterie (mit den Klemmenspannungen 12V und Masse) auf Masse liegt. Dies bereitet Schwierigkeiten bei der Signalverarbeitung, da herkömmliche Steuergeräte i. d. R. nur Signaleingänge besitzen, die für Masse als Bezugspotential ausgelegt sind.Due to manufacturing tolerances and various external influences (eg different temperatures, mechanical stress, aging, etc.), the individual cells of a battery or the individual series-connected (12V) batteries do not behave completely the same over their service life. This limits the performance of the overall battery because it can not be discharged until the weakest cell discharges and can not be recharged until the strongest cell is fully charged. In order to take into account the different behavior of the individual cells in the diagnosis, it is known not only to analyze the state of the whole battery, but also to determine the state of individual cells or groups of cells. For this purpose, it is necessary to measure the voltage drop across the cells and supply it to the BZE. However, the measuring voltages refer to different reference potentials. For a 24V battery, the z. For example, if two series-connected 12V batteries are included, the reference potential of the first battery (with 24V and 12V terminals) is + 12V with respect to the body, while the reference potential of the second component battery (with 12V terminal voltages and ground) is grounded , This causes difficulties in signal processing, since conventional control devices usually have only signal inputs that are designed for ground as a reference potential.
Um eine Weiterverarbeitung der Signale zu ermöglichen, muss der Potentialunterschied entweder im Spannungssensor der ersten Teilbatterie oder im Steuergerät korrigiert werden. Eine Möglichkeit der Korrektur besteht z.B. darin, die Spannung der ersten Teilbatterie (mit Bezugspotential +12V) mittels eines Differenzverstärkers auf Masse zu beziehen. Der Schaltungsaufwand bei dieser Lösung ist jedoch vergleichsweise hoch.In order to enable further processing of the signals, the potential difference must be corrected either in the voltage sensor of the first sub-battery or in the control unit. One way of correcting is e.g. in that the voltage of the first sub-battery (with reference potential + 12V) by means of a differential amplifier to refer to ground. The circuit complexity in this solution is relatively high.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren sowie eine Vorrichtung zu schaffen, mit der auch Batteriegrößen von Zellengruppen, deren Bezugspotential ungleich Masse ist, in einfacher Weise bestimmt werden können.It is therefore an object of the present invention to provide a method and a device with which battery sizes of groups of cells whose reference potential is unequal mass can be determined in a simple manner.
Gelöst wird diese Aufgabe gemäß der Erfindung durch die im Patentanspruch 1 sowie im Patentanspruch 7 angegebenen Merkmale. Weitere Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.This object is achieved according to the invention by the features specified in claim 1 and in claim 7. Further embodiments of the invention are the subject of dependent claims.
Ein wesentlicher Gedanke der Erfindung besteht darin, die Batteriegröße (z.B. die Spannung, den Ladezustand oder den Innenwiderstand) einer Zellengruppe, deren Bezugspotential ungleich Masse ist, aus den Spannungen zweier anderer Gruppen zu berechnen, deren Spannungen sich auf das gleiche Bezugspotential, vorzugsweise Masse, beziehen. Gemäß der Erfindung wird die Batteriegröße dadurch bestimmt, dass die an einer ersten Zellengruppe abfallende Spannung und die an einer zweiten Zellengruppe, welche die erste Gruppe und die dritte Gruppe umfasst, abfallende Spannung gemessen werden und die Batteriegröße der dritten Gruppe auf Grundlage der beiden gemessenen Spannungen berechnet wird. Dies hat den wesentlichen Vorteil, dass die Zellenspannung der dritten Gruppe nicht gemessen und somit kein Spannungssignal mit einem anderen Bezugspotential verarbeitet werden muss.An essential idea of the invention is to calculate the battery size (eg the voltage, the state of charge or the internal resistance) of a group of cells whose reference potential is unequal to ground from the voltages of two other groups whose voltages are at the same reference potential, preferably ground, Respectively. According to the invention, the battery size is determined by measuring the voltage dropped across a first cell group and the voltage dropping across a second cell group comprising the first group and the third group, and the battery size of the third group based on the two measured voltages is calculated. This has the significant advantage that the cell voltage of the third group is not measured and thus no voltage signal must be processed with a different reference potential.
Eine Zellengruppe kann erfindungsgemäß eine oder mehrere Zellen umfassen. Unter einer Batteriegröße wird hier insbesondere eine Batterie-Zustandsgröße, wie z.B. der Ladezustand SOC, der. Alterungszustand (bzw. die Leistungsfähigkeit) SOH oder eine andere Zustandsgröße, sowie insbesondere die äußere Spannung, der Innenwiderstand Ri oder eine beliebige andere elektrische Batteriegröße verstanden.A cell group may comprise one or more cells according to the invention. By a battery size, a battery state quantity, such as a battery state variable, is used here. the state of charge SOC, the. Aging state (or performance) SOH or other state variable, and in particular the external voltage, the internal resistance Ri or any other electrical battery size understood.
Gemäß einer ersten Ausführungsform der Erfindung kann beispielsweise die an der Zellengruppe abfallende Spannung aus der gemessenen ersten (Ui) und zweiten (Ug) Spannung berechnet werden. Für die dritte Spannung (U2) gilt dabei: U2 = Ug-Ui. Auf Grundlage dieser dritten Spannung kann wiederum eine andere Batteriegröße wie z.B. der Ladezustand der dritten Gruppe berechnet werden.According to a first embodiment of the invention, for example, the voltage drop across the cell group can be calculated from the measured first (Ui) and second (Ug) voltage. The following applies for the third voltage (U2): U2 = U g -Ui. On the basis of this third voltage, in turn, another battery size such as the state of charge of the third group can be calculated.
Gemäß einer anderen Ausführungsform der Erfindung werden zunächst die Spannungen U2, U9 der ersten und zweiten Zellengruppe gemessen, daraus jeweils eine Batteriegröße, wie z.B. der Ladezustand, berechnet und danach der Wert dieser Batteriegröße für die dritte Gruppe berechnet.According to another embodiment of the invention, the voltages U 2 , U 9 of the first and second cell group are first measured, from each of which a battery size, such as the state of charge, calculated and then calculates the value of this battery size for the third group.
Die erste und zweite Spannung haben vorzugsweise das gleiche Bezugspotential, insbesondere Masse.The first and second voltages preferably have the same reference potential, in particular ground.
Eine erfindungsgemäße Vorrichtung zum Bestimmen einer Batteriegröße umfasst einen Spannungssensor zum Messen der an der ersten bzw. zweiten Gruppe abfallenden Spannung, sowie eine Recheneinheit, der die gemessenen Spannungen zugeführt werden und die daraus die gesuchte Batteriegröße der dritten Gruppe berechnet. Der Spannungssensor umfasst vorzugsweise separate Sensoren für die erste und zweite Zellengruppe. Wahlweise könnte auch ein einziger Spannungssensor vorgesehen sein, der zwischen der ersten und zweiten Gruppe umschaltbar ist.A device according to the invention for determining a battery size comprises a voltage sensor for measuring the voltage dropping across the first or second group, as well as a computing unit to which the measured voltages are supplied and which calculates therefrom the sought-after battery size of the third group. The voltage sensor preferably comprises separate sensors for the first and second cell groups. Optionally, a single voltage sensor could be provided, which can be switched between the first and second group.
Der Spannungssensor umfasst vorzugsweise einen Spannungsteiler, der die Messspannung auf einen vorgegebenen Spannungsbereich reduziert.The voltage sensor preferably comprises a voltage divider which reduces the measurement voltage to a predetermined voltage range.
Der Spannungssensor umfasst vorzugsweise auch einen A/D-Wandler, der das analoge Spannungssignal abtastet und digitalisiert. Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen beispielhaft näher erläutert. Es zeigen:The voltage sensor preferably also includes an A / D converter that samples and digitizes the analog voltage signal. The invention will now be described by way of example with reference to the accompanying drawings. Show it:
Fig. 1 eine schematische Darstellung einer Anordnung zum Bestimmen einer Batterie-Zustandsgröße gemäß einer Ausführungsform der Erfindung; und1 is a schematic representation of an arrangement for determining a battery state variable according to an embodiment of the invention; and
Fig. 2 die wesentlichen Verfahrensschritte eines Verfahrens zum Bestimmen der Batterie-Zustandsgröße.2 shows the essential method steps of a method for determining the battery state variable.
Fig. 1 zeigt eine Anordnung zum Bestimmen einer Batteriegröße, wie z.B. des Ladezustands SOC einer Batterie 1. Die Batterie 1 umfasst hier zwei in Serie geschaltete 12V-Akkumulatoren 2a,2b, die jeweils aus mehreren Einzelzellen 1a-1f bzw. 1g-1 l bestehen.Fig. 1 shows an arrangement for determining a battery size, e.g. of the state of charge SOC of a battery 1. The battery 1 here comprises two series-connected 12V accumulators 2a, 2b, each consisting of a plurality of individual cells 1a-1f and 1g-1 l.
Zum Berechnen der Batteriegröße ist ein mathematisches Batteriemodell 7 vorgesehen, das in einem Steuergerät 6 als Software hinterlegt ist. Das Modell 7 kann z. B. den Ladezustand SOC der Akkumulatoren 2a,2b oder der Gesamtbatterie 1 aus der Impulsantwort der Spannungen Ui1Ib bzw. U9 auf einen Stromimpuls ermitteln. (Durch geringe Modifikation der Verschaltung könnte auch die Batteriegröße einzelner Zellen 1a-1 l oder Zellengruppen bestimmt werden.)To calculate the battery size, a mathematical battery model 7 is provided which is stored in a control unit 6 as software. The model 7 can z. B. determine the state of charge SOC of the batteries 2a, 2b or the total battery 1 from the impulse response of the voltages Ui 1 Ib and U 9 to a current pulse. (A small modification of the interconnection could also be used to determine the battery size of individual cells 1a-1 l or cell groups.)
Die Anordnung umfasst ferner einen ersten Spannungssensor 4, der die am ersten Akkumulator 2a abfallende Spannung Ui, und einen zweiten Spannungssensor 5, der die an der Gesamtbatterie 1 abfallende Spannung U9 misst. Die analogen Messwerte U-i, U9 werden mittels A/D-Wandlern (nicht gezeigt) digitalisiert und dem Steuergerät 6 digital zugeführt. Der durch die Batterie 1 fließende Strom I wird mittels eines Stromsensors 3 gemessen. Zur Temperaturmessung können ein oder mehrere Temperatursensoren (nicht gezeigt) vorgesehen sein.The assembly further comprises a first voltage sensor 4, the voltage dropping at the first accumulator 2a voltage Ui and a second voltage sensor 5 that measures the voltage dropping at the overall battery voltage U 1. 9 The analog measured values Ui, U 9 are digitized by means of A / D converters (not shown) and fed digitally to the control unit 6. The current I flowing through the battery 1 is measured by means of a current sensor 3. For temperature measurement, one or more temperature sensors (not shown) may be provided.
Das Steuergerät 6 besitzt hier nur Schnittstellen, die sich auf Masse beziehen. Es ist daher nicht ohne weiteres möglich, dem Steuergerät 6 die Spannung U2, die ein anderes Bezugspotential hat, zuzuführen. Um dennoch die Spannung U2 oder eine andere, den Akkumulator 2b betreffende Batteriegröße bestimmen zu können, ist das Batteriemodell 7 derart realisiert, dass die Spannung U2 bzw. die Batteriegröße des Akkumulators 2b aus den Spannungen Ui und U9 berechnet wird. Für die Spannung U2 gilt dabei:The control unit 6 has here only interfaces that relate to ground. It is therefore not readily possible, the controller 6, the voltage U2, which has a different reference potential supply. In order to nevertheless the voltage U2 or another, to determine battery 2b variable in question the accumulator, the battery model 7 is realized such that the voltage U 2 or the battery size of the accumulator 2b from the voltages Ui and U is calculated. 9 For the voltage U 2, the following applies:
U2=U9-Ui Aus der berechneten Spannung U2 kann wiederum die Impulsantwort auf einen Stromimpuls unter Berücksichtigung des Batteriestroms I und der Batterietemperatur T ausgewertet und dadurch der Ladezustand SOC des Akkumulators 2b oder eine andere Batteriegröße, wie z.B. der Alterungszustand (SOH) oder Innenwiderstand Ri berechnet werden.U 2 = U 9 -Ui From the calculated voltage U 2 , in turn, the impulse response to a current pulse, taking into account the battery current I and the battery temperature T evaluated and thereby the state of charge SOC of the accumulator 2b or another battery size, such as the aging state (SOH) or internal resistance Ri are calculated.
Alternativ könnte die Batteriegröße (SOC1SOH1Ri) des zweiten Akkumulators 2b auch ohne Berechnung von U2 bestimmt werden, indem sie aus den entsprechenden Größen des ersten Akkumulators 2a und der Gesamtbatterie 1 ermittelt wird. In diesem Fall werden z.B. der Ladezustand SOC des ersten Akkumulators 2a und der Gesamtbatterie 1 mit Hilfe des Batteriemodells 7 ermittelt und daraus der Ladezustand SOC des zweiten Akkumulators 2b berechnet. Aus dem Ladezustand könnte z.B. wiederum eine andere Größe berechnet werden.Alternatively, the battery size (SOC 1 SOH 1 Ri) of the second accumulator 2 b could also be determined without calculation of U 2 by being determined from the corresponding magnitudes of the first accumulator 2 a and the overall battery 1. In this case, for example, the state of charge SOC of the first accumulator 2a and of the total battery 1 are determined with the aid of the battery model 7 and from this the charge state SOC of the second accumulator 2b is calculated. For example, another size could be calculated from the state of charge.
Fig. 2 zeigt nochmals die wesentlichen Verfahrensschritte zum Bestimmen des Ladezustands SOC des zweiten Akkumulators 2b in Form eines Flussdiagramms. Dabei werden in Schritt 10 zunächst die am ersten Akkumulator 2a abfallende Spannung Ui und in Schritt 11 die an der Gesamtbatterie 1 abfallende Spannung U9 mittels der Sensoren 4,5 gemessen und dem Steuergerät 6 zugeführt. Das Batteriemodell 7 berechnet dann in Schritt 12 die am zweiten Akkumulator 2b abfallende Spannung U2 und ermittelt daraus in Schritt 13 den Ladezustand SOC des zweiten Akkumulators. FIG. 2 again shows the essential method steps for determining the state of charge SOC of the second accumulator 2b in the form of a flow chart. In this case, in step 10, initially the dropping at the first accumulator 2a voltage Ui and in step 11, the sloping of the total battery voltage U 1 9 are measured by the sensors 4,5 and supplied to the controller. 6 The battery model 7 then calculates the voltage U 2 dropping at the second accumulator 2 b in step 12 and, in step 13, determines the state of charge SOC of the second accumulator.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Gesamtbatterie1 total battery
1a-1l Einzelzellen1a-1l single cells
2a,2b Akkumulatoren2a, 2b accumulators
3 Stromsensor3 current sensor
4 Spannungssensor4 voltage sensor
5 Spannungssensor5 voltage sensor
6 Steuergerät6 control unit
7 mathematisches Batteriemodell 10-13 Verfahrensschritte7 mathematical battery model 10-13 process steps
Ui Spannungsabfall am ersten Akkumulator 2aUi voltage drop at the first accumulator 2a
U2 Spannungsabfall am zweiten Akkumulator 2bU 2 voltage drop at the second accumulator 2b
Ug Spannungsabfall an der GesamtbatterieUg voltage drop across the battery
I BatteriestromI battery power
T BatterietemperaturT battery temperature
SOC LadezustandSOC charge state
SOH LeistungsfähigkeitSOH efficiency
Ri Innenwiderstand Ri internal resistance

Claims

Patentansprüche claims
1. Verfahren zum Bestimmen einer Batteriegröße (U2, SOC, Ri) einer Batterie (1), insbesondere einer Kfz-Batterie, mit mehreren in Serie geschalteten Zellen (1a-11) gekennzeichnet durch folgende Schritte:1. A method for determining a battery size (U2, SOC, Ri) of a battery (1), in particular a motor vehicle battery, with a plurality of cells connected in series (1a-11) characterized by the following steps:
- Messen der an einer ersten Zellengruppe (2a) abfallenden ersten Spannung (Ui),Measuring the first voltage (Ui) dropping at a first cell group (2a),
- Messen der an einer zweiten Zellengruppe (1 ), welche die erste Gruppe (2a) und eine dritte Gruppe (2b) umfasst, abfallenden zweiten Spannung (U9), undMeasuring the second voltage (U 9 ) dropping across a second cell group (1) comprising the first group (2a) and a third group (2b), and
- Berechnen der Batteriegröße (U2, SOC, Ri) der dritten Gruppe (2b) auf Grundlage der gemessenen ersten und zweiten Spannung (U-i, U9).- calculating the battery size (U 2 , SOC, Ri) of the third group (2b) based on the measured first and second voltages (Ui, U 9 ).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die an der dritten Gruppe (2b) abfallende Spannung (U2) aus der gemessenen ersten und zweiten Spannung (U-i, U9) berechnet wird.2. The method according to claim 1, characterized in that at the third group (2b) falling voltage (U 2 ) from the measured first and second voltage (Ui, U 9 ) is calculated.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass auf Grundlage der ersten Spannung (Ui) eine Batteriegröße (SOC, Ri) der ersten Zellengruppe (2a), auf Grundlage der zweiten Spannung eine Batteriegröße (SOC, Ri) für die zweite Zellengruppe (1 ) und auf der Grundlage der beiden Werte die Batteriegröße (SOC, Ri) für die dritte Zellengruppe (2b) berechnet wird.3. The method according to claim 1, characterized in that based on the first voltage (Ui) a battery size (SOC, Ri) of the first cell group (2a), based on the second voltage, a battery size (SOC, Ri) for the second cell group ( 1) and on the basis of the two values the battery size (SOC, Ri) for the third cell group (2b) is calculated.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste und zweite Spannung (Ui, U9) dasselbe Bezugspotential haben.4. The method according to any one of the preceding claims, characterized in that the first and second voltage (Ui, U 9 ) have the same reference potential.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Bezugspotential Masse ist.5. The method according to claim 4, characterized in that the reference potential is ground.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ladezustand berechnet wird.6. The method according to any one of the preceding claims, characterized in that the state of charge is calculated.
7. Vorrichtung zum Bestimmen einer Batteriegröße (U2, SOC, Ri) einer Batterie (1 ) insbesondere einer Kfz-Batterie, mit mehreren in Serie geschalteten Zellen (1a-11) gekennzeichnet durch - Einen Spannungssensor (4) zum Messen der an einer ersten Zellengruppe (2a) abfallenden Spannung (Ui),7. Apparatus for determining a battery size (U 2 , SOC, Ri) of a battery (1), in particular of a motor vehicle battery, with a plurality of series-connected cells (1a-11) characterized by A voltage sensor (4) for measuring the voltage (Ui) dropping at a first cell group (2a),
- Einen Spannungssensor (5) zum Messen der an einer zweiten Zellengruppe (1 ), welche die erste Gruppe (2a) und eine dritte Gruppe (2b) umfasst, abfallende Spannung (U9) und- A voltage sensor (5) for measuring at a second cell group (1), which comprises the first group (2a) and a third group (2b), decreasing voltage (U 9 ) and
- Eine Recheneinheit (7), der die beiden gemessenen Spannungen (U-i, U9) zugeführt werden und die die Batteriegröße (U2, SOC, Ri) der dritten Gruppe (2b) auf Grundlage der beiden Spannungen (U-i, U9) berechnet.- A computing unit (7) to which the two measured voltages (Ui, U 9 ) are supplied and which calculates the battery size (U 2 , SOC, Ri) of the third group (2b) based on the two voltages (Ui, U 9 ) ,
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Spannungssensor (4,5) einen Spannungsteiler umfasst.8. The device according to claim 7, characterized in that the voltage sensor (4,5) comprises a voltage divider.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Spannungssensor (4,5) einen A/D-Wandler umfasst.9. Apparatus according to claim 7 or 8, characterized in that the voltage sensor (4,5) comprises an A / D converter.
10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Recheneinheit (7) einen Ladezustand (SOC) berechnet. 10. Device according to one of claims 7 to 9, characterized in that the computing unit (7) calculates a state of charge (SOC).
EP06755075A 2005-06-23 2006-05-08 Battery state recognition for kfz-accumulators Withdrawn EP1896864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029096A DE102005029096A1 (en) 2005-06-23 2005-06-23 Battery condition detection for car batteries
PCT/EP2006/062130 WO2006136475A1 (en) 2005-06-23 2006-05-08 Battery state recognition for kfz-accumulators

Publications (1)

Publication Number Publication Date
EP1896864A1 true EP1896864A1 (en) 2008-03-12

Family

ID=36809000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06755075A Withdrawn EP1896864A1 (en) 2005-06-23 2006-05-08 Battery state recognition for kfz-accumulators

Country Status (5)

Country Link
EP (1) EP1896864A1 (en)
JP (1) JP2008547008A (en)
KR (1) KR20080025076A (en)
DE (1) DE102005029096A1 (en)
WO (1) WO2006136475A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT508307B1 (en) * 2010-06-24 2015-01-15 Avl List Gmbh METHOD FOR DETERMINING A STATE OF CELLS OF AN ENERGY STORAGE DEVICE
DE102010045514B4 (en) * 2010-09-15 2018-03-29 Audi Ag A method for monitoring an electrical energy storage that provides an electrical voltage for an electric machine of a motor vehicle
US9366731B2 (en) 2010-12-10 2016-06-14 Nissan Motor Co., Ltd. Internal resistance measurement device and method for stacked battery
DE102011002968A1 (en) * 2011-01-21 2012-07-26 Robert Bosch Gmbh Device for determining state variable of battery of e.g. passenger car, has battery sensor monitoring batteries, and adjustment circuit changing voltage level and adjusting voltage level to another voltage level
FR2999721B1 (en) * 2012-12-18 2019-06-14 Blue Solutions METHOD AND DEVICE FOR CHARACTERIZING A CAPACITIVE EFFECT ENERGY STORAGE MODULE
US9318781B2 (en) 2013-01-11 2016-04-19 Johnson Controls Technology Company Predicted sensor information for a battery
DE102014018640B3 (en) * 2014-12-13 2016-03-03 Audi Ag Method for electrical resistance measurement in motor vehicles and motor vehicles
KR102256602B1 (en) 2017-12-14 2021-05-26 주식회사 엘지에너지솔루션 Apparatus and method for measuring voltage
CN110208715B (en) * 2019-07-02 2021-09-17 上海禾他汽车科技有限公司 Method for measuring charge state of automobile battery pack and automobile battery management system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104164A (en) * 1998-10-20 2000-08-15 Denso Corporation Cell voltage detecting device for combination battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9219422D0 (en) * 1992-09-14 1992-10-28 Silent Power Gmbh Apparatus for monitoring the voltage of a dc supply
JPH09163501A (en) * 1995-12-08 1997-06-20 Toyota Autom Loom Works Ltd Battery monotor of motor-driven vehicle
JPH11174135A (en) * 1997-12-09 1999-07-02 Yazaki Corp Battery remaining capacity measurement device
JP3738363B2 (en) * 1999-03-05 2006-01-25 株式会社デンソー Battery control method for power generation type electric vehicle
JP4186393B2 (en) * 2000-07-26 2008-11-26 株式会社デンソー Battery voltage detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104164A (en) * 1998-10-20 2000-08-15 Denso Corporation Cell voltage detecting device for combination battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006136475A1 *

Also Published As

Publication number Publication date
JP2008547008A (en) 2008-12-25
WO2006136475A1 (en) 2006-12-28
DE102005029096A1 (en) 2007-01-04
KR20080025076A (en) 2008-03-19

Similar Documents

Publication Publication Date Title
EP1896864A1 (en) Battery state recognition for kfz-accumulators
EP4061668A1 (en) Method for determining a state value of a traction battery
EP2831608B1 (en) Method for connecting battery cells in a battery, battery and monitoring device
DE102006033629B4 (en) Method and device for determining the state of a battery
EP2419750A1 (en) Determination of the internal resistance of a battery cell of a traction battery while using resistive cell balancing
EP1952169B1 (en) Method for determining storage battery operating conditions
EP1671142B1 (en) Device and method for measuring individual cell voltages in a cell stack of an energy accumulator
WO2013159979A1 (en) Method and apparatus for determining a state of charge of a battery, and battery
DE102016207033A1 (en) Electrical energy storage device for a vehicle electrical system, vehicle electrical system
WO2019020303A1 (en) Device and method for balancing an energy storage module
DE102016213837B4 (en) Secondary cell condition detector
DE102019125014A1 (en) Method for monitoring battery cells of a battery, battery system and motor vehicle
WO2023143881A1 (en) Method and device for charging a multi-cell battery
DE102019200510A1 (en) Measuring arrangement, high-voltage battery, motor vehicle and method for determining a complex impedance
EP3362810B1 (en) Transportation means, device and method for determining a voltage of a cell of a string of multiple cells connected in series of an electro-chemical energy storage means
WO2015106974A1 (en) Method for monitoring a battery
DE102012012765A1 (en) Method for charging battery device for electric drive system of e.g. hybrid vehicle, involves supplying predetermined charging current into battery device when cell voltages of individual cells are determined to reach final charging voltage
EP1747601B1 (en) Charge equalization of a battery, divided into blocks
DE102016122438A1 (en) Two-voltage battery with current sensors and calibration method for this
DE102005029890A1 (en) Motor vehicle battery check, e.g. for a hybrid vehicle, uses a mathematical model to evaluate measured voltage with other parameters to determine the charging and ageing conditions
DE102019135585A1 (en) electronics
DE102009050273B4 (en) Method for determining the capacity of a battery
DE102015219823A1 (en) Electrically drivable locomotion device, device and method for determining a voltage of a cell of a string of a plurality of series-connected cells of an electrochemical energy store
DE102019214167A1 (en) Battery system for a motor vehicle, method for operating a battery system and motor vehicle
DE102011084474B4 (en) Method for determining a load capacity of a memory cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100713

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101124