EP1895818B1 - Dispositif de pulvérisation par plasma et procédé d'introduction d'un précurseur liquide dans un système de gaz plasmagène - Google Patents

Dispositif de pulvérisation par plasma et procédé d'introduction d'un précurseur liquide dans un système de gaz plasmagène Download PDF

Info

Publication number
EP1895818B1
EP1895818B1 EP07109436.1A EP07109436A EP1895818B1 EP 1895818 B1 EP1895818 B1 EP 1895818B1 EP 07109436 A EP07109436 A EP 07109436A EP 1895818 B1 EP1895818 B1 EP 1895818B1
Authority
EP
European Patent Office
Prior art keywords
aperture
plasma
sectional area
minimum cross
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07109436.1A
Other languages
German (de)
English (en)
Other versions
EP1895818A1 (fr
Inventor
Dr. Jean-Luc Dorier
Christoph Dr. Hollenstein
Gérard BARBEZAT
Arno Dr. Refke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
Sulzer Metco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Metco AG filed Critical Sulzer Metco AG
Priority to EP07109436.1A priority Critical patent/EP1895818B1/fr
Publication of EP1895818A1 publication Critical patent/EP1895818A1/fr
Application granted granted Critical
Publication of EP1895818B1 publication Critical patent/EP1895818B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3484Convergent-divergent nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid

Definitions

  • the invention relates to a plasma spraying device for spraying a coating onto a substrate, as well as to a method for introducing a liquid precursor into a plasma gas stream, and the use of such a plasma spraying device and / or such a plasma spraying method for coating a substrate in accordance with the precharacterizing part of the independent claim in the respective category.
  • the plasma torch is one of the most rugged, powerful and well controlled plasma source used in industrial technologies.
  • surface coating technology its principal application is in the field of thermal spray by injection of solid particles (Plasma Spaying).
  • plasma spraying apparatuses for coating a surface of a work piece with a spray powder are well known in the prior art, and are used widely in completely different technical fields.
  • Known plasma spraying apparatuses often comprise a plasma spray gun, a high power direct-current source, a cooling aggregate and also a conveyer for conveying a substance to be sprayed into the plasma flame of the plasma spraying gun.
  • the substance to be sprayed is of course a spraying powder.
  • an arc is triggered in a plasma torch between a water-cooled anode and a likewise water-cooled tungsten cathode.
  • a process gas usually argon, nitrogen or helium or a mixture of an inert gas with nitrogen or hydrogen is converted into the plasma state in the arc and a plasma beam with a temperature of up to 20.000 K develops. Particle speeds of 200 to 800 m/s are achieved through the thermal expansion of the gases.
  • the substance to be sprayed enters the plasma beam with the help of a conveyer gas either axially or radially inside or outside of the anode region.
  • US 2003/0077398 describes a method for using nanoparticle suspensions in conventional thermal spray deposition for the fabrication of nanostructured coatings. This method has the disadvantage that ultrasound must be used for dispersing the nanoparticles in a liquid medium before the injection into a plasma gas stream.
  • WO 2006/043006 discloses a method for coating a surface with nanoparticles as well as a device for carrying out this method, wherein the method is characterized in that it involves an injection of a colloidal sol of these nanoparticles into a plasma jet outside of the plasma torch.
  • US 6,447,848 discloses a modified Metco 9MB-plasma torch, wherein the powder injection port has been removed and replaced by a multiple injection nozzle for injecting different liquid precursors and slurries at the same time into the plasma flame. That is, the liquid precursor is also fed outside of the plasma torch into the plasma gas stream.
  • US B1 6 800 336 discloses a plasma spraying device wherein a penetration means is provided to penetrate a liquid precursor inside a plasma gas stream.
  • the momentum of the injected liquid jet has to be high enough or the injection pipe should penetrate the plasma jet beyond the barrel shocks to avoid scattering. This requires either a high injection velocity, or results in excessive heat load onto the introducing duct. Due to all these limitations and complications, the injection of the liquid outside of the torch nozzle known from the prior art, has turned out to be inappropriate to achieve a sufficient penetration of the liquid into the plasma gas stream.
  • the invention thus relates to a plasma spraying device for spraying a coating onto a substrate by a thermal spray process.
  • Said plasma spraying device includes a plasma torch for heating up a plasma gas in a heating zone, wherein the plasma torch includes a nozzle body for forming a plasma gas stream, and said plasma torch having an aperture running along a central longitudinal axis through said nozzle body.
  • the aperture has an convergent section with an inlet for the plasma gas, a throat section including a minimum cross-sectional area of the aperture, and a divergent section with an outlet for the plasma gas stream, wherein an introducing duct is provided for introducing a liquid precursor into the plasma gas stream.
  • a penetration means is provided to penetrate the liquid precursor inside the plasma gas stream, wherein the penetration means is a penetration groove having a triangular shape.
  • a penetration means is provided allowing a deep and essentially complete penetration of the liquid precursor inside the plasma gas stream.
  • the plasma spray torch used for the investigations is for example a F4-VB plasma gun operated under reduced pressure (1 - 100 mbar).
  • the methods can also be extended to other plasma guns, and are also applicable to higher process chamber pressure.
  • the plasma gun used is as mentioned for example an F4-VB (provided by Sulzer Metco) operated with argon flows between 30 and 60 SLPM and currents in the range of 300 - 700 A, at a chamber pressure between 0.1 - 1000 mbar. It goes without saying, that for example depending on the liquid precursor, the type of plasma gun, the coating to be sprayed and so on, other spraying parameters may be more suitable than the aforementioned special parameters.
  • test liquid was for example deionised water. It has been found that there are essentially two main physical limitations to the injection of liquids in a plasma jet at reduced pessure:
  • the local pressure at the injection location has to be sufficiently high to avoid spontaneous evaporation, which disqualifies the injection of liquids outside the plasma torch nozzle for most of the operating pressure foreseen for thermal plasma CVD (for example below 100 mbar).
  • the momentum of the injected liquid jet has to be high enough or the injection pipe should penetrate the plasma jet beyond the barrel shocks to avoid scattering. This requires either a high injection velocity, and / or results in excessive heat load onto the injection pipe or nebulizer. All these limitations and complications can be avoided by the present invention by injecting the liquid precursor inside the torch nozzle, which has also the advantage of being more practical for further integration into an industrial process.
  • the pressure is the highest in the convergent part of the nozzle but it is difficult to access for liquid injection due to the torch water cooling channels and the proximity of the arc root anodic attachment. Since the pressure is decreasing in the divergent section of the nozzle, the optimum location for liquid injection is at the end of the cylindrical part (throat). All standard F4-VPS nozzles used for low pressure plasma spraying exhibit a pressure at the throat which does not exceed 200 mbar, for all the relevant process chamber pressures. Note that when the flow is supersonic in the divergent, the pressure at the throat is not influenced by the process chamber pressure. Moreover, the torch operation parameters like current and gas flow, only affect weakly the pressure at the throat. Therefore, in accordance with the present invention, to increase the pressure at the liquid injection location is to act on the nozzle shape and dimension.
  • Special nozzles have been designed, which allow to increase the pressure at the throat.
  • the basic principle is to increase the length of the divergent section.
  • An optimum pressure at the throat between 300 and 650 mbar (depending on the torch current and gas flow) can be obtained for a nozzle with 6 mm cylindrical diameter expanding to 10 mm diameter at the exit, over a length of 25 mm.
  • the throat pressure increases slightly with increasing torch current, and can be nearly doubled if the torch gas flow is increased from 30 to 60 SLPM argon.
  • a side effect of this design is an increase of the exit pressure, which leads to an under-expanded flow at a higher chamber pressure than for "short" standard nozzles. But this point should only be taken into account if it is required to match the plasma flow pressure to the process chamber pressure for particular applications.
  • the pressure at the injection location should preferably be higher than the spontaneous vaporization pressure. According to the present invention, this can be achieved by positioning the injection location at the nozzle throat and / or by a specific design of the nozzle shape to increase the throat pressure. This could been successfully demonstrated with a F4-VB gun.
  • the liquid precursor is directly introduced into the plasma gas stream.
  • the injection of liquid is made with a specially designed distribution system, comprising a pressurized reservoir, a mass flow meter, a needle valve to adjust the liquid flow and various purges.
  • the liquid can be directly injected through one or several introducing ducts, which are preferably designed as small orifices on the nozzle wall.
  • introducing ducts which are preferably designed as small orifices on the nozzle wall.
  • the injected liquid should transit through the plasma flow boundary layer. If its velocity at injection is too small, it will not penetrate and form a droplet at the inner nozzle wall. This droplet will eventually be entrained by the plasma flow and will flow off towards the nozzle exit without penetrating the jet. Depending on the surface tension of the injected liquid, this phenomenon can occur in an intermittent manner, where a droplet is formed at the injection hole and grows until it is swept away by the plasma flow, leading to instability of the plasma jet. Furthermore, the penetration of the liquid inside the plasma jet is not optimum in that case.
  • Another way to allow the liquid to penetrate the plasma jet is to induce turbulence at the plasma flow boundary layer. This could be achieved by matching one or several grooves at the nozzle wall surface, coaxially to the nozzle axis.
  • This method is more efficient if the grooves are made at the liquid injection location and possibly also downstream.
  • the groove at injection location allows the liquid to be azimuthally distributed and to penetrate smoothly the plasma jet.
  • a groove downstream the injection location will prevent the liquid from flowing out of the torch nozzle by recuperating.
  • These designs have also been successfully demonstrated on a modified F4 nozzle. Note that this approach is more suitable for intermediate to high liquid flows (100 - 500 g/h eq. water).
  • the depth of the groove has to be sufficient (mote than 0.5 mm for water) and might have to be even deeper for higher surface tension liquids.
  • a nebulizer is used to allow the liquid to penetrate the plasma jet. It has the advantage that the liquid, that is the liquid precursor, can be injected at high velocity in the form of a mist. The liquid is atomized which helps the vaporization inside the plasma jet. Another advantage is that this allows the injection of a very small amount of liquid deeply inside the plasma jet due to the high droplet velocity.
  • a "flow focusing concentric nebulizer" (PFA-ST, from Elemental scientific, external diameter at the tip of the nebulizer is for example around 2mm) has been successfully tested.
  • the liquid is fed into the nebulizer and the gas stream flow of argon is controlled with a mass flow meter in the range of 0.1 - 1 SLPM.
  • This nebulizer can be made of PFA (fluoropolymer) or can be made of other heat resistant material and can operate at temperatures up to at least 180°C.
  • the full angle of the spray at exit is about 30° and the droplet size can be as small as 6 micrometers with an exit velocity up to 40 m/s depending on the carrier gas flow rate.
  • a F4 torch nozzle has been modified to be equipped with the nebulizer, and water spray has been successfully injected in the plasma jet.
  • the pressure inside the torch nozzle at the injection location is for example higher than 400 mbar to avoid freezing of the water at the exit of the nebulizer.
  • the use of a nebulizer is possible for the injection of slurries or suspensions, provided that the suspended particles are substantially smaller than the diameter of the capillary (100 microns).
  • the material (PFA) is chemically resistant to most of the acids, alkalis, organics, and salt solutions.
  • the introducing duct is provided between the convergent section and the divergent section of the aperture, in particular at the minimum cross-sectional area of the aperture and / or wherein the introducing duct is provided between the inlet of the convergent section and the minimum cross-sectional area of the aperture and / or wherein the introducing duct is provided between the minimum cross-sectional area of the aperture and the outlet of the divergent section.
  • the exact location of the introducing duct may depend on the liquid precursor (suspension, slurry or a fluid not comprising solid particles), and / or the coating to be sprayed and / or the special design of the plasma spraying device to be used.
  • the penetration means is a penetration groove, being provided at an inner wall of the nozzle body, in particular a circumferential penetration groove and / or the penetration groove is provided between the convergent section and the divergent section of the aperture, in particular at the minimum cross-sectional area of the aperture and / or wherein the penetration groove is provided between the inlet of the convergent section and the minimum cross-sectional area of the aperture and / or wherein the penetration groove is provided between the minimum cross-sectional area of the aperture and the outlet of the divergent section.
  • the penetration groove Providing the penetration groove, strong turbulence can be created resulting in a quasi homogenous mixing of the liquid precursor in the plasma stream.
  • the penetration grove has a triangular shape and / or has a width of 0.5 mm to 3 mm, in particular between 1 mm and 2 mm, especially 1.5 mm and / or has a depth of 0.05 mm to 2 mm, in particular between 0.75 mm and 1.5 mm, preferably 1 mm.
  • a special advantage of using a penetration groove is, that suspension or slurries comprising comparatively large particles can be used as a liquid precursor because no introducing duct having a small diameter, that is no capillary is required to penetrate the liquid precursor deep into the plasma gas stream.
  • the penetration means is provided by the introducing duct being designed as a nebulizer, wherein the nebulizer is provided between the convergent section and the divergent section of the aperture, in particular at the minimum cross-sectional area of the aperture and / or wherein the nebulizer is provided between the inlet of the convergent section and the minimum cross-sectional area of the aperture and / or wherein the nebulizer is provided between the minimum cross-sectional area of the aperture and the outlet of the divergent section.
  • the penetration means is provided by the introducing duct being designed as a capillary having an injection hole with reduced diameter.
  • the capillary is provided between the convergent section and the divergent section of the aperture, in particular at the minimum cross-sectional area of the aperture and / or wherein the capillary is provided between the inlet of the convergent section and the minimum cross-sectional area of the aperture and / or wherein the capillary is provided between the minimum cross-sectional area of the aperture and the outlet of the divergent section.
  • an introducing angle of the introducing duct is between 20° and 150°, in particular between 45° and 135°, preferably between 70° and 110°, especially about 90°.
  • the introducing duct and / or the penetration means is made of PFA and / or of an other suitable material, in particular depending on the liquid precursor to be used.
  • a supply unit is provided to supply the liquid precursor, wherein said supply unit includes a reservoir for the liquid precursor and / or a reservoir for a carrier gas and / or a reservoir pressurization for pressurizing the liquid precursor by the carrier gas and / or a metering device, in particular a liquid and / or gas flow meter, especially a mass flow meter, for metering the flow of the liquid precursor and / or the carrier gas.
  • the liquid precursor can be a slurry, and / or a suspension, and / or the liquid precursor is water, and / or an acid, and / or an alkali fluid, and / or an organic fluid, in particular methanol, and / or an salt solution, and / or organosilicon and / or another liquid precursor, and / or the liquid precursor is a suspension or a slurry, in particular a coating fluid comprising nanoparticles and / or an solution or mixing of the aforementioned liquid precursors.
  • the invention relates also to a method for introducing a liquid precursor into a plasma gas stream using a plasma spraying device and comprising the following steps: providing a plasma spraying device, which includes a plasma torch, with a nozzle body, wherein said plasma torch has an aperture running along a central longitudinal axis through said nozzle body.
  • the aperture has an convergent section with an inlet for the plasma gas, a throat section including a minimum cross-sectional area of the aperture, and a divergent section with an outlet for the plasma gas, wherein an introducing duct is provided for introducing a liquid precursor into a plasma gas stream.
  • a plasma gas is introduced into the inlet of the convergent section of the aperture, and the plasma gas is fed through the convergent section, the throat section, and the divergent section to the outlet of the divergent section.
  • a plasma flame is ignitioned and established inside the plasma torch in a heating zone, for heating up the plasma gas and forming the plasma gas stream and a surface of a substrate is coated by feeding the plasma gas stream via the outlet of the diverging section of the aperture onto the surface of the substrate.
  • a penetration means is provided wherein the penetration means is a penetration groove having a triangular shape, and the liquid precursor is penetrated through the introducing duct inside the plasma gas stream with the aid of the penetration means.
  • the introducing duct is provided between the convergent section and the divergent section of the aperture, in particular at the minimum cross-sectional area of the aperture and / or the introducing duct is provided between the inlet of the convergent section and the minimum cross-sectional area of the aperture and / or the introducing duct is provided between the minimum cross-sectional area of the aperture and the outlet of the divergent section.
  • the penetration means is a penetration groove, being provided at an inner wall of the nozzle body, and is in particular a circumferential penetration groove.
  • the penetration groove may be provided between the convergent section and the divergent section of the aperture, in particular at the minimum cross-sectional area of the aperture and /or the penetration groove is provided between the inlet of the convergent section and the minimum cross-sectional area of the aperture and / or the penetration groove is provided between the minimum cross-sectional area of the aperture and the outlet of the divergent section.
  • the penetration groove is located close and downstream with respect to the introducing duct.
  • the penetration grove has a triangular shape and /or has preferably a width of 0.5 mm to 3 mm, in particular between 1 mm and 2 mm, especially 1.5 mm and / or has a depth of 0.05 mm to 2 mm, in particular between 1 mm and 1.5 mm. It goes without saying, that the aforementioned dimensions of the penetration groove in accordance with the present invention may vary and can be different from the above mentioned values depending on the spraying gun, and / or the nature of the liquid precursor and / or depending on further parameters or demands on the respective spraying process.
  • the penetration means is provided by the introducing duct, which introducing duct itself is designed as a nebulizer. That is, the liquid precursor is introduced in form of a mist into the plasma gas stream.
  • the nebulizer is provided between the convergent section and the divergent section of the aperture, in particular at the minimum cross-sectional area of the aperture and / or the nebulizer is provided between the inlet of the convergent section and the minimum cross-sectional area of the aperture and / or wherein the nebulizer is provided between the minimum cross-sectional area of the aperture and the outlet of the divergent section.
  • the penetration means is provided by the introducing duct being designed as a capillary which has an injection hole with reduced diameter.
  • the capillary can be provided between the convergent section and the divergent section of the aperture, in particular at the minimum cross-sectional area of the aperture and / or the capillary may be provided between the inlet of the convergent section and the minimum cross-sectional area of the aperture and / or the capillary is provided between the minimum cross-sectional area of the aperture and the outlet of the divergent section.
  • the liquid precursor is introduced with respect to the longitudinal axis of the aperture at an introducing angle between 20° and 150°, in particular between 45° and 135°, preferably between 70° and 110°, especially at an angle about 90°.
  • the liquid precursor is a slurry, and / or a suspension
  • the fluid is water, and / or an acid, and / or an alkali fluid, and / or an organic fluid, in particular methanol, and / or an salt solution, and / or another coating fluid
  • / or the liquid precursor is a suspension or a slurry, in particular a coating fluid comprising nanoparticles and / or an solution or mixing of the aforementioned liquid precursor.
  • the invention relates to the use of a plasma spraying device and /or a plasma spraying method in accordance with the present invention for coating a surface of a substrate or a device, in particular a surface of a photovoltaic device, especially a solar cell, and / or for providing a coating, in particular a functional coating on a substrate, in particular on a glass substrate or on a semiconductor, especially on a silicon substrate, in more particular on a wafer comprising electronic elements and / or for providing a carbon coating, in particular a Diamond Like Carbon (DLC) coating and / or a carbide coating and / or a nitrides coating and / or a composite coating and / or a nanostructured coating and / or a functional coating on textiles.
  • DLC Diamond Like Carbon
  • a plasma spraying device in accordance with the invention may include different introducing ducts and / or different penetration means, that is a plasma spraying device can include a penetration and / or a nebulizer and / or a capillary in parallel so that, for example, different liquid precursors can be fed simultaneously and / or subsequently fed into the plasma gas stream allowing to generate complex coatings on a great variety of different substrates.
  • a plasma spraying device in accordance with the invention is schematically displayed, which plasma spraying device is designated overall in the following by the reference numeral 1. Note that the same reference numerals in different figures designate the same technical features.
  • the plasma spraying device includes a plasma torch 4 for heating up a plasma gas 5 in a heating zone 6.
  • the plasma torch 4 has a nozzle body 7 for forming a plasma gas stream 8.
  • An aperture 9 is running along a central longitudinal axis 10 through the nozzle body 7, which aperture 9 has an convergent section 11 with an inlet 12 for the plasma gas 5, a throat section 13 including a minimum cross-sectional area of the aperture, and a divergent section 14 with an outlet 15 for the plasma gas stream 8.
  • An introducing duct 16 is provided for introducing a liquid precursor 17, provided by a supply unit 19, into the plasma gas stream 8.
  • a penetration means 18, is also provided to penetrate the liquid precursor 17 inside the plasma gas stream 8, which is directed to a surface of a substrate 3 for spraying a coating 2 onto the substrate 3.
  • the introducing duct 16 is provided between the convergent section 11 and the divergent section 14 of the aperture 9 at the minimum cross-sectional area of the aperture 9. It is understood that in another special embodiment the introducing duct 16 can be provided between the inlet 12 of the convergent section 11 and the minimum cross-sectional area of the aperture 9 and / or the introducing duct 16 is provided between the minimum cross-sectional area of the aperture 9 and the outlet 15 of the divergent section 14.
  • Fig. 2 shows a second embodiment of the present invention wherein the plasma torch 4 includes a penetration groove 181.
  • the penetration groove 18, 181 being provided at an inner wall 19 of the nozzle body 7 and is in particular a circumferential penetration groove 181.
  • the introducing duct 16 is provided between the convergent section 11 and the divergent section 14 of the aperture 9 at the minimum cross-sectional area of the aperture 9 close to the penetration groove 181.
  • the penetration grove 181 has a triangular shape and has a width 1811 of for example 0.5 mm to 3 mm, in particular between 1 mm and 2 mm, especially 1.5 mm and has a depth 1812 of 0.05 mm to 2 mm, in particular between 0.75 mm and 1.5 mm, preferably 1 mm.
  • the introducing duct 16 in the example of Fig. 2 includes at the same time a penetration means 18, which is a penetration groove 181 and a capillary 182.
  • the penetration means 18 is provided by the introducing duct 16 being designed as the capillary 182 having an injection hole 183 with reduced diameter, wherein the capillary 182 is provided between the convergent section 11 and the divergent section 14 of the aperture 9, in particular at the minimum cross-sectional area of the aperture 9 close to the penetration groove 181, which is placed downstream with respect to the capillary 182.
  • the introducing angle ⁇ of the introducing duct 16 is about 90°.
  • a plasma torch 4 with a nebulizer 161 is displayed as a further very important embodiment of the present invention.
  • the penetration means 18 is provided by the introducing duct 16 being designed as a nebulizer 161, wherein no penetration groove is provided. It is understood, that in an other embodiment a nebulizer 161 can be advantageously combined with a penetration groove 181 and / or with a capillary 182.
  • the nebulizer 161 is provided between the convergent section 11 and the divergent section 14 of the aperture 9, in particular at the minimum cross-sectional area of the aperture 9 and is arranged under an introducing angle ⁇ of about 90° with respect to the central longitudinal axis 10.
  • the present invention demonstrates for the first time the possibility of injecting liquids inside the nozzle of a plasma torch, either directly or using a nebulizer. Both methods require a special design of the torch nozzle to obtain a pressure sufficiently high at the injection point to avoid solidification of the liquid.
  • a high velocity of the fluid is necessary to penetrate through the plasma flow boundary layer. This is achieved using a very small diameter injection hole (capillary), but is in most cases not advantageously applicable for highly viscous liquids or slurries. If a larger diameter of the injection hole is used which leads to a low injection velocity, mixing of the liquid with the plasma jet can strongly be improved by the penetration grooves, which induce turbulence in the boundary layer and distribute the liquid azimuthally.

Claims (26)

  1. Dispositif de pulvérisation par plasma pour pulvériser un revêtement (2) sur un substrat (3) par un processus de pulvérisation thermique, ledit dispositif de pulvérisation par plasma comprenant un chalumeau au plasma (4) pour chauffer un gaz plasmagène (5) dans une zone de chauffage (6), dans lequel le chalumeau au plasma (4) comprend un corps de buse (7) pour former un flux de gaz plasmagène (8), ledit chalumeau au plasma (4) comportant une ouverture (9) s'étendant le long d'un axe longitudinal central (10) à travers ledit corps de buse (7), laquelle ouverture (9) comporte une section convergente (11) avec une entrée (12) pour le gaz plasmagène (5), une section de col (13) comprenant une section transversale minimum de l'ouverture, et une section divergente (14) avec une sortie (15) pour le flux de gaz plasmagène (8), dans lequel un conduit d'introduction (16) est prévu pour introduire un précurseur liquide (17) dans le flux de gaz plasmagène (8), et
    des moyens de pénétration (18, 161, 181, 182) sont prévus pour faire pénétrer le précurseur liquide (17) à l'intérieur du flux de gaz plasmagène (8), caractérisé en ce que les moyens de pénétration (18) consistent en une gorge de pénétration (181) ayant une forme triangulaire.
  2. Dispositif de pulvérisation par plasma selon la revendication 1, dans lequel le conduit d'introduction (16) est prévu entre la section convergente (11) et la section divergente (14) de l'ouverture (9), en particulier au niveau de la section transversale minimum de l'ouverture (9), et/ou dans lequel le conduit d'introduction (16) est prévu entre l'entrée (12) de la section convergente (11) et la section transversale minimum de l'ouverture (9), et/ou dans lequel le conduit d'introduction (16) est prévu entre la section transversale minimum de l'ouverture (9) et la sortie (15) de la section divergente (14).
  3. Dispositif de pulvérisation par plasma selon l'une quelconque des revendications 1 et 2, dans lequel la gorge de pénétration (181) est prévue au niveau d'une paroi interne (19) du corps de buse (7), en particulier une gorge de pénétration circonférentielle (181).
  4. Dispositif de pulvérisation par plasma selon l'une quelconque des revendications précédentes, dans lequel la gorge de pénétration (181) est prévue entre la section convergente (11) et la section divergente (14) de l'ouverture (9), en particulier au niveau de la section transversale minimum de l'ouverture (9), et/ou dans lequel la gorge de pénétration (181) est prévue entre l'entrée (12) de la section convergente (11) et la section transversale minimum de l'ouverture (9), et/ou dans lequel la gorge de pénétration (181) est prévue entre la section transversale minimum de l'ouverture (9) et la sortie (15) de la section divergente (14).
  5. Dispositif de pulvérisation par plasma selon l'une quelconque des revendications précédentes, dans lequel la gorge de pénétration (181) a une largeur (1811) de 0,5 mm à 3 mm, en particulier entre 1 mm et 2 mm, particulièrement de 1,5 mm et/ou a une profondeur (1812) de 0,05 mm à 2 mm, en particulier entre 0,75 mm et 1,5 mm, de préférence de 1 mm.
  6. Dispositif de pulvérisation par plasma selon l'une quelconque des revendications précédentes, dans lequel les moyens de pénétration (18) sont réalisés par le conduit d'introduction (16) qui est conçu en tant que nébuliseur (161).
  7. Dispositif de pulvérisation par plasma selon la revendication 6, dans lequel le nébuliseur (161) est prévu entre la section convergente (11) et la section divergente (14) de l'ouverture (9), en particulier au niveau de la section transversale minimum de l'ouverture (9), et/ou dans lequel le nébuliseur (161) est prévu entre l'entrée (12) de la section convergente (11) et la section transversale minimum de l'ouverture (9), et/ou dans lequel le nébuliseur (161) est prévu entre la section transversale minimum de l'ouverture (9) et la sortie (15) de la section divergente (14).
  8. Dispositif de pulvérisation par plasma selon l'une quelconque des revendications précédentes, dans lequel les moyens de pénétration (18) sont réalisés par le conduit d'introduction (16) qui est conçu en tant que capillaire (182) comportant un trou d'injection (183) avec un diamètre réduit.
  9. Dispositif de pulvérisation par plasma selon la revendication 8, dans lequel le capillaire (182) est prévu entre la section convergente (11) et la section divergente (14) de l'ouverture (9), en particulier au niveau de la section transversale minimum de l'ouverture (9), et/ou dans lequel le capillaire (182) est prévu entre l'entrée (12) de la section convergente (11) et la section transversale minimum de l'ouverture (9), et/ou dans lequel le capillaire (182) est prévu entre la section transversale minimum de l'ouverture (9) et la sortie (15) de la section divergente (14).
  10. Dispositif de pulvérisation par plasma selon l'une quelconque des revendications précédentes, dans lequel un angle d'introduction (α) du conduit d'introduction (16) est entre 20° et 150°, en particulier entre 45 et 135°, de préférence entre 70° et 110°, en particulier d'environ 90°.
  11. Dispositif de pulvérisation par plasma selon l'une quelconque des revendications précédentes, dans lequel le conduit d'introduction (16) et/ou les moyens de pénétration (18), en particulier le nébuliseur (161), sont réalisés en PFA et/ou en d'autres matériaux.
  12. Dispositif de pulvérisation par plasma selon l'une quelconque des revendications précédentes, comprenant une unité d'alimentation (19) pour fournir le précurseur liquide (17).
  13. Dispositif de pulvérisation par plasma selon la revendication 12, dans lequel l'unité d'alimentation (19) comprend un réservoir pour le précurseur liquide (17) et/ou un réservoir pour un gaz porteur et/ou une mise sous pression du réservoir pour mettre sous pression le précurseur liquide (17) par le gaz porteur et/ou un dispositif de mesure, en particulier un débitmètre de liquide et/ou de gaz, en particulier un débitmètre massique, pour mesurer le débit du précurseur liquide et/ou du gaz porteur.
  14. Dispositif de pulvérisation par plasma selon l'une quelconque des revendications précédentes, dans lequel le précurseur liquide (17) est une pâte, et/ou une suspension, et/ou le fluide est de l'eau, et/ou un acide, et/ou un fluide alcalin, et/ou un fluide organique, en particulier le méthanol, et/ou une solution saline, et/ou un organosilicium et/ou un autre fluide de revêtement (17), et/ou le précurseur liquide (17) est une suspension ou une pâte, en particulier un précurseur liquide (17) comprenant des nanoparticules et/ou une solution ou un mélange du précurseur liquide (17) susmentionné.
  15. Procédé pour introduire un précurseur liquide (17) dans un écoulement de gaz plasmagène (8) en utilisant un dispositif de pulvérisation par plasma (1) comprenant les étapes suivantes :
    - de fourniture d'un dispositif de pulvérisation par plasma (1), comprenant un chalumeau au plasma (4), avec un corps de buse (7), ledit chalumeau au plasma (4) comportant une ouverture (9) s'étendant le long d'un axe longitudinal central (10) à travers ledit corps de buse (7), et l'ouverture (9) comportant une section convergente (11) avec une entrée (12) pour le gaz plasmagène (5), une section de col (13) comprenant une section transversale minimum de l'ouverture (9), et une section divergente (14) avec une sortie (15) pour le gaz plasmagène (5), dans lequel un conduit d'introduction (16) est prévu pour introduire un précurseur liquide (17) dans un flux de gaz plasmagène (8) ;
    - d'introduction d'un gaz plasmagène (5) dans l'entrée (12) de la section convergente (11) de l'ouverture (9), et d'avance du gaz plasmagène (5) à travers la section convergente (11), la section de col (13) et la section divergente (14) vers la sortie (15) de la section divergente (14) ;
    - d'inflammation et d'établissement d'un jet de plasma à l'intérieur du chalumeau au plasma (4) dans une zone de chauffage (6), de chauffage du gaz plasmagène (5) et de formation du flux de gaz plasmagène (8) ;
    - de revêtement d'une surface d'un substrat (3) en fournissant le flux de gaz plasmagène (9), par l'intermédiaire de la sortie (15) de la section divergente (14) de l'ouverture (9), sur la surface du substrat (3) ;
    caractérisé en ce que des moyens de pénétration (18, 161, 181, 182) sont prévus, dans lequel les moyens de pénétration (18) consistent en une gorge de pénétration (181) ayant une forme triangulaire et le précurseur liquide (17) est introduit, par l'intermédiaire du conduit d'introduction (16), à l'intérieur du flux de gaz plasmagène (8) à l'aide des moyens de pénétration (8, 181).
  16. Procédé selon la revendication 15, dans lequel le conduit d'introduction (16) est prévu entre la section convergente (11) et la section divergente (14) de l'ouverture (9), en particulier au niveau de la section transversale minimum de l'ouverture (9), et/ou dans lequel le conduit d'introduction (16) est prévu entre l'entrée (12) de la section convergente (11) et la section transversale minimum de l'ouverture (9), et/ou dans lequel le conduit d'introduction (16) est prévu entre la section transversale minimum de l'ouverture (9) et la sortie (15) de la section divergente (14).
  17. Procédé selon l'une quelconque des revendications 15 et 16, dans lequel les moyens de pénétration (18) sont prévus au niveau d'une paroi interne (19) du corps de buse (7), et consistent en particulier en une gorge de pénétration (181) circonférentielle.
  18. Procédé selon l'une quelconque des revendications 15 à 17, dans lequel la gorge de pénétration (181) est prévue entre la section convergente (11) et la section divergente (14) de l'ouverture (9), en particulier au niveau de la section transversale minimum de l'ouverture (9), et/ou dans lequel la gorge de pénétration (181) est prévue entre l'entrée (12) de la section convergente (11) et la section transversale minimum de l'ouverture (9), et/ou dans lequel la gorge de pénétration (181) est prévue entre la section transversale minimum de l'ouverture (9) et la sortie (15) de la section divergente (14).
  19. Procédé selon l'une quelconque des revendications 15 à 18, dans lequel la gorge de pénétration (181) a une largeur (1811) de 0,5 mm à 3 mm, en particulier entre 1 mm et 2 mm, en particulier de 1,5 mm et/ou a une profondeur (1812) de 0,05 mm à 2 mm, en particulier entre 1 mm et 1,5 mm.
  20. Procédé selon l'une quelconque des revendications 15 à 19, dans lequel les moyens de pénétration (18) sont réalisés par le conduit d'introduction (16) qui est conçu en tant que nébuliseur (161).
  21. Procédé selon l'une quelconque des revendications 15 à 20, dans lequel le nébuliseur (161) est prévu entre la section convergente (11) et la section divergente (14) de l'ouverture (9), en particulier au niveau de la section transversale minimum de l'ouverture (9), et/ou dans lequel le nébuliseur (161) est prévu entre l'entrée (12) de la section convergente (11) et la section transversale minimum de l'ouverture (9), et/ou dans lequel le nébuliseur (161) est prévu entre la section transversale minimum de l'ouverture (9) et la sortie (15) de la section divergente (14).
  22. Procédé selon l'une quelconque des revendications 15 à 21, dans lequel les moyens de pénétration (18) sont réalisés par le conduit d'introduction (16) qui est conçu en tant que capillaire (182) comportant un trou d'injection (183) avec un diamètre réduit.
  23. Procédé selon l'une quelconque des revendications 15 à 22, dans lequel le capillaire (182) est prévu entre la section convergente (11) et la section divergente (14) de l'ouverture (9), en particulier au niveau de la section transversale minimum de l'ouverture (9), et/ou dans lequel le capillaire (182) est prévu entre l'entrée (12) de la section convergente (11) et la section transversale minimum de l'ouverture (9), et/ou dans lequel le capillaire (182) est prévu entre la section transversale minimum de l'ouverture (9) et la sortie (15) de la section divergente (14).
  24. Procédé selon l'une quelconque des revendications 15 à 23, dans lequel le précurseur liquide (17) est introduit avec un angle d'introduction (α) entre 20° et 150°, en particulier entre 45° et 135°, de préférence entre 70° et 110°, en particulier d'environ 90°.
  25. Procédé selon l'une quelconque des revendications 15 à 24, dans lequel le précurseur liquide (17) est une pâte, et/ou une suspension, et/ou le fluide est de l'eau, et/ou un acide, et/ou un fluide alcalin, et/ou un fluide organique, en particulier le méthanol, et/ou une solution saline et/ou un organosilicium, et/ou un autre fluide de revêtement, et/ou le précurseur liquide (17) est une suspension ou une pâte, en particulier un précurseur liquide comprenant des nanoparticules et/ou une solution ou un mélange du précurseur liquide (17) susmentionné.
  26. Utilisation d'un dispositif de pulvérisation par plasma (1) selon l'une quelconque des revendications 1 à 14 et/ou d'un procédé de pulvérisation par plasma selon l'une quelconque des revendications 15 à 25, pour revêtir une surface d'un substrat (3) ou d'un dispositif (3), d'un revêtement de carbone, en particulier un revêtement de carbone similaire au diamant, et/ou un revêtement de carbure et/ou un revêtement de nitrure et/ou un revêtement composite et/ou un revêtement nanostructuré, en particulier une surface d'un dispositif photovoltaïque (3), en particulier une cellule solaire, et/ou pour fournir un revêtement, en particulier un revêtement fonctionnel sur un substrat (3), en particulier sur un substrat en verre ou sur un semi-conducteur, en particulier sur un substrat en silicium (3), plus particulièrement sur une tranche semi-conductrice comprenant des éléments électroniques et/ou pour fournir un revêtement fonctionnel sur des textiles.
EP07109436.1A 2006-08-30 2007-06-01 Dispositif de pulvérisation par plasma et procédé d'introduction d'un précurseur liquide dans un système de gaz plasmagène Not-in-force EP1895818B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07109436.1A EP1895818B1 (fr) 2006-08-30 2007-06-01 Dispositif de pulvérisation par plasma et procédé d'introduction d'un précurseur liquide dans un système de gaz plasmagène

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06119769 2006-08-30
EP07109436.1A EP1895818B1 (fr) 2006-08-30 2007-06-01 Dispositif de pulvérisation par plasma et procédé d'introduction d'un précurseur liquide dans un système de gaz plasmagène

Publications (2)

Publication Number Publication Date
EP1895818A1 EP1895818A1 (fr) 2008-03-05
EP1895818B1 true EP1895818B1 (fr) 2015-03-11

Family

ID=38996360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07109436.1A Not-in-force EP1895818B1 (fr) 2006-08-30 2007-06-01 Dispositif de pulvérisation par plasma et procédé d'introduction d'un précurseur liquide dans un système de gaz plasmagène

Country Status (1)

Country Link
EP (1) EP1895818B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058783A1 (de) * 2008-11-24 2010-05-27 Plasmatreat Gmbh Verfahren zur atmosphärischen Beschichtung von Nanooberflächen
US20100180426A1 (en) * 2009-01-21 2010-07-22 Applied Materials, Inc. Particle reduction treatment for gas delivery system
KR101750841B1 (ko) 2009-02-05 2017-06-26 오엘리콘 멧코 아게, 볼렌 기재 표면의 코팅 또는 처리를 위한 플라즈마 코팅 시스템 및 그 방법
US8253058B2 (en) * 2009-03-19 2012-08-28 Integrated Photovoltaics, Incorporated Hybrid nozzle for plasma spraying silicon
KR20180061966A (ko) * 2016-11-30 2018-06-08 한국수력원자력 주식회사 막대-노즐형 플라즈마 토치
CN107314397A (zh) * 2017-08-08 2017-11-03 卢驭龙 等离子火炬装置及等离子灶具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596128A (en) * 1969-05-01 1971-07-27 Spectrametrics Inc Excitation source for spectroscopic analysis
US4035684A (en) * 1976-02-23 1977-07-12 Ustav Pro Vyzkum, Vyrobu A Vyuziti Radiosotopu Stabilized plasmatron
AU537262B2 (en) * 1980-11-10 1984-06-14 Donetsky Nauchno-Issledovatelsky Institut Chernoi Metallurgii Guniting lance
NL8701530A (nl) * 1987-06-30 1989-01-16 Stichting Fund Ond Material Werkwijze voor het behandelen van oppervlakken van substraten met behulp van een plasma en reactor voor het uitvoeren van die werkwijze.
US6447848B1 (en) 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
CA2237588A1 (fr) 1995-11-13 1997-05-22 The University Of Connecticut Produits nanostructures pour pulverisation a chaud
DE29919142U1 (de) 1999-10-30 2001-03-08 Agrodyn Hochspannungstechnik G Plasmadüse
FR2877015B1 (fr) 2004-10-21 2007-10-26 Commissariat Energie Atomique Revetement nanostructure et procede de revetement.

Also Published As

Publication number Publication date
EP1895818A1 (fr) 2008-03-05

Similar Documents

Publication Publication Date Title
CA2591017C (fr) Dispositif de projection de plasma et une methode pour introduire un liquide precurseur dans un courant de gaz plasma
EP1895818B1 (fr) Dispositif de pulvérisation par plasma et procédé d'introduction d'un précurseur liquide dans un système de gaz plasmagène
EP1880034B1 (fr) Procede et appareil destines a la suspension de particules fines dans un liquide, destine a un systeme d'aerosol thermique, et revetements formes au moyen de ces procede et appareil
US7928338B2 (en) Plasma spraying device and method
EP2116112B1 (fr) Dispositif et procédé de pulvérisation par plasma
US20110237421A1 (en) Method and system for producing coatings from liquid feedstock using axial feed
WO2008024032A1 (fr) Pulvérisateur de liquide
KR100776194B1 (ko) 콜드 스프레이용 노즐 및 이를 이용한 콜드 스프레이 장치
US7989023B2 (en) Method of improving mixing of axial injection in thermal spray guns
WO2015123098A1 (fr) Appareil et procédé de pulvérisation cinétique à plasma
JP4423393B2 (ja) マイクロプラズマデポジション方法及び装置
US20200157673A1 (en) Suspension Plasma Spray Apparatus and Use Methods
US20170335441A1 (en) Nozzle for thermal spray gun and method of thermal spraying
JPH04360768A (ja) パウダービーム加工方法及びその装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080331

17Q First examination report despatched

Effective date: 20080612

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141023

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 715917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2534215

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007040559

Country of ref document: DE

Effective date: 20150423

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OERLIKON METCO AG, WOHLEN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: INTELLECTUAL PROPERTY SERVICES GMBH, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007040559

Country of ref document: DE

Owner name: OERLIKON METCO AG, WOHLEN, CH

Free format text: FORMER OWNER: OERLIKON METCO AG, WOHLEN, CH

Effective date: 20150512

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007040559

Country of ref document: DE

Representative=s name: HEIDINGER, ANDREAS, DIPL.-ING., DE

Effective date: 20150512

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007040559

Country of ref document: DE

Owner name: OERLIKON METCO AG, WOHLEN, CH

Free format text: FORMER OWNER: SULZER METCO AG, WOHLEN, CH

Effective date: 20150428

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 715917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150311

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150713

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007040559

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

26N No opposition filed

Effective date: 20151214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150601

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070601

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170725

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HR

Payment date: 20170419

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190624

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190625

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190625

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190830

Year of fee payment: 13

Ref country code: GB

Payment date: 20190627

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007040559

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200601