EP1889038A2 - Device and method for optical characterisation of translucent and opaque bodies - Google Patents

Device and method for optical characterisation of translucent and opaque bodies

Info

Publication number
EP1889038A2
EP1889038A2 EP06764646A EP06764646A EP1889038A2 EP 1889038 A2 EP1889038 A2 EP 1889038A2 EP 06764646 A EP06764646 A EP 06764646A EP 06764646 A EP06764646 A EP 06764646A EP 1889038 A2 EP1889038 A2 EP 1889038A2
Authority
EP
European Patent Office
Prior art keywords
light
optical
detection
transmitted
analysis system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06764646A
Other languages
German (de)
French (fr)
Inventor
Philippe Marie Gombert
Jacques Marie Gombert
Alain Emile Pierre
Jacques Laurent Scheffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierre Alain Emile
Original Assignee
Scheffer Coatings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0505000A external-priority patent/FR2886016B1/en
Priority claimed from FR0506689A external-priority patent/FR2887981B1/en
Application filed by Scheffer Coatings filed Critical Scheffer Coatings
Publication of EP1889038A2 publication Critical patent/EP1889038A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers

Definitions

  • the present invention relates to the general technical field of devices for optical characterization of bodies, and in particular of solid or fluid bodies.
  • the present invention relates to the field of devices for optical characterization of objects or materials, intended for example to control the reproducibility of an industrial process.
  • the present invention relates more particularly to a device for optical characterization of a translucent and / or opaque body.
  • a perfectly transparent body is characterized by a zero optical density D.
  • there are known devices for optically characterizing opaque bodies In the sense of the invention, an opaque body opposes the passage of light. In particular, a perfectly opaque body is characterized by an infinite optical density D.
  • Existing optical characterization devices generally employ a wide spectrum light source and are designed to perform spectral measurements of the scattered light either by reflection on the surface of the body, when the latter is opaque, or by transmission through the body, when the latter is transparent.
  • colorimetric spectrophotometers with a diffuse geometry (using an integrating sphere) or with a directional geometry are generally used.
  • Such devices also make it possible to optically characterize transparent objects, by replacing the measurement in reflection used to characterize the opaque objects by a measurement in transmission.
  • Hazemeters are also known which make it possible to characterize transparent objects by means of a measurement in transmission.
  • the known devices implement computer means that make it possible to present the results of the measurements in the form of spectral response curves.
  • known devices use detectors and electronic processing units, including in particular digital analog converters.
  • the spectral response curves are the representation of a set of integrated data in a mathematical and physical model allowing the precise characterization of bodies, and in particular mixtures composed of pigments, particles and binders.
  • the determination of these curves of Spectral response is particularly interesting on the industrial level, especially in the context of a process of manufacture of paint or auto body repair, in order to reproduce identically the pigment composition of the paint for example.
  • a translucent body is permeable to light, allows it to pass, but does not clearly distinguish the objects (including the contours of objects) placed behind him, and this in contrast to a transparent body.
  • the known devices have in fact insufficient sensitivity to discriminate the translucent bodies, and this for lack of sensitivity.
  • optical characterization devices use analog digital converters with a dynamic of 16 bits. This dynamic is sufficient to characterize transparent bodies, whose transparency varies between 100% and about 0.2%. In particular, only the first 9 bits are needed to encode the transparent bodies.
  • the optical signature of the translucent bodies generally corresponds to a transparency less than 0.1%, or even often less than 0.01%.
  • the set of bits, and especially the last five, is therefore necessary to characterize the translucent bodies.
  • the known devices offer a resolution of 0.01% maximum, this resolution corresponding to the eleventh bit approximately so that the twelfth, thirteenth, fourteenth, fifteenth and sixteenth bits are not used. It is therefore not possible, with the known devices, to characterize the translucent bodies, and in particular to determine the color of translucent bodies with high opacity.
  • the known devices require, for the same transparent body to be characterized, to take two successive measurements of the sample to be analyzed and to characterize on the optical plane, for example a first measurement of the light energy. transmitted, then a second measurement of the reflected light energy, and while requiring a displacement of the sample to bring it and position it on the measuring device at the exact location for each measurement.
  • Such devices not only are limited in their use to transparent bodies, but still, do not meet imperfectly conventional industrial constraints of efficiency, time saving and reliability. In addition, such devices require two successive and separate calibrations.
  • the known devices require in fact a large number of manipulations and suffer from a significant risk of errors related in particular to the number of necessary manipulations.
  • the objects assigned to the invention therefore aim to remedy the drawbacks enumerated above and to propose a new device for optical characterization of translucent and / or opaque bodies making it possible to easily determine, with high precision and sensitivity, the optical characteristics of translucent and / or opaque bodies and in particular their color, their transparency, their optical density or any other optical characteristic well known to those skilled in the art.
  • Another object of the invention is to propose a new device for optical characterization of translucent bodies, to accurately characterize such bodies, even when they have a high opacity.
  • Another object of the invention is to propose a new device for optical characterization of translucent bodies requiring, for its implementation, only standard components.
  • Another object of the invention is to propose a novel device for optical characterization of translucent and / or opaque bodies that is particularly simple and quick to use.
  • Another object of the invention is to propose a novel device for optical characterization of translucent and / or opaque bodies capable of presenting a broad spectrum of use.
  • Another object of the invention is to propose a new device for optical characterization of translucent bodies making it possible, using the same device, to measure different optical characteristics.
  • the objects assigned to the invention also aim at proposing a new method of optical characterization of translucent and / or opaque bodies which is particularly simple to implement and makes it possible to obtain directly usable results with great sensitivity.
  • Another object of the invention is to propose a new method of optical characterization of translucent and / or opaque bodies which make it possible to obtain several measurement values of the optical properties of the bodies without significantly lengthening the measurement time, nor complicating the measure itself.
  • the objects assigned to the invention are achieved by means of an optical characterization device of a body 2, in particular a translucent and / or opaque body comprising: lighting means 3 comprising a light source S , able to emit a light flux ⁇ e towards the body 2, a detection and analysis system 4 of the light flux transmitted and / or scattered ⁇ t / d by the body 2,
  • means 10 for calibrating the device comprising an optically neutral element 11 of known optical density D, which is finite and non-zero, intended to be positioned in place of the body 2 in the light path so as to define, by calibration of the device 1 on the base of said optically neutral element 11, a new measurement scale between a first level, corresponding to the optical signature of the optically neutral element 11, and a second level, corresponding to the optical signature of a perfectly opaque body .
  • the objects assigned to the invention are also achieved by means of a process for optical characterization of a body 2, in particular of a translucent and / or opaque body comprising: a step of measuring the optical characteristics of the body 2 during which the body 2 is illuminated by means of illumination 3 and the light energy transmitted and / or diffused by the body 2 is detected and analyzed,
  • a calibration step preceding the measurement step, during which an optically neutral element 11 of known optical density, finite and non-zero, is interposed on the light path in the place of the body 2 and defined a new measurement scale between a first level, corresponding to the optical signature of the optically neutral element 11, and a second level, corresponding to the optical signature of a perfectly opaque body.
  • FIG. 1 illustrates a schematic diagram of the optical characterization device according to the invention.
  • FIG. 2 illustrates a detailed block diagram of an alternative embodiment of an optical characterization device according to the invention, said diagram showing in particular the means necessary for the optical characterization of the translucent bodies.
  • FIG. 3 illustrates a detailed block diagram of an alternative embodiment of an optical characterization device of a body according to the invention, said diagram showing in particular the technical means allowing the simultaneous optical characterization of the translucent bodies and or opaque.
  • Figures 1 to 3 illustrate a device 1 for optical characterization of a translucent body and / or opaque 2 according to the invention.
  • optical characterization refers to the measurement of the optical characteristics of the body, including its color, transparency, reflection, its optical density or any other optical characteristic well known to those skilled in the art.
  • the device 1 according to the invention constitutes a device for characterizing the color of the body 2, and, even more preferably, a spectrophotocolorimeter.
  • a translucent body is a body permeable to light, which allows it to pass, but which does not clearly distinguish the objects placed behind it.
  • a translucent body has a very high opacity and a non-zero optical density and relatively high, especially greater than 2.5 and for example between 2.5 and 6.
  • body is meant here a solid material substance, liquid or gaseous.
  • a translucent body may be in the form of an object or material having a pigment and / or particulate composition but not necessarily.
  • pure water which has no composition neither pigmentary nor particulate, changes from a transparent state to a translucent state by simple change of physical state.
  • frosted glass, plastics, paper, textiles, blinds, curtains and curtains, films or screens constitute, according to their composition, more translucent bodies. or less diffusing.
  • the device 1 comprises lighting means 3, illustrated in full lines in FIG. 1 and in dotted lines in FIG. 2, comprising a light source S, capable of emitting a luminous flux, said emitted luminous flux ⁇ e , in the direction of the body 2, thus defining a light path.
  • Ways lighting 3 advantageously have an extended spectrum and comprise a lamp L, preferably of spectrophotometric quality, formed for example by a xenon lamp, xenon flash or a halogen lamp.
  • the lamp L thus advantageously forms a primary light source, the light source S, illuminated by the lamp L, then forming a secondary light source.
  • the optical characterization device is able to detect and analyze the light flux transmitted and / or diffused and / or reflected by different body types, and in particular the translucent and / or opaque bodies.
  • it comprises the necessary means of detection and analysis of the luminous flux, whether the body 2 or the sample to be analyzed is a body or an object having optical transmission and / or reflection properties.
  • the device 1 comprises a system 4 for detecting and analyzing the light flux transmitted and / or scattered ⁇ t / d by the body 2 if the latter is at least partially translucent.
  • the detection and analysis system 4 is illustrated in full lines in FIG. 1 and in dashed lines in FIG.
  • the device according to the invention may also comprise a detection and analysis system 4 'of the reflected light flux ⁇ r by the body 2 if the latter is at least partially opaque.
  • the device for optical characterization of a body 2 may be capable of providing an optical characterization of translucent and / or opaque bodies making it possible to characterize, substantially simultaneously, and by a single measurement and without moving the sample: on the one hand, the optical properties of the translucent materials by transmission by means of the device 4 for detecting and analyzing the luminous flux transmitted and / or diffused by a translucent body,
  • the device according to the invention therefore has the technical means necessary to analyze at one time a double beam whether it is a light beam transmitted and / or scattered on the one hand, and / or a reflected light beam of light. on the other hand (Fig. 3) on the other hand.
  • the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ Vd advantageously comprises: an input optical device 5, formed for example by a suitable lens and situated in the extension of the light path, one or more sensors C1, C2 capable of reading the light energy and preferably comprising photocells, and an electronic processing unit 30 comprising in particular a CAN digital analog converter advantageously having a dynamic of 16 bits.
  • the device 1 comprises calibration means 10 of the device 1, designed to increase the sensitivity of the device 1 vis-à-vis the optical characterization of the translucent bodies.
  • the calibration means 10 comprise an optically neutral element 11 of known optical density D, finite and not null, intended to be positioned in place of the body 2 in the light path extending between the light source S and the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d so as to define, by calibrating the device 1 on the basis of the optically neutral element 11, a new measurement scale comprised between a first level, corresponding to the optical signature of the optically neutral element, and a second level, corresponding to the optical signature of a perfectly opaque body.
  • the calibration means 10 and in particular the optically neutral element 11 make it possible to shift the scale of measurement, and in particular to shift the white level of the latter to a first level called “gray level” which then constitutes a new reference zero for the measurement.
  • gray level here simply means an intermediate level between the "white” level, corresponding to the optical signature of a perfectly transparent body and the "black” level, corresponding to the optical signature of a perfectly opaque body.
  • optically neutral refers to the fact that the optically neutral element 11 does not alter the spectral characteristics of the luminous flux, but merely has the effect of reducing the luminous intensity. It is indeed a filter reducing the luminous flux.
  • the device 1 by knowing the optical characteristics of the optically neutral element 11, it is possible to reset the device 1, and in particular the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d so that for the measure, the latter takes as a reference "zero” neither the “white” level, but the first level (or gray level) corresponding to the optical signature of the optically neutral element 11.
  • the optically neutral element 11 is formed by a filter 12 of neutral optical density (or neutral filter).
  • the device 1 according to the invention preferably comprises a set of several neutral filters 12, of different optical densities D, so as to allow the user to select, according to the body 2 to be analyzed, the neutral filter 12 the most adapted.
  • the calibration means 10 comprise a set of neutral filters of different optical densities which are arranged in a mobile charger, preferably motorized, such as a carousel, so as to allow the user to select easily the optically neutral element most suitable for the body 2 to be characterized.
  • the optically neutral element 11 when the optically neutral element 11 is positioned in place of the body 2, during calibration, it is in the path of the luminous flux while said body 2 is located outside said path.
  • the optically neutral element 11 and the body 2 may each occupy a distinct location in the path of the luminous flux, or, conversely, that they share alternately a same location.
  • the light source S is collimated, preferably on a diameter of 0.1 mm to 40 mm and even more preferably on a diameter of 25 mm.
  • the use of a collimated source S thus makes it possible to increase the light energy received by the body 2 and / or the optically neutral element 11 without modifying and in particular without increasing the power of the lamp L so as to avoid heating the lamp. device 1 and in particular heating the body 2 so as not to modify its optical characteristics.
  • the collimated source S thus illuminates the body 2 or the optically neutral element 11 by means of a collimated light beam F which extends rectilinearly between the light source S and the input E of the detection system. analysis 4 of the transmitted and / or scattered light flux ⁇ t / d , materialized by the input optical device 5.
  • the device 1 is configured such that the body 2 and / or the optically neutral element 11 is arranged so that its main extension plane is substantially perpendicular to the collimated light beam F.
  • the device 1 comprises a support 13 adapted to receive the body 2 to be characterized (FIGS. 1 and 2).
  • the support 13 may be arranged so as to alternatively receive the body 2 or the optically neutral element 11 of reference.
  • the support 13 is advantageously arranged between the light source S and the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d , at a distance X from the light source S and at a distance X 'from the light source S. detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d .
  • the distances X and X ' are advantageously variable so as to allow the determination of several distinct optical characteristics of the body 2, in particular its color, or the energy transmitted or diffused by the body 2.
  • the support 13 is preferably mounted movable in translation between the light source S and the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d so as to allow, depending on its position , the determination of distinct optical characteristics of the body 2.
  • the support 13 may thus advantageously be secured to a carriage (not shown) capable of sliding between the light source S and the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ yd.
  • the support 13 of the detection and analysis system 4 will be brought closer to the transmitted and / or scattered light flux ⁇ t / d so that it occupies, for example, the position ( II) illustrated in FIG. 1, the distance X 'then being less than half the sum of the distances X and X' (X ' ⁇ (X + X72).
  • the distance d between the light source and the input E of the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d is between 0 mm and 250 mm, and preferably from the order of 100 mm to allow a good optical characterization of translucent bodies.
  • the light source S, the body 2 and / or the optically neutral element 11 and the optical input device 5 are advantageously aligned along the light beam F.
  • the electronic processing unit 30 includes software for automatically calibrating the device 1 on the basis of the measurement of the light energy effected with the optically neutral element 11.
  • the optical characterization device 1 is designed to take into account, as far as possible, the variations of light intensity of the lighting means 3 and in particular of the lamp L.
  • the device 1 is thus configured so as to substantially simultaneously characterize the luminous flux emitted by the lighting means 3, in particular by the lamp L and the flux transmitted light and / or scattered ⁇ y d by the body 2.
  • the lighting means 3 and comprise a first and a second optical devices 6, 7 to respectively generate a first light beam F1, directed to the detection and analysis system 4 of the light flux transmitted and / or scattered ⁇ t / d and whose light path passes through the body 2 and / or the optically neutral element 11, and a second light beam F2, directed to the detection and analysis system 4 of the light flux transmitted and / or scattered ⁇ t / d and whose light path is carried out without crossing, that is to say without encountering on its way, the body 2 and / or the optically neutral element 11.
  • the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d is designed to optically substantially simultaneously characterize the first and second beams F1, F2 and comprises effect first and second sensors C1, C2 respectively for detecting the first and second beams F1, F2.
  • the first sensor C1 is designed and arranged to read the light energy transmitted and / or scattered by the body 2, the second sensor C2 being designed and arranged to read the light energy emitted by the means d 3, and in particular by the lamp L. Since the sensors C1, C2 are coupled to the digital analog converter CAN, it is possible to take into account, at each measurement, the possible variations in the intensity of the lamp L so as to take account of them. account in the result.
  • This two-sensor configuration is particularly interesting compared to a conventional single-sensor configuration in that it allows the measurement in real time, that is to say without temporal shift, of the variations
  • the first and second sensors C1, C2 advantageously make it possible to read spectra extending from 290 to 785 nanometers, from 310 to 1100 nanometers and from 190 to 720 nanometers, thus covering the entire spectral range. ranging from ultraviolet radiation to infrared radiation, through visible radiation.
  • the device 1 takes into account, at each measurement, the specific noise of the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d , and in particular the electronic variations of C1, C2 sensors.
  • the device 1 comprises a simultaneous switching device 20 of the first and second light beams F1, F2 so as to measure the own noise of the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d , and in particular the noise of the sensors C1, C2.
  • the electronic processing unit 30, integrating the CAN digital analog converter, is operatively connected to the cut-off member 20 to control its actuation.
  • the electronic processing unit 30 uses software that allows, before each measurement of the optical characteristics of the body 2, to automatically control the actuation of the cut-off device 20 so as to measure the noise of the detection system and
  • the electronic processing unit 30 also makes it possible, using the aforementioned software, to perform the calibration of the device 1 according to the optical characteristics of the optically neutral element 11, and to calculate the curves. spectral corresponding to the body 2, taking into account the noise.
  • the cutoff member 20 is formed by an opaque screen 21, or "shutter"("shutter” in English), mounted movably between a first position (i), shown in dashed lines in FIG. 2, in which it allows the passage of the two light beams F1, F2 and a second position (ii), shown in full lines in FIG. 2, in which it is opposes simultaneously with the passage of the two light beams F1, F2.
  • the opaque screen 21 is located simultaneously on the light paths of the two light beams F1, F2.
  • the detection and analysis system 4 no longer detects the light energy emitted by the lamp L so that the detected quantity corresponds to its own noise. The clean noise can then be deduced from each measurement which makes it possible to significantly increase the accuracy of the device 1.
  • the device 1 is placed in an opaque and closed enclosure coated inside an optical black, and this in order to avoid the disturbance of the measurements by the ambient light.
  • FIG. 3 illustrates a preferred variant of the invention corresponding to a polyvalent device for optical characterization of a body 2, in particular of translucent and / or opaque bodies, making it possible to characterize the optical properties of a translucent and / or opaque body simultaneously by a single measurement and without having to move the sample.
  • the device illustrated in FIG. 3 contains all the elements and functionalities illustrated in particular in FIG. 2 and previously described, a set of elements to which the flow detection and analysis system 4 'has been added. reflected light ⁇ r .
  • the detection and analysis system 4 'of the reflected light flux is functionally associated with the detection and analysis system 4 of the light flux transmitted and / or diffused so as to be able to characterize in one only operation the optical transmission and reflection properties of the body 2 to be characterized.
  • the detection and analysis system 4 'of the reflected light flux ⁇ r thus comprises an optical device 5' for receiving the reflected light flux mounted on the support 13 adapted to receive the body 2 to be characterized, said optical device 5 'being connected by at least one sensor C3 for reading the reflected light energy, at the electronic processing unit 30 integrating the digital analog converter CAN.
  • the latter is as for the previous examples, operatively connected to the cutoff 20 to control its actuation and ensure the associated function.
  • the optical device 5 'for receiving the reflected light flux is positioned facing the sample, that is to say facing the body 2 to be characterized, so as to receive the reflected flux ⁇ r according to an inclined angle ⁇ ( Figure 3) between approximately 43 to 47 ° of the incident normal of the body 2 to be characterized.
  • the axis of the optical sensor included in the optical device 5 ' is thus inclined by about 45 ° plus or minus 2 ° relative to the normal incident of the main face of the sample to be characterized.
  • the device thus formed and connected to the previously described electronic processing unit 30 thus forms a spectrophotometer with directional geometry 0745 °, double beam, adapted to the spectrophotometric measurements of the bodies by reflection in addition to the spectrophotometric measurements of the bodies by transmission.
  • the optical characterization device according to the invention may also comprise in addition to the various optical devices described above, a diffuse light measurement unit, of the hazemeter type (not shown in the figures).
  • the diffuse light measurement unit is advantageously positioned behind the body 2 to be characterized at a low angle of incidence, of the order of, for example, 4 °.
  • the diffuse light measurement unit is, like the detection and analysis systems 4, 4 ', provided with suitable optical devices, which are connected to the electronic processing unit 30.
  • the set of detection and analysis systems 4, 4 'and possibly the diffuse light measuring unit are integrated in the device according to the invention so as to operate with the cut-off device 20 and the sensor C2. in order to measure the inherent noise of the detection and analysis system 4, 4 'or the diffuse light measuring unit.
  • the present invention also relates to a method for the optical characterization of a body 2, in particular of a translucent and opaque body 2 comprising: a step of measuring the optical characteristics of the body (2) during which the light is illuminated, using lighting means (3), the body (2) and detecting and analyzing the light energy transmitted and / or scattered by the body (2), a calibration step, preceding the measuring step, during which an optically neutral element (11) of known optical density, finite and non-zero, is interposed in the light path in the place of the body (2), and a new measurement scale between a first corresponding to the optical signature of the optically neutral element (11), and a second level, corresponding to the optical signature of a perfectly opaque body.
  • the measurement step is carried out on the basis of the new measurement scale thus defined, from the first level, which then constitutes the new reference, which makes it possible to increase the sensitivity of the device 1 and in particular of the system of measurement.
  • the luminous flux emitted by the light-transmitting and / or scattered light sources ⁇ t / d is characterized substantially simultaneously by means of the detection and analysis system 4 of the transmitted and / or scattered light flux.
  • lighting 3, and the light flux transmitted and / or scattered ⁇ t / d by the body 2 so as to take into account, to the extent, the variations in light intensity of the lighting means 3.
  • this method it is possible to controls at each measurement the variations of luminous intensity. lighting means 3 and in particular the lamp L so as to correct the measurement as a function of the variations and the drift thereof.
  • the simultaneous characterization of the emitted light flux and of the transmitted and / or scattered light flux ⁇ t / d takes place via a two-beam configuration comprising a first light beam F1, whose light path passes through the body 2 and / or the optically neutral element 11 before joining the detection and analysis system 4, and a second light beam F2, whose light path preferably directly joins the detection and analysis system 4 of the transmitted light flux and / or scattered ⁇ t / d , without passing through the body 2 and / or the optically neutral element 11.
  • the method comprises, before the measurement step, a noise evaluation step of the detection and analysis system 4 of the transmitted and / or scattered light flux ⁇ t / d , during which one substantially cuts simultaneously, with the aid of a cut-off device 20, such as a shutter, the first and second light beams F1, F2 so as to isolate and evaluate the system's own noise.
  • a cut-off device 20 such as a shutter
  • this step aims to evaluate the noise of the two sensors C1 and C2.
  • the device for optical characterization of a body 2 illustrated in FIG. 3 can also implement a method of optical characterization of a particularly interesting body 2.
  • This is a method of optical characterization of a body 2, in particular of a translucent and / or opaque body comprising, in accordance with the optical characterization method previously described and further comprising a measurement step in reflection during from which is detected and analyzed the light energy reflected by the body (2) and a calibration step, preceding the measurement step in reflection, during which is interposed, in the light path, instead body (2) standards, preferably white and black, calibration by reflection.
  • the luminous energy transmitted and / or diffused, and / or, on the other hand, reflected during a same step of measuring the optical characteristics of the body 2 is analyzed and detected substantially simultaneously.
  • Calibration standards for reflection measurement and transmission are interposed successively and immediately one after the other.
  • the two operations are therefore successive and in any order if one prefers to perform the reflection calibration first.
  • the reflection calibration and the transmission / diffusion calibration during which an optically neutral element 11 is interposed in the light path and a new measurement scale are defined in one and the same calibration step.
  • the presence in the device of the two detection and analysis systems 4, 4 'advantageously makes it possible to characterize substantially simultaneously, by a single measurement and without moving the sample, the optical properties of translucent materials by transmission on the one hand and the optical properties of the translucent bodies and opaque bodies by reflection by means of the directional geometry 0745 ° previously described and corresponding to the use of the detection and analysis system 4 'of the reflected light flux on the other hand.
  • the method therefore makes it possible to characterize the optical transmission and / or reflection properties of the body 2 in a single operation without moving said body.
  • the luminous flux reflected from the body 2 is measured at an incidence angle of between approximately 43 and 47 °, preferably approximately 45 °, with respect to the normal direction of the surface of the body 2.
  • the method may also comprise a step during which the diffuse light is measured in addition, simultaneously or not, with the transmission and reflection measurements.
  • the diffuse light measurement is performed at a low angle of incidence, of the order of, for example, about 4 °.
  • the luminous flux emitted by the lighting means 3, and the transmitted luminous flux are characterized substantially simultaneously by means of the detection and analysis systems 4, 4 '. and / or scattered ( ⁇ t / d ) and / or reflected by the body 2 so as to take into account in the measurement, the variations in light intensity of the lighting means.
  • the simultaneous characterization of the emitted light flux and the transmitted and / or scattered light flux ( ⁇ t / d ) and / or reflected is effected by means of a two-beam configuration similar to that described above, the reflected light flux ( ⁇ r ) being generated by reflection of all or part of the first beam F1 on the body 2 while the second light beam F2 joins the detection and analysis system 4, 4 'without passing through the body 2.
  • the method comprises, before the measuring step, a step of evaluating the noise of the detection and analysis systems 4,4 ', during which a substantially cut-off device is cut off simultaneously. 20, the first and second light beams F1, F2, so as to isolate and evaluate the noise of the specific detection and analysis systems 4,4 '.
  • each measurement on a sample or a body 2 can simultaneously give the results of the optical properties of the body in transmission and reflection.
  • the characterization method according to the invention will constitute a method for determining the color of the body 2.
  • the measurement step (s) may be repeated for a plurality of wavelengths to form one or more spectral response curves.
  • the operator In order to characterize, using the device 1, a translucent body 2, for example an object or a translucent material, the operator first determines the optical density of the neutral filter 12 that is the most suitable and the closest to the optical characteristics of the translucent body 2 to analyze. For this purpose, the operator has, within the device 1, a set of optically neutral elements 11 of variable optical densities.
  • the operator determines the distances X, X 'separating the support 13 from the light source S and the detection and analysis system 4 enabling it to better evaluate the optical characteristics and for example the color and / or the density optical translucent body 2 to characterize.
  • the operator can proceed to the calibration of the device 1 using the software associated with the electronic processing unit 30. Thanks to this calibration, the operator defines a new measurement scale with a new "zero", offset from the white level corresponding to the optical signature of perfectly transparent bodies.
  • the operator replaces the optically neutral element 11 with the translucent body 2 to be analyzed, without changing the positioning of the support 13 in order to measure the optical characteristics of the translucent body 2, based on the new reference "zero" above-mentioned.
  • the device 1 automatically proceeds to a noise evaluation step of the detection and analysis system 4 in order to take it into account in the calculations of the optical characteristics of the translucent body 2.
  • the operator can proceed to a new measurement sequence, using a neutral filter 12 of higher optical density, closer to the optical characteristics of the translucent body 2 to analyze.
  • the optical characterization device 1 therefore makes it possible to analyze with high sensitivity translucent and / or opaque bodies having a high opacity and in a simple, automatic and reproducible manner.
  • the invention finds its industrial application in the production of optical characterization machines of translucent and / or opaque bodies, and in particular in the determination of the color of parts or paint compositions.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

The invention relates to a device for optical characterisation of translucent and opaque bodies (2), comprising illumination means (3) with a light source (S), for emission of a light flux towards the body (2), a detection and analysis system (4) for the light flux transmitted or diffused (f<SUB>t/d</SUB>) by the body (2), device calibration means (10), comprising an optically neutral element (11) to be put in place of the body (2) in the light path such as to define a new measuring scale between a first level, corresponding to the optical signature for the optically neutral element (11) and a second level, corresponding to the optical signature of a completely opaque body. Optical characterisation devices.

Description

DISPOSITIF ET PROCEDE DE CARACTERISATION OPTIQUE DE CORPS TRANSLUCIDES ET/OU OPAQUES DEVICE AND METHOD FOR OPTICAL CHARACTERIZATION OF TRANSLUCENT AND / OR OPAQUE BODIES
DOMAINE TECHNIQUETECHNICAL AREA
La présente invention se rapporte au domaine technique général des dispositifs de caractérisation optique de corps, et notamment de corps solides ou fluides. En particulier, la présente invention se rapporte au domaine des dispositifs de caractérisation optique d'objets ou de matériaux, destinés par exemple à permettre le contrôle de la reproductibilité d'un processus industriel.The present invention relates to the general technical field of devices for optical characterization of bodies, and in particular of solid or fluid bodies. In particular, the present invention relates to the field of devices for optical characterization of objects or materials, intended for example to control the reproducibility of an industrial process.
La présente invention concerne plus particulièrement un dispositif de caractérisation optique d'un corps translucide et/ou opaque.The present invention relates more particularly to a device for optical characterization of a translucent and / or opaque body.
TECHNIQUE ANTERIEUREPRIOR ART
On connaît des dispositifs permettant de caractériser optiquement des corps transparents, c'est-à-dire, au sens de l'invention, des corps qui laissent passer la lumière et permettant de distinguer avec netteté les objets situés derrière eux. En particulier, un corps parfaitement transparent se caractérise par une densité optique D nulle. Ainsi, si l'on définit l'opacité O du corps par le rapport du flux lumineux incident φj et du flux lumineux transmis φt (O = φi/φt), alors la densité optique D est définie par le logarithme décimal de l'opacité (D=log (O)). Dans le cas d'un corps parfaitement transparent, pour lequel le flux transmis φt est égal au flux incident φj, la densité optique D est nulle (log (φj/φt) = log 1 = 0). De la même façon, on connaît des dispositifs permettant de caractériser optiquement des corps opaques. Au sens de l'invention, un corps opaque s'oppose au passage de la lumière. En particulier, un corps parfaitement opaque se caractérise par une densité optique D infinie.Devices are known to characterize optically transparent bodies, that is to say, in the sense of the invention, bodies that let the light and clearly distinguish the objects behind them. In particular, a perfectly transparent body is characterized by a zero optical density D. Thus, if the opacity O of the body is defined by the ratio of the incident luminous flux φj and the transmitted luminous flux φt (O = φi / φ t ), then the optical density D is defined by the decimal logarithm of the opacity (D = log (O)). In the case of a perfectly transparent body, for which the transmitted flux φt is equal to the incident flux φj, the optical density D is zero (log (φj / φ t ) = log 1 = 0). In the same way, there are known devices for optically characterizing opaque bodies. In the sense of the invention, an opaque body opposes the passage of light. In particular, a perfectly opaque body is characterized by an infinite optical density D.
Les dispositifs de caractérisation optique existants mettent généralement en oeuvre une source d'éclairage à spectre étendu et sont conçus pour effectuer des mesures spectrales de la lumière diffusée soit par réflexion sur la surface du corps, lorsque ce dernier est opaque, soit par transmission à travers le corps, lorsque ce dernier est transparent.Existing optical characterization devices generally employ a wide spectrum light source and are designed to perform spectral measurements of the scattered light either by reflection on the surface of the body, when the latter is opaque, or by transmission through the body, when the latter is transparent.
En particulier, pour mesurer la couleur des objets opaques, on utilise généralement des spectrophotomètres colorimétriques à géométrie diffuse (utilisant une sphère d'intégration) ou à géométrie directionnelle.In particular, to measure the color of the opaque objects, colorimetric spectrophotometers with a diffuse geometry (using an integrating sphere) or with a directional geometry are generally used.
De tels dispositifs permettent également de caractériser optiquement des objets transparents, en remplaçant la mesure en réflexion utilisée pour caractériser les objets opaques par une mesure en transmission. On connaît également des hazemètres, qui permettent de caractériser des objets transparents par le biais d'une mesure en transmission.Such devices also make it possible to optically characterize transparent objects, by replacing the measurement in reflection used to characterize the opaque objects by a measurement in transmission. Hazemeters are also known which make it possible to characterize transparent objects by means of a measurement in transmission.
Les dispositifs connus mettent en œuvre des moyens informatiques qui permettent de présenter les résultats des mesures sous forme de courbes de réponse spectrale. En particulier, les dispositifs connus utilisent des détecteurs et des unités de traitement électronique, comportant notamment des convertisseurs analogiques numériques.The known devices implement computer means that make it possible to present the results of the measurements in the form of spectral response curves. In particular, known devices use detectors and electronic processing units, including in particular digital analog converters.
Les courbes de réponse spectrale sont la représentation d'un ensemble de données intégrées dans un modèle mathématique et physique permettant la caractérisation précise de corps, et notamment de mélanges composés de pigments, de particules et de liants. La détermination de ces courbes de réponse spectrale s'avère tout particulièrement intéressante sur le plan industriel, notamment dans le cadre d'un processus de fabrication de peinture ou de réparation de carrosserie automobile, afin de reproduire à l'identique la composition pigmentaire de la peinture par exemple.The spectral response curves are the representation of a set of integrated data in a mathematical and physical model allowing the precise characterization of bodies, and in particular mixtures composed of pigments, particles and binders. The determination of these curves of Spectral response is particularly interesting on the industrial level, especially in the context of a process of manufacture of paint or auto body repair, in order to reproduce identically the pigment composition of the paint for example.
Ces dispositifs connus, s'ils permettent de caractériser optiquement de façon fiable les objets opaques ou transparents, ne permettent pas, en revanche, de caractériser de manière fiable des corps translucides.These known devices, if they can optically characterize reliably opaque or transparent objects, do not, however, reliably characterize translucent bodies.
Au sens de l'invention, un corps translucide est perméable à la lumière, la laisse passer, mais ne permet pas de distinguer avec netteté les objets (notamment les contours des objets) placés derrière lui, et ce contrairement à un corps transparent.In the sense of the invention, a translucent body is permeable to light, allows it to pass, but does not clearly distinguish the objects (including the contours of objects) placed behind him, and this in contrast to a transparent body.
Les dispositifs connus possèdent en effet une sensibilité insuffisante pour discriminer les corps translucides, et ce par manque de sensibilité.The known devices have in fact insufficient sensitivity to discriminate the translucent bodies, and this for lack of sensitivity.
Les dispositifs de caractérisation optique connus utilisent des convertisseurs analogiques numériques avec une dynamique de 16 bits. Cette dynamique est suffisante pour caractériser les corps transparents, dont la transparence varie entre 100 % et environ 0,2 %. En particulier, seuls les 9 premiers bits sont nécessaires pour coder les corps transparents.The known optical characterization devices use analog digital converters with a dynamic of 16 bits. This dynamic is sufficient to characterize transparent bodies, whose transparency varies between 100% and about 0.2%. In particular, only the first 9 bits are needed to encode the transparent bodies.
En revanche, la signature optique des corps translucides correspond généralement à une transparence inférieure à 0,1 %, voire même souvent inférieure à 0,01 %. L'ensemble des bits, et notamment les cinq derniers, est donc nécessaire pour caractériser les corps translucides. Or, les dispositifs connus offrent une résolution de 0,01 % au maximum, cette résolution correspondant au onzième bit environ de telle sorte que les douzième, treizième, quatorzième, quinzième et seizième bits ne sont pas utilisés. Il n'est donc pas possible, avec les dispositifs connus, de caractériser les corps translucides, et notamment de déterminer la couleur des corps translucides présentant une forte opacité.On the other hand, the optical signature of the translucent bodies generally corresponds to a transparency less than 0.1%, or even often less than 0.01%. The set of bits, and especially the last five, is therefore necessary to characterize the translucent bodies. However, the known devices offer a resolution of 0.01% maximum, this resolution corresponding to the eleventh bit approximately so that the twelfth, thirteenth, fourteenth, fifteenth and sixteenth bits are not used. It is therefore not possible, with the known devices, to characterize the translucent bodies, and in particular to determine the color of translucent bodies with high opacity.
Par ailleurs, les dispositifs connus, en particulier certains spectrophotomètres, nécessitent, pour un même corps transparent à caractériser de prendre deux mesures successives de l'échantillon à analyser et à caractériser sur le plan optique, par exemple une première mesure de l'énergie lumineuse transmise, puis une seconde mesure de l'énergie lumineuse réfléchie, et ce tout en nécessitant un déplacement de l'échantillon pour l'amener et le positionner sur l'appareil de mesure à l'endroit exact réservé à chacune des mesures.Moreover, the known devices, in particular certain spectrophotometers, require, for the same transparent body to be characterized, to take two successive measurements of the sample to be analyzed and to characterize on the optical plane, for example a first measurement of the light energy. transmitted, then a second measurement of the reflected light energy, and while requiring a displacement of the sample to bring it and position it on the measuring device at the exact location for each measurement.
De tels appareils, non seulement sont limités dans leur utilisation aux corps transparents, mais encore, ne répondent qu'imparfaitement aux contraintes industrielles classiques d'efficacité, de gain de temps et de fiabilité. En outre, de tels appareils nécessitent deux calibrations successives et distinctes. Les dispositifs connus requièrent en effet un nombre important de manipulations et souffrent d'un risque d'erreurs non négligeable lié en particulier au nombre de manipulations nécessaires.Such devices, not only are limited in their use to transparent bodies, but still, do not meet imperfectly conventional industrial constraints of efficiency, time saving and reliability. In addition, such devices require two successive and separate calibrations. The known devices require in fact a large number of manipulations and suffer from a significant risk of errors related in particular to the number of necessary manipulations.
EXPOSE DE L'INVENTIONSUMMARY OF THE INVENTION
Les objets assignés à l'invention visent par conséquent à porter remède aux inconvénients énumérés précédemment et à proposer un nouveau dispositif de caractérisation optique de corps translucides et/ou opaques permettant de déterminer facilement et avec une précision et une sensibilité élevées, les caractéristiques optiques de corps translucides et/ou opaques et notamment leur couleur, leur transparence, leur densité optique ou toute autre caractéristique optique bien connue de l'homme du métier. Un autre objet de l'invention vise à proposer un nouveau dispositif de caractérisation optique de corps translucides, permettant de caractériser précisément de tels corps, même lorsqu'ils possèdent une opacité élevée.The objects assigned to the invention therefore aim to remedy the drawbacks enumerated above and to propose a new device for optical characterization of translucent and / or opaque bodies making it possible to easily determine, with high precision and sensitivity, the optical characteristics of translucent and / or opaque bodies and in particular their color, their transparency, their optical density or any other optical characteristic well known to those skilled in the art. Another object of the invention is to propose a new device for optical characterization of translucent bodies, to accurately characterize such bodies, even when they have a high opacity.
Un autre objet de l'invention vise à proposer un nouveau dispositif de caractérisation optique de corps translucides ne nécessitant, pour sa mise en œuvre, que des composants standards.Another object of the invention is to propose a new device for optical characterization of translucent bodies requiring, for its implementation, only standard components.
Un autre objet de l'invention vise à proposer un nouveau dispositif de caractérisation optique de corps translucides et/ou opaques particulièrement simple et rapide à utiliser.Another object of the invention is to propose a novel device for optical characterization of translucent and / or opaque bodies that is particularly simple and quick to use.
Un autre objet de l'invention vise à proposer un nouveau dispositif de caractérisation optique de corps translucides et/ou opaques susceptible de présenter un large spectre d'utilisation.Another object of the invention is to propose a novel device for optical characterization of translucent and / or opaque bodies capable of presenting a broad spectrum of use.
Un autre objet de l'invention vise à proposer un nouveau dispositif de caractérisation optique de corps translucides permettant, à l'aide d'un même dispositif, la mesure de différentes caractéristiques optiques.Another object of the invention is to propose a new device for optical characterization of translucent bodies making it possible, using the same device, to measure different optical characteristics.
Les objets assignés à l'invention visent également à proposer un nouveau procédé de caractérisation optique de corps translucides et/ou opaques qui soit particulièrement simple à mettre en oeuvre et permette d'obtenir des résultats directement utilisables, avec une grande sensibilité.The objects assigned to the invention also aim at proposing a new method of optical characterization of translucent and / or opaque bodies which is particularly simple to implement and makes it possible to obtain directly usable results with great sensitivity.
Un autre objet de l'invention vise à proposer un nouveau procédé de caractérisation optique de corps translucides et/ou opaques qui permettent d'obtenir plusieurs valeurs de mesure des propriétés optiques des corps sans pour autant allonger notablement le temps de mesure, ni compliquer la mesure elle-même. Les objets assignés à l'invention sont atteints à l'aide d'un dispositif de caractérisation optique d'un corps 2, en particulier d'un corps translucide et/ou opaque comportant : des moyens d'éclairage 3 comprenant une source lumineuse S, apte à émettre un flux lumineux φe en direction du corps 2, un système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d par le corps 2,Another object of the invention is to propose a new method of optical characterization of translucent and / or opaque bodies which make it possible to obtain several measurement values of the optical properties of the bodies without significantly lengthening the measurement time, nor complicating the measure itself. The objects assigned to the invention are achieved by means of an optical characterization device of a body 2, in particular a translucent and / or opaque body comprising: lighting means 3 comprising a light source S , able to emit a light flux φ e towards the body 2, a detection and analysis system 4 of the light flux transmitted and / or scattered φt / d by the body 2,
- des moyens de calibrage 10 du dispositif, comportant un élément optiquement neutre 11 , de densité optique D connue, finie et non nulle, destiné à être positionné à la place du corps 2 dans le trajet lumineux de manière à définir, par étalonnage du dispositif 1 sur la base dudit élément optiquement neutre 11, une nouvelle échelle de mesure comprise entre un premier niveau, correspondant à la signature optique de l'élément optiquement neutre 11 , et un second niveau, correspondant à la signature optique d'un corps parfaitement opaque.means 10 for calibrating the device, comprising an optically neutral element 11 of known optical density D, which is finite and non-zero, intended to be positioned in place of the body 2 in the light path so as to define, by calibration of the device 1 on the base of said optically neutral element 11, a new measurement scale between a first level, corresponding to the optical signature of the optically neutral element 11, and a second level, corresponding to the optical signature of a perfectly opaque body .
Les objets assignés à l'invention sont également atteints à l'aide d'un procédé de caractérisation optique d'un corps 2, en particulier d'un corps translucide et/ou opaque comportant : - une étape de mesure des caractéristiques optiques du corps 2 au cours de laquelle on éclaire, à l'aide de moyens d'éclairage 3, le corps 2 et on détecte et on analyse l'énergie lumineuse transmise et/ou diffusée par le corps 2,The objects assigned to the invention are also achieved by means of a process for optical characterization of a body 2, in particular of a translucent and / or opaque body comprising: a step of measuring the optical characteristics of the body 2 during which the body 2 is illuminated by means of illumination 3 and the light energy transmitted and / or diffused by the body 2 is detected and analyzed,
- une étape de calibrage, précédant l'étape de mesure, au cours de laquelle on interpose, sur le trajet lumineux, à la place du corps 2, un élément optiquement neutre 11 de densité optique connue, finie et non nulle, et on définit une nouvelle échelle de mesure comprise entre un premier niveau, correspondant à la signature optique de l'élément optiquement neutre 11, et un second niveau, correspondant à la signature optique d'un corps parfaitement opaque.a calibration step, preceding the measurement step, during which an optically neutral element 11 of known optical density, finite and non-zero, is interposed on the light path in the place of the body 2 and defined a new measurement scale between a first level, corresponding to the optical signature of the optically neutral element 11, and a second level, corresponding to the optical signature of a perfectly opaque body.
DESCRIPTIF SOMMAIRE DES DESSINSSUMMARY DESCRIPTION OF THE DRAWINGS
D'autres objets et avantages de l'invention apparaîtront plus en détails à la lecture de la description qui suit, ainsi qu'à l'aide des dessins annexés, donnés à titre purement illustratifs et non limitatifs, parmi lesquels :Other objects and advantages of the invention will appear in more detail on reading the description which follows, and with the aid of the accompanying drawings, given purely by way of non-limiting illustration, among which:
- La figure 1 illustre un schéma de principe du dispositif de caractérisation optique conforme à l'invention.FIG. 1 illustrates a schematic diagram of the optical characterization device according to the invention.
- La figure 2 illustre un schéma de principe détaillé d'une variante de réalisation d'un dispositif de caractérisation optique conforme à l'invention, ledit schéma montrant notamment les moyens nécessaires à la caractérisation optique des corps translucides.FIG. 2 illustrates a detailed block diagram of an alternative embodiment of an optical characterization device according to the invention, said diagram showing in particular the means necessary for the optical characterization of the translucent bodies.
- La figure 3 illustre un schéma de principe détaillé d'une variante de réalisation d'un dispositif de caractérisation optique d'un corps conforme à l'invention, ledit schéma montrant notamment les moyens techniques permettant la caractérisation optique simultanée des corps translucides et/ou opaques.FIG. 3 illustrates a detailed block diagram of an alternative embodiment of an optical characterization device of a body according to the invention, said diagram showing in particular the technical means allowing the simultaneous optical characterization of the translucent bodies and or opaque.
MEILLEURE MANIERE DE REALISER L'INVENTIONBEST MODE OF REALIZING THE INVENTION
Les figures 1 à 3 illustrent un dispositif 1 de caractérisation optique d'un corps translucide et/ou opaque 2 conforme à l'invention. L'expression « caractérisation optique » fait référence à la mesure des caractéristiques optiques du corps, et notamment à sa couleur, sa transparence, sa réflexion, sa densité optique ou toute autre caractéristique optique bien connue de l'homme du métier.Figures 1 to 3 illustrate a device 1 for optical characterization of a translucent body and / or opaque 2 according to the invention. The term "optical characterization" refers to the measurement of the optical characteristics of the body, including its color, transparency, reflection, its optical density or any other optical characteristic well known to those skilled in the art.
De préférence, le dispositif 1 conforme à l'invention constitue un dispositif de caractérisation de la couleur du corps 2, et, de façon encore plus préférentielle, un spectrophotocolorimètre.Preferably, the device 1 according to the invention constitutes a device for characterizing the color of the body 2, and, even more preferably, a spectrophotocolorimeter.
Au sens de l'invention, et tel que cela a été décrit précédemment, un corps translucide est un corps perméable à la lumière, qui la laisse passer, mais qui ne permet pas de distinguer nettement les objets placés derrière lui. En particulier, un corps translucide présente une très forte opacité et une densité optique non nulle et relativement élevée, notamment supérieure à 2,5 et par exemple comprise entre 2,5 et 6.In the sense of the invention, and as has been described above, a translucent body is a body permeable to light, which allows it to pass, but which does not clearly distinguish the objects placed behind it. In particular, a translucent body has a very high opacity and a non-zero optical density and relatively high, especially greater than 2.5 and for example between 2.5 and 6.
Par le terme « corps », on désigne ici une substance matérielle solide, liquide ou gazeuse. Un corps translucide peut se présenter sous la forme d'un objet ou d'un matériau présentant une composition pigmentaire et/ou particulaire mais pas nécessairement. A titre d'exemple, l'eau pure, qui ne comporte aucune composition ni pigmentaire ni particulaire, passe d'un état transparent à un état translucide par simple changement d'état physique.By the term "body" is meant here a solid material substance, liquid or gaseous. A translucent body may be in the form of an object or material having a pigment and / or particulate composition but not necessarily. For example, pure water, which has no composition neither pigmentary nor particulate, changes from a transparent state to a translucent state by simple change of physical state.
A titre d'exemple illustratif et non limitatif, les verres dépolis, les matières plastiques, le papier, les textiles, les stores, les rideaux et voilages, les films ou encore les écrans constituent, en fonction de leur composition, des corps translucides plus ou moins diffusants.By way of illustrative and non-limiting example, frosted glass, plastics, paper, textiles, blinds, curtains and curtains, films or screens constitute, according to their composition, more translucent bodies. or less diffusing.
Tel que cela est illustré sur les figures 1 et 2, le dispositif 1 conforme à l'invention comprend des moyens d'éclairage 3, illustrés en traits pleins sur la figure 1 et en pointillés sur la figure 2, comprenant une source lumineuse S, apte à émettre un flux lumineux, dit flux lumineux émis φe, en direction du corps 2, définissant ainsi un trajet lumineux. Les moyens d'éclairage 3 possèdent avantageusement un spectre étendu et comportent une lampe L, de préférence de qualité spectrophotométrique, formée par exemple par une lampe de type xénon, xénon flash ou une lampe halogène. La lampe L forme ainsi avantageusement une source lumineuse primaire, la source lumineuse S, éclairée par la lampe L, formant alors une source lumineuse secondaire.As illustrated in FIGS. 1 and 2, the device 1 according to the invention comprises lighting means 3, illustrated in full lines in FIG. 1 and in dotted lines in FIG. 2, comprising a light source S, capable of emitting a luminous flux, said emitted luminous flux φ e , in the direction of the body 2, thus defining a light path. Ways lighting 3 advantageously have an extended spectrum and comprise a lamp L, preferably of spectrophotometric quality, formed for example by a xenon lamp, xenon flash or a halogen lamp. The lamp L thus advantageously forms a primary light source, the light source S, illuminated by the lamp L, then forming a secondary light source.
Selon l'invention, le dispositif de caractérisation optique est à même de détecter et analyser le flux lumineux transmis et/ou diffusé et/ou réfléchi par différents types de corps, et en particulier les corps translucides et/ou opaques. A cette fin, il comporte les moyens de détection et d'analyse nécessaires du flux lumineux, que le corps 2 ou l'échantillon à analyser soit un corps ou un objet possédant des propriétés optiques de transmission et/ou de réflexion.According to the invention, the optical characterization device is able to detect and analyze the light flux transmitted and / or diffused and / or reflected by different body types, and in particular the translucent and / or opaque bodies. For this purpose, it comprises the necessary means of detection and analysis of the luminous flux, whether the body 2 or the sample to be analyzed is a body or an object having optical transmission and / or reflection properties.
A cette fin, selon l'invention, le dispositif 1 comprend un système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d par le corps 2 si ce dernier est au moins partiellement translucide. Le système de détection et d'analyse 4 est illustré en traits pleins sur la figure 1 et en traits pointillés sur la figure 2.To this end, according to the invention, the device 1 comprises a system 4 for detecting and analyzing the light flux transmitted and / or scattered φ t / d by the body 2 if the latter is at least partially translucent. The detection and analysis system 4 is illustrated in full lines in FIG. 1 and in dashed lines in FIG.
A cette fin, le dispositif selon l'invention peut également comprendre un système de détection et d'analyse 4' du flux lumineux réfléchi φr par le corps 2 si ce dernier est au moins partiellement opaque.To this end, the device according to the invention may also comprise a detection and analysis system 4 'of the reflected light flux φ r by the body 2 if the latter is at least partially opaque.
Ainsi, selon une variante de réalisation, le dispositif de caractérisation optique d'un corps 2 conforme à l'invention peut être capable de fournir une caractérisation optique de corps translucides et/ou opaques permettant de caractériser, sensiblement simultanément, et par une seule mesure et sans déplacer l'échantillon : - d'une part les propriétés optiques des matériaux translucides par transmission au moyen du dispositif de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé par un corps translucide,Thus, according to an alternative embodiment, the device for optical characterization of a body 2 according to the invention may be capable of providing an optical characterization of translucent and / or opaque bodies making it possible to characterize, substantially simultaneously, and by a single measurement and without moving the sample: on the one hand, the optical properties of the translucent materials by transmission by means of the device 4 for detecting and analyzing the luminous flux transmitted and / or diffused by a translucent body,
- d'autre part, les propriétés optiques des corps translucides et des corps opaques par réflexion au moyen du système de détection et d'analyse 4' du flux lumineux réfléchi par le corps 2 lorsque ce dernier se trouve posséder des propriétés de réflexion, en plus ou non, de propriétés de transmission et/ou de diffusion.on the other hand, the optical properties of the translucent bodies and the opaque bodies by reflection by means of the detection and analysis system 4 'of the luminous flux reflected by the body 2 when the latter is to possess reflection properties, more or not, transmission and / or broadcast properties.
Le dispositif selon l'invention possède donc les moyens techniques nécessaires pour analyser en une seule fois un double faisceau qu'il s'agisse d'un faisceau lumineux transmis et/ou diffusé d'une part, et/ou un faisceau lumineux réfléchi d'autre part (Fig. 3) d'autre part.The device according to the invention therefore has the technical means necessary to analyze at one time a double beam whether it is a light beam transmitted and / or scattered on the one hand, and / or a reflected light beam of light. on the other hand (Fig. 3) on the other hand.
En particulier, le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φVd comprend avantageusement : - un dispositif optique d'entrée 5, formé par exemple par une lentille adaptée et situé dans le prolongement du trajet lumineux, un ou plusieurs capteurs C1 , C2 aptes à lire l'énergie lumineuse et comportant préférentiellement des cellules photoélectriques, ainsi qu'une unité de traitement électronique 30 comprenant notamment un convertisseur analogique numérique CAN possédant avantageusement une dynamique de 16 bits.In particular, the detection and analysis system 4 of the transmitted and / or scattered light flux φ Vd advantageously comprises: an input optical device 5, formed for example by a suitable lens and situated in the extension of the light path, one or more sensors C1, C2 capable of reading the light energy and preferably comprising photocells, and an electronic processing unit 30 comprising in particular a CAN digital analog converter advantageously having a dynamic of 16 bits.
Selon une caractéristique essentielle de l'invention, le dispositif 1 comprend des moyens de calibrage 10 du dispositif 1 , conçus pour augmenter la sensibilité du dispositif 1 vis-à-vis de la caractérisation optique des corps translucides. Selon l'invention, les moyens de calibrage 10 comportent un élément optiquement neutre 11 , de densité optique D connue, finie et non nulle, destiné à être positionné à la place du corps 2 dans le trajet lumineux s'étendant entre la source lumineuse S et le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d de manière à définir, par étalonnage du dispositif 1 sur la base de l'élément optiquement neutre 11 , une nouvelle échelle de mesure comprise entre un premier niveau, correspondant à la signature optique de l'élément optiquement neutre, et un second niveau, correspondant à la signature optique d'un corps parfaitement opaque. Ainsi, par rapport aux dispositifs connus dont l'échelle de mesure est comprise entre un niveau dit « blanc », correspondant à la signature optique d'un corps parfaitement transparent, et un niveau dit « noir », correspondant à la signature optique d'un corps parfaitement opaque, les moyens de calibrage 10 et notamment l'élément optiquement neutre 11 permettent de décaler l'échelle de mesure, et notamment de décaler le niveau blanc de cette dernière vers un premier niveau dit « niveau gris » qui constitue alors un nouveau zéro de référence pour la mesure.According to an essential characteristic of the invention, the device 1 comprises calibration means 10 of the device 1, designed to increase the sensitivity of the device 1 vis-à-vis the optical characterization of the translucent bodies. According to the invention, the calibration means 10 comprise an optically neutral element 11 of known optical density D, finite and not null, intended to be positioned in place of the body 2 in the light path extending between the light source S and the detection and analysis system 4 of the transmitted and / or scattered light flux φt / d so as to define, by calibrating the device 1 on the basis of the optically neutral element 11, a new measurement scale comprised between a first level, corresponding to the optical signature of the optically neutral element, and a second level, corresponding to the optical signature of a perfectly opaque body. Thus, compared to known devices whose measurement scale is between a so-called "white" level, corresponding to the optical signature of a perfectly transparent body, and a so-called "black" level, corresponding to the optical signature of a perfectly opaque body, the calibration means 10 and in particular the optically neutral element 11 make it possible to shift the scale of measurement, and in particular to shift the white level of the latter to a first level called "gray level" which then constitutes a new reference zero for the measurement.
Le terme « niveau gris » désigne ici simplement un niveau intermédiaire entre le niveau « blanc », correspondant à la signature optique d'un corps parfaitement transparent et le niveau « noir», correspondant à la signature optique d'un corps parfaitement opaque.The term "gray level" here simply means an intermediate level between the "white" level, corresponding to the optical signature of a perfectly transparent body and the "black" level, corresponding to the optical signature of a perfectly opaque body.
Par ailleurs, l'expression « optiquement neutre » fait référence au fait que l'élément optiquement neutre 11 ne modifie pas les caractéristiques spectrales du flux lumineux, mais a simplement pour effet de réduire l'intensité lumineuse. Il s'agit en effet d'un filtre réducteur du flux lumineux.On the other hand, the term "optically neutral" refers to the fact that the optically neutral element 11 does not alter the spectral characteristics of the luminous flux, but merely has the effect of reducing the luminous intensity. It is indeed a filter reducing the luminous flux.
Ainsi, en connaissant les caractéristiques optiques de l'élément optiquement neutre 11, il est possible de recaler le dispositif 1, et notamment le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d de telle sorte que pour la mesure, ce dernier prenne comme référence « zéro » non plus le niveau « blanc », mais le premier niveau (ou niveau gris) correspondant à la signature optique de l'élément optiquement neutre 11.Thus, by knowing the optical characteristics of the optically neutral element 11, it is possible to reset the device 1, and in particular the detection and analysis system 4 of the transmitted and / or scattered light flux φ t / d so that for the measure, the latter takes as a reference "zero" neither the "white" level, but the first level (or gray level) corresponding to the optical signature of the optically neutral element 11.
Avantageusement, l'élément optiquement neutre 11 est formé par un filtre 12 de densité optique neutre (ou filtre neutre). Le dispositif 1 conforme à l'invention comporte de préférence un jeu de plusieurs filtres neutres 12, de densités optiques D différentes, de manière à permettre à l'utilisateur de sélectionner, en fonction du corps 2 à analyser, le filtre neutre 12 le plus adapté.Advantageously, the optically neutral element 11 is formed by a filter 12 of neutral optical density (or neutral filter). The device 1 according to the invention preferably comprises a set of several neutral filters 12, of different optical densities D, so as to allow the user to select, according to the body 2 to be analyzed, the neutral filter 12 the most adapted.
Selon une variante de réalisation préférentielle, les moyens de calibrage 10 comportent un jeu de filtres neutres de densités optiques différentes qui sont disposés dans un chargeur mobile, de préférence motorisé, tel qu'un carrousel, de manière à permettre à l'utilisateur de sélectionner facilement l'élément optiquement neutre le plus adapté au corps 2 à caractériser.According to a preferred embodiment, the calibration means 10 comprise a set of neutral filters of different optical densities which are arranged in a mobile charger, preferably motorized, such as a carousel, so as to allow the user to select easily the optically neutral element most suitable for the body 2 to be characterized.
Ainsi, lorsque l'élément optiquement neutre 11 est positionné à la place du corps 2, lors de l'étalonnage, celui-ci se trouve sur le trajet du flux lumineux tandis que ledit corps 2 est situé en dehors dudit trajet. En particulier, il est envisageable que l'élément optiquement neutre 11 et le corps 2 puissent occuper chacun un emplacement distinct sur le trajet du flux lumineux, ou, a contrario, qu'ils se partagent en alternance un même emplacement.Thus, when the optically neutral element 11 is positioned in place of the body 2, during calibration, it is in the path of the luminous flux while said body 2 is located outside said path. In particular, it is conceivable that the optically neutral element 11 and the body 2 may each occupy a distinct location in the path of the luminous flux, or, conversely, that they share alternately a same location.
De façon préférentielle, la source lumineuse S est collimatée, de préférence sur un diamètre de 0,1 mm à 40 mm et encore plus préférentiellement sur un diamètre de 25 mm. L'utilisation d'une source collimatée S permet ainsi d'augmenter l'énergie lumineuse reçue par le corps 2 et/ou l'élément optiquement neutre 11 sans modifier et notamment sans augmenter la puissance de la lampe L de manière à éviter réchauffement du dispositif 1 et notamment réchauffement du corps 2 afin de ne pas modifier ses caractéristiques optiques. La source collimatée S éclaire ainsi le corps 2 ou l'élément optiquement neutre 11 par le biais d'un faisceau lumineux collimaté F qui s'étend de façon rectiligne entre la source lumineuse S et l'entrée E du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d, matérialisée par le dispositif optique d'entrée 5.Preferably, the light source S is collimated, preferably on a diameter of 0.1 mm to 40 mm and even more preferably on a diameter of 25 mm. The use of a collimated source S thus makes it possible to increase the light energy received by the body 2 and / or the optically neutral element 11 without modifying and in particular without increasing the power of the lamp L so as to avoid heating the lamp. device 1 and in particular heating the body 2 so as not to modify its optical characteristics. The collimated source S thus illuminates the body 2 or the optically neutral element 11 by means of a collimated light beam F which extends rectilinearly between the light source S and the input E of the detection system. analysis 4 of the transmitted and / or scattered light flux φ t / d , materialized by the input optical device 5.
De façon préférentielle, le dispositif 1 est configuré de telle sorte que le corps 2 et/ou l'élément optiquement neutre 11 soit disposé de telle sorte que son plan d'extension principal soit sensiblement perpendiculaire au faisceau lumineux collimaté F.Preferably, the device 1 is configured such that the body 2 and / or the optically neutral element 11 is arranged so that its main extension plane is substantially perpendicular to the collimated light beam F.
Avantageusement, le dispositif 1 comporte un support 13 apte à recevoir le corps 2 à caractériser (figures 1 et 2). Le cas échéant, le support 13 peut être agencé de manière à pouvoir recevoir de manière alternative le corps 2 ou l'élément optiquement neutre 11 de référence. Le support 13 est avantageusement disposé entre la source lumineuse S et le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d, à une distance X de la source lumineuse S et à une distance X' du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d. Les distances X et X' sont avantageusement variables de manière à permettre la détermination de plusieurs caractéristiques optiques distinctes du corps 2, notamment sa couleur, ou encore l'énergie transmise ou diffusée par le corps 2.Advantageously, the device 1 comprises a support 13 adapted to receive the body 2 to be characterized (FIGS. 1 and 2). Where appropriate, the support 13 may be arranged so as to alternatively receive the body 2 or the optically neutral element 11 of reference. The support 13 is advantageously arranged between the light source S and the detection and analysis system 4 of the transmitted and / or scattered light flux φ t / d , at a distance X from the light source S and at a distance X 'from the light source S. detection and analysis system 4 of the transmitted and / or scattered light flux φ t / d . The distances X and X 'are advantageously variable so as to allow the determination of several distinct optical characteristics of the body 2, in particular its color, or the energy transmitted or diffused by the body 2.
A cet effet, le support 13 est préférentiellement monté mobile en translation entre la source lumineuse S et le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d de manière à permettre, en fonction de sa position, la détermination de caractéristiques optiques distinctes du corps 2. Le support 13 peut ainsi être avantageusement solidarisé à un chariot (non représenté) susceptible de coulisser entre la source lumineuse S et le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φyd.For this purpose, the support 13 is preferably mounted movable in translation between the light source S and the detection and analysis system 4 of the transmitted and / or scattered light flux φ t / d so as to allow, depending on its position , the determination of distinct optical characteristics of the body 2. The support 13 may thus advantageously be secured to a carriage (not shown) capable of sliding between the light source S and the detection and analysis system 4 of the transmitted and / or scattered light flux φyd.
Afin de mesurer la diffusion, on pourra ainsi rapprocher le support 13 de la source lumineuse S, de telle sorte qu'il occupe par exemple la position (I) illustrée sur la figure 1 , la distance X étant alors inférieure à la moitié de la somme des distances X et X' (X<(X+X')/2).In order to measure the diffusion, it will thus be possible to bring the support 13 closer to the light source S, so that it occupies, for example, the position (I) illustrated in FIG. 1, the distance X being then less than half the sum of the distances X and X '(X <(X + X') / 2).
A l'inverse, pour une mesure de la transmission, on rapprochera le support 13 du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d de telle sorte qu'il occupe par exemple la position (II) illustrée sur la figure 1, la distance X' étant alors inférieure à la moitié de la somme des distances X et X' (X'<(X+X72).Conversely, for a measurement of the transmission, the support 13 of the detection and analysis system 4 will be brought closer to the transmitted and / or scattered light flux φ t / d so that it occupies, for example, the position ( II) illustrated in FIG. 1, the distance X 'then being less than half the sum of the distances X and X' (X '<(X + X72).
De façon préférentielle, la distance d entre la source lumineuse et l'entrée E du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d est comprise entre 0 mm et 250 mm, et de préférence de l'ordre de 100 mm afin de permettre une bonne caractérisation optique de corps translucides. La source lumineuse S, le corps 2 et/ou l'élément optiquement neutre 11 et le dispositif optique d'entrée 5 sont avantageusement alignés le long du faisceau lumineux F.Preferably, the distance d between the light source and the input E of the detection and analysis system 4 of the transmitted and / or scattered light flux φ t / d is between 0 mm and 250 mm, and preferably from the order of 100 mm to allow a good optical characterization of translucent bodies. The light source S, the body 2 and / or the optically neutral element 11 and the optical input device 5 are advantageously aligned along the light beam F.
Avantageusement, l'unité de traitement électronique 30 comporte un logiciel permettant d'étalonner automatiquement le dispositif 1 sur la base de la mesure de l'énergie lumineuse effectuée avec l'élément optiquement neutre 11.Advantageously, the electronic processing unit 30 includes software for automatically calibrating the device 1 on the basis of the measurement of the light energy effected with the optically neutral element 11.
De façon particulièrement avantageuse, le dispositif 1 de caractérisation optique est conçu pour prendre en compte, dans la mesure, les variations d'intensité lumineuse des moyens d'éclairage 3 et en particulier de la lampe L. Le dispositif 1 est ainsi configuré de manière à caractériser sensiblement simultanément le flux lumineux émis par les moyens d'éclairage 3, notamment par la lampe L et le flux lumineux transmis et/ou diffusé φyd par le corps 2. Les moyens d'éclairage 3 comportent ainsi un premier et un deuxième dispositifs optiques 6, 7 pour générer respectivement un premier faisceau lumineux F1, dirigé vers le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d et dont le trajet lumineux traverse le corps 2 et/ou l'élément optiquement neutre 11 , et un deuxième faisceau lumineux F2, dirigé vers le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d et dont le trajet lumineux s'effectue sans traverser, c'est-à-dire sans rencontrer sur son chemin, le corps 2 et/ou l'élément optiquement neutre 11.In a particularly advantageous manner, the optical characterization device 1 is designed to take into account, as far as possible, the variations of light intensity of the lighting means 3 and in particular of the lamp L. The device 1 is thus configured so as to substantially simultaneously characterize the luminous flux emitted by the lighting means 3, in particular by the lamp L and the flux transmitted light and / or scattered φy d by the body 2. The lighting means 3 and comprise a first and a second optical devices 6, 7 to respectively generate a first light beam F1, directed to the detection and analysis system 4 of the light flux transmitted and / or scattered φt / d and whose light path passes through the body 2 and / or the optically neutral element 11, and a second light beam F2, directed to the detection and analysis system 4 of the light flux transmitted and / or scattered φ t / d and whose light path is carried out without crossing, that is to say without encountering on its way, the body 2 and / or the optically neutral element 11.
Selon une caractéristique particulièrement avantageuse de l'invention, le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d est conçu pour caractériser optiquement sensiblement simultanément le premier et le deuxième faisceaux F1 , F2 et comporte à cet effet un premier et un deuxième capteurs C1 , C2 respectivement destinés à détecter le premier et le deuxième faisceaux F1 , F2. En particulier, le premier capteur C1 est conçu et disposé de manière à lire l'énergie lumineuse transmise et/ou diffusée par le corps 2, le deuxième capteur C2 étant conçu et disposé de manière à lire l'énergie lumineuse émise par les moyens d'éclairage 3 et notamment par la lampe L. Les capteurs C1 , C2 étant couplés au convertisseur analogique numérique CAN, il est possible de prendre en compte, à chaque mesure, les éventuelles variations d'intensité de la lampe L de manière à en tenir compte dans le résultat. Cette configuration à deux capteurs est particulièrement intéressante par rapport à une configuration classique à un seul capteur dans la mesure où elle permet la mesure en temps réel, c'est-à-dire sans décalage temporel, des variations d'intensité de la lampe L. Les premier et deuxième capteurs C1 , C2 permettent avantageusement de lire des spectres s'étendant de 290 à 785 nanomètres, de 310 à 1 100 nanomètres et de 190 à 720 nanomètres, couvrant ainsi toute la plage spectrale s'étendant du rayonnement ultraviolet au rayonnement infrarouge, en passant par le rayonnement visible.According to a particularly advantageous characteristic of the invention, the detection and analysis system 4 of the transmitted and / or scattered light flux φt / d is designed to optically substantially simultaneously characterize the first and second beams F1, F2 and comprises effect first and second sensors C1, C2 respectively for detecting the first and second beams F1, F2. In particular, the first sensor C1 is designed and arranged to read the light energy transmitted and / or scattered by the body 2, the second sensor C2 being designed and arranged to read the light energy emitted by the means d 3, and in particular by the lamp L. Since the sensors C1, C2 are coupled to the digital analog converter CAN, it is possible to take into account, at each measurement, the possible variations in the intensity of the lamp L so as to take account of them. account in the result. This two-sensor configuration is particularly interesting compared to a conventional single-sensor configuration in that it allows the measurement in real time, that is to say without temporal shift, of the variations The first and second sensors C1, C2 advantageously make it possible to read spectra extending from 290 to 785 nanometers, from 310 to 1100 nanometers and from 190 to 720 nanometers, thus covering the entire spectral range. ranging from ultraviolet radiation to infrared radiation, through visible radiation.
Selon une autre caractéristique particulièrement avantageuse de l'invention, le dispositif 1 prend en compte, à chaque mesure, le bruit propre du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d, et notamment les variations électroniques des capteurs C1 , C2.According to another particularly advantageous characteristic of the invention, the device 1 takes into account, at each measurement, the specific noise of the detection and analysis system 4 of the transmitted and / or scattered light flux φ t / d , and in particular the electronic variations of C1, C2 sensors.
A cet effet, le dispositif 1 comporte un organe de coupure 20 simultanée des premier et deuxième faisceaux lumineux F1, F2 de manière à mesurer le bruit propre du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d, et notamment le bruit des capteurs C1 , C2.For this purpose, the device 1 comprises a simultaneous switching device 20 of the first and second light beams F1, F2 so as to measure the own noise of the detection and analysis system 4 of the transmitted and / or scattered light flux φ t / d , and in particular the noise of the sensors C1, C2.
Avantageusement, l'unité de traitement électronique 30, intégrant le convertisseur analogique numérique CAN, est reliée fonctionnellement à l'organe de coupure 20 pour commander son actionnement. En particulier, l'unité de traitement électronique 30 utilise un logiciel qui permet, avant chaque mesure des caractéristiques optiques du corps 2, de piloter automatiquement l'actionnement de l'organe de coupure 20 de manière à mesurer le bruit du système de détection et d'analyse 4. L'unité de traitement électronique 30 permet également, à l'aide du logiciel susmentionné, d'effectuer le calibrage du dispositif 1 en fonction des caractéristiques optiques propres de l'élément optiquement neutre 11 , et de calculer les courbes spectrales correspondant au corps 2, en prenant en compte le bruit.Advantageously, the electronic processing unit 30, integrating the CAN digital analog converter, is operatively connected to the cut-off member 20 to control its actuation. In particular, the electronic processing unit 30 uses software that allows, before each measurement of the optical characteristics of the body 2, to automatically control the actuation of the cut-off device 20 so as to measure the noise of the detection system and The electronic processing unit 30 also makes it possible, using the aforementioned software, to perform the calibration of the device 1 according to the optical characteristics of the optically neutral element 11, and to calculate the curves. spectral corresponding to the body 2, taking into account the noise.
De façon préférentielle, l'organe de coupure 20 est formé par un écran opaque 21 , ou « obturateur » (« shutter » en anglais), monté mobile entre une première position (i), illustrée en pointillés sur la figure 2, dans laquelle il autorise le passage des deux faisceaux lumineux F1 , F2 et une deuxième position (ii), illustrée en traits pleins sur la figure 2, dans laquelle il s'oppose simultanément au passage des deux faisceaux lumineux F1 , F2.Preferably, the cutoff member 20 is formed by an opaque screen 21, or "shutter"("shutter" in English), mounted movably between a first position (i), shown in dashed lines in FIG. 2, in which it allows the passage of the two light beams F1, F2 and a second position (ii), shown in full lines in FIG. 2, in which it is opposes simultaneously with the passage of the two light beams F1, F2.
Dans la deuxième position (ii) illustrée sur la figure 2, l'écran opaque 21 est situé simultanément sur les trajets lumineux des deux faisceaux lumineux F1 , F2. Dans cette deuxième position (ii), le système de détection et d'analyse 4 ne détecte plus l'énergie lumineuse émise par la lampe L de telle sorte que la quantité détectée correspond à son bruit propre. Le bruit propre peut alors être déduit de chaque mesure ce qui permet d'augmenter significativement la précision du dispositif 1.In the second position (ii) illustrated in FIG. 2, the opaque screen 21 is located simultaneously on the light paths of the two light beams F1, F2. In this second position (ii), the detection and analysis system 4 no longer detects the light energy emitted by the lamp L so that the detected quantity corresponds to its own noise. The clean noise can then be deduced from each measurement which makes it possible to significantly increase the accuracy of the device 1.
De façon particulièrement avantageuse, le dispositif 1 est placé dans une enceinte opaque et close revêtue à l'intérieur d'un noir optique, et ce afin d'éviter la perturbation des mesures par la lumière ambiante.Particularly advantageously, the device 1 is placed in an opaque and closed enclosure coated inside an optical black, and this in order to avoid the disturbance of the measurements by the ambient light.
La figure 3 illustre une variante préférentielle de l'invention correspondant à un dispositif polyvalent de caractérisation optique d'un corps 2, en particulier de corps translucides et/ou opaques, permettant de caractériser les propriétés optiques d'un corps translucide et/ou opaque de manière simultanée par une seule mesure et sans avoir à déplacer l'échantillon.FIG. 3 illustrates a preferred variant of the invention corresponding to a polyvalent device for optical characterization of a body 2, in particular of translucent and / or opaque bodies, making it possible to characterize the optical properties of a translucent and / or opaque body simultaneously by a single measurement and without having to move the sample.
A cet effet, le dispositif illustré à la figure 3 reprend l'ensemble des éléments et des fonctionnalités illustrés notamment à la figure 2 et décrits précédemment, ensemble d'éléments auxquels on a adjoint le système de détection et d'analyse 4' du flux lumineux réfléchi φr.For this purpose, the device illustrated in FIG. 3 contains all the elements and functionalities illustrated in particular in FIG. 2 and previously described, a set of elements to which the flow detection and analysis system 4 'has been added. reflected light φ r .
Le système de détection et d'analyse 4' du flux lumineux réfléchi est associé fonctionnellement avec le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé de manière à pouvoir caractériser en une seule opération les propriétés optiques de transmission et de réflexion du corps 2 à caractériser.The detection and analysis system 4 'of the reflected light flux is functionally associated with the detection and analysis system 4 of the light flux transmitted and / or diffused so as to be able to characterize in one only operation the optical transmission and reflection properties of the body 2 to be characterized.
Ainsi, la configuration matérielle décrite dans les exemples 1 et 2 précédents, dont toutes les fonctionnalités sont conservées, est complétée par un capteur supplémentaire C3 associé à une optique correspondante. Le système de détection et d'analyse 4' du flux lumineux réfléchi φr comprend donc un dispositif optique 5' de réception du flux lumineux réfléchi monté sur le support 13 apte à recevoir le corps 2 à caractériser, ledit dispositif optique 5' étant relié, par au moins un capteur C3 de lecture de l'énergie lumineuse réfléchie, à l'unité de traitement électronique 30 intégrant le convertisseur analogique numérique CAN. Ce dernier est comme pour les exemples précédents, relié fonctionnellement à l'organe de coupure 20 pour commander son actionnement et assurer la fonction associée.Thus, the hardware configuration described in Examples 1 and 2 above, all of whose functionalities are retained, is completed by an additional sensor C3 associated with a corresponding optics. The detection and analysis system 4 'of the reflected light flux φ r thus comprises an optical device 5' for receiving the reflected light flux mounted on the support 13 adapted to receive the body 2 to be characterized, said optical device 5 'being connected by at least one sensor C3 for reading the reflected light energy, at the electronic processing unit 30 integrating the digital analog converter CAN. The latter is as for the previous examples, operatively connected to the cutoff 20 to control its actuation and ensure the associated function.
Selon une caractéristique particulièrement intéressante, le dispositif optique 5' de réception du flux lumineux réfléchi est positionné, face à l'échantillon, c'est-à-dire face au corps 2 à caractériser, de manière à recevoir le flux réfléchi φr selon un angle incliné α (figure 3) compris entre environ 43 à 47° de la normale incidente du corps 2 à caractériser. En pratique, l'axe du capteur optique inclus dans le dispositif optique 5' est donc incliné d'environ 45° plus ou moins 2° par rapport à la normale incidente de la face principale de l'échantillon à caractériser.According to a particularly advantageous characteristic, the optical device 5 'for receiving the reflected light flux is positioned facing the sample, that is to say facing the body 2 to be characterized, so as to receive the reflected flux φ r according to an inclined angle α (Figure 3) between approximately 43 to 47 ° of the incident normal of the body 2 to be characterized. In practice, the axis of the optical sensor included in the optical device 5 'is thus inclined by about 45 ° plus or minus 2 ° relative to the normal incident of the main face of the sample to be characterized.
Le dispositif ainsi constitué et relié à l'unité de traitement électronique 30 précédemment décrite forme donc un spectrophotomètre à géométrie directionnelle 0745°, double faisceau, adapté aux mesures spectrophotométriques des corps par réflexion en complément des mesures spectrophotométriques des corps par transmission. D'une manière générale, le dispositif de caractérisation optique conforme à l'invention peut également comporter en plus des différents dispositifs optiques précédemment décrits, une unité de mesure de lumière diffuse, du genre hazemètre (non représentée aux figures). L'unité de mesure de lumière diffuse est dans un tel cas positionnée avantageusement derrière le corps 2 à caractériser sous un angle d'incidence faible, de l'ordre par exemple de 4°. Bien évidemment, l'unité de mesure de lumière diffuse est, comme les systèmes de détection et d'analyse 4, 4', dotée des dispositifs optiques idoines, lesquels sont reliés à l'unité de traitement électronique 30.The device thus formed and connected to the previously described electronic processing unit 30 thus forms a spectrophotometer with directional geometry 0745 °, double beam, adapted to the spectrophotometric measurements of the bodies by reflection in addition to the spectrophotometric measurements of the bodies by transmission. In general, the optical characterization device according to the invention may also comprise in addition to the various optical devices described above, a diffuse light measurement unit, of the hazemeter type (not shown in the figures). In such a case, the diffuse light measurement unit is advantageously positioned behind the body 2 to be characterized at a low angle of incidence, of the order of, for example, 4 °. Of course, the diffuse light measurement unit is, like the detection and analysis systems 4, 4 ', provided with suitable optical devices, which are connected to the electronic processing unit 30.
L'ensemble des systèmes de détection et d'analyse 4, 4' et éventuellement l'unité de mesure de lumière diffuse sont intégrés dans le dispositif conforme à l'invention de manière à fonctionner avec l'organe de coupure 20 et le capteur C2 de manière à mesurer le bruit propre du système de détection et d'analyse 4, 4' ou de l'unité de mesure de lumière diffuse.The set of detection and analysis systems 4, 4 'and possibly the diffuse light measuring unit are integrated in the device according to the invention so as to operate with the cut-off device 20 and the sensor C2. in order to measure the inherent noise of the detection and analysis system 4, 4 'or the diffuse light measuring unit.
La présente invention concerne également un procédé de caractérisation optique d'un corps 2, en particulier d'un corps 2 translucide et ou opaque comportant : une étape de mesure des caractéristiques optiques du corps (2) au cours de laquelle on éclaire, à l'aide de moyens d'éclairage (3), le corps (2) et on détecte et on analyse l'énergie lumineuse transmise et/ou diffusée par le corps (2), une étape de calibrage, précédant l'étape de mesure, au cours de laquelle on interpose, sur le trajet lumineux, à la place du corps (2), un élément optiquement neutre (11) de densité optique connue, finie et non nulle, et on définit une nouvelle échelle de mesure comprise entre un premier niveau, correspondant à la signature optique de l'élément optiquement neutre (11), et un second niveau, correspondant à la signature optique d'un corps parfaitement opaque.The present invention also relates to a method for the optical characterization of a body 2, in particular of a translucent and opaque body 2 comprising: a step of measuring the optical characteristics of the body (2) during which the light is illuminated, using lighting means (3), the body (2) and detecting and analyzing the light energy transmitted and / or scattered by the body (2), a calibration step, preceding the measuring step, during which an optically neutral element (11) of known optical density, finite and non-zero, is interposed in the light path in the place of the body (2), and a new measurement scale between a first corresponding to the optical signature of the optically neutral element (11), and a second level, corresponding to the optical signature of a perfectly opaque body.
Ainsi, l'étape de mesure s'effectue sur la base de la nouvelle échelle de mesure ainsi définie, à partir du premier niveau qui constitue alors la nouvelle référence, ce qui permet d'augmenter la sensibilité du dispositif 1 et notamment du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d par rapport aux dispositifs connus.Thus, the measurement step is carried out on the basis of the new measurement scale thus defined, from the first level, which then constitutes the new reference, which makes it possible to increase the sensitivity of the device 1 and in particular of the system of measurement. detection and analysis 4 of the transmitted and / or scattered light flux φ t / d with respect to known devices.
Avantageusement, au cours de l'étape de mesure, on caractérise sensiblement simultanément, à l'aide du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d, le flux lumineux émis par les moyens d'éclairage 3, et le flux lumineux transmis et/ou diffusé φt/d par le corps 2 de manière à prendre en compte, dans la mesure, les variations d'intensité lumineuse des moyens d'éclairage 3. Grâce à ce procédé, on contrôle à chaque mesure les variations d'intensité lumineuse. des moyens d'éclairage 3 et notamment de la lampe L de manière à corriger la mesure en fonction des variations et de la dérive de cette dernière.Advantageously, during the measuring step, the luminous flux emitted by the light-transmitting and / or scattered light sources φt / d is characterized substantially simultaneously by means of the detection and analysis system 4 of the transmitted and / or scattered light flux. lighting 3, and the light flux transmitted and / or scattered φ t / d by the body 2 so as to take into account, to the extent, the variations in light intensity of the lighting means 3. With this method, it is possible to controls at each measurement the variations of luminous intensity. lighting means 3 and in particular the lamp L so as to correct the measurement as a function of the variations and the drift thereof.
Avantageusement, la caractérisation simultanée du flux lumineux émis et du flux lumineux transmis et/ou diffusé φt/d s'effectue par le biais d'une configuration à deux faisceaux comprenant un premier faisceau lumineux F1 , dont le trajet lumineux traverse le corps 2 et/ou l'élément optiquement neutre 11 avant de rejoindre le système de détection et d'analyse 4, et un deuxième faisceau lumineux F2, dont le trajet lumineux rejoint de préférence directement le système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d, sans traverser le corps 2 et/ou l'élément optiquement neutre 11. De façon particulièrement avantageuse, le procédé comporte, avant l'étape de mesure, une étape d'évaluation du bruit du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d, au cours de laquelle on coupe sensiblement simultanément, à l'aide d'un organe de coupure 20, tel qu'un obturateur (« shutter » en anglais), le premier et le deuxième faisceaux lumineux F1 , F2 de manière à isoler et évaluer le bruit propre du système de détection et d'analyse 4 du flux lumineux transmis et/ou diffusé φt/d- En particulier, cette étape vise à évaluer le bruit propre des deux capteurs C1 et C2.Advantageously, the simultaneous characterization of the emitted light flux and of the transmitted and / or scattered light flux φ t / d takes place via a two-beam configuration comprising a first light beam F1, whose light path passes through the body 2 and / or the optically neutral element 11 before joining the detection and analysis system 4, and a second light beam F2, whose light path preferably directly joins the detection and analysis system 4 of the transmitted light flux and / or scattered φt / d , without passing through the body 2 and / or the optically neutral element 11. In a particularly advantageous manner, the method comprises, before the measurement step, a noise evaluation step of the detection and analysis system 4 of the transmitted and / or scattered light flux φ t / d , during which one substantially cuts simultaneously, with the aid of a cut-off device 20, such as a shutter, the first and second light beams F1, F2 so as to isolate and evaluate the system's own noise. of detection and analysis 4 of the transmitted and / or scattered light flux φt / d - In particular, this step aims to evaluate the noise of the two sensors C1 and C2.
Le dispositif de caractérisation optique d'un corps 2 illustré à la figure 3 peut également mettre en œuvre un procédé de caractérisation optique d'un corps 2 particulièrement intéressant.The device for optical characterization of a body 2 illustrated in FIG. 3 can also implement a method of optical characterization of a particularly interesting body 2.
Il s'agit d'un procédé de caractérisation optique d'un corps 2, en particulier d'un corps translucide et/ou opaque comportant, conforme au procédé de caractérisation optique précédemment décrit et comprenant en outre une étape de mesure en réflexion au cours de laquelle on détecte et on analyse l'énergie lumineuse réfléchie par le corps (2) ainsi qu'une étape de calibrage, précédant l'étape de mesure en réflexion, au cours de laquelle on interpose, sur le trajet lumineux, à la place du corps (2) des étalons, de préférence blanc et noir, de calibration par réflexion.This is a method of optical characterization of a body 2, in particular of a translucent and / or opaque body comprising, in accordance with the optical characterization method previously described and further comprising a measurement step in reflection during from which is detected and analyzed the light energy reflected by the body (2) and a calibration step, preceding the measurement step in reflection, during which is interposed, in the light path, instead body (2) standards, preferably white and black, calibration by reflection.
De préférence, on analyse et on détecte sensiblement simultanément l'énergie lumineuse d'une part transmise et/ou diffusée, et/ou d'autre part réfléchie au cours d'une même étape de mesure des caractéristiques optiques du corps 2.Preferably, the luminous energy transmitted and / or diffused, and / or, on the other hand, reflected during a same step of measuring the optical characteristics of the body 2 is analyzed and detected substantially simultaneously.
Les étalons de calibration pour la mesure par réflexion et de transmission sont interposés successivement et immédiatement l'un après l'autre. Les deux opérations sont donc successives et dans un ordre quelconque même si l'on préfère réaliser d'abord la calibration par réflexion. De préférence, l'étalonnage en réflexion et l'étalonnage en transmission/diffusion au cours duquel on interpose un élément optiquement neutre 11 dans le trajet lumineux et on définit d'une nouvelle échelle de mesure sont réalisés au cours d'une seule et même étape de calibrage.Calibration standards for reflection measurement and transmission are interposed successively and immediately one after the other. The two operations are therefore successive and in any order if one prefers to perform the reflection calibration first. Preferably, the reflection calibration and the transmission / diffusion calibration during which an optically neutral element 11 is interposed in the light path and a new measurement scale are defined in one and the same calibration step.
La présence dans le dispositif des deux systèmes de détection et d'analyse 4, 4' permet avantageusement de caractériser sensiblement simultanément, par une seule mesure et sans déplacer l'échantillon, les propriétés optiques de matériaux translucides par transmission d'une part et les propriétés optiques des corps translucides et des corps opaques par réflexion au moyen de la géométrie directionnelle 0745° précédemment décrite et correspondant à l'utilisation du système de détection et d'analyse 4' du flux lumineux réfléchi d'autre part.The presence in the device of the two detection and analysis systems 4, 4 'advantageously makes it possible to characterize substantially simultaneously, by a single measurement and without moving the sample, the optical properties of translucent materials by transmission on the one hand and the optical properties of the translucent bodies and opaque bodies by reflection by means of the directional geometry 0745 ° previously described and corresponding to the use of the detection and analysis system 4 'of the reflected light flux on the other hand.
Le procédé permet donc de caractériser les propriétés optiques de transmission et/ou de réflexion du corps 2 en une seule opération sans déplacement dudit corps.The method therefore makes it possible to characterize the optical transmission and / or reflection properties of the body 2 in a single operation without moving said body.
De manière particulièrement avantageuse, on mesure le flux lumineux réfléchi à partir du corps 2 sous un angle d'incidence compris entre environ 43 et 47°, de préférence environ 45°, par rapport à la direction normale de la surface du corps 2.Particularly advantageously, the luminous flux reflected from the body 2 is measured at an incidence angle of between approximately 43 and 47 °, preferably approximately 45 °, with respect to the normal direction of the surface of the body 2.
Le procédé peut également comporter une étape au cours de laquelle on mesure en outre, simultanément ou non aux mesures de transmission et réflexion, la lumière diffuse.The method may also comprise a step during which the diffuse light is measured in addition, simultaneously or not, with the transmission and reflection measurements.
Dans un tel cas, la mesure de lumière diffuse est effectuée sous un angle d'incidence faible, de l'ordre par exemple de 4° environ. Au cours de l'étape de mesure du flux lumineux, on caractérise sensiblement simultanément à l'aide des systèmes de détection et d'analyse 4, 4', le flux lumineux émis par les moyens d'éclairage 3, et le flux lumineux transmis et/ou diffusé (φt/d) et/ou réfléchi par le corps 2 de manière à prendre en compte dans la mesure, les variations d'intensité lumineuse des moyens d'éclairage.In such a case, the diffuse light measurement is performed at a low angle of incidence, of the order of, for example, about 4 °. During the step of measuring the luminous flux, the luminous flux emitted by the lighting means 3, and the transmitted luminous flux are characterized substantially simultaneously by means of the detection and analysis systems 4, 4 '. and / or scattered (φ t / d ) and / or reflected by the body 2 so as to take into account in the measurement, the variations in light intensity of the lighting means.
Selon le procédé, la caractérisation simultanée du flux lumineux émis et du flux lumineux transmis et/ou diffusé (φt/d) et/ou réfléchi s'effectue par le biais d'une configuration à deux faisceaux analogue à celle décrite précédemment, le flux lumineux réfléchi (φr) étant généré par réflexion de tout ou partie du premier faisceau F1 sur le corps 2 tandis que le second faisceau lumineux F2 rejoint le système de détection et d'analyse 4, 4' sans traverser le corps 2.According to the method, the simultaneous characterization of the emitted light flux and the transmitted and / or scattered light flux (φ t / d ) and / or reflected is effected by means of a two-beam configuration similar to that described above, the reflected light flux (φ r ) being generated by reflection of all or part of the first beam F1 on the body 2 while the second light beam F2 joins the detection and analysis system 4, 4 'without passing through the body 2.
Enfin, le procédé comporte avant l'étape de mesure une étape d'évaluation du bruit des systèmes de détection et d'analyse 4,4', au cours de laquelle on coupe sensiblement simultanément, à l'aide d'un organe de coupure 20, le premier et le deuxième faisceaux lumineux F1, F2, de manière à isoler et évaluer le bruit propre des systèmes de détection et d'analyse 4,4'.Finally, the method comprises, before the measuring step, a step of evaluating the noise of the detection and analysis systems 4,4 ', during which a substantially cut-off device is cut off simultaneously. 20, the first and second light beams F1, F2, so as to isolate and evaluate the noise of the specific detection and analysis systems 4,4 '.
En définitive, après les opérations de calibration de la géométrie de transmission du flux lumineux d'une part et de la géométrie directionnelle du flux lumineux d'autre part, chaque mesure sur un échantillon ou un corps 2 peut donner simultanément les résultats des propriétés optiques du corps en transmission et en réflexion.Finally, after the calibration operations of the transmission geometry of the luminous flux on the one hand and the directional geometry of the luminous flux on the other hand, each measurement on a sample or a body 2 can simultaneously give the results of the optical properties of the body in transmission and reflection.
De façon particulièrement préférentielle, le procédé de caractérisation conforme à l'invention constituera un procédé de détermination de la couleur du corps 2. En particulier, la ou les étapes de mesure pourront être répétées pour une pluralité de longueurs d'onde afin de constituer une ou plusieurs courbes de réponse spectrale.In a particularly preferred manner, the characterization method according to the invention will constitute a method for determining the color of the body 2. In particular, the measurement step (s) may be repeated for a plurality of wavelengths to form one or more spectral response curves.
Les modes de fonctionnement et d'utilisation d'une variante de réalisation du dispositif 1 conforme à l'invention vont maintenant être décrits en se référant aux figures 1 et 2.The modes of operation and use of an alternative embodiment of the device 1 according to the invention will now be described with reference to FIGS. 1 and 2.
Afin de caractériser, à l'aide du dispositif 1 , un corps translucide 2, par exemple un objet ou un matériau translucide, l'opérateur commence par déterminer la densité optique du filtre neutre 12 la plus adaptée et la plus proche des caractéristiques optiques du corps translucide 2 à analyser. L'opérateur dispose à cet effet, au sein du dispositif 1 , d'un jeu d'éléments optiquement neutres 11 de densités optiques variables.In order to characterize, using the device 1, a translucent body 2, for example an object or a translucent material, the operator first determines the optical density of the neutral filter 12 that is the most suitable and the closest to the optical characteristics of the translucent body 2 to analyze. For this purpose, the operator has, within the device 1, a set of optically neutral elements 11 of variable optical densities.
L'opérateur détermine ensuite les distances X, X' séparant le support 13 de la source lumineuse S et du système de détection et d'analyse 4 lui permettant d'évaluer au mieux les caractéristiques optiques et par exemple la couleur et/ou la densité optique du corps translucide 2 à caractériser.The operator then determines the distances X, X 'separating the support 13 from the light source S and the detection and analysis system 4 enabling it to better evaluate the optical characteristics and for example the color and / or the density optical translucent body 2 to characterize.
Une fois l'élément optiquement neutre 11 disposé sur le trajet lumineux, l'opérateur peut procéder au calibrage du dispositif 1 à l'aide du logiciel associé à l'unité de traitement électronique 30. Grâce à ce calibrage, l'opérateur définit une nouvelle échelle de mesure avec un nouveau « zéro », décalé par rapport au niveau blanc correspondant à la signature optique des corps parfaitement transparents.Once the optically neutral element 11 is arranged on the light path, the operator can proceed to the calibration of the device 1 using the software associated with the electronic processing unit 30. Thanks to this calibration, the operator defines a new measurement scale with a new "zero", offset from the white level corresponding to the optical signature of perfectly transparent bodies.
Une fois l'étape de calibrage réalisée, l'opérateur remplace l'élément optiquement neutre 11 par le corps translucide 2 à analyser, sans changer le positionnement du support 13 afin de procéder à la mesure des caractéristiques optiques du corps translucide 2, sur la base du nouveau « zéro » de référence sus-mentionné.Once the calibration step has been completed, the operator replaces the optically neutral element 11 with the translucent body 2 to be analyzed, without changing the positioning of the support 13 in order to measure the optical characteristics of the translucent body 2, based on the new reference "zero" above-mentioned.
Avant chaque mesure, le dispositif 1 procède automatiquement à une étape d'évaluation du bruit du système de détection et d'analyse 4 afin d'en tenir compte dans les calculs des caractéristiques optiques du corps translucide 2.Before each measurement, the device 1 automatically proceeds to a noise evaluation step of the detection and analysis system 4 in order to take it into account in the calculations of the optical characteristics of the translucent body 2.
Si la sensibilité obtenue avec le filtre neutre 12 choisi initialement n'est pas suffisante, l'opérateur peut procéder à une nouvelle séquence de mesure, en utilisant un filtre neutre 12 de densité optique supérieure, se rapprochant davantage des caractéristiques optiques du corps translucide 2 à analyser.If the sensitivity obtained with the neutral filter 12 initially selected is not sufficient, the operator can proceed to a new measurement sequence, using a neutral filter 12 of higher optical density, closer to the optical characteristics of the translucent body 2 to analyze.
Le dispositif 1 de caractérisation optique conforme à l'invention permet donc d'analyser avec une grande sensibilité des corps translucides et/ou opaques présentant une forte opacité et ce de façon simple, automatique et reproductible.The optical characterization device 1 according to the invention therefore makes it possible to analyze with high sensitivity translucent and / or opaque bodies having a high opacity and in a simple, automatic and reproducible manner.
POSSIBILITE D'APPLICATION INDUSTRIELLEPOSSIBILITY OF INDUSTRIAL APPLICATION
L'invention trouve son application industrielle dans la réalisation de machines de caractérisation optique de corps translucides et/ou opaques, et notamment dans la détermination de la couleur de pièces ou de compositions de peintures . The invention finds its industrial application in the production of optical characterization machines of translucent and / or opaque bodies, and in particular in the determination of the color of parts or paint compositions.

Claims

REVENDICATIONS
- Dispositif de caractérisation optique d'un corps (2), en particulier d'un corps translucide et/ou opaque comportant : des moyens d'éclairage (3) comprenant une source lumineuse (S), apte à émettre un flux lumineux (φe) en direction du corps (2), un système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) par le corps (2), des moyens de calibrage (10) du dispositif, comportant un élément optiquement neutre (11), de densité optique (D) connue, finie et non nulle, destiné à être positionné à la place du corps (2) dans le trajet lumineux de manière à définir, par étalonnage du dispositif (1) sur la base dudit élément optiquement neutre (11), une nouvelle échelle de mesure comprise entre un premier niveau, correspondant à la signature optique de l'élément optiquement neutre (11), et un second niveau, correspondant à la signature optique d'un corps parfaitement opaque.- Device for optical characterization of a body (2), in particular a translucent and / or opaque body comprising: lighting means (3) comprising a light source (S), able to emit a luminous flux (φ e ) in the direction of the body (2), a detection and analysis system (4) of the transmitted and / or diffused light flux (φ t / d ) by the body (2), calibration means (10) of the device, comprising an optically neutral element (11), of known optical density (D), finite and non-zero, intended to be positioned in place of the body (2) in the light path so as to define, by calibration of the device ( 1) on the basis of said optically neutral element (11), a new measurement scale between a first level, corresponding to the optical signature of the optically neutral element (11), and a second level, corresponding to the optical signature of a perfectly opaque body.
- Dispositif selon la revendication 1 caractérisé en ce que l'élément optiquement neutre (11) est formé par un filtre (12) de densité optique neutre.- Device according to claim 1 characterized in that the optically neutral element (11) is formed by a filter (12) of neutral optical density.
- Dispositif selon la revendication 1 ou 2 caractérisé en ce que la source lumineuse (S) est collimatée.- Device according to claim 1 or 2 characterized in that the light source (S) is collimated.
- Dispositif selon la revendication 1 , 2 ou 3 caractérisé en ce que la source lumineuse (S) est collimatée sur un diamètre de 0,1 mm à 40 mm, de préférence sur un diamètre de 25 mm. - Dispositif selon l'une des revendications précédentes caractérisé en ce que les moyens d'éclairage (3) comportent un premier et un deuxième dispositifs optiques (6, 7) pour générer respectivement un premier faisceau lumineux (F1), dont le trajet lumineux traverse le corps (2) avant de rejoindre le système de détection et d'analyse (4) et un deuxième faisceau lumineux (F2) dont le trajet lumineux rejoint le système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) sans traverser le corps (2).- Device according to claim 1, 2 or 3 characterized in that the light source (S) is collimated over a diameter of 0.1 mm to 40 mm, preferably on a diameter of 25 mm. - Device according to one of the preceding claims characterized in that the lighting means (3) comprise a first and a second optical devices (6, 7) for respectively generating a first light beam (F1), whose light path passes through the body (2) before joining the detection and analysis system (4) and a second light beam (F2) whose light path joins the detection and analysis system (4) of the transmitted light flux and / or diffused (φ t / d ) without passing through the body (2).
- Dispositif selon la revendication 5 caractérisé en ce que le système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) est conçu pour caractériser optiquement sensiblement simultanément le premier et le deuxième faisceaux lumineux (F1 , F2).- Device according to claim 5 characterized in that the system for detecting and analyzing (4) the transmitted and / or diffused light flux (φ t / d) is designed to optically substantially simultaneously characterize the first and second light beams ( F1, F2).
- Dispositif selon l'une des revendications 5 à 9 caractérisé en ce que le système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) comporte un premier et un deuxième capteurs (C1 , C2), respectivement destinés à détecter le premier et le deuxième faisceaux (F 1 , F2).- Device according to one of claims 5 to 9 characterized in that the detection system and analysis (4) of the transmitted and / or diffused light flux (φ t / d ) comprises a first and a second sensors (C1, C2), respectively for detecting the first and second beams (F 1, F 2).
- Dispositif selon l'une des revendications 1 à 7 caractérisé en ce qu'il comporte un support (13) apte à recevoir le corps (2), ledit support (13) étant monté mobile en translation entre la source lumineuse (S) et le système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) de manière à permettre, en fonction de sa position, la détermination de caractéristiques optiques distinctes du corps (2).- Device according to one of claims 1 to 7 characterized in that it comprises a support (13) adapted to receive the body (2), said support (13) being movably mounted in translation between the light source (S) and the detection and analysis system (4) of the transmitted and / or scattered light flux (φ t / d ) so as to allow, according to its position, the determination of distinct optical characteristics of the body (2).
- Dispositif selon l'une des revendications précédentes caractérisé en ce que la distance (d) entre la source lumineuse (S) et l'entrée (E) du système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) est comprise entre O mm et 250 mm, et de préférence de l'ordre de 100 mm.- Device according to one of the preceding claims characterized in that the distance (d) between the light source (S) and the input (E) of the detection and analysis system (4) of the transmitted light flux and / or diffused (φ t / d ) is between 0 mm and 250 mm, and preferably of the order of 100 mm.
- Dispositif selon l'une des revendications précédentes caractérisé en ce que le système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (ψt/d) comporte un convertisseur analogique numérique (CAN) possédant une dynamique de 16 bits.- Device according to one of the preceding claims characterized in that the detection system and analysis (4) of the transmitted and / or diffused light flux (ψt / d ) comprises an analog digital converter (CAN) having a dynamic of 16 bits.
-Dispositif selon l'une des revendications précédentes caractérisé en ce que les moyens d'éclairage (3) possèdent un spectre étendu et comportent une lampe (L) de qualité spectrophotométrique, par exemple une lampe au Xénon, Xénon flash ou une lampe halogène.-Dispositif according to one of the preceding claims characterized in that the lighting means (3) have an extended spectrum and comprise a lamp (L) of spectrophotometric quality, for example a Xenon lamp, Xenon flash or a halogen lamp.
- Dispositif selon l'une de revendications précédentes caractérisé en ce qu'il comprend en outre un système de détection et d'analyse (4') du flux lumineux réfléchi (φr) par le corps (2), les moyens de calibrage (10) du dispositif comportant les étalons nécessaires, de préférence blanc et noir, de calibration par réflexion.- Device according to one of the preceding claims characterized in that it further comprises a detection and analysis system (4 ') of the reflected light flux (φ r ) by the body (2), the calibration means ( 10) of the device comprising the necessary standards, preferably white and black, calibration by reflection.
-Dispositif selon la revendication 12 caractérisé en ce que le système de détection et d'analyse (4') du flux lumineux réfléchi (φr) est associé fonctionnellement avec le système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) de manière à pouvoir caractériser en une seule opération les propriétés optiques de transmission et de réflexion du corps (2) à caractériser.-Dispositif according to claim 12 characterized in that the detection and analysis system (4 ') of the reflected light flux (φ r ) is functionally associated with the detection and analysis system (4) of the transmitted light flux and / or diffused (φ t / d ) so as to be able to characterize in a single operation the optical transmission and reflection properties of the body (2) to be characterized.
- Dispositif selon la revendication 12 ou 13 caractérisé en ce que le système de détection et d'analyse (4') du flux lumineux réfléchi (φr) comprend un dispositif optique (5') de réception du flux lumineux réfléchi monté sur un support (13) apte à recevoir le corps (2) à caractériser, ledit dispositif optique (5') étant relié, par au moins un capteur (C3) de lecture de l'énergie lumineuse réfléchie, à une unité de traitement électronique (30).- Device according to claim 12 or 13 characterized in that the detection and analysis system (4 ') of the reflected light flux (φ r ) comprises an optical device (5') for receiving the reflected light flux mounted on a support (13) adapted to receive the body (2) to be characterized, said optical device (5 ') being connected by at least one sensor (C3) for reading the reflected light energy to an electronic processing unit (30).
- Dispositif selon la revendication 14 caractérisé en ce que le dispositif optique (5') de réception du flux lumineux réfléchi est positionné de manière à recevoir ledit flux lumineux réfléchi selon un angle incliné compris entre environ 43 et 47°de la normale incidente du corps (2) à caractériser.- Device according to claim 14 characterized in that the optical device (5 ') for receiving the reflected light flux is positioned to receive said reflected light flux at an inclined angle between about 43 and 47 ° of the normal incident of the body (2) to characterize.
- Dispositif selon la revendication 5 et l'unes des revendications 12 à 15 caractérisé en ce que le flux lumineux réfléchi (φr) est généré par réflexion de tout ou partie du premier faisceau (F1) sur le corps (2).- Device according to claim 5 and one of claims 12 to 15 characterized in that the reflected light flux (φ r ) is generated by reflection of all or part of the first beam (F1) on the body (2).
- Dispositif selon l'une des revendications 5 à 7 et/ou selon la revendication 16 caractérisé en ce qu'il comporte un organe de coupure (20) simultanée des premier et deuxième faisceaux lumineux (F1 , F2) de manière à mesurer le bruit propre du ou des systèmes de détection et d'analyse (4,4').- Device according to one of claims 5 to 7 and / or according to claim 16 characterized in that it comprises a switching member (20) simultaneously the first and second light beams (F1, F2) so as to measure the noise own of the detection and analysis system (s) (4,4 ').
- Dispositif selon la revendication 17 caractérisé en ce qu'il comporte une unité de traitement électronique (30), reliée fonctionnellement à l'organe de coupure (20) pour commander son actionnement.- Device according to claim 17 characterized in that it comprises an electronic processing unit (30), operably connected to the cut-off member (20) to control its actuation.
- Dispositif selon la revendication 17 ou 18 caractérisé en ce que l'organe de coupure (20) est formé par un écran opaque (21) monté mobile entre une première position (i), dans laquelle il autorise le passage des deux faisceaux lumineux (F1 , F2) et une deuxième position (ii), dans laquelle il s'oppose simultanément au passage des deux faisceaux lumineux F1, F2. - Dispositif l'une des revendications précédentes caractérisé en ce qu'il comporte en outre, une unité de mesure de lumière diffuse, du genre hazemètre.- Device according to claim 17 or 18 characterized in that the cutoff member (20) is formed by an opaque screen (21) movably mounted between a first position (i), in which it allows the passage of the two light beams ( F1, F2) and a second position (ii), in which it simultaneously opposes the passage of the two light beams F1, F2. - Device according to one of the preceding claims characterized in that it further comprises a diffuse light measuring unit, the kind of hazemeter.
- Dispositif selon la revendication 20 caractérisé en ce que l'unité de mesure de lumière diffuse est positionnée derrière le corps (2) à caractériser sous un angle d'incidence faible, de l'ordre par exemple de 4°.- Device according to claim 20 characterized in that the diffuse light measuring unit is positioned behind the body (2) to be characterized at a low angle of incidence, of the order of eg 4 °.
- Dispositif selon l'une des revendications précédentes caractérisé en ce que les moyens de calibrage (10) comportent un jeu de filtres neutres de densités optiques différentes, lesdits filtres étant disposés dans un chargeur mobile, tel qu'un carrousel, de manière à permettre à l'utilisateur de sélectionner l'élément optiquement neutre le plus adapté au corps (2) à analyser.- Device according to one of the preceding claims characterized in that the calibration means (10) comprise a set of neutral filters of different optical densities, said filters being arranged in a mobile charger, such as a carousel, so as to allow the user to select the optically neutral element most suitable for the body (2) to be analyzed.
- Dispositif selon l'une des revendications précédentes caractérisé en ce qu'il constitue un dispositif de caractérisation optique de la couleur du corps (2) de type spectrophotocolorimètre.- Device according to one of the preceding claims characterized in that it constitutes a device for optical characterization of the body color (2) spectrophotocolorimeter type.
-Procédé de caractérisation optique d'un corps (2), en particulier d'un corps translucide et/ou opaque comportant : une étape de mesure des caractéristiques optiques du corps (2) au cours de laquelle on éclaire, à l'aide de moyens d'éclairage (3), le corps (2) et on détecte et on analyse l'énergie lumineuse transmise et/ou diffusée par le corps (2), une étape de calibrage, précédant l'étape de mesure, au cours de laquelle on interpose, sur le trajet lumineux, à la place du corps (2), un élément optiquement neutre (11) de densité optique connue, finie et non nulle, et on définit une nouvelle échelle de mesure comprise entre un premier niveau, correspondant à la signature optique de l'élément optiquement neutre (11), et un second niveau, correspondant à la signature optique d'un corps parfaitement opaque.Optical characterization method for a body (2), in particular a translucent and / or opaque body comprising: a step of measuring the optical characteristics of the body (2) during which light is illuminated, with the aid of lighting means (3), the body (2) and the light energy transmitted and / or diffused by the body (2) is detected and analyzed, a calibration step, preceding the measurement step, during the which is placed in the light path, in place of the body (2), an optically neutral element (11) of known optical density, finite and non-zero, and defines a new scale of measurement between a first level, corresponding to the optical signature of the optically neutral element (11), and a second level, corresponding to the optical signature of a perfectly opaque body.
- Procédé selon la revendication 24 caractérisé en ce qu'au cours de l'étape de mesure, on caractérise sensiblement simultanément, à l'aide d'un système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) , le flux lumineux émis par les moyens d'éclairage (3), et le flux lumineux transmis et/ou diffusé (φt/d) par le corps (2) de manière à prendre en compte dans la mesure, les variations d'intensité lumineuse des moyens d'éclairage (3).- Method according to claim 24 characterized in that during the measuring step is characterized substantially simultaneously, with the aid of a detection system and analysis (4) of the light flux transmitted and / or broadcast (φ t / d ), the luminous flux emitted by the lighting means (3), and the light flux transmitted and / or diffused (φ t / d ) by the body (2) so as to take into account in the measurement, the variations in light intensity of the lighting means (3).
- Procédé selon la revendication 25 caractérisé en ce que la caractérisation simultanée du flux lumineux émis et du flux lumineux transmis et/ou diffusé (φt/d) s'effectue par le biais d'une configuration à deux faisceaux comprenant un premier faisceau lumineux (F1), dont le trajet lumineux traverse le corps (2) avant de rejoindre le système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) et un second faisceau lumineux (F2) dont le trajet lumineux rejoint le système de détection et d'analyse (4) du flux lumineux transmis et/ou diffusé (φt/d) sans traverser le corps.- Method according to claim 25, characterized in that the simultaneous characterization of the emitted light flux and of the transmitted and / or scattered light flux (φ t / d) takes place via a two-beam configuration comprising a first light beam (F1), whose light path passes through the body (2) before joining the detection and analysis system (4) of the transmitted and / or scattered light flux (φ t / d ) and a second light beam (F2) whose light path joins the detection and analysis system (4) of the transmitted and / or scattered light flux (φ t / d ) without passing through the body.
- Procédé selon l'une des revendications 24 à 26 caractérisé en ce qu'il comprend en outre une étape de mesure en réflexion au cours de laquelle on détecte et on analyse l'énergie lumineuse réfléchie par le corps (2) ainsi qu'une étape de calibrage, précédant l'étape de mesure en réflexion, au cours de laquelle on interpose, sur le trajet lumineux, à la place du corps (2) des étalons, de préférence blanc et noir, de calibration par réflexion. - Procédé selon la revendication 27 caractérisé en ce qu'on caractérise les propriétés optiques de transmission et de réflexion du corps (2) en une seule opération sans déplacement dudit corps.- Method according to one of claims 24 to 26 characterized in that it further comprises a reflection measurement step during which is detected and analyzed the light energy reflected by the body (2) and a calibration step, preceding the measurement step in reflection, during which is interposed, in the light path, instead of the body (2) standards, preferably white and black, calibration by reflection. - Method according to claim 27 characterized in that characterizes the optical properties of transmission and reflection of the body (2) in a single operation without displacement of said body.
- Procédé selon la revendication 27 ou 28 caractérisé en ce qu'on mesure le flux lumineux réfléchi à partir du corps (2) sous un angle d'incidence compris entre environ 43 et 47°, de préférence environ 45°, par rapport à la direction normale de la surface du corps (2).- Method according to claim 27 or 28, characterized in that the light flux reflected from the body (2) is measured at an incidence angle of between approximately 43 and 47 °, preferably approximately 45 °, with respect to the normal direction of the body surface (2).
- Procédé selon la revendication 29 caractérisé en ce qu'on mesure en outre, simultanément ou non aux mesures de transmission et réflexion, la lumière diffuse.- Method according to claim 29 characterized in that further measured, simultaneously or not with the transmission and reflection measurements, diffuse light.
- Procédé selon la revendication 30 caractérisé en ce que la mesure de lumière diffuse est effectuée sous un angle d'incidence faible, de l'ordre par exemple de 4° environ.- Method according to claim 30 characterized in that the diffuse light measurement is performed at a low angle of incidence, of the order for example about 4 °.
- Procédé selon l'une des revendications 27 à 31 caractérisé en ce qu'au cours de l'étape de mesure en réflexion, on caractérise sensiblement simultanément, à l'aide du système de détection et d'analyse (4') du flux lumineux réfléchi (φr), le flux lumineux émis par les moyens d'éclairage (3), et Ie flux lumineux réfléchi (φr) par le corps (2) de manière à prendre en compte dans la mesure, les variations d'intensité lumineuse des moyens d'éclairage (3).- Method according to one of claims 27 to 31 characterized in that during the measurement step in reflection, is characterized substantially simultaneously, using the detection and analysis system (4 ') of the flow reflected light (φ r ), the luminous flux emitted by the lighting means (3), and the reflected luminous flux (φ r ) by the body (2) so as to take into account in the measurement, the variations of luminous intensity of the lighting means (3).
- Procédé selon les revendications 26 et 32 caractérisé en ce que la caractérisation simultanée du. flux lumineux émis et du flux lumineux réfléchi s'effectue par le biais d'une configuration à deux faisceaux, le flux lumineux réfléchi (φr) étant généré par réflexion de tout ou partie du premier faisceau (F1) sur le corps (2) tandis que le second faisceau lumineux (F2) rejoint le système de détection et d'analyse (4, 4') sans traverser le corps (2).- Process according to claims 26 and 32 characterized in that the simultaneous characterization of the . emitted luminous flux and the reflected luminous flux is effected by means of a two-beam configuration, the reflected luminous flux (φ r ) being generated by reflection of all or part of the first beam (F1) on the body (2) while the second beam light (F2) joins the detection and analysis system (4, 4 ') without passing through the body (2).
-Procédé selon la revendications 26 et/ou selon la revendication 33 caractérisé en ce qu'il comporte, avant la ou les étapes de mesure, une étape d'évaluation du bruit du ou des systèmes de détection et d'analyse (4, 4'), au cours de laquelle on coupe sensiblement simultanément, à l'aide d'un organe de coupure (20), le premier et le deuxième faisceaux lumineux (F1 , F2), de manière à isoler et évaluer le bruit propre du ou des systèmes de détection et d'analyse (4, 4').-Procédé according to claim 26 and / or claim 33 characterized in that it comprises, before the step or steps of measurement, a step of evaluating the noise of the detection or analysis system (4, 4 '), during which the first and second light beams (F1, F2) are cut substantially simultaneously with a cut-off member (20) so as to isolate and evaluate the noise of the detection and analysis systems (4, 4 ').
- Procédé selon l'une des revendications 24 à 34 caractérisé en ce qu'il constitue un procédé de détermination de la couleur du corps 2.- Method according to one of claims 24 to 34 characterized in that it constitutes a method for determining the color of the body 2.
- Procédé selon l'une des revendications 24 à 35 caractérisé en ce que la ou les étapes de mesure sont répétées pour une pluralité de longueurs d'onde afin de constituer une ou plusieurs courbes de réponse spectrale. - Method according to one of claims 24 to 35 characterized in that the one or more measurement steps are repeated for a plurality of wavelengths to form one or more spectral response curves.
EP06764646A 2005-05-18 2006-05-18 Device and method for optical characterisation of translucent and opaque bodies Withdrawn EP1889038A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0505000A FR2886016B1 (en) 2005-05-18 2005-05-18 DEVICE AND METHOD FOR OPTICALLY CHARACTERIZING TRANSLUCENT BODIES
FR0506689A FR2887981B1 (en) 2005-06-29 2005-06-29 DEVICE AND METHOD FOR OPTICAL CHARACTERIZATION OF TRANSLUCENT AND / OR OPAQUE BODIES
PCT/FR2006/001124 WO2006123056A2 (en) 2005-05-18 2006-05-18 Device and method for optical characterisation of translucent and opaque bodies

Publications (1)

Publication Number Publication Date
EP1889038A2 true EP1889038A2 (en) 2008-02-20

Family

ID=37056903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06764646A Withdrawn EP1889038A2 (en) 2005-05-18 2006-05-18 Device and method for optical characterisation of translucent and opaque bodies

Country Status (2)

Country Link
EP (1) EP1889038A2 (en)
WO (1) WO2006123056A2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166676A (en) * 1961-02-24 1965-01-19 Analytic Systems Company Ultra-violet gas analysis apparatus to determine the relative gaseous concentration in an anesthetic system
US3762817A (en) * 1972-02-23 1973-10-02 Minnesota Mining & Mfg Spectral densitometer
US3923403A (en) * 1974-08-22 1975-12-02 Minnesota Mining & Mfg Circuit for light measuring devices and method
US4583859A (en) * 1984-03-30 1986-04-22 The Babcock & Wilcox Company Filter cleaning system for opacity monitor
US4912558A (en) * 1988-12-27 1990-03-27 Eastman Kodak Company Optical image to video transfer system having enhanced resolution and contrast for dark areas of the image
US5206711A (en) * 1990-06-11 1993-04-27 The Babcock & Wilcox Company Fluid opacity sensor
US5125747A (en) * 1990-10-12 1992-06-30 Tytronics, Inc. Optical analytical instrument and method having improved calibration
US5561290A (en) * 1995-06-09 1996-10-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical detector calibrator system
JPH1023252A (en) * 1996-07-01 1998-01-23 Hitachi Computer Peripherals Co Ltd High-density film image-read method and its device
US6137581A (en) * 1998-05-15 2000-10-24 Mitsui Mining & Smelting Co., Ltd. Measurement apparatus for measuring internal quality of object
JP2000193814A (en) * 1998-12-28 2000-07-14 Canon Inc Method and device for inspecting color filter and manufacture of color filter
US6075613A (en) * 1999-02-26 2000-06-13 General Scanning, Inc. Optical scanner calibration device
US6646264B1 (en) * 2000-10-30 2003-11-11 Monsanto Technology Llc Methods and devices for analyzing agricultural products
US6907370B2 (en) * 2001-11-14 2005-06-14 Jmar Precision Systems, Inc. Method and apparatus for calibrating a measurement system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006123056A3 *

Also Published As

Publication number Publication date
WO2006123056A2 (en) 2006-11-23
WO2006123056A3 (en) 2007-04-12

Similar Documents

Publication Publication Date Title
EP0655221B1 (en) Colorimetrical measuring head, and method for determining the internal colour of a non opaque material
EP1817574B1 (en) Illumination method and device for determining the presence of defects on the surface of a container collar
FR2738343A1 (en) Optical microstratigraphy equipment
EP3211367B1 (en) Chromatic confocal microscope device
WO2009077534A1 (en) Device for evaluating the surface of a tyre
EP3870955B1 (en) Optical device for measuring the optical properties of materials
FR2846424A1 (en) LIGHTING METHOD AND DEVICE FOR DETECTING DEFECTS AND / OR LACK OF MATERIAL ON THE RING OF A TRANSPARENT OR TRANSLUCENT CONTAINER
FR2805892A1 (en) OPTICAL MEASUREMENT DEVICE, ESPECIALLY FOR QUALITY MONITORING IN CONTINUOUS PROCESSES
CA2754822A1 (en) Apparatus and method for measuring haze of sheet materials or other materials
WO2021023576A1 (en) Method for analysing a gas using an optical sensor
EP0327416B1 (en) Method for optimizing the contrast in the image of a sample
EP1889038A2 (en) Device and method for optical characterisation of translucent and opaque bodies
FR2887981A1 (en) Translucent and/or opaque solid/fluid body/material optical characterization device for e.g. color determination, has optically neutral unit defining new measuring scale between levels of optical signatures of neutral unit and opaque body
FR2983951A1 (en) Method for characterizing color and brightness of planar zone of painting/varnish surface, of printed item in e.g. graphics industry, involves determining spectral response and using brightness value to calculate colorimetric value
FR2882593A1 (en) Physico-chemical analysis, for e.g. metallurgical field, involves determining concentration of tracer unit that is to be dosed in plasma by utilizing standard measures
FR2886016A1 (en) Translucent body e.g. paper, optical characterization e.g. color, device for controlling reproductibility of e.g. paint fabrication method, has calibration unit with neutral unit for being positioned in place of translucent body
EP0052551B1 (en) Refractometer using the limit angle method
EP1660866A1 (en) Measuring system for the optical characterization of materials and method for the implementation thereof by said system
EP0064110B1 (en) Light scattering photometer
FR2848669A1 (en) Fluorescence measuring apparatus for sample analysis incorporates photon beam sampler and counter to give precise measurement of photons received by material sample
CN216594853U (en) Defect detection device for transparent medium thin layer
FR2925686A1 (en) Optical device for e.g. ribbon, characterizing system, has infrared source, whose radiation points revolves around axis such that intensity of radiations is same in points of source and radiation distributions of points are superposed
FR2478815A1 (en) METHOD AND APPARATUS FOR EVALUATING VISIBILITY
WO2023144494A1 (en) Optical computing methods and systems for inspecting a glass container in transmitted light
FR2515823A1 (en) METHOD AND DEVICE FOR OPTICALLY CONTROLLING SURFACE CONDITIONS OF METALLURGICAL PRODUCTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071217

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080602

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PIERRE, ALAIN EMILE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120103