EP1886180A1 - Frequency-addressing matrix routing head for light beams - Google Patents

Frequency-addressing matrix routing head for light beams

Info

Publication number
EP1886180A1
EP1886180A1 EP06764603A EP06764603A EP1886180A1 EP 1886180 A1 EP1886180 A1 EP 1886180A1 EP 06764603 A EP06764603 A EP 06764603A EP 06764603 A EP06764603 A EP 06764603A EP 1886180 A1 EP1886180 A1 EP 1886180A1
Authority
EP
European Patent Office
Prior art keywords
matrix
beams
frequency
mirrors
filters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06764603A
Other languages
German (de)
French (fr)
Inventor
Jean-Marc Desaulniers
Gaëtan ROTTIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BREIZHTECH SAS
Original Assignee
Breizhtech Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Breizhtech Sas filed Critical Breizhtech Sas
Publication of EP1886180A1 publication Critical patent/EP1886180A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof

Definitions

  • Matrix routing light beams frequency addressing head The present invention relates to a device to attack, using a matrix of light beams on the last floor of a 2 nd generation video projector for digital cinema, for large-screen projection of an ultra-high-definition RGB video signal using as a light source a low / medium power laser or generated white light, e.g. ex. by a xenon lamp of very high intensity.
  • the flexibility of the spatial and frequency optical device allows its application in the field of telecommunications (eg router, wavelength multiplexer / demultiplexer, switchman, coupler, polarization analyzer, ).
  • Projection in cinemas is traditionally done using a 35mm or 70mm film projector.
  • DLP or LCD technology that can achieve a resolution of 2K x IK, as well as a prototype, based on GLV technology, supporting 2K x 4K pixels.
  • the use of these technologies applied at high resolutions induces exponential costs related to the development of basic components (DLP, GLV and LCD matrix).
  • microscopic metal components micro-mirrors DMD for DLP technology and micro-lamellae for GLV
  • the device according to the invention makes it possible to reproduce, on a projection screen of variable size and shape, a sequence of Ultra High Definition (UHD) color images, using a light source, by means of a head Frequency addressing light beam routing matrix.
  • the challenge is to preserve at the output the intrinsic characteristics of the original signal (range, mix, color temperature, resolution / definition, contrast level, ).
  • Video projection by an almost entirely optical device is optimized because it involves only a series of reflections / transmissions on mirrors / filters, which ultimately will undergo only a very small surface mechanical wear.
  • This device makes it possible to generate a matrix light beam (1), using a combination of light sources, eg (2), (3) and (4) of low / medium power, supporting p. ex. the three basic colors (red, green and blue), laser type or white light source filtered or not, and "n" x "m” mirrors (5) of a certain size and shape defined in function the intended application, performing appropriate filtering, arising from the construction of the mirror / filter.
  • the device comprises a number of arrays, eg (6), (7), (8) and (9) of geometrically aligned mirrors / filters orienting and filtering the light beams (10) for the purpose of generating an element.
  • matrix / symbol (1) projection The device eliminates a scanning function by frequency coding the position of each matrix element.
  • the digital control makes it possible to control the lighting of the light sources according to the configuration of the matrix / display symbol sought at a given instant "t". This matrix / symbol element will be scanned on a projection surface to generate a complex video image sequence
  • the operating principle involves the matrix scanning of light beams over a given area (eg part of a projection screen), by inserting a frequency comb corresponding to a specific part of the spectrum to which a light beam is applied. certain number of reflections / transmissions, through a matrix arrangement of mirrors / filters.
  • the beam will have a diameter that will be within a range of about 0.03 mm to 10 mm (to be determined depending on the intended applications) at the output of the projection block.
  • a frequency scanning technique is employed through mirrors / filters covered with a thin metallized layer, making it possible to reflect and / or transmit a light beam on a matrix display surface.
  • Each comb consisting of a certain number of frequencies, depending on the structure of the target matrix (n ⁇ m), makes it possible to code the output matrix symbol.
  • the pulse frequency of the combs represents the refresh period of all the points of the matrix made simultaneously.
  • the intensity modulation represents the refresh period of each pixel.
  • the input comb encounters a succession of mirrors / filters which, according to their characteristics, transmit one part of the spectrum and reflect the other. The succession of mirrors / elementary filters therefore allows a matrix geometric distribution of the incident beam.
  • the device (FIG.1) is illuminated by a discrete or continuous light spectrum.
  • the mirrors / filters may have identical characteristics or not.
  • a set of mirrors / filters having identical frequency characteristics but a variable pitch of the transmission / reflection ratio makes it possible to create a matrix of "n" x "m” light beams from a point source.
  • Figure 1 represents a perspective of the complete device of the invention.
  • FIG. 2 shows, in section, a mirror / elementary filter.
  • FIG. 3 represents in section a succession of elementary mirrors / filters constituting part of a row or column of a stage of the matrix.
  • Figure 4 shows a perspective of the lower stage of the matrix.
  • Figure 5 shows a perspective of one of the upper stages of the matrix.
  • FIG. 6 represents a section of a portion of the upper stages of the matrix allowing the division and the spectral and spatial recombination of each pixel.
  • FIG. 7 represents the sectional view of a variant of the device made with a set of sources distributed around an axis, composed for example of one or more crowns of increasing and superposed sizes accommodating a certain number of mirrors. filters.
  • FIG. 8 represents the front view of a variant of the device made with a source assembly distributed around an axis composed of several mirror / filter rings.
  • Figure 9 shows a front view of the mirror crowns / filters of the variant.
  • FIG. 10 represents a front view of the mirror / filter matrices of the variant, arranged in the form of a pyramid, eg on three stages of increasing accommodating surfaces, eg 4, 12 and
  • Fig. 11 shows one of the mirrors / filters of the device inclined, eg at 45 degrees.
  • the device comprises a series of lower and upper stages composed of a certain number of mirrors / filters defined as a function of
  • the elementary component, mirrors / filters (FIG 2) consists of a prism or a blade covered with a treatment. Depending on the intended application, this processing makes it possible to transmit or reflect a proportion (eg a portion of intensity, a spectral portion of the polarization, ... or any combination) of the characteristics of the incident beam.
  • the elementary mirror / filter component is integrated in the mass of the device or is deposited on the surface.
  • the lower stage (FIG 4) has a succession of "m” elementary mirrors / filters on "p" lines (eg three lines representing the three RGB base colors). Each of these aligned surfaces makes it possible to spatially address one of the "m” columns of "n” aligned surfaces of an upper stage (FIG.
  • the lower matrix therefore addresses a column of the array of beams leaving the device.
  • the upper stages realize, as shown for example in FIG. 6 for mirrors / filters selective in wavelengths, the selection of the position of the beam on the column thanks to a succession of mirrors / filters (15), (16) and (17).
  • the superposition of the "p" upper stages allows the recomposition of the spectrum of each beam (18) and (19) composing the output matrix of the device (eg the RGB component of each pixel of the matrix).
  • the device may be used not only to obtain a particular array of beams from a single or multiple incident beams (eg the simultaneous generation of a RGB pixel array representing an image from a frequency encoding of the information), but also to generate one or more beams from an incident beam array (eg generating a frequency coding of 'a picture).
  • the device comprises a number of rings (20) accommodating the laser heads (21) oriented towards the center of the latter (FIG 8), where the mirrors / filters (FIG 11) are located to align each of the laser beams for the purpose of generating a projection matrix / symbol element (22).
  • the mirrors / filters are arranged on a certain number of rings (FIG 9) rotating or not in ways to generate the desired array of light beams.
  • a numerical control will control the ignition of the laser heads according to the configuration of the matrix / symbol sought at a given instant "t". This matrix / symbol element will be scanned on a projection surface for generating a complex video image sequence. The system will initially be applied to the very high end Digital Cinema and then to the "Home Cinema".

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

The invention relates to a device (FIG. 1) for the generation of a light beam matrix (1), supplying for example, the output stage of a digital video projector, by means of a combination of light sources (2), (3) and (4) of weak to moderate power for the three base colours (red, green and blue), of the laser or xenon source type and n x m mirrors (5) of a given size and shape defined as a function of the target application, carrying out the corresponding frequency filtering as a function of the construction of the mirror. The device comprises a number of matrices (6), (7), (8) and (9) of mirror/filters aligned geometrically, for orientation and filtering of the light beams (10) in order to generate a matrix/symbol projection element (1). The device avoids a sweeping function as a result of frequency coding for the position of each projected matrix element. The digital control permits the control of the operation of the light sources as a function of the matrix/symbol display required at a given time t . Said matrix/symbol element is swept across a projection surface in order to generate a complex video image sequence. The system is of application to, for example, top of the range digital cinema and home cinema equipment.

Description

Tête matricielle de routage de faisceaux lumineux à adressage fréquentiel La présente invention concerne un dispositif permettant d'attaquer, à l'aide d'une matrice de faisceaux lumineux, le dernier étage d'un vidéo projecteur de 2eme génération pour le cinéma numérique, afin de réaliser la projection sur grand écran d'un signal vidéo RVB à ultra haute définition, utilisant comme source lumineuse un laser de faible / moyenne puissance ou de la lumière blanche générée, p. ex. par une lampe au xénon de très forte intensité. La souplesse du dispositif optique spatial et fréquentiel en autorise l'application dans le champs des télécommunications (p. ex. routeur, multiplexeur / démultiplexeur en longueur d'onde, aiguilleur, coupleur, analyseur de polarisation,...).Matrix routing light beams frequency addressing head The present invention relates to a device to attack, using a matrix of light beams on the last floor of a 2 nd generation video projector for digital cinema, for large-screen projection of an ultra-high-definition RGB video signal using as a light source a low / medium power laser or generated white light, e.g. ex. by a xenon lamp of very high intensity. The flexibility of the spatial and frequency optical device allows its application in the field of telecommunications (eg router, wavelength multiplexer / demultiplexer, switchman, coupler, polarization analyzer, ...).
La projection dans les salles de Cinéma est traditionnellement réalisée à base de projecteur à pellicules 35mm ou 70mm. Il existe un certain nombre d'implémentations, à base de technologie DLP ou LCD, qui permettent d'atteindre une résolution de 2K x IK, ainsi qu'un prototype, à base de technologie GLV, supportant 2K x 4K pixels. L'utilisation de ces technologies appliquées à des résolutions élevées, induit des coûts exponentiels liés au développement des composants de bases (boîtiers DLP, GLV et matrice LCD). L'utilisation de composants métalliques microscopiques (micro-miroirs DMD pour la technologie DLP et de micro-lamelles pour le GLV), induit des problèmes de champ magnétique résiduel, de résonance, de vieillissement (suite aux torsions multiples et répétées), d'oxydation ainsi qu'une limitation en ce qui a trait à la fréquence de battement / rafraîchissement maximale pouvant être atteinte. Au niveau LCD les problèmes principaux résident dans l'utilisation ; 1) de filtres dichroïques induisant des pertes de transmission et une distorsion des composants de base de la couleur (mélange RVB, gamme et température) au niveau du signal lumineux reconstitué, 2) de matrices d'obturation LCD ayant une fréquence maximale d'activation / désactivation (cycle d'obturation) limitée. Ces effets conjugués rendent difficile l'optimisation du couple mélange/température de la couleur avec un niveau de contraste suffisant, requis par les cinéphiles. Le champ d'application est orienté Cinéma Numérique très haut de gamme dans un premier temps, et pourra être ré-appliqué à d'autres segments de marché (p. ex. le « Home Cinéma ») une fois que le niveau d'intégration (réduction de la taille du mécanisme) et les coûts d'industrialisation auront été suffisamment optimisés.Projection in cinemas is traditionally done using a 35mm or 70mm film projector. There are a number of implementations, based on DLP or LCD technology, that can achieve a resolution of 2K x IK, as well as a prototype, based on GLV technology, supporting 2K x 4K pixels. The use of these technologies applied at high resolutions, induces exponential costs related to the development of basic components (DLP, GLV and LCD matrix). The use of microscopic metal components (micro-mirrors DMD for DLP technology and micro-lamellae for GLV), induces problems of residual magnetic field, resonance, aging (due to multiple and repeated twists), oxidation as well as a limitation on the maximum beat / refresh rate that can be achieved. At the LCD level the main problems lie in the use; 1) dichroic filters inducing transmission losses and distortion of the basic color components (RGB mix, range and temperature) at the reconstructed light signal, 2) LCD shutter matrices having a maximum activation frequency / deactivation (shutter cycle) limited. These combined effects make it difficult to optimize the mix / temperature pair of the color with a sufficient level of contrast, required by moviegoers. The field of application is very high-end Digital Cinema oriented initially, and can be re-applied to other market segments (eg the "Home Cinema") once the level of integration (reduction in the size of the mechanism) and industrialization costs have been sufficiently optimized.
Le dispositif selon l'invention permet de reproduire, sur un écran de projection de taille et de forme variable, une séquence d'images couleur à Ultra Haute Définition (UHD), à l'aide d'une source lumineuse, grâce à une tête matricielle de routage de faisceaux lumineux à adressage fréquentiel. L'enjeu est de préserver à la sortie les caractéristiques intrinsèques du signal d'origine (gamme, mélange, température de la couleur, résolution / définition, niveau de contraste, ...). La vidéo projection réalisée par un dispositif presque entièrement optique (faisceau lumineux + miroirs/filtres) est optimisée, car elle n'implique qu'une série de réflexions/transmissions sur des miroirs/filtres, qui en définitive ne subiront qu'une usure mécanique en surface très réduite.The device according to the invention makes it possible to reproduce, on a projection screen of variable size and shape, a sequence of Ultra High Definition (UHD) color images, using a light source, by means of a head Frequency addressing light beam routing matrix. The challenge is to preserve at the output the intrinsic characteristics of the original signal (range, mix, color temperature, resolution / definition, contrast level, ...). Video projection by an almost entirely optical device (light beam + mirrors / filters) is optimized because it involves only a series of reflections / transmissions on mirrors / filters, which ultimately will undergo only a very small surface mechanical wear.
Ce dispositif permet de générer un faisceau lumineux matriciel (1), à l'aide d'une combinaison de sources lumineuses, p.ex. (2), (3) et (4) de faible/moyenne puissance, supportant p. ex. les trois couleurs de base (le rouge, vert et le bleu), de type laser ou source de lumière blanche filtrée ou non, et de "n" x "m" miroirs (5) d'une certaine taille et forme défini en fonction de l'application visée, réalisant un filtrage approprié, découlant de la construction du miroir/filtre. Le dispositif comporte un certain nombre de matrices, p.ex. (6), (7), (8) et (9) de miroirs/filtres alignés géométriquement orientant et filtrant les faisceaux lumineux (10) dans le but de générer un élément matriciel/symbole (1) de projection. Le dispositif s'affranchit d'une fonction de balayage grâce à un codage fréquentiel de la position de chaque élément matriciel. La commande numérique permet de contrôler l'allumage des sources lumineuses en fonction de la configuration de la matrice/symbole d'affichage recherché à un instant « t » donné. Cette élément matriciel/symbole sera balayé sur une surface de projection afin de générer une séquence d'image vidéo complexe.This device makes it possible to generate a matrix light beam (1), using a combination of light sources, eg (2), (3) and (4) of low / medium power, supporting p. ex. the three basic colors (red, green and blue), laser type or white light source filtered or not, and "n" x "m" mirrors (5) of a certain size and shape defined in function the intended application, performing appropriate filtering, arising from the construction of the mirror / filter. The device comprises a number of arrays, eg (6), (7), (8) and (9) of geometrically aligned mirrors / filters orienting and filtering the light beams (10) for the purpose of generating an element. matrix / symbol (1) projection. The device eliminates a scanning function by frequency coding the position of each matrix element. The digital control makes it possible to control the lighting of the light sources according to the configuration of the matrix / display symbol sought at a given instant "t". This matrix / symbol element will be scanned on a projection surface to generate a complex video image sequence.
Le principe de fonctionnement implique le balayage matriciel de faisceaux lumineux sur une zone donnée (p.ex. une partie d'un écran de projection), par insertion d'un peigne de fréquences correspondant à une partie spécifique du spectre sur lequel on applique un certains nombre de réflexions/transmissions, au travers d'un agencement matriciel de miroirs/filtres. Le faisceau aura un diamètre qui se tiendra à l'intérieur d'une plage d'environ 0,03 mm à 10 mm (à déterminer en fonction des applications visées) en sortie du bloc de projection. Au lieu d'utiliser un balayage traditionnel spatial et temporel d'une zone d'écran, une technique fréquentielle de balayage est employée au travers de miroirs/filtres recouverts d'une fine couche métallisée, permettant de réfléchir et/ou transmettre un faisceau lumineux sur une surface d'affichage matricielle. Chaque peigne constitué d'un certain nombre de fréquences, dépendant de la structure de la matrice visée (n x m), permet de coder le symbole matriciel en sortie. La fréquence de pulsation des peignes représente la période de rafraîchissement de l'ensemble des points de la matrice réalisée de façon simultané. Sur chacune des fréquences la modulation d'intensité représente la période de rafraîchissement de chaque pixel. Le peigne en entrée rencontre une succession de miroirs/filtres qui, en fonctions de leurs caractéristiques, transmettent une partie du spectre et en réfléchissent l'autre. La succession de miroirs/filtres élémentaires permet donc une répartition géométrique matricielle du faisceau incident.The operating principle involves the matrix scanning of light beams over a given area (eg part of a projection screen), by inserting a frequency comb corresponding to a specific part of the spectrum to which a light beam is applied. certain number of reflections / transmissions, through a matrix arrangement of mirrors / filters. The beam will have a diameter that will be within a range of about 0.03 mm to 10 mm (to be determined depending on the intended applications) at the output of the projection block. Instead of using a traditional spatial and temporal scanning of a screen area, a frequency scanning technique is employed through mirrors / filters covered with a thin metallized layer, making it possible to reflect and / or transmit a light beam on a matrix display surface. Each comb consisting of a certain number of frequencies, depending on the structure of the target matrix (n × m), makes it possible to code the output matrix symbol. The pulse frequency of the combs represents the refresh period of all the points of the matrix made simultaneously. On each of the frequencies the intensity modulation represents the refresh period of each pixel. The input comb encounters a succession of mirrors / filters which, according to their characteristics, transmit one part of the spectrum and reflect the other. The succession of mirrors / elementary filters therefore allows a matrix geometric distribution of the incident beam.
Selon les modes particuliers de réalisation : Le dispositif (FIG. 1) est éclairé par un spectre de lumières discret ou continu. Selon l'application visée, les miroirs/filtres pourront avoir des caractéristiques identiques ou non. Un ensemble de miroirs/filtres ayant des caractéristiques fréquentielles identiques mais un pas variable du taux de transmission/réflexion permet de créer une matrice de « n » x « m » faisceaux lumineux à partir d'une source ponctuelle.According to the particular embodiments: The device (FIG.1) is illuminated by a discrete or continuous light spectrum. Depending on the intended application, the mirrors / filters may have identical characteristics or not. A set of mirrors / filters having identical frequency characteristics but a variable pitch of the transmission / reflection ratio makes it possible to create a matrix of "n" x "m" light beams from a point source.
Un ensemble de miroirs/filtres ayant des taux de transmission/réflexion identiques mais des caractéristiques fréquentielles à pas variable permettent au dispositif de se comporter en multiplexeur démultiplexeur fréquentiel selon le sens de parcours de la lumière. Les dessins annexés illustrent l'invention :A set of mirrors / filters having identical transmission / reflection rates but variable pitch frequency characteristics allow the device to behave as a frequency demultiplexer multiplexer according to the direction of light travel. The accompanying drawings illustrate the invention:
La figure 1 représente une perspective du dispositif complet de l'invention.Figure 1 represents a perspective of the complete device of the invention.
La figure 2 représente, en coupe, un miroir/filtre élémentaire. La figure 3 représente en coupe une succession de miroirs/filtres élémentaires constituant une partie d'une ligne ou colonne d'un étage de la matrice.Figure 2 shows, in section, a mirror / elementary filter. FIG. 3 represents in section a succession of elementary mirrors / filters constituting part of a row or column of a stage of the matrix.
La figure 4 représente une perspective de l'étage inférieur de la matrice.Figure 4 shows a perspective of the lower stage of the matrix.
La figure 5 représente une perspective de l'un des étages supérieurs de la matrice.Figure 5 shows a perspective of one of the upper stages of the matrix.
La figure 6 représente une coupe d'une partie des étages supérieurs de la matrice permettant le découpage et la recombinaison spectrale et spatiale de chaque pixel.FIG. 6 represents a section of a portion of the upper stages of the matrix allowing the division and the spectral and spatial recombination of each pixel.
La figure 7 représente la vue en coupe d'une variante du dispositif réalisée avec un ensemble de sources réparties autour d'un axe, composé p.ex. d'une ou plusieurs couronnes de tailles croissantes et superposées accueillant un certain nombre de miroirs/filtres.FIG. 7 represents the sectional view of a variant of the device made with a set of sources distributed around an axis, composed for example of one or more crowns of increasing and superposed sizes accommodating a certain number of mirrors. filters.
La figure 8 représente la vue de face d'une variante du dispositif réalisée avec un ensemble de source répartie autour d'un axe composé de plusieurs couronnes de miroirs/filtres.FIG. 8 represents the front view of a variant of the device made with a source assembly distributed around an axis composed of several mirror / filter rings.
La figure 9 représente une vue de face des couronnes de miroirs/filtres de la variante.Figure 9 shows a front view of the mirror crowns / filters of the variant.
La figure 10 représente une vue de face des matrices de miroirs/filtres de la variante, disposés en forme de pyramide, p.ex. sur trois étages de surfaces croissantes accueillant, p.ex. 4, 12 etFIG. 10 represents a front view of the mirror / filter matrices of the variant, arranged in the form of a pyramid, eg on three stages of increasing accommodating surfaces, eg 4, 12 and
20 miroirs/filtres. La figure 11 représente un des miroirs/filtres du dispositif inclinés, p.ex. à 45 degrés.20 mirrors / filters. Fig. 11 shows one of the mirrors / filters of the device inclined, eg at 45 degrees.
En référence à ces dessins, le dispositif (FIG.1) comporte une série d'étages inférieurs et supérieurs composés d'un certains nombres de miroirs/filtres définis en fonction deWith reference to these drawings, the device (FIG. 1) comprises a series of lower and upper stages composed of a certain number of mirrors / filters defined as a function of
F applications visées.F applications targeted.
Le composant élémentaire, miroirs/filtres (FIG. 2) est constitué d'un prisme ou d'une lame recouverte d'un traitement. En fonction de l'application visée, ce traitement permet de transmettre ou réfléchir une proportion (p. ex. une portion d'intensité, une portion spectrale de la polarisation, ... ou toute combinaison) des caractéristiques du faisceau incident. Selon les techniques de réalisations, le composant élémentaire miroir / filtre est intégré dans la masse du dispositif ou est déposé en surface. L'enchaînement de « m » filtres/miroirs (FIG. 3) pour une succession de miroirs sélectifs en longueurs d'ondes par exemple, permet de séparer spatialement le faisceau incident (10) en « m » faisceaux de composantes spectrales différentes (12), (13) et (14). Chacune des composantes spectrales est déterminée par les caractéristiques des miroirs/filtres lors de leur construction.The elementary component, mirrors / filters (FIG 2) consists of a prism or a blade covered with a treatment. Depending on the intended application, this processing makes it possible to transmit or reflect a proportion (eg a portion of intensity, a spectral portion of the polarization, ... or any combination) of the characteristics of the incident beam. According to the production techniques, the elementary mirror / filter component is integrated in the mass of the device or is deposited on the surface. The sequence of "m" filters / mirrors (FIG 3) for a succession of selective mirrors in wavelengths, for example, makes it possible to spatially separate the beam incident (10) in "m" beams of different spectral components (12), (13) and (14). Each of the spectral components is determined by the characteristics of the mirrors / filters during their construction.
L'étage inférieur (FIG. 4) comporte une succession de « m » miroirs/filtre élémentaires sur « p » lignes (p. ex. trois lignes représentant les trois couleur de bases RVB). Chacune de ces surfaces alignées permet d'adresser spatialement une des « m » colonnes de « n » surfaces alignées d'un étage de supérieur (FIG. 5) de la matrice. La matrice inférieure adresse donc une colonne de la matrice de faisceaux sortant du dispositif.The lower stage (FIG 4) has a succession of "m" elementary mirrors / filters on "p" lines (eg three lines representing the three RGB base colors). Each of these aligned surfaces makes it possible to spatially address one of the "m" columns of "n" aligned surfaces of an upper stage (FIG. The lower matrix therefore addresses a column of the array of beams leaving the device.
Les étages supérieurs réalisent, comme le montre par exemple la figure 6 pour des miroirs/filtres sélectifs en longueurs d'ondes, la sélection de la position du faisceau sur la colonne grâce à une succession de miroirs/filtres (15), (16) et (17). La superposition des « p » étages supérieurs permet la recomposition du spectre de chaque faisceau (18) et (19) composant la matrice de sortie du dispositif (p. ex. la composante RVB de chaque pixel de la matrice). Selon la configuration et l'application visée, grâce à sa réversibilité, le dispositif peut- être utilisé non seulement pour obtenir une matrice de faisceaux particuliers à partir d'un seul ou plusieurs faisceaux incident (p. ex. la génération simultanée d'une matrice de pixels RVB représentant une image à partir d'un codage fréquentiel de l'information), mais aussi de générer un ou plusieurs faisceaux à partir d'une matrice de faisceaux incident (p. ex. la génération d'un codage fréquentiel d'une image).The upper stages realize, as shown for example in FIG. 6 for mirrors / filters selective in wavelengths, the selection of the position of the beam on the column thanks to a succession of mirrors / filters (15), (16) and (17). The superposition of the "p" upper stages allows the recomposition of the spectrum of each beam (18) and (19) composing the output matrix of the device (eg the RGB component of each pixel of the matrix). Depending on the configuration and the intended application, because of its reversibility, the device may be used not only to obtain a particular array of beams from a single or multiple incident beams (eg the simultaneous generation of a RGB pixel array representing an image from a frequency encoding of the information), but also to generate one or more beams from an incident beam array (eg generating a frequency coding of 'a picture).
Autres variantes d'implémentation, le dispositif (FIG. 7) permettant de générer un faisceau laser matriciel alimentant le dernier étage d'un équipement de vidéo projection numérique, à l'aide d'une combinaison de source laser de faible /moyenne puissance supportant les trois couleurs de base (le rouge, vert et le bleu), et d'un prisme à miroirs. Le dispositif comporte un certains nombres d'anneaux (20) accueillant les têtes lasers (21) orientées vers le centre de ce dernier (FIG. 8), où se trouve les miroirs/filtres (FIG. 11) permettant d'aligner chacun des faisceaux laser dans le but de générer un élément matriciel/symbole (22) de projection. Les miroirs/filtres sont disposés sur un certains nombres de couronnes (FIG. 9) en rotation ou non de façons à générer la matrice de faisceaux lumineux désirés. Une commande numérique permettra de contrôler l'allumage des têtes lasers en fonction de la configuration de la matrice/symbole recherchée à un instant « t » donné. Cette élément matriciel/symbole sera balayé sur une surface de projection permettant de générer une séquence d'image vidéo complexe. Le système sera appliqué dans un premier temps au Cinéma Numérique très haut de gamme et puis par la suite au « Home Cinéma ». Other implementation variants, the device (FIG 7) for generating a matrix laser beam supplying the last stage of a digital video projection equipment, using a combination of low / medium power laser source supporting the three basic colors (red, green and blue), and a mirror prism. The device comprises a number of rings (20) accommodating the laser heads (21) oriented towards the center of the latter (FIG 8), where the mirrors / filters (FIG 11) are located to align each of the laser beams for the purpose of generating a projection matrix / symbol element (22). The mirrors / filters are arranged on a certain number of rings (FIG 9) rotating or not in ways to generate the desired array of light beams. A numerical control will control the ignition of the laser heads according to the configuration of the matrix / symbol sought at a given instant "t". This matrix / symbol element will be scanned on a projection surface for generating a complex video image sequence. The system will initially be applied to the very high end Digital Cinema and then to the "Home Cinema".

Claims

REVENDICATIONS
1) Dispositif (FIG. 1) de création d'un flux matriciel de faisceaux lumineux collimatés colinéaires, ou rendus colinéaires à partir d'un certain nombre de faisceaux collimatés, permettant de réaliser la vidéo projection numérique d'une matrice de pixels (1), à l'aide d'un certain nombre de faisceaux lumineux issus d'une ou plusieurs sources, p.ex. (2), (3) et (4) de type laser ou lumière blanche, et ce par réflexions/transmissions successives sur des miroirs/filtres (11) comportant un alignement géométrique de type matriciel.1) Device (FIG.1) for creating a matrix flow of collinear collinear light beams, or made collinear from a number of collimated beams, making it possible to perform the digital projection video of a matrix of pixels (1 ), by means of a number of light beams from one or more sources, eg (2), (3) and (4) of the laser or white light type, and this by reflections / transmissions successive on mirrors / filters (11) having a geometric alignment of matrix type.
2) Dispositif (FIG. 1) selon la revendication 1 représentant une structure matricielle d'éléments optiques passifs caractérisée par un alignement des miroirs/filtres (11) inclinés (26) répartis sur 1 à "x" étages, p.ex. (6), (7), (8) et (9), permettant de générer par une série de réflexions/transmissions successives (FIG- 3) et (FIG. 6) le balayage simultané d'une matrice de points ou de faisceaux collimatés colinéaires (1), grâce à un codage fréquentiel et spatial de chacun des pixels élémentaires à l'intérieur de la matrice de faisceaux lumineux. Les surfaces enduites d'une très fine couche métallisée ayant des propriétés de filtrage spécifique permettront de constituer, à partir d'un peigne de fréquences en entrée, une matrice de faisceaux à la sortie des 1 à "x" étages supérieurs de la matrice, p.ex. (6), (7) et (8), p.ex. chaque position correspondant à une signature fréquentielle spécifique du signal d'entrée.2) Device (FIG 1) according to claim 1 showing a matrix structure of passive optical elements characterized by an alignment of the inclined mirrors / filters (11) distributed over 1 to "x" stages, eg 6), (7), (8) and (9), making it possible to generate, by a series of successive reflections / transmissions (FIG-3) and (FIG.6), the simultaneous scanning of a matrix of points or collimated beams collinear (1), thanks to a frequency and spatial coding of each of the elementary pixels inside the matrix of light beams. The surfaces coated with a very thin metallized layer having specific filtering properties will be able to form, from an input frequency comb, a matrix of beams at the output of the 1 to "x" upper stages of the matrix, eg (6), (7) and (8), eg each position corresponding to a specific frequency signature of the input signal.
3)Dispositif (FIG.l) selon les revendications 1 et 2, caractérisé en ce que les sources, p.ex. (2), (3) et (4), doivent permettre de générer un peigne de fréquences puisées, discret ou continu (10), où chacune des fréquences constituantes est modulée en amplitude, à l'intérieur d'un faisceau associé à un des pixels d'une matrice de points, avec une période permettant la génération d'une séquence d'image vidéo. Chaque peigne (10) constitué d'un certain nombre de fréquences, découlant de la structure de la matrice visée (FIG. 4) et/ou (FIG. 5), permet de coder le symbole matriciel en sortie. Chaque point du symbole matriciel en sortie correspondant à une partie spécifique du spectre.3) Device (FIG.l) according to claims 1 and 2, characterized in that the sources, eg (2), (3) and (4), allow to generate a pulsed frequency comb, discrete or continuous circuit (10), wherein each of the constituent frequencies is amplitude modulated, within a beam associated with one of the pixels of a dot matrix, with a period for generating a video image sequence. Each comb (10) consisting of a certain number of frequencies, resulting from the structure of the target matrix (FIG 4) and / or (FIG 5), makes it possible to code the output matrix symbol. Each point of the output matrix symbol corresponding to a specific part of the spectrum.
4) Dispositif (FIG. 1) selon les revendications 1 à 3 caractérisé en ce qu'il est composé d'étages inférieurs (FIG. 4) et supérieurs (FIG.5) formant une distribution matricielle d'éléments (FIG. 11) permettant la réflexion, la transmission et/ou le filtrage (FIG. 2) du faisceau incident de façon passive en fonction d'une ou plusieurs de ses caractéristiques physiques. Par exemple, de la fréquence de coupure particulière imposée par la structure de Ia surface métallique, spécifique à chacune des facettes, elle même fonction de sa position dans le groupe de matrices, p.ex. (6), (7), (8) et (9). 5) Dispositif (EIG. 1) selon les revendications 1 à 4 caractérisé en ce qu'il est utilisé dans le sens inverse, le composant est bidirectionnel, permettant de recombiner/coder de façon passive une matrice de faisceaux (1) à partir des caractéristiques physiques associées à un ou plusieurs faisceaux, p.ex. (2), (3) et (4), en codant la position physique de chacun des faisceaux à l'intérieur de la matrice en entrée (1). Ce dispositif permet p.ex. de réaliser une fonction de multiplexage fréquentiel par recombinaison, sous forme d'un peigne, des différentes fréquences propres aux faisceaux incidents répartis dans l'espace.4) Device (FIG 1) according to claims 1 to 3 characterized in that it is composed of lower stages (FIG 4) and higher (FIG.5) forming a matrix distribution of elements (FIG 11) allowing reflection, transmission and / or filtering (FIG 2) of the incident beam passively according to one or more of its physical characteristics. For example, the particular cutoff frequency imposed by the structure of the metal surface, specific to each of the facets, itself a function of its position in the matrix group, eg (6), (7), (8) ) and (9). 5) Device (EIG 1) according to claims 1 to 4 characterized in that it is used in the opposite direction, the component is bidirectional, allowing to recombine / passively code a matrix of beams (1) from the physical characteristics associated with one or more beams, eg (2), (3) and (4), by encoding the physical position of each of the beams within the input matrix (1). This device makes it possible, for example, to perform a frequency multiplexing function by recombination, in the form of a comb, of the different frequencies specific to the incident beams distributed in space.
6) Dispositif (FlG. 7) selon la revendication 1 caractérisé en ce qu'il représente une variante de réalisation d'une matrice de faisceaux lumineux (22) à l'aide d'une combinaison d'anneaux (EIG. 8) intégrant un certain nombre de sources (21) orientées vers le centre de chaque anneau, comportant un certain nombres d'étages de couronnes (FIG. 9) ou de pyramides (FIG. 10) en rotation ou non, sur lesquels sont répartis un certain nombre d'éléments miroirs/filtres (FIG. 11) inclinés avec un angle (26) permettant une réflexion normale (27) par rapport au dispositif (FIG. 7) et (FIG. 8). 7) Dispositif (FIG. 11 ) de miroirs/filtres qui peuvent, p.ex. être organisés géométriquement afin, p.ex. d'être successivement traversés par un certain nombre de faisceaux lumineux, selon les revendications 1 à 6, caractérisé en ce qu'ils permettent la réflexion et/ou le filtrage progressif de façon spécifique à l'application visée, p.ex. avec une longueur d'onde de coupure décroissante par pas, p.ex. de l'ordre du nanomètre, et passive d'un certain nombre de faisceaux incidents (10) en surface (11) ou dans la masse (23), ce dispositif de miroirs/filtres étant dans la masse ou déposé en surface du dispositif (FIG. 1), intégrant les dispositifs (FIG. 4) et (FIG- 5), et du dispositif (FIG 7) intégrant les dispositifs (FIG. 8) et (FIG.9) ou (FIG. 10), cet élément ne modifiant pas la collimation, ni la d'un certain nombre de faisceaux incidents. 6) Device (FlG.7) according to claim 1, characterized in that it represents a variant embodiment of a matrix of light beams (22) using a combination of rings (EIG.8) integrating a number of sources (21) oriented towards the center of each ring, having a number of stages of crowns (FIG 9) or pyramids (FIG 10) rotating or not, on which are distributed a number mirror / filter elements (FIG.11) inclined at an angle (26) for normal reflection (27) with respect to the device (FIG.7) and (FIG.8). 7) Device (FIG.11) of mirrors / filters which may, for example, be arranged geometrically, eg to be successively traversed by a number of light beams, according to claims 1 to 6, characterized in that they allow the reflection and / or the progressive filtering in a specific way to the intended application, eg with a decreasing wavelength decreasing in steps, eg in the nanometer range, and a plurality of incident beams (10) on the surface (11) or in the mass (23), the mirror / filter device being in the mass or deposited on the surface of the device (FIG. (FIG 4) and (FIG-5), and the device (FIG 7) incorporating the devices (FIG 8) and (FIG.9) or (FIG 10), this element does not change the collimation or the a number of incident beams.
EP06764603A 2005-05-24 2006-05-11 Frequency-addressing matrix routing head for light beams Withdrawn EP1886180A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0505178A FR2886416A1 (en) 2005-05-24 2005-05-24 MATRIX HEAD FOR ROUTING LUMINOUS BEAMS WITH FREQUENCY ADDRESSING
PCT/FR2006/001057 WO2006125881A1 (en) 2005-05-24 2006-05-11 Frequency-addressing matrix routing head for light beams

Publications (1)

Publication Number Publication Date
EP1886180A1 true EP1886180A1 (en) 2008-02-13

Family

ID=35734007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06764603A Withdrawn EP1886180A1 (en) 2005-05-24 2006-05-11 Frequency-addressing matrix routing head for light beams

Country Status (16)

Country Link
US (1) US20080231929A1 (en)
EP (1) EP1886180A1 (en)
JP (1) JP2008542803A (en)
KR (1) KR20080019588A (en)
CN (1) CN101203792B (en)
AU (1) AU2006251075A1 (en)
BR (1) BRPI0611529A2 (en)
CA (1) CA2609159A1 (en)
FR (1) FR2886416A1 (en)
HK (1) HK1122361A1 (en)
MA (1) MA29556B1 (en)
NZ (1) NZ563646A (en)
RU (1) RU2403600C2 (en)
TN (1) TNSN07454A1 (en)
WO (1) WO2006125881A1 (en)
ZA (1) ZA200710789B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896888B1 (en) * 2006-02-01 2008-04-18 Breizhtech Soc Par Actions Sim DIGITAL MULTIFUNCTIONAL DIGITAL PROJECTION VIDEO MOTOR WITH OR WITHOUT PERISCOPE OF DEVIATION AND MODULES OPTICAL SOURCES WITH STATIC OR DYNAMIC POINT CORRECTION
US20130009945A1 (en) * 2011-07-07 2013-01-10 Niall Thomas Davidson Electronic Display Method and Apparatus
CN103278928B (en) * 2013-03-07 2015-11-18 中国科学院西安光学精密机械研究所 Refraction type high-power semiconductor laser array beam shaping device
US9077450B2 (en) * 2013-09-06 2015-07-07 International Business Machines Corporation Wavelength division multiplexing with multi-core fiber
KR102515485B1 (en) 2018-06-14 2023-03-29 삼성전자주식회사 Charging station of robot cleaner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044547A (en) * 1999-08-02 2001-02-16 Hamamatsu Photonics Kk Laser
WO2003098758A1 (en) * 2002-05-22 2003-11-27 Oseir Oy A method and a laser device for producing high optical power density

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8721472D0 (en) * 1987-09-11 1987-10-21 British Telecomm Optical distributor
US5459591A (en) * 1994-03-09 1995-10-17 Faris; Sadeg M. Electromagnetic energy beam steering devices
US5772304A (en) * 1996-10-02 1998-06-30 Raytheon Company Optical fiber-to-planar lightpipe grooved optical coupler
US6680758B1 (en) * 1997-01-16 2004-01-20 Reveo, Inc. Flat panel display and a method of fabrication
JP2000098296A (en) * 1998-09-17 2000-04-07 Sharp Corp Projection type color picture display device
US6134050A (en) * 1998-11-25 2000-10-17 Advanced Laser Technologies, Inc. Laser beam mixer
US6139166A (en) * 1999-06-24 2000-10-31 Lumileds Lighting B.V. Luminaire having beam splitters for mixing light from different color ' LEDs
US6834137B2 (en) * 2001-12-05 2004-12-21 Lightwaves 2020, Inc. Cholesteric liquid crystal cell devices and systems
JP2004111357A (en) * 2002-07-09 2004-04-08 Topcon Corp Light source device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044547A (en) * 1999-08-02 2001-02-16 Hamamatsu Photonics Kk Laser
WO2003098758A1 (en) * 2002-05-22 2003-11-27 Oseir Oy A method and a laser device for producing high optical power density

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006125881A1 *

Also Published As

Publication number Publication date
CA2609159A1 (en) 2006-11-30
JP2008542803A (en) 2008-11-27
FR2886416A1 (en) 2006-12-01
US20080231929A1 (en) 2008-09-25
ZA200710789B (en) 2008-12-31
HK1122361A1 (en) 2009-05-15
KR20080019588A (en) 2008-03-04
CN101203792B (en) 2012-03-21
NZ563646A (en) 2011-03-31
WO2006125881A1 (en) 2006-11-30
RU2403600C2 (en) 2010-11-10
AU2006251075A1 (en) 2006-11-30
BRPI0611529A2 (en) 2010-09-21
MA29556B1 (en) 2008-06-02
CN101203792A (en) 2008-06-18
RU2007142827A (en) 2009-06-27
TNSN07454A1 (en) 2009-03-17

Similar Documents

Publication Publication Date Title
EP2021871B1 (en) Multibeam digital projection video motor having static or dynamic pointing correction with deviation periscope
WO1998020390A1 (en) Display device and flat television screen using this device
EP0717911A1 (en) Colour display device
EP1886180A1 (en) Frequency-addressing matrix routing head for light beams
EP2027502B1 (en) Engine for video projection / digitiser with multiple beam of electromagnetic radiation
EP0677970B1 (en) Light box for light valve
WO2006059007A1 (en) Light-beam digital projection video motor
FR2711878A1 (en) Color display device and method of production
WO1998020384A1 (en) Compact lighting device
EP2106667B1 (en) Projection image display device having two modulation stages, including one aperature modulation stage
FR2896597A1 (en) Digital projection video motor for e.g. home cinema, has periscope with mirror/filter set for actuating optical disk and mirror/filter set for deflecting light beams from light sources and matrix head comprising pyramids
FR2846435A1 (en) ILLUMINATION SYSTEM FOR COLOR-FREE IMAGE VIEWING
WO2008015332A1 (en) Electromagnetic multibeam synchronous digital vector processing
EP0026129B1 (en) Device for projecting colour pictures on a screen and display system comprising such a device
FR2896888A1 (en) Multibeam digital video projection engine for e.g. home theatre, has deviation periscope device with primary and secondary mirrors/filters for attacking one of rotating optical disks with specific angle
FR2854959A1 (en) Exposure device integrated into camera for writing e.g. images onto photosensitive film in e.g. medical imaging field, has modulator and filter arranged in series in optical trajectory of exposure light originating from light source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BREIZHTECH SAS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DESAULNIERS, JEAN-MARC

17Q First examination report despatched

Effective date: 20110421

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111201