EP1884643A2 - Method for controlling the exhaust gas composition when operating an exhaust gas treatment device - Google Patents

Method for controlling the exhaust gas composition when operating an exhaust gas treatment device Download PDF

Info

Publication number
EP1884643A2
EP1884643A2 EP20070111700 EP07111700A EP1884643A2 EP 1884643 A2 EP1884643 A2 EP 1884643A2 EP 20070111700 EP20070111700 EP 20070111700 EP 07111700 A EP07111700 A EP 07111700A EP 1884643 A2 EP1884643 A2 EP 1884643A2
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
output signal
value
lambda
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20070111700
Other languages
German (de)
French (fr)
Other versions
EP1884643A3 (en
Inventor
Andreas Koring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1884643A2 publication Critical patent/EP1884643A2/en
Publication of EP1884643A3 publication Critical patent/EP1884643A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus

Definitions

  • the invention relates to a method for controlling an exhaust gas composition during operation of an exhaust gas purification system of an internal combustion engine, wherein in the flow direction of the exhaust gas downstream of the exhaust gas purification system, a lambda value of the exhaust gas is measured by means of a lambda probe which emits a probe output signal.
  • the storage capacity of an exhaust gas purification system for oxygen is utilized to take up oxygen in lean phases and to release it again in the fat phase. This ensures that oxidizable noxious gas components of the exhaust gas can be converted.
  • OSC oxygen storage capacity
  • the lambda probe behind the exhaust gas purification system detects these components to be oxidized.
  • this lambda probe detects in longer lean phases the oxygen that can no longer be stored by the emission control system.
  • the exhaust gas composition must be shifted in the direction of a rich exhaust gas having a reduced lambda value in order to obtain optimum conversion capability of the exhaust gas purification system.
  • the desired value of the exhaust gas composition becomes apparent an aging index for the emission control system, the aging index can be determined by testing of emission control systems.
  • the object is achieved in that a ripple of the probe output signal is evaluated and a target value of the probe output signal and thus the lambda value are shifted into a range in which the ripple of the probe output signal falls below a predetermined value. It is advantageous here that catalyst aging does not have to be determined by previous tests. On the contrary, the lambda value of the exhaust gas can be adjusted based on an actual behavior of the exhaust gas purifying system so that an optimum conversion ability can be achieved. With the method according to the invention also poisoning mechanisms of the emission control system can be considered.
  • the setpoint value of the probe output signal is shifted into the range of minimum ripple of the probe output signal, it can be achieved that the exhaust gas composition remains in an optimum range for the conversion capability of the emission control system, even when aged.
  • the lambda value is checked for plausibility and the setpoint value of the probe output signal is reset to a starting value at an implausible lambda value, it is possible to achieve the range of optimum conversion capability even after fluctuations or disturbances of the probe output signal.
  • the desired value of the probe output signal is adjusted only at constant operating conditions of the internal combustion engine.
  • FIG. 1 schematically shows the technical environment in which the method according to the invention for controlling an exhaust gas composition during operation of an exhaust gas purification system 16 can be used.
  • An internal combustion engine 10 is supplied with air via an air supply 11 and determines its mass with an air mass meter 12.
  • the air mass meter 12 may be designed as a hot-film air mass meter.
  • the exhaust gas of the internal combustion engine 10 is discharged via an exhaust passage 15, wherein in the flow direction of the exhaust gas behind the internal combustion engine 10, the exhaust gas cleaning system 16 is provided at the output of the exhaust gases are discharged via an exhaust gas discharge line 18.
  • an engine control 19 is provided which supplies fuel to the internal combustion engine 10 via a fuel metering 13 and to the other the signals of the mass air flow sensor 12 and arranged in the exhaust passage 15 exhaust gas sensor 14 and arranged in the exhaust gas discharge line 18 Lambda probe 17 are supplied.
  • the exhaust gas probe 14 determines a lambda actual value of an internal combustion engine 10 supplied fuel-air mixture; it can be designed as a broadband lambda probe.
  • the lambda probe 17 determines the exhaust gas composition after the exhaust gas purification system 16.
  • the lambda probe 17 may be formed as a jump probe.
  • Embodiments are also known which have exclusively a lambda probe 17 in the flow direction of the exhaust gas after the exhaust gas purification system 16 and in which no exhaust gas probe 14 is provided in front of the exhaust gas purification system 16.
  • emission control systems have an optimum conversion capability in the range of a slightly rich exhaust gas with a lambda around 0.995.
  • the designed as a jump probe lambda probe 17 then outputs an output voltage of 600 to 650mV. If an aged exhaust gas cleaning system 16 is present, the optimum conversion capability continues to lie in the rich exhaust gas range and thus at a higher output voltage of the lambda probe 17.
  • the relationship between the output voltage of the lambda probe 17 and a lambda value 30 of the exhaust gas acting on it is shown in an exhaust gas probe diagram 20 in FIG.
  • the lambda value 30 of the exhaust gas is plotted along a lambda axis 27 and a probe output signal 23 is plotted along an output voltage axis 21.
  • the optimal conversion capability of an exhaust gas purification system 16 is achieved in a designated "optimal control position 25" area.
  • the essence of the invention is to detect the first ripple region 22 and the second ripple region 26 in the probe output signal 23 and to shift the operating point 24 such that a ripple in the probe output signal 23 remains below a predetermined value or is minimized.
  • the operating point 24 is then within the optimal Rule position 25 and the conversion capability of the emission control system 16 is optimal.

Abstract

The method involves measuring a lambda value of an exhaust gas using a lambda sensor (17) in a flow direction of an exhaust gas behind an exhaust gas treatment system (16). The sensor emits a sensor output signal. Ripples of the sensor output signal is evaluated such that a desired value of the sensor-output signal and the lambda value are shifted in a range, in which the ripples of the sensor-output signal fall below a preset value. The preset value of the sensor-output signal is adjusted only during constant operating conditions of an internal combustion engine (10).

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zur Steuerung einer Abgaszusammensetzung beim Betrieb einer Abgasreinigungsanlage einer Brennkraftmaschine, wobei in Flussrichtung des Abgases hinter der Abgasreinigungsanlage ein Lambdawert des Abgases mittels einer Lambda-Sonde gemessen wird, welche ein Sonden-Ausgangssignal abgibt.The invention relates to a method for controlling an exhaust gas composition during operation of an exhaust gas purification system of an internal combustion engine, wherein in the flow direction of the exhaust gas downstream of the exhaust gas purification system, a lambda value of the exhaust gas is measured by means of a lambda probe which emits a probe output signal.

Das Speichervermögen einer Abgasreinigungsanlage für Sauerstoff wird dazu ausgenutzt, in Magerphasen Sauerstoff aufzunehmen und in Fettphasen wieder abzugeben. Hierdurch wird erreicht, dass oxydierbare Schadgaskomponenten des Abgases konvertiert werden können. Mit zunehmender Alterung der Abgasreinigungsanlage nimmt deren Speichervermögen für Sauerstoff OSC (Oxygen Storage Capacity) ab. Hierdurch kann in den Fettphasen nicht mehr genügend Sauerstoff zur Verfügung gestellt werden um das Abgas von den Schadgaskomponenten zu reinigen und die Lambda-Sonde hinter der Abgasreinigungsanlage detektiert diese zu oxydierenden Komponenten. Weiterhin detektiert diese Lambda-Sonde in längeren Magerphasen den Sauerstoff, der nicht mehr von der Abgasreinigungsanlage gespeichert werden kann.The storage capacity of an exhaust gas purification system for oxygen is utilized to take up oxygen in lean phases and to release it again in the fat phase. This ensures that oxidizable noxious gas components of the exhaust gas can be converted. As the emission control system ages, its oxygen storage capacity (OSC) decreases. As a result, not enough oxygen can be made available in the rich phases to clean the exhaust gas from the noxious gas components and the lambda probe behind the exhaust gas purification system detects these components to be oxidized. Furthermore, this lambda probe detects in longer lean phases the oxygen that can no longer be stored by the emission control system.

Altert die Abgasreinigungsanlage, muss die Abgaszusammensetzung in Richtung eines fetten Abgases mit einem verringerten Lambda-Wert verschoben werden, um eine optimale Konvertierungsfähigkeit der Abgasreinigungsanlage zu erhalten. Gemäß dem Stand der Technik wird hierzu beispielsweise der Sollwert der Abgaszusammensetzung nach einem Alterungsindex für die Abgasreinigungsanlage verschoben, wobei der Alterungsindex durch Erprobungen von Abgasreinigungsanlagen bestimmt werden kann.If the exhaust gas purification system ages, the exhaust gas composition must be shifted in the direction of a rich exhaust gas having a reduced lambda value in order to obtain optimum conversion capability of the exhaust gas purification system. According to the state of the art, for example, the desired value of the exhaust gas composition becomes apparent an aging index for the emission control system, the aging index can be determined by testing of emission control systems.

Es ist Aufgabe der Erfindung, eine für eine optimale Konvertierungsfähigkeit der Abgasreinigungsanlage geeignete Abgaszusammensetzung bereitzustellen.It is an object of the invention to provide an exhaust gas composition suitable for optimum conversion capability of the exhaust gas purification system.

Offenbarung der ErfindungDisclosure of the invention

Vorteile der ErfindungAdvantages of the invention

Die Aufgabe wird dadurch gelöst, dass eine Welligkeit des Sonden-Ausgangssignals bewertet wird und ein Sollwert des Sonden-Ausgangssignals und damit der Lambdawert in einen Bereich verschoben werden, in dem die Welligkeit des Sonden-Ausgangssignals einen vorgegebenen Wert unterschreitet. Vorteilhaft ist hierbei, dass eine Katalysatoralterung nicht durch vorherige Erprobungen bestimmt werden muss. Der Lambda-Wert des Abgases kann vielmehr aufgrund eines aktuellen Verhaltens der Abgasreinigungsanlage so eingestellt werden, dass eine optimale Konvertierungsfähigkeit erzielt werden kann. Mit dem erfindungsgemäßen Verfahren können auch Vergiftungsmechanismen der Abgasreinigungsanlage berücksichtigt werden.The object is achieved in that a ripple of the probe output signal is evaluated and a target value of the probe output signal and thus the lambda value are shifted into a range in which the ripple of the probe output signal falls below a predetermined value. It is advantageous here that catalyst aging does not have to be determined by previous tests. On the contrary, the lambda value of the exhaust gas can be adjusted based on an actual behavior of the exhaust gas purifying system so that an optimum conversion ability can be achieved. With the method according to the invention also poisoning mechanisms of the emission control system can be considered.

Wird der Sollwert des Sonden-Ausgangssignals in den Bereich minimaler Welligkeit des Sonden-Ausgangssignals verschoben, kann erreicht werden, dass die Abgaszusammensetzung auch bei Alterung in einem für die Konvertierungsfähigkeit der Abgasreinigungsanlage optimalen Bereich verbleibt.If the setpoint value of the probe output signal is shifted into the range of minimum ripple of the probe output signal, it can be achieved that the exhaust gas composition remains in an optimum range for the conversion capability of the emission control system, even when aged.

Wird der Lambda-Wert auf Plausibilität geprüft und wird bei einem nicht plausiblen Lambda-Wert der Sollwert des Sonden-Ausgangssignals auf einen Startwert zurückgesetzt, kann erreicht werden, dass auch nach Schwankungen oder Störungen des Sonden-Ausgangssignals der Bereich optimaler Konvertierungsfähigkeit wieder erreicht wird.If the lambda value is checked for plausibility and the setpoint value of the probe output signal is reset to a starting value at an implausible lambda value, it is possible to achieve the range of optimum conversion capability even after fluctuations or disturbances of the probe output signal.

In einer bevorzugten Ausführungsform wird der Sollwert des Sonden-Ausgangssignals nur bei konstanten Betriebsbedingungen der Brennkraftmaschine angepasst.In a preferred embodiment, the desired value of the probe output signal is adjusted only at constant operating conditions of the internal combustion engine.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die Erfindung wird im Folgenden anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:

Figur 1
in schematischer Darstellung das technische Umfeld, in dem das erfindungsgemäße Verfahren angewendet werden kann,
Figur 2
ein Sonden-Ausgangssignal einer Abgassonde in Abhängigkeit eines Lambdawerts.
The invention will be explained in more detail below with reference to an embodiment shown in FIGS. Show it:
FIG. 1
a schematic representation of the technical environment in which the method according to the invention can be used,
FIG. 2
a probe output of an exhaust probe in response to a lambda value.

Ausführungsformen der ErfindungEmbodiments of the invention

Figur 1 zeigt schematisch das technische Umfeld, in dem das erfindungsgemäße Verfahren zur Steuerung einer Abgaszusammensetzung beim Betrieb einer Abgasreinigungsanlage 16 eingesetzt werden kann. Einer Brennkraftmaschine 10 wird Luft über eine Luftzuführung 11 zugeführt und deren Masse mit einem Luftmassenmesser 12 bestimmt. Der Luftmassenmesser 12 kann als Heißfilm-Luftmassenmesser ausgeführt sein. Das Abgas der Brennkraftmaschine 10 wird über einen Abgaskanal 15 abgeführt, wobei in Strömungsrichtung des Abgases hinter der Brennkraftmaschine 10 die Abgasreinigungsanlage 16 vorgesehen ist, an deren Ausgang die Abgase über eine Abgasableitung 18 abgeführt werden. Zur Steuerung der Brennkraftmaschine 10 ist eine Motorsteuerung 19 vorgesehen, die zum einen der Brennkraftmaschine 10 über eine Kraftstoffdosierung 13 Kraftstoff zuführt und der zum anderen die Signale des Luftmassenmessers 12 und einer in dem Abgaskanal 15 angeordneten Abgas-Sonde 14 sowie einer in der Abgasableitung 18 angeordneten Lambda-Sonde 17 zugeführt werden. Die Abgas-Sonde 14 bestimmt einen Lambda-Istwert eines der Brennkraftmaschine 10 zugeführten Kraftstoff-Luft-Gemischs; sie kann als Breitband-Lambdasonde ausgeführt sein. Die Lambda-Sonde 17 bestimmt die Abgaszusammensetzung nach der Abgasreinigungsanlage 16. Die Lambda-Sonde 17 kann als Sprungsonde ausgebildet sein. Es sind auch Ausführungsformen bekannt, die ausschließlich eine Lambda-Sonde 17 in Flussrichtung des Abgases nach der Abgasreinigungsanlage 16 aufweisen und bei denen keine Abgassonde 14 vor der Abgasreinigungsanlage 16 vorgesehen ist.FIG. 1 schematically shows the technical environment in which the method according to the invention for controlling an exhaust gas composition during operation of an exhaust gas purification system 16 can be used. An internal combustion engine 10 is supplied with air via an air supply 11 and determines its mass with an air mass meter 12. The air mass meter 12 may be designed as a hot-film air mass meter. The exhaust gas of the internal combustion engine 10 is discharged via an exhaust passage 15, wherein in the flow direction of the exhaust gas behind the internal combustion engine 10, the exhaust gas cleaning system 16 is provided at the output of the exhaust gases are discharged via an exhaust gas discharge line 18. For controlling the internal combustion engine 10, an engine control 19 is provided which supplies fuel to the internal combustion engine 10 via a fuel metering 13 and to the other the signals of the mass air flow sensor 12 and arranged in the exhaust passage 15 exhaust gas sensor 14 and arranged in the exhaust gas discharge line 18 Lambda probe 17 are supplied. The exhaust gas probe 14 determines a lambda actual value of an internal combustion engine 10 supplied fuel-air mixture; it can be designed as a broadband lambda probe. The lambda probe 17 determines the exhaust gas composition after the exhaust gas purification system 16. The lambda probe 17 may be formed as a jump probe. Embodiments are also known which have exclusively a lambda probe 17 in the flow direction of the exhaust gas after the exhaust gas purification system 16 and in which no exhaust gas probe 14 is provided in front of the exhaust gas purification system 16.

Es ist bekannt, dass Abgasreinigungsanlagen eine optimale Konvertierungsfähigkeit im Bereich eines leicht fetten Abgases mit einem Lambda um 0,995 aufweisen. Die als Sprungsonde ausgebildete Lambda-Sonde 17 gibt dann eine Ausgangsspannung von 600 bis 650mV ab. Liegt eine gealterte Abgasreinigungsanlage 16 vor, liegt die optimale Konvertierungsfähigkeit weiter im fetten Abgasbereich und somit bei einer höheren Ausgangsspannung der Lambdasonde 17.It is known that emission control systems have an optimum conversion capability in the range of a slightly rich exhaust gas with a lambda around 0.995. The designed as a jump probe lambda probe 17 then outputs an output voltage of 600 to 650mV. If an aged exhaust gas cleaning system 16 is present, the optimum conversion capability continues to lie in the rich exhaust gas range and thus at a higher output voltage of the lambda probe 17.

Der Zusammenhang zwischen der Ausgangsspannung der Lambda-Sonde 17 und einem Lambda-Wert 30 des sie beaufschlagenden Abgases ist in einem Abgassonden-Diagramm 20 in Figur 2 dargestellt. In dem Abgassonden-Diagramm 20 ist der Lambda-Wert 30 des Abgases entlang einer Lambda-Achse 27 aufgetragen und ein Sonden-Ausgangssignal 23 entlang einer Ausgangsspannungs-Achse 21. Bei einem niedrigen Lambda-Wert 30 gibt eine als Sprungsonde ausgebildete Lambda-Sonde 17 ein hohes Sonden-Ausgangssignal 23 ab, welches in einem Bereich um Lambda = 1 schnell zu niedrigen Werten abfällt. Die optimale Konvertierungsfähigkeit einer Abgasreinigungsanlage 16 wird dabei in einem mit "optimaler Regellage 25" bezeichneten Bereich erreicht. Bei einer neuwertigen Abgasreinigungsanlage 16 liegt dabei der einzustellende LambdaWert 30 bei einem Arbeitspunkt 24, der durch ein am untern Ende der optimalen Regellage 25 liegendes Sonden-Ausgangssignal 23 gekennzeichnet ist. Altert die Abgasreinigungsanlage 16, muss der Arbeitspunkt 24 zu einem niedrigeren Lambda-Wert 30 und damit zu einem höheren Sonden-Ausgangssignal 23 verschoben werden. Bei sehr niedrigen Lambda-Werten 30 kommt das Sonden-Ausgangssignal 23 in einen ersten Welligkeitsbereich 22, da die Konvertierungsfähigkeit der Abgasreinigungsanlage 17 geringer wird. Wird die der Abgasreinigungsanlage nachgeschaltete Lambda-Sonde 17 mit Abgas eines Lambda-Werts 30 um Lambda = 1 oder wenig darüber beaufschlagt, zeigt das Sonden-Ausgangssignal 23 einen zweiten Welligkeitsbereich 26 aufgrund der Sprungcharakteristik der Lambda-Sonde 17.The relationship between the output voltage of the lambda probe 17 and a lambda value 30 of the exhaust gas acting on it is shown in an exhaust gas probe diagram 20 in FIG. In the exhaust gas probe diagram 20, the lambda value 30 of the exhaust gas is plotted along a lambda axis 27 and a probe output signal 23 is plotted along an output voltage axis 21. At a low lambda value 30, a lambda probe 17 designed as a jump probe outputs 17 a high probe output signal 23, which drops rapidly in a range around lambda = 1 to low values. The optimal conversion capability of an exhaust gas purification system 16 is achieved in a designated "optimal control position 25" area. In the case of a new exhaust gas purification system 16, the lambda value 30 to be set is at an operating point 24 which is characterized by a probe output signal 23 lying at the lower end of the optimal control position 25. If the exhaust gas purification system 16 is damaged, the operating point 24 must be shifted to a lower lambda value 30 and thus to a higher probe output signal 23. At very low lambda values 30, the probe output signal 23 comes in a first ripple region 22, since the conversion capability of the exhaust gas purification system 17 is lower. If the exhaust gas purification system downstream lambda probe 17 is applied with exhaust gas of a lambda value 30 by lambda = 1 or slightly above, the probe output signal 23 shows a second ripple region 26 due to the jump characteristic of the lambda probe 17th

Kern der Erfindung ist es, den ersten Welligkeitsbereich 22 und den zweiten Welligkeitsbereich 26 im Sonden-Ausgangssignal 23 zu detektieren und den Arbeitspunkt 24 so zu verschieben, dass eine Welligkeit im Sonden-Ausgangssignal 23 unter einem vorgegebenen Wert bleibt oder minimiert wird. Der Arbeitspunkt 24 liegt dann innerhalb der optimalen Regellage 25 und die Konvertierungsfähigkeit der Abgasreinigungsanlage 16 ist optimal.The essence of the invention is to detect the first ripple region 22 and the second ripple region 26 in the probe output signal 23 and to shift the operating point 24 such that a ripple in the probe output signal 23 remains below a predetermined value or is minimized. The operating point 24 is then within the optimal Rule position 25 and the conversion capability of the emission control system 16 is optimal.

Claims (4)

Verfahren zur Steuerung einer Abgaszusammensetzung beim Betrieb einer Abgasreinigungsanlage (16) einer Brennkraftmaschine (10), wobei in Flussrichtung des Abgases hinter der Abgasreinigungsanlage (16) ein Lambdawert (30) des Abgases mittels einer Lambda-Sonde (17) gemessen wird, welche ein Sonden-Ausgangssignal (23) abgibt, dadurch gekennzeichnet, dass eine Welligkeit des Sonden-Ausgangssignals (23) bewertet wird und dass ein Sollwert des Sonden-Ausgangssignals (23) und damit der Lambdawert (30) in einen Bereich verschoben wird, in der die Welligkeit des Sonden-Ausgangssignals (23) einen vorgegebenen Wert unterschreitet.Method for controlling an exhaust gas composition during operation of an exhaust gas purification system (16) of an internal combustion engine (10), wherein in the flow direction of the exhaust gas downstream of the exhaust gas purification system (16) a lambda value (30) of the exhaust gas by means of a lambda probe (17) is measured, which is a probe Output signal (23), characterized in that a ripple of the probe output signal (23) is evaluated and that a target value of the probe output signal (23) and thus the lambda value (30) is moved to a range in which the ripple of the probe output signal (23) falls below a predetermined value. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Sollwert des Sonden-Ausgangssignals (23) in den Bereich minimaler Welligkeit des Sonden-Ausgangssignals (23) verschoben wird.A method according to claim 1, characterized in that the setpoint of the probe output signal (23) is shifted in the range of minimum ripple of the probe output signal (23). Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der LambdaWert (30) auf Plausibilität geprüft wird und dass bei einem nicht plausiblen LambdaWert (30) der Sollwert des Sonden-Ausgangssignals (23) auf einen Startwert zurückgesetzt wird.The method of claim 1 or 2, characterized in that the lambda value (30) is checked for plausibility and that at a non-plausible lambda value (30), the setpoint value of the probe output signal (23) is reset to a start value. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Sollwert des Sonden-Ausgangssignals (23) nur bei konstanten Betriebsbedingungen der Brennkraftmaschine (10) angepasst wird.Method according to one of claims 1 to 3, characterized in that the desired value of the probe output signal (23) is adjusted only at constant operating conditions of the internal combustion engine (10).
EP20070111700 2006-07-31 2007-07-04 Method for controlling the exhaust gas composition when operating an exhaust gas treatment device Withdrawn EP1884643A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610035285 DE102006035285A1 (en) 2006-07-31 2006-07-31 Method for controlling an exhaust gas composition during operation of an emission control system

Publications (2)

Publication Number Publication Date
EP1884643A2 true EP1884643A2 (en) 2008-02-06
EP1884643A3 EP1884643A3 (en) 2013-11-27

Family

ID=38534292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070111700 Withdrawn EP1884643A3 (en) 2006-07-31 2007-07-04 Method for controlling the exhaust gas composition when operating an exhaust gas treatment device

Country Status (2)

Country Link
EP (1) EP1884643A3 (en)
DE (1) DE102006035285A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4234102A1 (en) 1991-10-11 1993-04-15 Toyota Motor Co Ltd DEVICE AND METHOD FOR DETERMINING DEGRADATION OF A CATALYST
DE4446930A1 (en) 1994-01-10 1995-07-20 Ford Werke Ag Method for controlling the air / fuel ratio of an internal combustion engine
US6151888A (en) * 1996-06-12 2000-11-28 Robert Bosch Gmbh Method of diagnosing a catalytic converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360072A1 (en) * 2003-12-20 2005-07-14 Audi Ag Exhaust system for an internal combustion engine of a vehicle, in particular of a motor vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4234102A1 (en) 1991-10-11 1993-04-15 Toyota Motor Co Ltd DEVICE AND METHOD FOR DETERMINING DEGRADATION OF A CATALYST
DE4446930A1 (en) 1994-01-10 1995-07-20 Ford Werke Ag Method for controlling the air / fuel ratio of an internal combustion engine
US6151888A (en) * 1996-06-12 2000-11-28 Robert Bosch Gmbh Method of diagnosing a catalytic converter

Also Published As

Publication number Publication date
DE102006035285A1 (en) 2008-02-07
EP1884643A3 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
EP3497309A1 (en) Diagnostic method and device for checking the functionality of a component for exhaust-gas aftertreatment
WO2001034960A2 (en) Method of monitoring the exhaust catalyst of an internal combustion engine
EP1192340B1 (en) Method for verifying a catalytic exhaust box of an internal combustion engine
DE69627100T2 (en) Catalytic converter deterioration detection device of an internal combustion engine
DE102006041477A1 (en) Method for dynamic diagnosis of an exhaust gas probe
WO2008095904A1 (en) Diagnostic method and device for operating an internal combustion engine
WO2008095906A1 (en) Diagnostic method and device for operating an internal combustion engine
DE102005013278B4 (en) A method and apparatus for optimized fuel control based on an exhaust oxygen signal for reducing vehicle emissions
EP1718853A1 (en) Method for determining the actual oxygen load of a 3-path catalyst of a lambda-controlled internal combustion engine
DE19536798C2 (en) Device for detecting the reduction in the cleaning capacity of a catalytic converter for cleaning exhaust gas from an internal combustion engine
DE102006014249A1 (en) Lambda value pre-controlling method for use during pre-heating phase of catalyzer, involves partially loading lambda-characteristic of lambda-pre-control, so that temporal lambda-center value is provided and lambda-value is obtained
DE102006061684A1 (en) Oxygen level controlling method for internal combustion engine, involves modulating exhaust gas composition between threshold values such that lean and fat adjustments of composition are terminated, when amount reaches values, respectively
DE19819461A1 (en) Exhaust gas purification using three way catalyst with downstream trimming control
DE102005059894B4 (en) Method for measuring the oxygen storage capacity of an emission control system
EP1203144B1 (en) Method of regulating the operational mode of an internal combustion engine
DE102015200751A1 (en) Method for monitoring an exhaust aftertreatment system of an internal combustion engine and control device for an exhaust aftertreatment system
DE19909796A1 (en) Method and device for increasing the exhaust gas temperature
DE102013200573A1 (en) Method for active diagnosis of components of emission control system in internal combustion engine of vehicle, involves determining oxygen storage capability in engine during pre-conditioning, and adjusting aging state/storage of catalyst
DE102019118471B3 (en) Method for operating a drive device and a drive device for a motor vehicle
EP1884643A2 (en) Method for controlling the exhaust gas composition when operating an exhaust gas treatment device
DE10305452A1 (en) Internal combustion engine exhaust system catalytic converter condition diagnosis uses rich and lean exhaust gas feeds and signals from probe downstream of converter
DE102010030635B4 (en) Method and device for heating a catalytic converter for exhaust gas purification
DE102005058524A1 (en) Method for monitoring exhaust gas aftertreatment system of an internal combustion engine, uses lambda map-based pilot control that provides constant increase of lambda value from minimum to maximum lambda value within acceptable range
DE102008002557A1 (en) Method and apparatus for operating an exhaust aftertreatment system
DE102005029797A1 (en) Diagnosing catalyst arranged in exhaust gas system of internal combustion engine comprises measuring oxygen storage capacity of partial or total volume of catalyst in heating up phase and further processing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101AFI20131021BHEP

Ipc: F02D 41/02 20060101ALI20131021BHEP

17P Request for examination filed

Effective date: 20140527

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): DE FR IT SE

17Q First examination report despatched

Effective date: 20150326

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160202