EP1884557B1 - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
EP1884557B1
EP1884557B1 EP07107472.8A EP07107472A EP1884557B1 EP 1884557 B1 EP1884557 B1 EP 1884557B1 EP 07107472 A EP07107472 A EP 07107472A EP 1884557 B1 EP1884557 B1 EP 1884557B1
Authority
EP
European Patent Office
Prior art keywords
mass
lubricating oil
oil composition
composition
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07107472.8A
Other languages
German (de)
French (fr)
Other versions
EP1884557A1 (en
Inventor
Robin Howard Scott
Robert William Shaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP07107472.8A priority Critical patent/EP1884557B1/en
Publication of EP1884557A1 publication Critical patent/EP1884557A1/en
Application granted granted Critical
Publication of EP1884557B1 publication Critical patent/EP1884557B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • the present invention relates to a lubricating oil composition, particularly a lubricating oil composition for use in diesel engines of the type referred to as heavy duty diesel engines, herein abbreviated to "HDD”.
  • a lubricating oil composition for use in diesel engines of the type referred to as heavy duty diesel engines, herein abbreviated to "HDD”.
  • Diesel engines comprise one or more bores in each of which a piston reciprocates.
  • the piston has piston rings around its periphery to provide a seal between the combustion chamber and the crankcase.
  • the reciprocating movement of the piston causes the piston rings to bear towards the wall of the bore with the potential to cause wear of the bore wall and the piston rings. Wear of the bore wall and the piston rings is ameliorated by ensuring, as far as possible, that a film of lubricating oil is maintained on the bore wall to avoid or reduce any direct contact between the piston rings and the bore wall.
  • the wall of the bore is formed with arrays of grooves which act to retain lubricating oil so that the formation and maintenance of a film of lubricating oil over the wall of the bore is facilitated.
  • the grooves are often formed as spiral grooves or recesses in the bore wall, and these are usually formed as two sets of grooves spiralling in opposite senses in the bore wall so that the grooves of each set overlap each other, whereby the formation and maintenance of a film of lubricating oil on the bore wall is facilitated.
  • EP 1167497A claims and describes a lubricating oil composition having a sulfur content of 0.01 to 0.3 wt. % and a phosphorus content of 0.01 to 0.1 wt. %, and giving a sulphated ash in the range of 0.1 to 1 wt. %, which comprises
  • the composition of EP 1167497A is intended to provide lubrication for all types of internal combustion engines, including diesel engines, without adversely affecting the functioning of exhaust gas particulate traps, oxidizing catalysts and/or NO x -reducing catalysts.
  • Example 3 of this patent document describes a lubricating oil composition comprising, as a metal-containing detergent, 1.7 wt. % magnesium salicylate which contains 6.0 wt. % Mg, 0.22 wt. % S; TBN 280 mg KOH/g, available as "SAP 008" from Shell Japan Co. Ltd.
  • EP1167497A does not appear to relate to heavy duty diesel engines, and is not concerned with bore polishing issues. It does not provide any disclosure or teaching having a bearing on bore polishing.
  • Example 2 of US 6423670 describes two lubricating oils, both comprising 0.256 mass % overbased Mg sulfonate, a borated dispersant, a neutral calcium phenate, a phenol antioxidant, a zinc dihydrocarbyldithiophosphate, and an overbased calcium sulfonate, and one of the oils comprising, in addition, a neutral calcium sulfonate.
  • the oils were evaluated according the procedure of the Daimler Chrysler Sequence IIIE, OM364LA diesel engine test for several characteristics, including bore polish. The oil comprising the neutral calcium sulphonate gave a poor result (5-6%) in terms of Bore Polish results. Similar oils without the neutral calcium sulfonate gave better results even when the overbased Mg sulfonate content was reduced, other factors being equal.
  • compositions of US 5320765A are claimed to reduce engine carbon deposits and to reduce rates of lubricating oil consumption.
  • the compositions according to US 5320765 A have low ash contents (less than 0.6 weight percent) in order to meet mandatory limitations on ash in engine exhaust gas.
  • the amount of basic metal detergent which can be incorporated in a lubricating oil is restricted because the metal of the detergent gives rise to ash materials which adversely affect the operation of engine equipment such as exhaust gas filters and exhaust gas purification catalysts.
  • Ash materials are assessed by mass. Thus, the mass of ash which is tolerable for an engine and its associated equipment restricts the TBN of the engine oil arising from the basic metal-containing detergents therein.
  • magnesium detergents produce a lower mass of ash than calcium detergents due to the fact that magnesium is lighter than calcium and gives rise to lighter ash.
  • lubricating oils containing relatively high concentrations of magnesium from magnesium-containing detergents can be formulated without giving rise to unacceptable levels of bore polishing or unacceptable levels of ash in diesel engines, including HDDs.
  • a method of reducing bore polishing in a heavy duty diesel engine comprises lubricating the engine with a lubricating oil composition as defined in the first aspect.
  • the base oil is an oil of lubricating viscosity and may have characteristics in the following ranges:
  • the base oil contains one or more of Groups I, II, III or IV base stocks as defined in API Engine Oil Licensing and Certification System (EOLCS), Industry Services Department, 14th edition, December 1996 , Addendum 1, December 1998 and ATIEL code.
  • the base oil sulphur content may be between 0.00 and 1.00 wt.% and the KV @100°C may be from 3.8 mm 2 /s to 21.9 mm 2 /s. More preferably the base oil sulphur content may be from 0.00 to 0.80 wt.% and the KV @100°C may be from 3.8 mm 2 /s to 8.0 mm 2 /s.
  • the one or more antioxidant components provide at least 0.75 mass % of the lubricating oil compositions based upon the total mass of the lubricating oil composition.
  • the one or more antioxidant components comprise up to 3.0 mass % of the lubricating oil composition based upon the total mass of the lubricating oil composition.
  • the one or more antioxidant components suitably provide up to 2.75 mass % of the lubricating oil composition, based upon the total mass of the lubricating oil composition.
  • the overbased magnesium compound provides the composition with greater than 0.05 mass % Mg, based upon the mass of the composition.
  • the magnesium compound provides the composition with at least 0.06 mass % Mg, based on the mass of the composition.
  • the magnesium compound may provide the composition with at least 0.063 mass % Mg, based upon the mass of the composition.
  • the overbased magnesium compound provides the composition with no more than 0.3 mass % Mg, based upon the mass of the composition.
  • the Mg content of the composition is suitably up to 0.15 mass %, based upon the mass of the composition.
  • the composition suitably comprises up to 0.14 mass % Mg from the magnesium compound, based upon the total mass of the composition.
  • Lubricating compositions may have a TBN (total base number as determined by ASTM D2896) of at least 8.0, preferably 9.0 or higher.
  • the maximum TBN is not likely to exceed 20.0, and 15.0 may be regarded as a practical maximum TBN for many compositions.
  • Lubricating compositions comprise phosphorus moieties.
  • Lubricating compositions include antiwear components such as one or more salts of one or more dihydrocarbyldithiophosphoric acids.
  • a typical salt of a dihydrocarbyldithiophosphoric acid employed as an antiwear component is zinc dihydrocarblydithiophosphate, ZDDP.
  • the lubricating compositions may comprise phosphorus moieties from other components, such as certain phosphites which may be employed as antiwear components.
  • Phosphorus may be present in the lubricating compositions (e.g. from ZDDP) in amounts up to 2000 ppm by mass.
  • the maximum phosphorus level is preferably lower, e.g.
  • the amount of phosphorous provided by the metal hydrocarbyl dithiophosphate is in the range of 0.05 to 0.20 mass %, based on the mass of the composition.
  • the sulphated ash content of the lubricating oil composition is at least 0.6 mass %, based upon the mass of the composition.
  • the lubricating oil composition suitably has a sulphated ash content of at least 0.8 mass %, based on the mass of the composition.
  • a lubricating oil composition according to the present invention suitably has a sulphated ash content of no lower than 1.0 mass %.
  • a lubricating oil composition according to the present invention has a sulphated ash content of not more than 2.0 mass % based on the total mass of the composition.
  • a lubricating oil composition according to the present invention may have a sulphated ash content no greater than 1.6 mass %, preferably no greater than 1.5 mass %, and more preferably no greater than 1.2 mass % based on the mass of the composition.
  • compositions also included components which are usually included in HDD lubricant compositions, such as one or more of the following: friction modifier, viscosity modifier, antifoamant, demulsifier, pour point depressant (inter alia ). Since these components are well-known and are not believed to be significant in relation to the bore-polishing benefits of the lubricating compositions of the invention, they will not be further discussed herein.
  • Lubricant oil compositions suitable for use with HDDs were formulated from the components (i) to (v) mentioned above, together with other well-known lubricant oil components.
  • the oils were formulated in the well-known manner to have viscosity characteristics of 10W-40 or 15W-40.
  • the lubricant viscosity was SAE 40 grade and all samples had an approximately equal kinematic viscosity at 100°C, thereby factoring out base stock effects and giving a robust comparison between the samples.
  • the compositions had varied concentrations of the following components: the calcium and magnesium detergents, the dispersant, the antioxidant, and the ZDDP antiwear component.
  • oil samples 1, 2 and 3 are illustrative of compositions having low magnesium contents and low antioxidant contents.
  • the magnesium contents are in the range of 0.26 to 0.29 mass %.
  • the antioxidant contents are in the range of 0.30 to 0.42 mass %.
  • the other components of these three samples are in concentrations which do not significantly affect the Bore Polish test results. A skilled person would know how to adjust the concentrations of the other components to achieve this effect. It is seen that the compositions all have bore polish results below the maximum limit (2.0) and that therefore, all of the samples 1, 2 and 3 pass the Bore Polish test.
  • Samples 12 which comprises 0.057 mass % Ca and 0.134 mass % Mg gave rise to 1.0 mass % sulphated ash, lower than the sulphated ash obtained with the low and the high Mg oils of Samples 4, 5, 7 and 8.
  • Sample 13, comprising 0.170 mass % Ca and 0.138 mass % Mg, gave rise to 1.4 mass % sulphated ash, no higher than the ash obtained with low Mg Samples 1 and 3 and high Mg Samples 4 and 5, which all contain relatively higher levels of calcium that Samples 13.
  • oil compositions of sample No 9 to 14 provide excellent performance in terms of bore polishing results without giving rise to unacceptable levels of sulphated ash.

Description

  • The present invention relates to a lubricating oil composition, particularly a lubricating oil composition for use in diesel engines of the type referred to as heavy duty diesel engines, herein abbreviated to "HDD".
  • Diesel engines comprise one or more bores in each of which a piston reciprocates. The piston has piston rings around its periphery to provide a seal between the combustion chamber and the crankcase. The reciprocating movement of the piston causes the piston rings to bear towards the wall of the bore with the potential to cause wear of the bore wall and the piston rings. Wear of the bore wall and the piston rings is ameliorated by ensuring, as far as possible, that a film of lubricating oil is maintained on the bore wall to avoid or reduce any direct contact between the piston rings and the bore wall.
  • In certain diesel engines, such as HDDs, the wall of the bore is formed with arrays of grooves which act to retain lubricating oil so that the formation and maintenance of a film of lubricating oil over the wall of the bore is facilitated. The grooves are often formed as spiral grooves or recesses in the bore wall, and these are usually formed as two sets of grooves spiralling in opposite senses in the bore wall so that the grooves of each set overlap each other, whereby the formation and maintenance of a film of lubricating oil on the bore wall is facilitated.
  • During use of diesel engines, especially HDDs, at least some regions of the bore wall between the grooves become worn, and the depths of the grooves in these regions of the bore wall become correspondingly reduced so that the ability of the grooves to retain lubricant becomes reduced, and this in turn tends to affect adversely the formation and maintenance of the lubricant film between the piston rings and the bore wall, leading to increased wear and possibly to engine failure. The phenomenon of wear of bore regions between grooves is known as "bore polishing". One objective of the present invention to reduce or eliminate bore polishing by the use of certain types of lubricant, as specified below.
  • It is well known that lubricant compositions comprising magnesium-containing components tend to cause bore polishing, particularly in contemporary European-style HDDs.
  • EP 1167497A claims and describes a lubricating oil composition having a sulfur content of 0.01 to 0.3 wt. % and a phosphorus content of 0.01 to 0.1 wt. %, and giving a sulphated ash in the range of 0.1 to 1 wt. %, which comprises
    1. a) a major amount of mineral base oil having a sulfur content of at most 0.1 wt. %;
    2. b) an ashless dispersant comprising an alkenyl- or alkyl-succinimide or a derivative thereof in an amount of 0.01 to 0.3 wt. % in terms of a nitrogen atom content;
    3. c) a metal-containing detergent containing an organic acid metal salt which is selected from the group consisting of a non-sulfurized alkali metal or alkaline earth metal salt of an alkylsalicylic acid having a TBN of 10 to 350 mg.KOH/g and a non-sulfurized alkali metal or alkaline earth metal salt of an alkylphenol derivative having a Mannich base structure, in an amount of 0.1 to 1 wt. % in terms of a sulphated ash content;
    4. d) a zinc dialkyldithiophosphate in an amount of 0.01 to 0.1 wt. % in terms of a phosphorus content;
    5. e) an oxidation inhibitor selected from the group consisting of a phenol compound and an amine compound in an amount of 0.01 to 5 wt. %.
  • The composition of EP 1167497A is intended to provide lubrication for all types of internal combustion engines, including diesel engines, without adversely affecting the functioning of exhaust gas particulate traps, oxidizing catalysts and/or NOx-reducing catalysts. Example 3 of this patent document describes a lubricating oil composition comprising, as a metal-containing detergent, 1.7 wt. % magnesium salicylate which contains 6.0 wt. % Mg, 0.22 wt. % S; TBN 280 mg KOH/g, available as "SAP 008" from Shell Japan Co. Ltd. The magnesium concentration in the lubricating oil composition is 1.7 wt. % x 6.0 wt. % = 0.102 wt. % Mg. EP1167497A does not appear to relate to heavy duty diesel engines, and is not concerned with bore polishing issues. It does not provide any disclosure or teaching having a bearing on bore polishing.
  • US patent US 6423670 B2 claims and discloses a diesel engine lubricating oil composition comprising a major amount of oil of lubricating viscosity to which has been added: (a) a lubricating oil ashless dispersant which has not more than 0.2 mass % boron; (b) an oil-soluble neutral calcium phenate detergent; (c) an oil-soluble overbased calcium or magnesium sulfonate or mixture thereof present in an amount such that not more than 0.05 magnesium is present in the composition; (d) a metal dihydrocarbyldithiophosphate present in an amount such that the phosphorus content of the composition is from 0.025 to 0.10 mass %; and (e) a phenolic or aminic antioxidant in a minor amount the composition being free of neutral metal detergent, other than the phenate (b).
  • Example 2 of US 6423670 describes two lubricating oils, both comprising 0.256 mass % overbased Mg sulfonate, a borated dispersant, a neutral calcium phenate, a phenol antioxidant, a zinc dihydrocarbyldithiophosphate, and an overbased calcium sulfonate, and one of the oils comprising, in addition, a neutral calcium sulfonate. The oils were evaluated according the procedure of the Daimler Chrysler Sequence IIIE, OM364LA diesel engine test for several characteristics, including bore polish. The oil comprising the neutral calcium sulphonate gave a poor result (5-6%) in terms of Bore Polish results. Similar oils without the neutral calcium sulfonate gave better results even when the overbased Mg sulfonate content was reduced, other factors being equal.
  • US patent US 5320765A claims and discloses a low sulphated ash heavy duty diesel crankcase lubricating oil composition which comprises a major amount of an oil of lubricating viscosity and (A) at least about 2 weight percent of at least one oil soluble ashless dispersant selected from the group consisting of (i) oil soluble salts, amides, imides, oxazolines and esters, and mixtures thereof, of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides or esters; (ii) long chain aliphatic hydrocarbon having a polyamine attached directly thereto; (iii) Mannich condensation products formed by condensing about a molar proportion of long chain hydrocarbon substituted phenol with about 1 to 2.5 moles of formaldehyde and about 0.5 to 2 moles of polyalkylene polyamine; and (iv) Mannich condensation products formed by reacting long chain hydrocarbon substituted aminophenol, to form a long chain hydrocarbon substitute amide or imide-containing phenol intermediate adduct, and condensing about a molar proportion of the long chain hydrocarbon substituted amide- or imide-containing phenol intermediate adduct with about 1 to 2.5 moles of formaldehyde and about 0.5 to 2 moles of polyamine wherein said long chain hydrocarbon group in (i), (ii), (iii) and (iv) is a polymer of a C2 to C10 mono-olefin, said polymer having a number average molecular weight of about 1,000 to about 5,000; (B) an antioxidant effective amount of at least one oil soluble antioxidant material; and (C) at least one oil soluble dihydrocarbyl dithiophosphate material, wherein each hydrocarbyl group has, on average, at least 3 carbon atoms; wherein the lubricating oil comprises a total sulphated ash (SASH) level of less than 0.6 weight percent and a SASH weight:ashless dispersant weight ratio of from about 0.01:1 to about 0.2:1.
  • The compositions of US 5320765A are claimed to reduce engine carbon deposits and to reduce rates of lubricating oil consumption. The compositions according to US 5320765 A have low ash contents (less than 0.6 weight percent) in order to meet mandatory limitations on ash in engine exhaust gas.
  • WO2006/005711 discloses phosphorus-free lubricating oil compositions for camless internal combustion engines comprising magnesium or calcium detergents and phenolic or amine based antioxidants.
  • The combustion of fuels in diesel engines, particularly (but by no means exclusively) in HDDs leads to the formation of acidic moieties which can have detrimental effects such as corrosion of parts of the engine and its exhaust system. Lubricating oils for diesel engines are usually formulated to have relatively high basicity (e.g. high total base number, TBN) in order to neutralize acidic moieties and thus reduce corrosion due to acidic moieties. High basicity is usually attained by incorporating basic metal-containing detergents in the lubricating oils. Common basic metal-containing detergents include calcium-based detergents, such as calcium sulfonates. The basicity of metal-containing detergents is often increased by employing overbased detergents, which are well-known to skilled persons and which contain more basic metal moiety than non-overbased detergents.
  • The amount of basic metal detergent which can be incorporated in a lubricating oil is restricted because the metal of the detergent gives rise to ash materials which adversely affect the operation of engine equipment such as exhaust gas filters and exhaust gas purification catalysts.
  • Ash materials are assessed by mass. Thus, the mass of ash which is tolerable for an engine and its associated equipment restricts the TBN of the engine oil arising from the basic metal-containing detergents therein. However, for a given TBN, magnesium detergents produce a lower mass of ash than calcium detergents due to the fact that magnesium is lighter than calcium and gives rise to lighter ash.
  • Engine oil compositions for diesel engines, including HDDs have been formulated with magnesium detergents. A well-known drawback of lubricant compositions comprising magnesium-containing detergents is that they tend to cause bore polishing, particularly (but not exclusively) in contemporary European-style HDDs. Accordingly, the concentration of magnesium in engine oils has tended to be restricted to relatively low values.
  • The applicant has discovered that lubricating oils containing relatively high concentrations of magnesium from magnesium-containing detergents can be formulated without giving rise to unacceptable levels of bore polishing or unacceptable levels of ash in diesel engines, including HDDs.
  • As will be apparent, the use of magnesium-containing lubricating compositions gives rise to certain benefits and advantages.
  • It has also been observed that, in lubricants containing reduced amounts of phosphorus-containing antiwear additive (e.g., ZDDP), salicylate detergents provide an improvement in wear performance relative to sulfonate and phenate detergents in certain industry standard wear tests for European HDD lubricants, specifically the OM611 wear test. Therefore, in one aspect, the detergent component of the lubricating oil compositions may comprise at least one salicylate detergent.
  • A first aspect of the present invention provides, the use, in the lubrication of a heavy duty diesel engine, of an antioxidant component in combination with a detergent component which is an overbased magnesium compound, in a lubricating oil composition, to reduce bore polishing in said diesel engine caused by the presence of said magnesium-containing component in the lubricating oil composition and without giving rise to unacceptably high quantities of sulphated ash, wherein: the antioxidant component is selected from one or more ash-free aminic and/or sulfur-free phenolic compounds present in an amount of at least 0.75 and up to 3.0 mass% based on the total mass of the lubricating oil composition; and, the overbased magnesium compound has a total base number (TBN) exceeding 350 mg/g KOH and is selected from one or more magnesium sulfonates, magnesium salicylates, magnesium phenates which provide the lubricating oil composition with greater than 0.05 mass% magnesium, based on the mass of the lubricating oil composition; and, wherein the lubricating oil composition has a sulphated ash content of at least 0.6 mass % and not more than 2.0 mass % as determined by ASTM D874, and the lubricating oil composition comprises a lubricating oil basestock of lubricating viscosity and one or more metal hydrocarbyl dithiophosphate compounds in an amount of up to 1.8 mass %.
  • Suitably, the detergent component further includes a calcium detergent component.
  • Suitably, there is provided a method of operating a heavy duty diesel engine which comprises lubricating the engine with a lubricating oil composition as defined in the first aspect.
  • Suitably, there is provided a method of reducing bore polishing in a heavy duty diesel engine, which method comprises lubricating the engine with a lubricating oil composition as defined in the first aspect.
  • The base oil is an oil of lubricating viscosity and may have characteristics in the following ranges: The base oil contains one or more of Groups I, II, III or IV base stocks as defined in API Engine Oil Licensing and Certification System (EOLCS), Industry Services Department, 14th edition, December 1996, Addendum 1, December 1998 and ATIEL code. The base oil sulphur content may be between 0.00 and 1.00 wt.% and the KV @100°C may be from 3.8 mm2/s to 21.9 mm2/s. More preferably the base oil sulphur content may be from 0.00 to 0.80 wt.% and the KV @100°C may be from 3.8 mm2/s to 8.0 mm2/s.
  • The antioxidant component may be one or more of an amine or an aminic compound and/or a sulfur-free phenol or a sulfur-free phenolic compound. Suitable amines include (but are not restricted to) Irganox L67 and Irganox L57 available from Ciba and Naugalube 438L available from Chemtura. Suitable sulfur-free phenols include (but are not restricted to) Irganox L135 available from Ciba and HITEC 4782 and 4727 available from Afton Chemicals. "Irganox", "Naugalube" and "HITEC" are trade-names.
  • Suitably the one or more antioxidant components provide at least 0.75 mass % of the lubricating oil compositions based upon the total mass of the lubricating oil composition. The one or more antioxidant components comprise up to 3.0 mass % of the lubricating oil composition based upon the total mass of the lubricating oil composition. The one or more antioxidant components suitably provide up to 2.75 mass % of the lubricating oil composition, based upon the total mass of the lubricating oil composition.
  • Suitably, the lubricating oil composition comprises only ash-free antioxidant components.
  • The overbased magnesium compound provides the composition with greater than 0.05 mass % Mg, based upon the mass of the composition. Suitably, the magnesium compound provides the composition with at least 0.06 mass % Mg, based on the mass of the composition. The magnesium compound may provide the composition with at least 0.063 mass % Mg, based upon the mass of the composition. Suitably, the overbased magnesium compound provides the composition with no more than 0.3 mass % Mg, based upon the mass of the composition. The Mg content of the composition is suitably up to 0.15 mass %, based upon the mass of the composition. The composition suitably comprises up to 0.14 mass % Mg from the magnesium compound, based upon the total mass of the composition.
  • Lubricating compositions may have a TBN (total base number as determined by ASTM D2896) of at least 8.0, preferably 9.0 or higher. The maximum TBN is not likely to exceed 20.0, and 15.0 may be regarded as a practical maximum TBN for many compositions.
  • Lubricating compositions comprise phosphorus moieties. Lubricating compositions include antiwear components such as one or more salts of one or more dihydrocarbyldithiophosphoric acids. A typical salt of a dihydrocarbyldithiophosphoric acid employed as an antiwear component is zinc dihydrocarblydithiophosphate, ZDDP. The lubricating compositions may comprise phosphorus moieties from other components, such as certain phosphites which may be employed as antiwear components. Phosphorus may be present in the lubricating compositions (e.g. from ZDDP) in amounts up to 2000 ppm by mass. The maximum phosphorus level is preferably lower, e.g. 1400 ppm or less, such as 1200 ppm or 1000 ppm. The minimum phosphorus level is zero, but may be 80 ppm by mass or higher, e.g. 100 ppm. Phosphorus levels in the range of 200 to 800 ppm may be used in lubricating compositions according to the invention. Suitably, the amount of phosphorous provided by the metal hydrocarbyl dithiophosphate is in the range of 0.05 to 0.20 mass %, based on the mass of the composition.
  • Lubricating compositions according to the present invention may optionally comprise additional additives, including one or more dispersants. The one or more dispersants are suitably nitrogen containing dispersants. The one or more dispersants may provide the lubricating composition with at least 0.07 mass % nitrogen, based upon the mass of the composition. The one or more optional dispersants suitably provide the lubricating oil composition with between 0.07 to 0.25 mass % nitrogen, based upon the mass of the lubricating oil composition.
  • The sulphated ash content of the lubricating oil composition is at least 0.6 mass %, based upon the mass of the composition. The lubricating oil composition suitably has a sulphated ash content of at least 0.8 mass %, based on the mass of the composition. A lubricating oil composition according to the present invention suitably has a sulphated ash content of no lower than 1.0 mass %. A lubricating oil composition according to the present invention has a sulphated ash content of not more than 2.0 mass % based on the total mass of the composition. A lubricating oil composition according to the present invention may have a sulphated ash content no greater than 1.6 mass %, preferably no greater than 1.5 mass %, and more preferably no greater than 1.2 mass % based on the mass of the composition.
  • The invention is now further described with reference to some examples.
  • A number of lubricating oil compositions were formulated, all suitable for lubricating a heavy duty diesel engine. The compositions contained, inter alia, the following components:
    1. (i) base oil
    2. (ii) detergent;
    3. (iii) dispersant
    4. (iv) antioxidant
    5. (v) anti-wear component
  • Some further details of the foregoing components are now provided:
    1. (i) base oil: the base oils were hydrocarbon oil base stocks with a sulphur content of 0.0 to 0.8 wt.%, a Viscosity Index of 95 to 129 and a base blend KV @100°C of 5 to 7 mm2/s.
    2. (ii) detergents: the detergent components comprised a mixture of calcium sulphonate, calcium phenate, magnesium sulphonate and calcium salicylate. The combined calcium and magnesium content in the lubricating oil was in the range of from 0.18 to 0.36 mass.%. All such detergents are commercially available materials from Infineum UK Ltd.
      1. (a) The magnesium detergent was a magnesium sulfonate with a Mg content of 9.1 wt.% and a TBN of 405.
    3. (iii) dispersant: the ashless dispersants were polyisobutylenesuccinic anhydride-polyamine, usually known as PIBSA-PAM type dispersants. The combined N derived from the dispersant in the lubricating oil was 0.06 to 0.12 wt.%. Such dispersants are commercially available from Infineum UK Ltd.
    4. (iv) antioxidant: the antioxidant was an aminic component, referred to below as AntiOxidant A, and consisted of Irganox L67 (tradename) available from Ciba and/or Naugalube 438L (tradename) available from Chemtura, and/or a sulfur-free phenolic component, referred to below as AntiOxidant B, consisting of Irganox L135 (tradename) available from Ciba and/or HITEC 4782 (tradename) available from Afton Chemicals. For the purposes of the comparisons below, the concentration in weight % of each is based on 100% active ingredient material.
    5. (v) anti-wear component: the antiwear component was zinc dihydrocarbyldithiophosphate (ZDDP), wherein the hydrocarbyl group(s) had carbon chain lengths of 4 and 8 and included primary and secondary alkyl groups. The ZDDP component used in the Examples had a phosphorous content of 8.0 mass%. This type of anti-wear component is commercially available from various sources.
  • The compositions also included components which are usually included in HDD lubricant compositions, such as one or more of the following: friction modifier, viscosity modifier, antifoamant, demulsifier, pour point depressant (inter alia). Since these components are well-known and are not believed to be significant in relation to the bore-polishing benefits of the lubricating compositions of the invention, they will not be further discussed herein.
  • Lubricant oil compositions suitable for use with HDDs were formulated from the components (i) to (v) mentioned above, together with other well-known lubricant oil components. The oils were formulated in the well-known manner to have viscosity characteristics of 10W-40 or 15W-40. The lubricant viscosity was SAE 40 grade and all samples had an approximately equal kinematic viscosity at 100°C, thereby factoring out base stock effects and giving a robust comparison between the samples. The compositions had varied concentrations of the following components: the calcium and magnesium detergents, the dispersant, the antioxidant, and the ZDDP antiwear component.
  • Samples of the thus formulated compositions were evaluated for bore polish characteristics in accordance with the well-known test: CEC-L-52-T-97 (OM441LA). The test method is available from the CEC (Coordinating European Council).
  • The results of the tests are shown in Table 1. Table 1
    Bore Polish Test Results - (Test Procedure according to CEC-L-52-T-97)
    Low %Mg, Low AO** High %Mg, Low AO** High %Mg Oil, High AO**
    PASSING Oil Bore Polish Fail on Bore Polish Pass on Bore Polish
    Sample No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
    Viscosity Grade 10W-40 15W-40 15W-40 15W-40 15W-40 15W-40 15W-40 15W-40 15W-40 15W-40 15W-40 15W-40 15W-40 10W-40
    Formulation Summary (mass%)
    Ca 0.332 0.235 0.329 0.299 0.295 0.107 0.204 0.204 0.272 0.155 0.156 0.057 0.170 0.172
    Mg 0.026 0.026 0.029 0.053 0.056 0.075 0.102 0.102 0.053 0.065 0.066 0.134 0.138 0.074
    P 0.12 0.10 0.12 0.12 0.10 0.08 0.12 0.12 0.13 0.11 0.12 0.12 0.12 0.08
    TBN* 13.0 10.1 11.6 11.7 11.1 8.3 12.2 12.2 12.5 9.8 9.5 11.2 14.3 12.2
    Sulphated Ash** 1.4 1.1 1.4 1.5 1.4 0.8 1.3 1.3 1.4 1.0 1.0 1.0 1.4 1.0
    N derived from Dispersant 0.096 0.084 0.105 0.085 0.061 0.078 0.105 0.105 0.117 0.108 0.108 0.108 0.124 0.106
    AntiOxidant - A 0.30 0.30 0.00 0.00 0.00 0.40 0.00 0.00 0.39 0.00 0.00 0.00 0.90 1.50
    AntiOxidant - B 0.00 0.00 0.42 0.17 0.17 0.00 0.42 0.42 0.44 1.60 1.60 1.60 1.30 1.00
    Total Ashless AO*** 0.30 0.30 0.42 0.17 0.17 0.40 0.42 0.42 0.83 1.60 1.60 1.60 2.20 2.50
    Engine Test CEC-L-52-T-97 (OM441LA)
    Pass/Fail vs ACEA E7-04 PASS PASS PASS FAIL FAIL FAIL FAIL FAIL PASS PASS PASS PASS PASS PASS LIMIT
    Bore Polish 1.1 0.2 0.6 3.6 2.7 2.4 2.6 2.9 1.4 0.5 0.0 0.5 0.3 1.1 2.0 max
    *TBN refers to Total Base Number in mgKOH/g as measured by ASTM D2896.
    ** Sulphated Ash as measured by ASTM D874.
    *** AO = Anti-Oxidant
  • Referring to Table 1, oil samples 1, 2 and 3 are illustrative of compositions having low magnesium contents and low antioxidant contents. The magnesium contents are in the range of 0.26 to 0.29 mass %. The antioxidant contents are in the range of 0.30 to 0.42 mass %. The other components of these three samples are in concentrations which do not significantly affect the Bore Polish test results. A skilled person would know how to adjust the concentrations of the other components to achieve this effect. It is seen that the compositions all have bore polish results below the maximum limit (2.0) and that therefore, all of the samples 1, 2 and 3 pass the Bore Polish test.
  • Oil samples 4 to 8 are illustrative of compositions having high magnesium contents and low antioxidant concentrations. The samples have Mg concentrations in the range of 0.053 to 0.102 mass %, and antioxidant concentrations in the range 0.17 to 0.42 mass% (overlapping those of Samples 1 to 3). The other components of these five Samples are present in concentrations which do not significantly affect the Bore Polish results. A skilled person would know how to adjust the concentrations of these other components to achieve this effect. It is apparent from the Test Results for Samples 4 to 8 that high Mg concentrations and low antioxidant concentrations produce Bore Polish "Fail" results above the maximum limit (2.0), in the range of 2.4 to 3.6. It is also apparent that "Fail" results were still obtained in the range despite varying the principal anti-wear additive (ZDDP- A) from 0.08 to 0.12 wt.% P.
  • Reference is now made to the data in Table 1 for Samples 9 to 14. These Samples have high Mg concentrations and high antioxidant concentrations. The Mg concentrations are in the range 0.053 to 0.138 mass % and overlap the Mg concentrations of Samples 4 to 8. The antioxidant concentrations are in the range 0.83 to 2.50 mass %. The other components of these six samples are present in concentrations which do not significantly affect the Bore Polish results. A skilled person would know how to adjust the concentrations of the other components to achieve this effect. It is apparent from the Test Results for Samples 9 to 14 that high Mg concentrations in combination with high antioxidant concentrations produce Bore Polish "Pass" results below the maximum limit of 2.0, and in the range 0.0 to 1.4. This range is similar to the range for Samples 1, 2 and 3 despite the fact that Samples 9 to 14 comprise from about twice to about four times as much Mg. This result is surprising since it has previously been found that lubricating oils containing magnesium tend to have a reduced performance with respect to bore polishing. Moreover, it is seen from the data in Table 1 that relatively high concentrations of magnesium can be employed in compositions according to the invention (e.g. Samples 9 to 14) without giving rise to unacceptably high or excessively high quantities of sulphated ash. For example, Samples 12 which comprises 0.057 mass % Ca and 0.134 mass % Mg gave rise to 1.0 mass % sulphated ash, lower than the sulphated ash obtained with the low and the high Mg oils of Samples 4, 5, 7 and 8. Sample 13, comprising 0.170 mass % Ca and 0.138 mass % Mg, gave rise to 1.4 mass % sulphated ash, no higher than the ash obtained with low Mg Samples 1 and 3 and high Mg Samples 4 and 5, which all contain relatively higher levels of calcium that Samples 13.
  • Generally speaking, and as is apparent from Table 1, oil compositions of sample No 9 to 14 provide excellent performance in terms of bore polishing results without giving rise to unacceptable levels of sulphated ash.

Claims (17)

  1. The use, in the lubrication of a heavy duty diesel engine, of an antioxidant component in combination with a detergent component which is an overbased magnesium compound, in a lubricating oil composition, to reduce bore polishing in said diesel engine caused by the presence of said magnesium-containing component in the lubricating oil composition and without giving rise to unacceptably high quantities of sulphated ash, wherein: the antioxidant component is selected from one or more ash-free aminic and/or sulfur-free phenolic compounds present in an amount of at least 0.75 mass % and up to 3.0 mass %, based on the total mass of the lubricating oil composition; and, the overbased magnesium compound has a total base number (TBN) exceeding 350 mg/g KOH and is selected from one or more magnesium sulfonates, magnesium salicylates, magnesium phenates which provide the lubricating oil composition with greater than 0.05 mass% magnesium, based on the mass of the lubricating oil composition; and, wherein the lubricating oil composition has a sulphated ash content of at least 0.6 mass % and not more than 2.0 mass % as determined by ASTM D874, and the lubricating oil composition comprises a lubricating oil basestock of lubricating viscosity and one or more metal hydrocarbyl dithiophosphate compounds in an amount of up to 1.8 mass %.
  2. The use as claimed in claim 1, wherein the overbased magnesium compound provides the lubricating oil composition with no more than 0.3 mass % magnesium, based on the mass of the composition.
  3. The use as claimed in claim 1 or 2, wherein the overbased magnesium compound provides the lubricating oil composition with at least 0.06 mass % magnesium, based on the mass of the composition.
  4. The use as claimed in claim 1 or 3, wherein the magnesium content of the lubricating oil composition does not exceed 0.3 mass %, based on the mass of the composition.
  5. The use as claimed in any one of the preceding claims, wherein the lubricating oil composition comprises one or more dispersants.
  6. The use as claimed in claim 5, wherein the dispersant(s) include one or more nitrogen-containing dispersants.
  7. The use as claimed in claim 6, wherein the nitrogen content provided by the nitrogen-containing dispersant(s) is at least 0.07 mass %, based on the mass of the composition.
  8. The use as claimed in claim 7, wherein the nitrogen content provided by the nitrogen-containing dispersant(s) is in the range of from 0.07 to 0.25 mass %, based on the mass of the composition.
  9. The use as claimed in of any of claims 1 to 8, wherein the antioxidant component(s) consist of ash-free antioxidant compounds only.
  10. The use as claimed in any one of claims 1 to 9 wherein the lubricating oil composition has a sulphated ash content of no lower than 0.8 mass %, based on the mass of the composition.
  11. The use as claimed in claim 10, wherein the lubricating oil composition has a sulphated ash content of no lower than 1.0 mass %, based on the mass of the composition.
  12. The use as claimed in any one of claims 1 to 11, wherein the lubricating oil composition has a sulphated ash content of no greater than 1.6 mass %, based on the mass of the composition.
  13. The use as claimed in any one of claims 1 to 12 wherein the lubricating oil composition has a total base number of at least 8.0 mg KOH/g as determined by ASTM D2896.
  14. The use as claimed in claim 13, wherein the lubricating oil composition has a total base number of at least 9.0 mg KOH/g as determined by ASTM D2896.
  15. The use as claimed in any one of the preceding claims, wherein the detergent component further includes a calcium detergent compound.
  16. The use as claimed in any one of the preceding claims, wherein the detergent component comprises salicylate detergent.
  17. The use as claimed in any one of the preceding claims, wherein the phosphorus level of the lubricating oil composition is in the range of 200 to 800 ppm.
EP07107472.8A 2006-07-20 2007-05-03 Lubricating oil composition Active EP1884557B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07107472.8A EP1884557B1 (en) 2006-07-20 2007-05-03 Lubricating oil composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06117607 2006-07-20
EP07107472.8A EP1884557B1 (en) 2006-07-20 2007-05-03 Lubricating oil composition

Publications (2)

Publication Number Publication Date
EP1884557A1 EP1884557A1 (en) 2008-02-06
EP1884557B1 true EP1884557B1 (en) 2021-03-31

Family

ID=38884597

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07107472.8A Active EP1884557B1 (en) 2006-07-20 2007-05-03 Lubricating oil composition

Country Status (1)

Country Link
EP (1) EP1884557B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513169B2 (en) * 2006-07-18 2013-08-20 Infineum International Limited Lubricating oil compositions
SG10202007052SA (en) 2011-10-27 2020-09-29 Lubrizol Corp Lubricants with Improved Seal Compatibility
CN112442413B (en) * 2019-08-30 2022-09-16 中国石油化工股份有限公司 High-cleanness engine oil composition and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167497A2 (en) * 2000-06-02 2002-01-02 Chevron Oronite Japan Limited Diesel motor lubricating oil composition
EP1661970A1 (en) * 2004-11-30 2006-05-31 Infineum International Limited Lubricating Oil Compositions

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8704683D0 (en) 1987-02-27 1987-04-01 Exxon Chemical Patents Inc Low phosphorus/zinc lubricants
CA1327350C (en) 1987-10-02 1994-03-01 Glen Paul Fetterman, Jr. Ashless lubricant compositions for internal combustion engines
EP0725129B1 (en) 1995-02-01 2001-12-12 The Lubrizol Corporation Low ash lubricant compositions
WO1999055808A1 (en) 1998-04-27 1999-11-04 Infineum Holdings B.V. Lubricating oil compositions
US6423670B2 (en) * 2000-03-20 2002-07-23 Infineum International Ltd. Lubricating oil compositions
EP1360265B1 (en) 2001-02-07 2009-05-06 The Lubrizol Corporation Boron containing lubricating oil composition containing a low level of sulfur and phosphorus
US6583092B1 (en) 2001-09-12 2003-06-24 The Lubrizol Corporation Lubricating oil composition
EP1403359A1 (en) 2002-09-13 2004-03-31 Infineum International Limited Combination of a low ash lubricating oil composition and low sulfur fuel
MY145889A (en) 2004-07-08 2012-05-15 Shell Int Research Lubricating oil composition
EP1789521B1 (en) 2004-07-09 2013-05-01 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
US8709988B2 (en) * 2004-11-30 2014-04-29 Infineum International Limited Lubricating oil compositions
ATE552327T1 (en) * 2004-11-30 2012-04-15 Infineum Int Ltd LUBRICANT OIL COMPOSITIONS
US8513169B2 (en) 2006-07-18 2013-08-20 Infineum International Limited Lubricating oil compositions
JP5840233B2 (en) 2011-02-17 2016-01-06 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Lubricant with good TBN retention

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167497A2 (en) * 2000-06-02 2002-01-02 Chevron Oronite Japan Limited Diesel motor lubricating oil composition
EP1661970A1 (en) * 2004-11-30 2006-05-31 Infineum International Limited Lubricating Oil Compositions

Also Published As

Publication number Publication date
EP1884557A1 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
CA2270714C (en) Lubricating oil composition for internal combustion engines
EP2610333B1 (en) Fuel economical lubricating oil compositions for internal combustion engines
JP5431642B2 (en) Low sulfur low phosphorus lubricating oil composition for high load diesel engines
JP5431641B2 (en) Low sulfur low phosphorus lubricating oil composition
US20050043191A1 (en) High performance non-zinc, zero phosphorus engine oils for internal combustion engines
EP2236591A1 (en) Lubricating oil composition
EP2071009A1 (en) Trunk piston engine lubricating oil compositions
JP2014516107A (en) Lubricating composition having improved TBN retention
US8076274B2 (en) Lubricating oil composition
EP1803797B1 (en) Use of a lubricating oil composition for improving the acrylic rubber sealant compatability in an internal combustion engine
JP4191795B2 (en) Crankcase lubricant for modern heavy duty diesel and gasoline fuel engines
US7183241B2 (en) Long life lubricating oil composition with very low phosphorus content
EP1884557B1 (en) Lubricating oil composition
EP1803795B1 (en) Diesel engine lubricating oil composition for large-bore two-stroke cross-head diesel engines
US20080269089A1 (en) Long life engine oil composition with low or no zinc content
US9102896B2 (en) Fuel economical lubricating oil composition for internal combustion engines
JP2002513070A (en) Lubricating oil composition
EP1803794A1 (en) Diesel engine lubricating oil composition for large-bore two-stroke cross-head diesel engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20080317

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20210219

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SHAW, ROBERT WILLIAM

Inventor name: SCOTT, ROBIN HOWARD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1376933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007061016

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1376933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007061016

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210503

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070503

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230515

Year of fee payment: 17

Ref country code: FR

Payment date: 20230412

Year of fee payment: 17

Ref country code: DE

Payment date: 20230412

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230412

Year of fee payment: 17