EP1882090B1 - Abgasanlage mit zwei abgasbehandlungseinheiten - Google Patents

Abgasanlage mit zwei abgasbehandlungseinheiten Download PDF

Info

Publication number
EP1882090B1
EP1882090B1 EP06723523A EP06723523A EP1882090B1 EP 1882090 B1 EP1882090 B1 EP 1882090B1 EP 06723523 A EP06723523 A EP 06723523A EP 06723523 A EP06723523 A EP 06723523A EP 1882090 B1 EP1882090 B1 EP 1882090B1
Authority
EP
European Patent Office
Prior art keywords
treatment unit
exhaust gas
exhaust
gas treatment
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06723523A
Other languages
English (en)
French (fr)
Other versions
EP1882090A1 (de
Inventor
Rolf BRÜCK
Andreas Scheeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1882090A1 publication Critical patent/EP1882090A1/de
Application granted granted Critical
Publication of EP1882090B1 publication Critical patent/EP1882090B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/44Honeycomb supports characterised by their structural details made of stacks of sheets, plates or foils that are folded in S-form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents

Definitions

  • the subject matter of the present invention is an exhaust system for internal combustion engines with two exhaust gas treatment units.
  • exhaust emission limits are specified, which must be observed by motor vehicles or stationary internal combustion engines. Often these are relatively complex threshold systems, where, for example, not only one limit for one size but rather several limits must be met simultaneously. In order to comply with these limits, relatively complex exhaust gas reclamation operations are often required which require multiple combined exhaust gas purification components.
  • particulate filters require regeneration in which the soot particles collected by the filter are burned. This takes place for example in the form of a continuous regeneration (CRT, continuous regeneration trap) with nitrogen dioxide (NO 2 ). Since there is often insufficient nitrogen dioxide in the exhaust gas flowing into the filter, it is known to provide an oxidation catalyst upstream of the particulate filter, with which nitrogen monoxide (NO) is oxidized to nitrogen dioxide (NO 2 ).
  • CRT continuous regeneration trap
  • SCR Selective Catalytic Reduction
  • NO X Nitric Oxide
  • reductant such as urea
  • the highest possible reaction rate in the second exhaust gas treatment component as a rule requires most efficient conversion in the first, first exhaust gas treatment component lying in the flow direction before the second exhaust gas treatment component.
  • the DE 40 24 942 A1 discloses a monolithic honeycomb body which has consecutively different cell densities in the flow direction, so that the light-off behavior and the thermal aging can be influenced.
  • the object of the invention is to propose an exhaust system with a first and a second exhaust treatment unit, in which the highest possible reaction rate in the second exhaust treatment component is achieved and at the same time the smallest possible volume of the exhaust gas treatment components is made possible.
  • the exhaust system according to the invention of an internal combustion engine comprising a first exhaust treatment unit with a first dynamic pressure and a second exhaust treatment unit with a second dynamic pressure, wherein the first back pressure is smaller than the second back pressure, characterized in that the first exhaust treatment unit in such a first distance in the flow direction is formed before the second exhaust treatment unit, that during operation of a entering into the first exhaust gas treatment unit gas flow is made uniform.
  • the back pressure in the flow direction before the exhaust gas treatment unit is influenced by the first dynamic pressure of the heat exchanger.
  • the first distance between the first exhaust treatment unit and the second exhaust treatment unit is less than 15 mm, preferably less than 10 mm, more preferably less than 5 mm, so that the effect of the first stall pressure of the first exhaust treatment unit and the second back pressure of accumulate second exhaust treatment unit, so that the exhaust gas flowing into the first exhaust treatment unit, must overcome a back pressure, which is coarser than the first back pressure of the first exhaust treatment unit alone.
  • the internal combustion engine is in particular a diesel or gasoline engine, for example a diesel or gasoline engine of a motor vehicle (eg a passenger car, a truck, a motorized two-wheeler, boat or aircraft) or a stationary or diesel diesel engine.
  • a diesel or gasoline engine for example a diesel or gasoline engine of a motor vehicle (eg a passenger car, a truck, a motorized two-wheeler, boat or aircraft) or a stationary or diesel diesel engine.
  • honeycomb bodies for example ceramic or metallic honeycomb bodies, or else wire knit bodies, bodies made of metal foam or the like are suitable as exhaust gas treatment units.
  • Metallic honeycomb bodies may in particular be constructed from at least one at least partially structured metallic layer and optionally at least one substantially smooth layer, which are wound or stacked together and wound.
  • the twisted or wound layers form permeable cavities, which are bounded by the layers.
  • the layers are in particular made of a high temperature corrosion resistant material, such as Al or Cr steel.
  • the layers may be interconnected, in particular cohesively, such as by a Hochtemperaturlötmaschinene.
  • Both the essentially smooth layers and the at least partially structured layers can have microstructures, guide surfaces, perforations and / or perforations, at least in some areas, which serve for even better mixing of the gas flow.
  • Under an exhaust gas treatment unit is understood in particular no heat exchanger.
  • the exhaust treatment units may also be formed in an exhaust gas recirculation line.
  • the equalization of the gas flow before entering the first exhaust gas treatment unit is advantageously carried out by forming the first exhaust gas treatment unit relatively close to the second exhaust gas treatment unit. This leads to an equalization of the gas flow already in the first exhaust gas treatment unit, so that here the conversion rate is improved because the cross section of the first exhaust gas treatment unit is more uniformly exposed to exhaust gas.
  • the volume of the first exhaust treatment unit can be reduced in comparison to a conventional structure at the same rate of conversion of the pollutants in the exhaust gas. Due to the much more efficient implementation rate of Pollutants also improves the conversion rate of the second exhaust gas purification unit, so that it may be smaller in size compared to conventional second exhaust gas purification units.
  • an exhaust treatment unit having a relatively high back pressure may be a high cell honeycomb body having, for example, a cell density of about 800 cpsi, 1000 cpsi or more.
  • the length of the cavities in a honeycomb body has an influence on the dynamic pressure, so that an exhaust gas treatment unit having a relatively small back pressure can be formed by a short honeycomb body and an exhaust gas treatment unit having a relatively large back pressure by a long honeycomb body.
  • the first distance is selected such that the effect of the first dynamic pressure and the second dynamic pressure accumulate.
  • Cumulating means here in particular that the dynamic pressure present in front of the first exhaust gas treatment unit is greater than the first back pressure that the first exhaust gas treatment unit has as such, which therefore exists when only the first exhaust gas treatment unit is flown, without a second exhaust gas treatment unit being formed ,
  • the cumulation of the dynamic pressures advantageously leads to the exhaust gas, before it flows into the first exhaust gas treatment unit, having to overcome a dynamic pressure which is greater than the first back pressure of the first exhaust gas treatment unit.
  • the dynamic pressure is even significantly greater than the first dynamic pressure.
  • the increase of the dynamic pressure causes ademandze-ß Trent the flow of the first exhaust gas treatment unit and thus the gas flow through the first exhaust gas treatment unit and the second exhaust gas treatment unit.
  • a second distance of a gas inlet-side end face of the first exhaust gas treatment unit from a gas inlet-side end face of the second exhaust gas treatment unit is less than 60 mm, preferably less than 45 mm, particularly preferably less than 30 mm.
  • the expansion of the first exhaust treatment unit in the flow direction is less than 45 mm, preferably less than 35 mm, particularly preferably 25 mm or less.
  • first exhaust gas treatment units Due to the very uniform and effective implementation of the corresponding substances in the exhaust gas relatively small first exhaust gas treatment units can be used.
  • the second exhaust treatment unit can also be chosen a smaller volume, for example, in the case that as the second exhaust treatment unit is a particulate filter and the first exhaust treatment unit formed an oxidation catalyst, the more uniform flow of the first exhaust treatment unit causes an improved supply of nitrogen dioxide and thus a more uniform regeneration so that a smaller particulate filter volume is sufficient.
  • the first and / or the second exhaust gas treatment unit comprise at least one honeycomb body.
  • a first and / or second exhaust treatment unit can be created, whose properties such as surface, pressure, etc., can be very accurately predetermined.
  • honeycomb body are particularly suitable metallic or ceramic honeycomb.
  • particulate filter can be formed as a honeycomb body with at least partially porous channel walls and optionally channel terminations or corresponding baffles and openings.
  • both exhaust gas treatment units in a common housing.
  • the exhaust gas treatment units may be held in corresponding beads of the housing by means of a flanging or the like. It is also possible to fit the second exhaust gas treatment unit flush on a front side of the heat exchanger. It may be advantageous, in particular in the last region of the first exhaust gas treatment unit, to allow the exhaust gas to flow crosswise. In the case of honeycomb bodies, this can be achieved by providing perforations in the walls of the cavities in the last region, for example in the last 20% or 10% of the length of the first exhaust gas treatment unit. This is particularly advantageous if the second exhaust gas treatment unit comprises a particle filter with alternately closed channels.
  • the duct walls it is also possible to allow the duct walls to end at different points in the area of the gas outlet-side end face of the first exhaust treatment unit or the gas inlet-side end face of the second exhaust treatment unit, so that no smooth end face, but a rugged face of the first and / or the second exhaust treatment unit arises, which can also lead to cross flows in particular between adjacent channels.
  • At least the first exhaust gas treatment unit comprises a catalytically active coating.
  • the catalytically active coating comprises, for example, a ceramic washcoat which contains materials which catalyze the desired reactions, ie in particular reduce the reaction temperature of these reactions to such an extent that they run to a considerable extent at the temperatures in the exhaust gas recirculation line.
  • Suitable catalysts are in particular noble metals such as platinum, rhodium or the like.
  • An oxidation catalyst coating catalyzes in particular the oxidation of hydrocarbons (HC) or nitrogen oxides (NO X ).
  • the second exhaust gas treatment unit has a catalytically active coating.
  • the first exhaust treatment unit may comprise a hydrolysis catalyst, while the second exhaust treatment unit comprises an SCR catalyst.
  • the ratio of the first dynamic pressure to the second dynamic pressure is greater than 2, preferably greater than 10.
  • All of these three possible second exhaust treatment units (a), (b) and (c) are components with a relatively high dynamic pressure.
  • An open particle filter should be characterized in that a particle, in particular a soot particle, can pass through it without being caught by a channel wall.
  • a closed particulate filter this is not possible, as this regularly alternately closed channels, so that in a subset channels the exhaust gas can only flow in, but not through a regular channel opening can leave the channel, but rather that the exhaust gas through the porous Walls of the filter must flow, whereby it enters another subset of channels, which in turn have no input-side free flow cross-section, but only an output-side free flow cross-section.
  • closed particulate filters in principle, it is not possible to break through a relatively large particle through the filter if it is intact, since the particle gets caught in the porous channel wall. In an open filter system this is possible in principle.
  • An open particle filter has porous regions at least in part of its walls.
  • an open or closed particulate filter as a second exhaust treatment unit, which is preceded by an oxidation catalyst as the first exhaust treatment unit, so that the particulate filter is continuously regenerated, is oxidized in the oxidation catalyst Nitrogen in oxide to nitrogen dioxide, which can be used for combustion of the soot particles is.
  • the oxidation catalyst can be made smaller than when the distance between the two exhaust gas treatment units is not selected according to the invention.
  • a closed particulate filter for example a diesel particulate filter of a known type
  • a honeycomb body as the first exhaust gas treatment unit and the distance as small as possible, possibly even close to zero by applying the end face of the honeycomb body to the corresponding end face of the particulate filter, is selected
  • Another example is a high cell SCR coating honeycomb body second exhaust treatment unit, preceded by a low cell honeycomb body with a urea hydrolysis promoting coating.
  • Fig. 1 1 schematically shows an exemplary embodiment of an exhaust system 1 according to the invention of an internal combustion engine 2, which comprises a first exhaust gas treatment unit 3 and a second exhaust gas treatment unit 4.
  • the first exhaust treatment unit 3 is designed as a closed particle filter with mutually closed channels, while the second exhaust treatment unit 4 is formed as a honeycomb body with a catalytically active coating, which catalyzes the conversion of nitrogen monoxide to nitrogen dioxide, without the invention being limited thereto.
  • the particle filter may be formed as a ceramic solid extrudate or according to metallic layers.
  • the first exhaust gas treatment unit 3 has a first hydrodynamic dynamic pressure
  • the second exhaust gas treatment unit 4 has a second dynamic pressure, which is greater than the first dynamic pressure.
  • the first exhaust gas treatment unit 3 is formed in such a first distance 5 upstream of the second exhaust gas treatment unit 4, so that during operation, a gas flow 6 symbolized by an arrow is homogenized in the first exhaust gas treatment unit 3.
  • the first distance 5 is here in particular less than 15 mm, preferably less than 10 mm, particularly preferably less than 5 mm.
  • the first 3 and second exhaust treatment unit 4 are designed so that at this first distance 5 to accumulate the effects of the first back pressure and the second back pressure, so that the flowing into the first exhaust treatment unit 3 exhaust gas must overcome a dynamic pressure which is greater than that first back pressure of the first exhaust treatment unit 3 as such. As explained above, this leads to an equalization of the gas flow 6, which flows into the first exhaust gas treatment unit 3.
  • Fig. 2 schematically shows the section of the exhaust system 1, which comprises the first 3 and the second exhaust treatment unit 4.
  • a second distance 7 between a gas inlet-side end face 8 of the first exhaust gas treatment unit 3 and a gas inlet-side end face 9 of the second exhaust treatment unit 4 is selected according to the invention so that it comes to a homogenization of the flow in the first exhaust gas treatment unit 3.
  • the second distance 7 is less than 60 mm, preferably less than 45 mm, particularly preferably less than 30 mm.
  • short honeycomb bodies can be used as the first exhaust gas treatment unit 4, in particular an extension 10 in the flow direction of approximately 20 to approximately 40 mm.
  • the first distance 5 is for example less than 15 mm, or even 5 mm or less.
  • the first distance 5 is selected so that the effect of the first dynamic pressure of the first exhaust treatment unit 3 and the second dynamic pressure of the second exhaust treatment unit 4 accumulate, so that the exhaust gas flowing into the first exhaust treatment unit 3 has to overcome a dynamic pressure that is larger , Preferably significantly greater than the first back pressure of the first exhaust treatment unit 3 alone
  • Fig. 3 schematically shows an example of a honeycomb body 11 in cross-section, which may be formed as a first 3 and / or second exhaust treatment unit 4.
  • This honeycomb body 11 comprises a honeycomb structure 12 in a jacket tube 13.
  • the honeycomb structure 12 has cavities 14 which can be wetted or even flowed through, which are formed by substantially smooth layers 15 and at least partially structured layers 16.
  • At least one at least partially structured layer 16 and optionally at least one substantially smooth layer 15 are wound up or stacked and wound one or more stacks in the same direction or in opposite directions.
  • Substantially smooth layers 15 may have microstructures whose amplitude is smaller than the patterning amplitude of the at least partially structured layer 16.
  • Layers 15, 16 are preferably metallic layers, in particular sheet metal layers and / or metallic fiber layers, in particular of high-temperature resistant and corrosion-resistant material such as Al or Cr steels can be made.
  • the layers 15, 16 may have microstructures, perforations, apertures and / or baffles.
  • Fig. 4 schematically shows a first probability distribution 17 of the velocity v and a second probability distribution 18 of the velocity v.
  • the first probability distribution 17 results if only the first exhaust gas treatment unit 3 is flowed with gas, ie without a second exhaust gas treatment unit 4 being formed behind it in the flow direction. Plotted for both distributions, the probability that a certain speed is present in the gas. Both the probability and the speed are given in relative units.
  • the second probability distribution 18 is the probability distribution in a system according to the invention. It therefore relates to an exhaust system 1 of a first exhaust treatment unit 3 and a second exhaust treatment unit 4.
  • the second probability distribution 18 is wider, in particular has a greater width at half maximum height (full width half maximum) than the first probability distribution 17. This is based on the invention Equalization of the flow.
  • the exhaust system 1 advantageously allows the formation of systems with two exhaust treatment units 3, 4, which are arranged one behind the other in the flow direction. Due to the flow equalization, the first 3 and / or the second exhaust treatment unit 4 can be made smaller. This applies, for example, if the first exhaust gas treatment unit 3 is an oxidation catalytic converter and a second exhaust gas treatment unit 4 is a particle filter. By equalizing the flow in the first exhaust gas treatment unit 3, the conversion rate is increased, so that first 3 and / or second exhaust treatment unit 4 can be made smaller. This saves considerable costs in the design of such systems.

Abstract

Die erfindungsgemäße Abgasanlage (1) einer Verbrennungskraftmaschine (2) , umfassend eine erste Abgasbehandlungseinheit (3) mit einem ersten Staudruck und eine zweite Abgasbehandlungseinheit (4) mit einem zweiten Staudruck, wobei der erste Staudruck kleiner als der zweite Staudruck ist. Die erfindungsgemäße Abgasanlage (1) erlaubt in vorteilhafter Weise die Ausbildung von Systemen mit zwei Abgasbehandlungseinheiten (3, 4) , die in Strömungsrichtung hintereinander angeordnet sind. Durch die Strömungsvergleichmäßigung können die erste (3) und/oder die zweite Abgasbehandlungseinheit (4) kleiner ausgeführt werden. Dies gilt beispielsweise dann, wenn als erste Abgasbehandlungseinheit (3) ein Oxidationskatalysator und als zweite Abgasbehandlungseinheit (4) ein Partikelfilter ausgebildet ist. Durch die Vergleichmäßigung der Strömung in die erste Abgasbehandlungseinheit (3) wird die Umsetzungsrate erhöht, so dass erste (3) und/oder zweite Abgasbehandlungseinheit (4) kleiner ausgeführt werden können. Dies spart erhebliche Kosten bei der Auslegung solcher Systeme.

Description

  • Gegenstand der vorliegenden Erfindung ist eine Abgasanlage für Verbrennungskraftmaschinen mit zwei Abgasbehandlungseinheiten.
  • In vielen Ländern sind Abgasgrenzwerte vorgegeben, die von Kraftfahrzeugen oder auch stationären Verbrennungskraftmaschinen einzuhalten sind. Oft sind dies relativ komplexe Grenzwertsysteme, bei denen beispielsweise nicht nur ein Grenzwert für eine Größe, sondern vielmehr mehrere Grenzwerte gleichzeitig eingehalten werden müssen. Um diese Grenzwerte einzuhalten, sind oft relativ komplexe Aufarbeitungsvorgänge des Abgases nötig, die mehrere kombinierte Abgasreinigungskomponenten erfordern.
  • Beispielsweise erfordern Partikelfilter eine Regeneration, in der die durch den Filter gesammelten Rußpartikel verbrannt werden. Dies erfolgt beispielsweise in Form einer kontinuierlichen Regeneration (CRT, continuous regeneration trap) mit Stickstoffdioxid (NO2). Da oft nicht genügend Stickstoffdioxid im Abgas, welches in den Filter einströmt, vorhanden ist, ist es bekannt, vor dem Partikelfilter einen Oxidationskatalysator vorzusehen, mit welchem Stickstoffmonoxid (NO) zu Stickstoffdioxid (NO2) oxidiert wird.
  • Ein anderes Beispiel ist die selektive katalytische Reduktion (SCR, selective catalytic reduction) von Stickoxiden (NOX), bei der die Zufuhr von Reduktionsmittel wie beispielsweise Harnstoff erforderlich ist. Dieser Harnstoff muss hydrolysiert werden, so dass oftmals in Strömungsrichtung vor einem SCR-Katalysator ein Hydrolysekatalysator ausgebildet ist.
  • So gibt es eine Vielzahl von Beispielen von Systemen, die zwei oder mehr verschiedene Abgasbehandlungseinheiten, die zusammenwirken, benötigt werden. Alle diese Systeme weisen also in Strömungsrichtung hintereinander liegende erste und zweite Abgasbehandlungseinheiten auf.
  • Bei all diesen Fällen erfordert im Regelfall eine möglichst hohe Reaktionsrate in der zweiten Abgasbehandlungskomponente eine möglichst effiziente Umsetzung in der ersten, in Strömungsrichtung vor der zweiten Abgasbehandlungskomponente, liegenden ersten Abgasbehandlungskomponente.
  • Die DE 40 24 942 A1 offenbart einen monolithischen Wabenkörper, der in Strömungsrichtung hintereinander unterschiedliche Zelldichten aufweist, so dass das Anspringverhalten und die thermische Alterung beeinflusst werden kann.
  • Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine Abgasanlage mit einer ersten und einer zweiten Abgasbehandlungseinheit vorzuschlagen, bei der eine möglichst hohe Reaktionsrate in der zweiten Abgasbehandlungskomponente erreicht und gleichzeitig ein möglichst kleines Bauvolumen der Abgasbehandlungkomponenten ermöglicht wird.
  • Diese Aufgabe wird gelöst durch eine Abgasanlage mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.
  • Die erfindungsgemäße Abgasanlage einer Verbrennungskraftmaschine, umfassend eine erste Abgasbehandlungseinheit mit einem ersten Staudruck und eine zweite Abgasbehandlungseinheit mit einem zweiten Staudruck, wobei der erste Staudruck kleiner als der zweite Staudruck ist, zeichnet sich dadurch aus, dass die erste Abgasbehandlungseinheit in einem solchen ersten Abstand in Strömungsrichtung vor der zweiten Abgasbehandlungseinheit ausgebildet ist, dass im Betrieb eine in die erste Abgasbehandlungseinheit eintretende Gasströmung vergleichmäßigt wird. Das bedeutet insbesondere, dass der Staudruck in Strömungsrichtung vor der Abgasbehandlungseinheit durch den ersten Staudruck des Wärmetauschers beeinflusst wird.
  • Bei der erfindungsgemäßen Abgasanlage beträgt der erste Abstand zwischen der ersten Abgasbehandlungseinheit und der zweiten Abgasbehandlungseinheit weniger als 15 mm, bevorzugt weniger als 10 mm, besonders bevorzugt weniger als 5 mm, so dass sich der Effekt des ersten Standrucks der ersten Abgasbehandlungseinheit und des zweiten Staudrucks der zweiten Abgasbehandlungseinheit kumulieren, so dass das Abgas, welches in die erste Abgasbehandlungseinheit strömt, einen Staudruck überwinden muss, der gröber als der erste Staudruck der ersten Abgasbehandlungseinheit alleine ist.
  • Die Verbrennungskraftmaschine ist insbesondere ein Diesel- oder Ottomotor, beispielsweise ein Diesel- oder Ottomotor eines Kraftfahrzeugs (z. B. eines Personenkraftwagens, eines Lastkraftwagens, eines motorbetriebenen Zweirades, Bootes oder Luftfahrzeugs) oder ein Diesel- oder Ottomotor in stationärer Anwendung.
  • Als Abgasbehandlungseinheiten eignen sich insbesondere Wabenkörper, beispielsweise keramische oder metallische Wabenkörper, oder auch Drahtgestrickkörper, Körper aus Metallschaum oder ähnliches. Metallische Wabenkörper können insbesondere aus mindestens einer zumindest teilweise strukturierten metallischen Lage und gegebenenfalls mindestens einer im wesentlichen glatten Lage, die miteinander aufgewickelt oder gestapelt und verwunden werden, aufgebaut sein. Die miteinander verwundenen oder aufgewickelten Lagen bilden durchströmbare Hohlräume, die durch die Lagen begrenzt werden. Die Lagen sind insbesondere aus einem hochtemperaturkorrosionsfesten Material, wie Al- oder Cr-Stahl ausgebildet. Die Lagen können miteinander verbunden sein, insbesondere stoffschlüssig, wie beispielsweise durch ein Hochtemperaturlötverfahren. Sowohl die im wesentlichen glatten Lagen als auch die zumindest teilweise strukturierten Lagen können zumindest in Teilbereichen Mikrostrukturen, Leitflächen, Durchbrechungen und/oder Perforationen aufweisen, die einer noch besseren Durchmischung der Gasströmung dienen. Unter einer Abgasbehandlungseinheit wird hier insbesondere kein Wärmetauscher verstanden. Die Abgasbehandlungseinheiten können auch in einer Abgasrückführleitung ausgebildet sein.
  • Die Vergleichmäßigung der Gasströmung vor Eintreten in die erste Abgasbehandlungseinheit erfolgt in vorteilhafter Weise dadurch, dass die erste Abgasbehandlungseinheit relativ nahe vor der zweiten Abgasbehandlungseinheit ausgebildet wird. Dies führt zu einer Vergleichmäßigung der Gasströmung bereits in der ersten Abgasbehandlungseinheit, so dass hier die Umsetzungsrate verbessert wird, da der Querschnitt der ersten Abgasbehandlungseinheit gleichmäßiger mit Abgas beaufschlagt wird. So kann das Volumen der ersten Abgasbehandlungseinheit im Vergleich zu einem üblichen Aufbau bei gleicher Umsetzungsrate der Schadstoffe im Abgas reduziert werden. Durch die deutlich effizientere Umsetzungsrate der Schadstoffe verbessert sich auch die Umsetzungsrate der zweiten Abgasreinigungseinheit, so dass diese im Vergleich zu konventionellen zweiten Abgasreinigungseinheiten unter Umständen kleiner dimensioniert werden kann.
  • Um eine Abgasbehandlungseinheit auszubilden, die einen nur geringen Staudruck aufweist, ist es möglich, einen Wabenkörper einzusetzen, der eine relativ geringe Zelldichte, beispielsweise weniger als 200 cpsi (cells per square inch, Zellen pro Quadratzoll), bevorzugt weniger als 150 cpsi, besonders bevorzugt 100 cpsi und weniger, aufweist. Eine Abgasbehandlungseinheit mit einem relativ hohen Staudruck kann beispielsweise in einem hochzelligen Wabenkörper bestehen, der beispielsweise eine Zelldichte von etwa 800 cpsi, 1000 cpsi oder mehr aufweist. Weiterhin hat die Länge der Hohlräume in einem Wabenkörper Einfluss auf den Staudruck, so dass eine Abgasbehandlungseinheit mit einem relativ kleinen Staudruck durch einen kurzen Wabenkörper und eine Abgasbehandlungseinheit mit einem relativ großen Staudruck durch einen langen Wabenkörper ausgebildet werden kann.
  • Gemäß einer vorteilhaften Ausgestaltung der erfindungsgemäßen Abgasanlage ist der erste Abstand so gewählt, dass sich der Effekt des ersten Staudrucks und des zweiten Staudrucks kumulieren.
  • Unter Kumulieren wird hier insbesondere verstanden, dass der vor der ersten Abgasbehandlungseinheit anliegende Staudruck größer ist als der erste Staudruck, den die erste Abgasbehandlungseinheit als solche aufweist, der also dann vorliegt, wenn nur die erste Abgasbehandlungseinheit beströmt wird, ohne dass eine zweite Abgasbehandlungseinheit ausgebildet ist. Die Kumulation der Staudrücke führt in vorteilhafter Weise dazu, dass das Abgas vor Einströmen in die erste Abgasbehandlurigseinheit einen Staudruck überwinden muss, der größer ist als der erste Staudruck der ersten Abgasbehandlungseinheit. Je nach Auslegung der ersten und der zweiten Abgasbehandlungseinheit ist der Staudruck sogar deutlich größer als der erste Staudruck. Die Vergrößerung des Staudrucks bewirkt eine Vergleichmä-βigung der Beströmung der ersten Abgasbehandlungseinheit und damit der Gasströmung durch die erste Abgasbehandlungseinheit und die zweite Abgasbehandlungseinheit.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung beträgt ein zweiter Abstand einer gaseintrittsseitigen Stirnseite der ersten Abgasbehandlungseinheit von einer gaseintrittsseitigen Stirnseite der zweiten Abgasbehandlungseinheit weniger als 60 mm, bevorzugt weniger als 45 mm, besonders bevorzugt weniger als 30 mm.
  • Diese Werte haben sich als besonders vorteilhaft herausgestellt. Insbesondere kommt es bei üblichen Betriebsbedingungen zu einer Kumulierung der Effekte des ersten und des zweiten Staudrucks kommen.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Abgasanlage beträgt die Ausdehnung der ersten Abgäsbehandlungseinheit in Strömungsrichtung weniger als 45 mm, bevorzugt weniger als 35 mm, besonders bevorzugt 25 mm oder weniger.
  • Aufgrund der sehr gleichmäßigen und effektiven Umsetzung der entsprechenden Stoffe im Abgas können relativ kleine erste Abgasbehandlungseinheiten verwendet werden. Bei der zweiten Abgasbehandlungseinheit kann gleichfalls ein kleineres Volumen gewählt werden, da beispielsweise in dem Falle, dass als zweite Abgasbehandlungseinheit ein Partikelfilter und als erste Abgasbehandlungseinheit ein Oxidationskatalysator ausgebildet ist, die gleichmäßigere Durchströmung der ersten Abgasbehandlungseinheit eine verbesserte Versorgung mit Stickstoffdioxid und folglich eine gleichmäßigere Regeneration bewirkt, so dass ein kleineres Partikelfiltervolumen ausreichend ist.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Abgasanlage umfassen die erste und/oder die zweite Abgasbehandlungseinheit mindestens einen Wabenkörper.
  • Mit einem Wabenkörper kann eine erste und/oder zweite Abgasbehandlungseinheit geschaffen werden, deren Eigenschaften wie Oberfläche, Standruck, etc. sehr genau vorherbestimmt werden können. Als Wabenkörper eignen sich insbesondere metallische oder keramische Wabenkürper. Auch Partikelfilter können als Wabenkörper mit zumindest teilweise porösen Kanalwänden und gegebenenfalls Kanalabschlüssen oder entsprechenden Leitblechen und Durchbrechungen ausgebildet sein.
  • Insbesondere ist es auch vorteilhaft, beide Abgasbehandlungseinheiten in einem gemeinsamen Gehäuse vorzusehen. Hierbei können die Abgasbehandlungseinheiten in entsprechenden Sicken des Gehäuses mittels einer Ausbördelung oder ähnlichern gehalten sein. Auch ist es möglich, die zweite Abgasbehandlungseinheit bündig auf eine Stirnseite des Wärmetauschers aufzusetzen. Hierbei kann es vorteilhaft sein, insbesondere im letzten Bereich der ersten Abgasbehandlungseinheit dem Abgas die Möglichkeit zu geben, querzuströmen. Dies kann bei Wabenkörpern dadurch erreicht werden, dass im letzten Bereich, beispielsweise in den letzten 20% oder 10% der Länge der ersten Abgasbehandlungseinheit, Perforationen in den Wänden der Hohlräume vorzusehen. Dies ist insbesondere vorteilhaft, wenn die zweite Abgasbehandlungseinheit einen Partikelfilter mit wechselweise geschlossenen Kanälen umfasst. Insbesondere ist es auch möglich, im Bereich der gasaustrittseitigen Stirnseite der ersten Abgasbehandlungseinheit oder die gaseintrittsseitigen Stirnseite der zweiten Abgasbehandlungseinheit die Kanalwandungen an unterschiedlichen Punkten enden zu lassen, so dass keine glatte Stirnfläche, sondern eine zerklüftete Stirnfläche der ersten und/oder der zweiten Abgasbehandlungseinheit entsteht, die auch zu Querströmungen insbesondere zwischen benachbarten Kanälen führen kann.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Abgasanlage umfasst zumindest die erste Abgasbehandlungseinheit eine katalytisch aktive Beschichtung.
  • Die katalytisch aktive Beschichtung umfasst beispielsweise einen keramischen Washcoat, der Materialien enthält, die die gewünschten Reaktionen katalysieren, also insbesondere die Reaktionstemperatur dieser Reaktionen so weit herabsetzen, dass diese in nennenswertem Umfang bei den Temperaturen in der Abgasrückführleitung ablaufen. Als Katalysatoren eignen sich insbesondere Edelmetalle wie Platin, Rhodium oder ähnliches. Eine Oxidationskatalysatorbeschichtung katalysiert insbesondere die Oxidation von Kohlenwasserstoffen (HC) oder Stickoxiden (NOX). Weiterhin ist es gleichfalls erfindungsgemäß möglich, dass alternativ oder kumulativ die zweite Abgasbehandlungseinheit eine katalytisch aktive Beschichtung aufweist. Beispielsweise kann die erste Abgasbehandlungseinheit einen Hydrolysekatalysator umfassen, während die zweite Abgasbehandlungseinheit einen SCR-Katalysator umfasst.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Abgasanlage ist das Verhältnis von erstem Staudruck zu zweitem Staudruck größer als 2, bevorzugt größer als 10.
  • Insbesondere bei diesen Staudruckverhältnissen, wenn also der Staudruck der zweiten Abgasbehandlungseinheit um mehr als einen Faktor 2 oder sogar 10 größer ist als der Staudruck der ersten Abgasbehandlungseinheit, kumulieren in besonders vorteilhafter Weise die Effekte des ersten Staudrucks des Wärmetauschers und des zweiten Staudrucks der Abgasbehandlungseinheit bereits bei ersten Abständen von 15 mm oder weniger.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Abgasanlage umfasst die zweite Abgasbehandlungseinheit mindestens eines der folgenden Bauteile:
    1. (a) offener Partikelfilter;
    2. (b) geschlossener Partikelfilter; und
    3. (c) SCR-Katalysator.
  • Alle diese drei möglichen zweiten Abgasbehandlungseinheiten (a), (b) und (c) stellen Bauteile mit einem relativ hohen Staudruck dar.
  • Ein offener Partikelfilter ist dadurch zu charakterisieren, dass durch ihn ein Partikel, insbesondere ein Rußpartikel, grundsätzlich durchtreten kann, ohne von einer Kanalwand aufgefangen worden zu sein. Bei einem geschlossenen Partikelfilter ist dies nicht möglich, da dieser regelmäßig wechselweise verschlossene Kanäle aufweist, so dass also in eine Teilmenge Kanäle das Abgas nur hineinströmen kann, aber nicht durch eine reguläre Kanalöffnung wieder den Kanal verlassen kann, sondern dass vielmehr das Abgas durch die porösen Wände des Filters strömen muss, wodurch es in eine andere Teilmenge von Kanälen gelangt, die wiederum keinen eingangsseitigen freien Strömungsquerschnitt, sondern nur einen ausgangsseitigen freien Strömungsquerschnitt aufweisen. Bei geschlossenen Partikelfiltern ist grundsätzlich das Durchbrechen eines relativ großen Partikels durch den Filter nicht möglich, wenn dieser intakt ist, da das Partikel in der porösen Kanalwand hängen bleibt. Bei einem offenen Filtersystem ist dies grundsätzlich möglich. Ein offener Partikelfilter weist zumindest in einem Teil seiner Wände poröse Bereiche auf.
  • Beispielsweise ist es möglich, einen offenen oder geschlossenen Partikelfilter als zweite Abgasbehandlungseinheit vorzusehen, welchem ein Oxidationskatalysator als erste Abgasbehandlungseinheit vorgeschaltet ist, so dass der Partikelfilter kontinuierlich regeneriert wird, in dem im Oxidationskatalysator Stickstoffinonoxid zu Stickstoffdioxid oxidiert wird, welches zur Verbrennung der Rußpartikel einsetzbar ist. Erfindungsgemäß kann der Oxidationskatalysator kleiner ausgebildet sein, als wenn der Abstand zwischen den beiden Abgasbehandlungseinheiten nicht erfindungsgemäß gewählt wird. Insbesondere dann, wenn ein geschlossener Partikelfilter, beispielsweise ein Dieselpartikelfilter an sich bekannter Bauart, als zweite Abgasbehandlungseinheit und ein Wabenkörper als erste Abgasbehandlungseinheit ausgebildet ist und der Abstand möglichst klein, gegebenenfalls sogar nahe null durch Anlegen der Stirnseite des Wabenkörpers an die entsprechende Stirnseite des Partikelfilter, gewählt wird, ist es vorteilhaft, im Endbereich der Kanalwandungen der ersten Abgasbehandlungseinheit Perforationen und/oder gegebenenfalls Leitbleche vorzusehen, die eine weitere Vermischung des Abgases begünstigen.
  • Ein weiteres Beispiel ist ein hochzelliger Wabenkörper mit SCR-Beschichtung als zweite Abgasbehandlungseinheit, der ein niederzelliger Wabenkörper mit einer die Hydrolyse von Harnstoff fördernder Beschichtung vorgeschaltet ist.
  • Es wird ausdrücklich darauf hingewiesen, dass es sich hier lediglich um Beispiele für Systeme mit hohem Staudruck handelt, wobei die Erfindung nicht auf diese Beispiele beschränkt ist. Die vorliegende Erfindung wird weiterhin anhand der beigefügten Figuren näher erläutert, ohne dass sie auf die dort gezeigten und beschriebenen Ausführungsbeispiele und Vorteile beschränkt wäre. Es zeigen:
  • Fig. 1
    schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Abgasanlage;
    Fig. 2
    schematisch einen Ausschnitt des Ausführungsbeispiels einer erfindungsgemäßen Abgasanlage;
    Fig. 3
    schematisch im Querschnitt einen Wabenkörper; und
    Fig.4
    schematisch Wahrscheinlichkeitsverteilungen von Strömungsgeschwindigkeiten.
  • Fig. 1 zeigt schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Abgasanlage 1 einer Verbrennungskraftmaschine 2, die eine erste Abgasbehandlungseinheit 3 und eine zweite Abgasbehandlungseinheit 4 umfasst. Die erste Abgasbehandlungseinheit 3 ist als geschlossener Partikelfilter mit wechselweise geschlossenen Kanälen ausgebildet, während die zweite Abgasbehandlungseinheit 4 als Wabenkörper mit einer katalytisch aktiven Beschichtung, die die Umsetzung von Stickstoffmonoxid zu Stickstoffdioxid katalysiert, ausgebildet, ohne das die Erfindung hierauf beschränkt wäre. Der Partikelfilter kann als keramisches Vollextrudat oder auch entsprechend aus metallischen Lagen ausgebildet sein. Die erste Abgasbehandlungseinheit 3 weist einen ersten hydrodynamischen Staudruck auf, während die zweite Abgasbehandlungseinheit 4 einen zweiten Staudruck aufweist, der größer als der erste Staudruck ist.
  • Erfindungsgemäß ist die erste Abgasbehandlungseinheit 3 in einem solchen ersten Abstand 5 in Strömungsrichtung vor der zweiten Abgasbehandlungseinheit 4 ausgebildet, so dass im Betrieb eine in die erste Abgasbehandlungseinheit 3 eintretende durch einen Pfeil symbolisierte Gasströmung 6 vergleichmäßigt wird. Der erste Abstand 5 liegt hier insbesondere bei weniger als 15 mm, bevorzugt bei weniger als 10 mm, besonders bevorzugt bei weniger als 5 mm. Die erste 3 und zweite Abgasbehandlungseinheit 4 sind so ausgeführt, dass es bei diesem ersten Abstand 5 zur Kumulation der Effekte des ersten Staudrucks und des zweiten Staudrucks kommt, so dass das in die erste Abgasbehandlungseinheit 3 einströmende Abgas einen Staudruck überwinden muss, der größer als der erste Staudruck der ersten Abgasbehandlungseinheit 3 als solche ist. Dies führt wie oben dargelegt zu einer Vergleichmäßigung der Gasströmung 6, die in die erste Abgasbehandlungseinheit 3 einströmt.
  • Fig. 2 zeigt schematisch den Ausschnitt der Abgasanlage 1, welcher die erste 3 und die zweite Abgasbehandlungseinheit 4 umfasst. Ein zweiter Abstand 7 zwischen einer gaseintrittsseitigen Stirnseite 8 der ersten Abgasbehandlungseinheit 3 und einer gaseintrittsseitigen Stirnseite 9 der zweiten Abgasbehandlungseinheit 4 ist erfindungsgemäß so gewählt, dass es zu einer Vergleichmäßigung der Strömung in der ersten Abgasbehandlungseinheit 3 kommt. Insbesondere beträgt der zweite Abstand 7 weniger als 60 mm, bevorzugt weniger als 45 mm, besonders bevorzugt weniger als 30 mm. Als erste Abgasbehandlungseinheit 4 können insbesondere kurze Wabenkörper zum Einsatz kommen, insbesondere einer Ausdehnung 10 in Strömungsrichtung von etwa 20 bis etwa 40 mm. Der erste Abstand 5 beträgt beispielsweise weniger als 15mm, oder auch 5 mm oder weniger. Insbesondere ist der erste Abstand 5 so gewählt, dass sich der Effekt des ersten Staudrucks der ersten Abgasbehandlungseinheit 3 und des zweiten Staudrucks der zweiten Abgasbehandlungseinheit 4 kumulieren, so dass das Abgas, welches in die erste Abgasbehandlungseinheit 3 strömt, einen Staudruck überwinden muss, der größer, bevorzugt deutlich größer als der erste Staudruck der ersten Abgasbehandlungseinheit 3 alleine ist
  • Fig. 3 zeigt schematisch ein Beispiel eines Wabenkörpers 11 im Querschnitt, welcher als erste 3 und/oder zweite Abgasbehandlungseinheit 4 ausgebildet sein kann. Dieser Wabenkörper 11 umfasst eine Wabenstruktur 12 in einem Mantelrohr 13. Die Wabenstruktur 12 weist für ein Fluid be- oder sogar durchströmbare Hohlräume 14 auf, die durch im wesentlichen glatte Lagen 15 und zumindest teilweise strukturierte Lagen 16 gebildet werden. Mindestens eine zumindest teilweise strukturierte Lage 16 und gegebenenfalls mindestens eine im wesentlichen glatte Lage 15 werden aufgewickelt oder gestapelt und einer oder mehrere Stapel gleich- oder gegensinnig verwunden. Im wesentlichen glatte Lagen 15 können Mikrostrukturen aufweisen, deren Amplitude kleiner als die Strukturierungsamplitude der zumindest teilweise strukturierten Lage 16 ist. Lagen 15, 16 sind bevorzugt metallische Lagen, insbesondere Blechlagen und/oder metallische Faserlagen, die insbesondere aus hochtemperaturfestem und korrosionsfestem Material wie beispielsweise Al- oder Cr-Stählen hergestellt sein können. Die Lagen 15, 16 können Mikrostrukturen, Perforationen, Durchbrechungen und/oder Leitbleche aufweisen.
  • Fig. 4 zeigt schematisch eine erste Wahrscheinlichkeitsverteilung 17 der Geschwindigkeit v und eine zweite Wahrscheinlichkeitsverteilung 18 der Geschwindigkeit v. Die erste Wahrscheinlichkeitsverteilung 17 ergibt sich, wenn nur die erste Abgasbehandlungseinheit 3 mit Gas beströmt wird, also ohne das in Strömungsrichtung hinter dieser eine zweite Abgasbehandlungseinheit 4 ausgebildet ist. Aufgetragen ist für beide Verteilungen die Wahrscheinlichkeit, dass eine bestimmte Geschwindigkeit im Gas vorliegt. Sowohl die Wahrscheinlichkeit, als auch die Geschwindigkeit werden in relativen Einheiten angegeben. Die zweite Wahrscheinlichkeitsverteilung 18 ist die Wahrscheinlichkeitsverteilung in einem erfindungsgemäßen System. Sie betrifft also eine Abgasanlage 1 einer ersten Abgasbehandlungseinheit 3 und einer zweiten Abgasbehandlungseinheit 4. Die zweite Wahrscheinlichkeitsverteilung 18 ist breiter, weist insbesondere eine größere Breite bei halber maximaler Höhe (full width half maximum) auf als die erste Wahrscheinlichkeitsverteilung 17. Dies beruht auf der erfindungsgemäßen Vergleichmäßigung der Strömung.
  • Die erfindungsgemäße Abgasanlage 1 erlaubt in vorteilhafter Weise die Ausbildung von Systemen mit zwei Abgasbehandlungseinheiten 3, 4, die in Strömungsrichtung hintereinander angeordnet sind. Durch die Strömungsvergleichmäßigung können die erste 3 und/oder die zweite Abgasbehandlungseinheit 4 kleiner ausgeführt werden. Dies gilt beispielsweise dann, wenn als erste Abgasbehandlungseinheit 3 ein Oxidationskatalysator und als zweite Abgasbehandlungseinheit 4 ein Partikelfilter ausgebildet ist. Durch die Vergleichmäßigung der Strömung in die erste Abgasbehandlungseinheit 3 wird die Umsetzungsrate erhöht, so dass erste 3 und/oder zweite Abgasbehandlungseinheit 4 kleiner ausgeführt werden können. Dies spart erhebliche Kosten bei der Auslegung solcher Systeme.
  • Bezugszeichenliste
  • 1
    Abgasanlage
    2
    Verbrennungsmotor
    3
    erste Abgasbehandlungseinheit
    4
    zweite Abgasbehandlungseinheit
    5
    erster Abstand
    6
    Gasströmung
    7
    zweiter Abstand
    8
    gaseintrittsseitige Stirnseite der ersten Abgasbehandlungseinheit
    9
    gaseintritsseitige Stirnseite der zweiten Abgasbehandlungseinheit
    10
    Ausdehnung
    11
    Wabenkörper
    12
    Wabenstruktur
    13
    Mantelrohr
    14
    Hohlraum
    15
    im wesentlichen glatte Lage
    16
    zumindest teilweise strukturierte Lage

Claims (7)

  1. Abgasanlage (1) einer Verbrennungskraftmaschine (2), umfassend eine erste Abgasbehandlungseinheit (3) mit einem ersten Staudruck und eine zweite Abgasbehandlungseinheit (4) mit einem zweiten Staudruck, wobei der erste Staudruck kleiner als der zweite Staudruck ist, dadurch gekennzeichnet, dass die erste Abgasbehandlungseinheit (3) in einem solchen ersten Abstand (5) in Strömungsrichtung vor der zweiten Abgasbehandlungseinheit (4) ausgebildet ist, dass im Betrieb eine in die erste Abgasbehandlungseinheit (3) eintretende Gasströmung (6) vergleichmäßigt wird, wobei der erste Abstand (5) zwischen der ersten Abgasbehandlungseinheit (3) und der zweiten Abgasbehandlungseinheit (4) weniger als 15 mm beträgt, so dass sich der Effekt des ersten Staudrucks und des zweiten Staudrucks kumulieren und das Abgas, welches in die erste Abgasbehandlungseinheit (3) strömt, einen Staudruck überwinden muss, der größer als der erste Staudruck der ersten Abgasbehandlungseinheit (3) alleine ist.
  2. Abgasanlage (1) nach Anspruch 1, bei der ein zweiter Abstand (7) einer gaseintrittsseitigen Stirnseite (8) der ersten Abgasbehandlungseinheit (3) von einer gaseintrittsseitigen Stirnseite (9) der zweiten Abgasbehandlungseinheit (4) weniger als 60 mm, bevorzugt weniger als 45 mm, besonders bevorzugt weniger als 30 mm beträgt.
  3. Abgasanlage (1) nach einem der vorhergehenden Ansprüche, bei der die Ausdehnung (10) der ersten Abgasbehandlungseinheit (3) in Strömungsrichtung weniger als 45 mm beträgt, bevorzugt weniger als 35 mm, besonders bevorzugt 25 mm oder weniger.
  4. Abgasanlage (1) nach einem der vorhergehenden Ansprüche, bei der die erste (3) und/oder die zweite Abgasbehandlungseinheit (4) mindestens einen Wabenkörper (11) umfasst.
  5. Abgasanlage (1) nach einem der vorhergehenden Ansprüche, bei der zumindest die erste Abgasbehandlungseinheit (3) eine katalytisch aktive Beschichtung umfasst.
  6. Abgasanlage (1) nach einem der vorhergehenden Ansprüche, bei der das Verhältnis von erstem Staudruck zu zweitem Staudruck größer als 2, bevorzugt größer als 10, ist.
  7. Abgasanlage (1) nach einem der vorhergehenden Ansprüche, bei der die zweite Abgasbehandlungseinheit (4) mindestens eines der folgenden Bauteile umfasst:
    (a) offener Partikelfilter;
    (b) geschlossener Partikelfilter; und
    (c) SCR-Katalysator.
EP06723523A 2005-03-24 2006-03-17 Abgasanlage mit zwei abgasbehandlungseinheiten Active EP1882090B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005014265A DE102005014265A1 (de) 2005-03-24 2005-03-24 Abgasanlage mit zwei Abgasbehandlungseinheiten
PCT/EP2006/002488 WO2006100003A1 (de) 2005-03-24 2006-03-17 Abgasanlage mit zwei abgasbehandlungseinheiten

Publications (2)

Publication Number Publication Date
EP1882090A1 EP1882090A1 (de) 2008-01-30
EP1882090B1 true EP1882090B1 (de) 2011-10-05

Family

ID=36370833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06723523A Active EP1882090B1 (de) 2005-03-24 2006-03-17 Abgasanlage mit zwei abgasbehandlungseinheiten

Country Status (5)

Country Link
US (1) US7597859B2 (de)
EP (1) EP1882090B1 (de)
JP (1) JP2009530521A (de)
DE (1) DE102005014265A1 (de)
WO (1) WO2006100003A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090100809A1 (en) * 2007-10-23 2009-04-23 Baldwin Jr Donald W Filter assembly for removing particulates in an exhaust gas in a fuel engine
US20110030325A1 (en) * 2009-08-06 2011-02-10 Glanfield Ian S Air filter
US10387506B2 (en) * 2013-03-14 2019-08-20 Eharmony, Inc. Systems and methods for online matchmaking
US9810125B2 (en) 2015-12-08 2017-11-07 Jumbomaw Technology Co., Ltd. Catalytic converter
EP3179065B1 (de) * 2015-12-08 2017-12-06 Jumbomaw Technology Co., Ltd. Katalytischer konverter
EP3511541B1 (de) * 2018-01-15 2021-11-03 AM Group Redback AB Katalysator für klassische autos

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE581190C (de) * 1930-10-21 1933-07-22 Wilhelm Widmann Rollfilmkamera mit Abschneidvorrichtung
US3978567A (en) * 1973-03-19 1976-09-07 Chrysler Corporation Method of making a catalytic reactor for automobile
DE3407172C2 (de) * 1984-02-28 1986-09-04 Degussa Ag, 6000 Frankfurt Einrichtung zur Reinigung der Abgase von Dieselmotoren
JPS62273049A (ja) * 1986-05-21 1987-11-27 Toyota Motor Corp メタル担体触媒のメタル担体
JPS6318123A (ja) * 1986-07-10 1988-01-26 Fuji Heavy Ind Ltd 触媒コンバ−タ
JPH086582B2 (ja) * 1986-10-31 1996-01-24 マツダ株式会社 エンジンの排気ガス浄化用触媒装置
JPH0394836A (ja) * 1989-09-05 1991-04-19 Cataler Kogyo Kk 排気ガス浄化装置用の担体
DE4024942A1 (de) * 1990-08-06 1992-02-13 Emitec Emissionstechnologie Monolithischer metallischer wabenkoerper mit variierender kanalzahl
JP2819864B2 (ja) * 1991-06-26 1998-11-05 トヨタ自動車株式会社 排気ガス浄化触媒用メタル担体
DE9210010U1 (de) 1992-07-25 1992-10-22 Heinrich Gillet Gmbh & Co Kg, 6732 Edenkoben, De
JPH07328452A (ja) * 1994-06-13 1995-12-19 Showa Aircraft Ind Co Ltd 触媒装置用金属担体
JPH10205325A (ja) * 1997-01-21 1998-08-04 Isuzu Motors Ltd NOx還元除去用ハニカム触媒装置
DE19858974B4 (de) * 1998-12-19 2006-02-23 Daimlerchrysler Ag Verfahren zur katalytischen Umsetzung eines Ausgangsstoffes, insbesondere eines Gasgemisches
DE10003090A1 (de) * 2000-01-25 2001-07-05 Siemens Ag Durchströmbare Katalysatoranordnung sowie Verwendung der Katalysatoranordnung
US6919052B2 (en) * 2000-12-04 2005-07-19 Delphi Technologies, Inc. Catalytic converter
JP2003062472A (ja) * 2001-08-24 2003-03-04 Toyota Central Res & Dev Lab Inc ハニカム改質触媒体
SE524225C2 (sv) * 2002-02-15 2004-07-13 Volvo Technology Corp En anordning för behandling av ett gasflöde
DE10254764A1 (de) 2002-11-22 2004-06-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasanlage
DE10315593B4 (de) * 2003-04-05 2005-12-22 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
DE10321105A1 (de) * 2003-05-09 2004-12-02 Emitec Gesellschaft Für Emissionstechnologie Mbh Regeneration einer Partikelfalle
JP3896998B2 (ja) 2003-07-08 2007-03-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7740809B2 (en) * 2006-02-15 2010-06-22 Hitachi Metals, Ltd. Exhaust gas-cleaning apparatus

Also Published As

Publication number Publication date
EP1882090A1 (de) 2008-01-30
US20080008631A1 (en) 2008-01-10
WO2006100003A1 (de) 2006-09-28
US7597859B2 (en) 2009-10-06
DE102005014265A1 (de) 2006-10-12
JP2009530521A (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
EP1567247B1 (de) Partikelfalle mit beschichteter faserlage
EP1747356B1 (de) Katalysator-trägerkörper für einen motornah einzusetzenden katalytischen konverter
EP1379322B2 (de) Abgassystem
EP3134622B1 (de) Baukastensystem für die baugruppe, und verfahren zur herstellung der baugruppe
WO2004063540A1 (de) Platzsparende abgasnachbehandlungseinheit mit ineinanderliegenden hin- und rückströmbereichen bei gleichseitigem gasein- und -austritt
EP1882090B1 (de) Abgasanlage mit zwei abgasbehandlungseinheiten
DE102012023049A1 (de) SCR-Abgasnachbehandlungseinrichtung sowie Kraftfahrzeug mit einer solchen
WO2000070202A1 (de) Vorrichtung zum reduzieren von schädlichen bestandteilen im abgas einer brennkraftmaschine, insbesondere einer diesel-brennkraftmaschine
EP1917423B1 (de) Verfahren und vorrichtung zur aufbereitung eines abgases einer verbrennungskraftmaschine
DE10316802A1 (de) Kombinierte Abgasnachbehandlungs-/Schalldämpfungsvorrichtung im Abgasstrang einer Brennkraftmaschine
EP1527262B1 (de) Abgasfilter und verfahren zum reinigen eines abgases
EP1861608B1 (de) Abgasanlage mit einer abgasbehandlungseinheit und einem wärmetauscher in einer abgasrückführleitung
DE102006022364A1 (de) Trägerkörper zur Abgasnachbehandlung mit disperser Katalysatoranordnung
DE102012209852A1 (de) Abgasreinigungssystem zur Anordnung in einem Abgasstrang eines Kraftfahrzeuges, insbesondere eines Dieselkraftfahrzeugs
DE102008003044B4 (de) Abgasreinigungssystem zur verbesserten Abgasreinigung durch konvektives Mischen
DE102007042821A1 (de) Abgasreinigungsvorrichtung
DE102019130757A1 (de) Abgasanlage für eine Brennkraftmaschine
EP2740913A1 (de) Abgasnachbehandlungssystem
DE102005036712A1 (de) Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
WO2005038203A1 (de) Reinigungsaggregat für abgase aus brennkraftmaschinen
EP1431528A2 (de) Abgasreinigungsanordnung
DE102006061693A1 (de) Abgasnachbehandlungsanordnung zur Behandlung von Abgasen einer Brennkraftmaschine
EP0993545A1 (de) Wabenförmiger katalysator und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor
DE102020104276A1 (de) Fluidreinigungsvorrichtung, Verbrennungsmotor sowie Kraftfahrzeug
WO1999001646A1 (de) Abgasleitungssystem und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20091127

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006010337

Country of ref document: DE

Effective date: 20111201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006010337

Country of ref document: DE

Effective date: 20120706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010337

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH, 53797 LOHMAR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006010337

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010337

Country of ref document: DE

Owner name: CONTINENTAL AUTOMOTIVE GMBH, DE

Free format text: FORMER OWNER: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH, 53797 LOHMAR, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160331 AND 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170322

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010337

Country of ref document: DE

Owner name: EMITEC TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010337

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010337

Country of ref document: DE

Owner name: EMITEC TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010337

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502006010337

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230331

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010337

Country of ref document: DE

Owner name: EMITEC TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 93055 REGENSBURG, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006010337

Country of ref document: DE

Representative=s name: KARO IP PATENTANWAELTE KAHLHOEFER ROESSLER KRE, DE