EP1881258B1 - Unité d'éclairage dotée d'une diode à corps de changement de direction de la lumière intégré - Google Patents

Unité d'éclairage dotée d'une diode à corps de changement de direction de la lumière intégré Download PDF

Info

Publication number
EP1881258B1
EP1881258B1 EP07013173A EP07013173A EP1881258B1 EP 1881258 B1 EP1881258 B1 EP 1881258B1 EP 07013173 A EP07013173 A EP 07013173A EP 07013173 A EP07013173 A EP 07013173A EP 1881258 B1 EP1881258 B1 EP 1881258B1
Authority
EP
European Patent Office
Prior art keywords
light
unit according
optical axis
light unit
glowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07013173A
Other languages
German (de)
English (en)
Other versions
EP1881258A1 (fr
Inventor
Jens Mertens
Jochen Kunze
Günther Holzmacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Odelo Led GmbH
Odelo GmbH
Original Assignee
Odelo Led GmbH
Odelo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Odelo Led GmbH, Odelo GmbH filed Critical Odelo Led GmbH
Publication of EP1881258A1 publication Critical patent/EP1881258A1/fr
Application granted granted Critical
Publication of EP1881258B1 publication Critical patent/EP1881258B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a lighting unit comprising a light emitting diode comprising at least one non-glimmering light source and light distribution body optically connected to a non-glimmering light source, wherein the light distribution body has at least two sections arranged one behind the other in a zero-degree direction oriented at least approximately parallel to the optical axis of the lighting unit the end face of the light distribution body facing away from the non-glimmering light source has a depression and wherein each boundary surface of the depression comprises a total reflection surface for the light emitted by the non-glimmering light source.
  • the optical axis of a lighting unit is, for example, the geometric center line of the light emitted by the lighting unit.
  • the light source is arranged in the center.
  • the intensity of the light in the individual segments of the full circle is plotted in this diagram.
  • the lighting unit is this usually shown in a preferred position in the diagram.
  • the portion of the optical axis oriented in the emission direction of the light source is drawn in the zero-degree direction of the diagram.
  • the zero-degree direction of the lighting unit is the direction emanating from the light source, which is oriented at least approximately parallel to the optical axis.
  • From the EP 1 255 132 A1 is a light unit with a light-emitting diode known.
  • the light distribution body is placed on the light emitting diode, wherein the gap between the two bodies can be filled with transparent material. When passing through the different materials, a part of the light is absorbed. The light is deflected by 90 degrees.
  • a flat reflector with a large diameter is required.
  • the present invention is therefore based on the problem to develop a compact lighting unit with a high optical efficiency.
  • the light distribution body is part of the light emitting diode.
  • the section of the light distribution body resting against the non-glimmering light source has as an envelope an ellipse section at least in a sectional plane which comprises the optical axis. At least one major half-axis of this ellipse is offset in the zero-degree direction from the non-glowing light source.
  • the radius of the semi-circle at the end of the semi-major axis is between 30% and 90% of the length of the semi-major axis.
  • the FIG. 1 shows a wire model of a light-emitting diode (20) as an example of a lighting unit (10).
  • the light-emitting diode (20) comprises a non-glimmering light source (21), for example a light-emitting chip (21) and a light distribution body (31).
  • the electrical connections of the light-emitting diode (20) are not shown here.
  • FIG. 2 is a section through this light emitting diode (20), wherein the sectional plane of this representation, the optical axis (5).
  • the optical axis (5) of the lighting unit (10), for example, is aligned normal to the light-emitting chip (21) and penetrates the light distribution body (31).
  • the latter is arranged rotationally symmetrical to the optical axis (5) in this embodiment. It can also be square, rectangular, elliptical, etc. formed in the front view.
  • the light source is arranged in the center, so that the zero-degree direction (2) originates at the light-emitting chip (21). It is oriented here parallel to the optical axis (5) in the direction of the end face (43) of the light distribution body (31), which faces away from the light-emitting chip (21).
  • the light-emitting chip (21) is in the Figures 1 and 2 embedded in the in the lower region of the Lichtverteil stressess (31), such that the light distribution body (31) bears against and surrounds the light-emitting chip (21).
  • the light distribution body (31) has along the optical axis (5) above the non-glimmering light source (21) e.g. a length of 3 millimeters. Its maximum diameter in a plane normal to the optical axis (5) is for example 5 millimeters. The length of the Lichtverteil stressess (31) is thus less than 70% of its maximum diameter in this embodiment.
  • the light distribution body (31) may have greater or smaller than the dimensions mentioned. Thus, the diameter of the light distribution body (31) may be e.g. between 3 millimeters and 8 millimeters.
  • the light distribution body (31) comprises two sections (32, 42) of at least approximately the same length which are arranged one behind the other in the zero-degree direction (2) and are interconnected by means of a transition region (61) formed as a constriction (62).
  • the Indian FIG. 1 illustrated lower portion (32) has at least approximately the shape of a Halbellipsoiden (33) whose center and section plane is normal to the optical axis (5).
  • On the lower portion (32) sits as upper portion (42), for example, a truncated cone (44), which widens in the zero-degree direction (2).
  • the end face (43) of the Lichtverteil emotionss (31) has a central recess (49).
  • the diameter of the constriction (62) in this embodiment is 45% of the maximum diameter of the Lichtverteil emotionss (31).
  • the half-ellipsoid (33) is shown as a semi-ellipse (34).
  • the here horizontal central axis of the half ellipse (34) is formed in this embodiment by two mutually aligned large semi-axes (36), of which in the FIG. 2 only one shown is.
  • These large semiaxes (36) lie, for example, parallel to the light-emitting chip (21) and are offset from the light-emitting chip (21) by, for example, 1% of the diameter of the light distribution body (31) in the zero-degree direction (2).
  • the imaginary small semi-axis of the half ellipse (34) lies on the optical axis (5).
  • the radius of the Schmieg Vietnamese semi-axes (36) is for example between 40% and 90% of the length of the major half-axes (36) of the semi-ellipse (34). In the presentation of the FIG. 2 the radius is 60% of this length.
  • the half ellipse (34) may have the shape of an oval.
  • the Schmieg Vietnamese then affects the Halbellipse (34) along a quarter circle.
  • the line delimiting the lower portion (32) may also comprise a portion of a semi-ellipse (34), for example a light distribution body (31) which is a segment of a body rotationally symmetrical to the optical axis (5).
  • the half ellipse (34) is e.g. tangentially in the example formed as a groove throat constriction (62). Their radius is e.g. 2% of the length of the semi-ellipse (34).
  • the maximum diameter of the truncated cone (44) is for example 90% of the maximum diameter of the Lichtverteil stresses (31).
  • Its lateral surface (46) has an upper (47) and a lower portion (48).
  • the lateral surface (46) is inclined here by 20 degrees to the optical axis (5).
  • the length of this region (47), measured parallel to the optical axis (5), is for example 35% of the length of the Lichtverteil stressess (31).
  • the inclination of the lateral surface (46) to the optical axis (5) 60 degrees.
  • the lateral surface (46) can also be constructed in steps. The steps then include, for example, a plurality of surfaces offset from one another and inclined at 20 degrees to the optical axis.
  • the depression (49) of the light-emitting chip (21) facing away from the end face (43) is funnel-shaped and tapers in the direction of the light-emitting chip (21). She runs to a peak (52). Its depth is for example 48% of the length of Lichtverteilianus (31). The largest diameter of the recess (49) in this embodiment is 80% of the maximum diameter of Lichtverteil stressess (31).
  • the generatrix of the boundary surface (51) of the recess (49) is a parabola in this embodiment, cf. FIG. 2 , The focal point of the parabola lies here in, for example, the light-emitting chip (21) assumed to be punctiform. Instead of a parabola, the generatrix of the depression (49) can also be another continuous or sectionally continuous geometric curve.
  • the production of the light emitting diode (20) takes place, for example by injection molding in two steps.
  • the material used in the injection molding process in both steps is, for example, a highly transparent thermoplastic, for example modified polymethyl methacrylimide (PMMI), polysulfone (PSU), silicone, etc.
  • PMMI modified polymethyl methacrylimide
  • PSU polysulfone
  • silicone etc.
  • the light-emitting chip (21) is surrounded by an electronic protective device, not shown here.
  • this is then overmolded to form the Lichtverteil stressess (31).
  • the light-emitting diode (20) can also be produced in a single work step.
  • the shape the surface of Lichtverteil emotionss (31) are additionally changed by means of a forming process.
  • the light emitting chip (21) which is assumed to be punctiform, emits light as a Lambertian radiator at least approximately into a half space.
  • the FIG. 2 By way of example, individual light beams (82-86) offset by 15 degrees are shown.
  • Light (82-84) emitted at an angle between, for example, 85 degrees and 35 degrees to the optical axis (5) strikes the interface (35) of the semi-ellipsoid (33).
  • the angle of 85 degrees is the angle of the imaginary ray of light that passes through the center (38) of Schmiegnikes.
  • the light (82-84) with the normal at the point of impact includes an angle smaller than the critical angle of total reflection.
  • This critical angle is here, for example, 43 degrees.
  • the light (82-84) passes through the interface (35).
  • the light (82 - 84) is broken away from the solder.
  • the refractive index is 1.635.
  • the light emitted from the light-emitting chip (21) in the aforementioned angular segment now exits in an angular segment of, for example, 62 degrees to 85 degrees to the optical axis (5) into the environment (1).
  • the boundary surface (35) of the semi-ellipsoid (33) thus acts as a converging lens for the light emitted by the light-emitting chip (21).
  • a polarized light distribution diagram, cf. FIG. 3 results in this segment, a high light intensity.
  • the interface (35) of the hemi-ellipsoid (33) may be designed in the manner of a Fresnel lens.
  • it may comprise individual, designed as Fresnel elements circumferential rings.
  • Theoretical envelope of such a Fresnel lens is the above-described condenser lens.
  • the light (85, 86) impinges on this boundary surface (51) at an angle to the normal at the point of impact that is greater than the critical angle of total reflection.
  • the boundary surface (51) forms for the incident light (85, 86) a total reflection surface (91) at which the incident light (85, 86) is reflected in the direction of the lateral surface (46).
  • a small portion of the light emitted by the light-emitting chip (21) passes through the tip (52) of the depression (49) into the environment (1).
  • the total reflection surface (91) may for example be composed of individual surface elements.
  • the connecting line of the surface element to the light-emitting chip (21) then encloses with the normal in this surface element an angle which is greater than the critical angle of total reflection.
  • the boundary surface (51) of the recess (49) may also be mirrored. It can be larger than the total reflection area (91).
  • the light (85, 86) reflected at the total reflection surface (91) is at least approximately parallel to one another in this exemplary embodiment. It impinges on the lateral surface (46) at an angle to the normal at the point of impact which is smaller than the critical angle of total reflection. When passing through the lateral surface (46), which forms a refraction surface (93), it is refracted away from the solder. In the exemplary embodiment shown here, the light (85, 86) enters at an angle of 75 degrees to the optical axis (5) Environment (1).
  • the lateral surface (46) can also be arranged such that the reflected light (85, 86) penetrates it without refraction.
  • the light emitted by the light-emitting chip (21) is deflected.
  • the maximum of the light intensity is for example in a range of 75 degrees to the optical axis (5). Due to the homogeneous material of the Lichtverteil stressess (31) and the low refractive losses, the lighting unit described here (10) has a high efficiency.
  • the transition region (61) between the lower section (32) and the upper section (42) of the light distribution body (31) is defined, for example, such that a light beam tangent to the transition region (61) is shown in FIG FIG. 2 impinges on the upper end of the boundary surface (51).
  • the imaginary circumferential line at the upper end of the boundary surface (51) is determined, inter alia, by the refractive index and the desired light exit angle of the lower section (32).
  • n is the refractive index of the material of the lower portion (32).
  • the origin of the angle alpha is the point of passage of the light beam through the interface (35) of the lower portion (32).
  • the origin of the critical angle (alpha + x) is the light-emitting chip (21).
  • the limit angle of the boundary surface (51) thus determined also determines the lateral surface (46) of the upper section (42).
  • the FIG. 3 shows the polar light distribution diagram for in the Figures 1 and 2 illustrated light unit (10).
  • Radiant (102) the radiation angles are shown, wherein the upward pointing direction is the zero-degree direction (2).
  • concentric circles (103) are arranged. These show from the center (101) outwardly decreasing light intensity values, for example, in candelas per kilogram.
  • the light emerging from the light distribution body (31) thus has a maximum intensity in a region around 75 degrees on both sides of the zero-degree direction (2). The intensity decreases both at smaller angles and at larger angles.
  • the median plane of the hemi-isoid (33) is displaced away from the light emitting chip (21) in the zero-degree direction (2).
  • the angle of inclination of at least the upper region (47) of the lateral surface (46) to the optical axis (5) can be increased.
  • the median plane of the semiellipsoid (33) can be arranged closer to the light-emitting chip (21) become.
  • the inclination angle, for example, of the upper region (47) of the lateral surface (46) to the optical axis (5) can be reduced.
  • the distance of the center points (38) of the Schmieg Vietnamesee to the light-emitting chip (21) can be made large.
  • the centers (38) of the flywheel circuits can be placed close to the light-emitting chip (21).
  • FIG. 4 a lighting unit (10) with a light emitting diode (20) and a light emitting diode (20) optically downstream reflector (70) is shown.
  • the light-emitting diode (20) largely corresponds to that in the Figures 1 and 2 illustrated light emitting diode (20). In the embodiment shown here, however, the refractive index of the material of the Lichtverteil stressess (31), for example, 1.4.
  • the light (81-87) emerging from the light-emitting diode (20) passes over a segment of 50 degrees to 90 degrees to the optical axis (5).
  • the reflector (70) is concave and constructed, for example, coaxially to the optical axis (5). In its center sits the LED (20). It comprises here two reflection areas (71, 72). An inner cone-shaped region (71) is surrounded by an outer, eg parabolic, region (72). The conical region (71) is inclined here, for example, by 45 degrees to the optical axis (5).
  • the light beam (81) is shown, which passes through the center (38) of the semi-ellipse (34) Schmiegnikes. This light beam (81) strikes normal on the interface (35) and is not broken when passing through the interface (35).
  • the inclination of the light beam (81) exiting into the environment (1) to the optical axis (5) is for example 85 degrees.
  • the light beam (87) is shown, which affects the constriction (62).
  • This light beam (87) is the light beam (87) with the greatest inclination angle with respect to the optical axis (5), which impinges on the total reflection surface (91). It is reflected at the light emitting chip (21) remote end (92) of the total reflection surface (91) in the direction of the lateral surface (46) and penetrates, for example, without refraction, the lateral surface (46).
  • the inclination of the light beam (87) exiting into the environment (1) to the optical axis (5) is for example 90 degrees.
  • this point (89) is a point of a line which, for example, has a constant distance from the light distribution body (31).
  • this line is a circle whose center lies, for example, on the optical axis (5).
  • the transition of the two reflector regions (71, 72) may have a greater distance from the light-emitting diode (20) than the line (89).
  • the individual light beams (85, 86) are now, for example, parallel to one another.
  • the reflector (70) can also be designed with a single conical or a single arched area. Hereby, for example, a diffused portion of the light emitted by the lighting unit (10) can be generated in a targeted manner. It is also conceivable to form the reflector (70) parabolically in the basic form. Pillow-like elevations and / or depressions are then arranged on the reflector surface, for example.
  • the entire light emerging from the light-emitting diode (20) is distributed on a large surface of the reflector (70) and reflected there. Minor inaccuracies of the coating of the reflector (70) do not affect the light emitted by the lighting unit (10).
  • the inserted reflector (70) can thus be manufactured in a diameter range, in which, for example, the coating can be produced safely and accurately.
  • the lighting unit (10) is thus compact and highly efficient.
  • the lighting unit (10) can also be designed such that in a view from the end face (43) of the reflector (70) and / or the Lichtverteilève (31) is a segment of a rotationally symmetrical body. A square, rectangular, etc. limited by a polygon, etc. shape of the Lichtverteil stressess (31) and / or the reflector (70) is conceivable.
  • the light emitting diode (20) may also comprise a plurality of light emitting chips (21).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Claims (12)

  1. Unité lumineuse (10) comportant une diode électroluminescente (20) comprenant au moins une source lumineuse non-rougeoyante (21) et comportant un corps de distribution lumineuse (31) branché optiquement en aval de la source lumineuse non-rougeoyante (21), dans laquelle le corps de distribution lumineuse (31) présente au moins deux portions (32, 42) supérieure et inférieure disposées l'une derrière l'autre dans une direction de degré zéro (2) orientée au moins approximativement parallèlement à l'axe optique (5) de l'unité lumineuse (10), dans laquelle le côté frontal (43) du corps de distribution lumineuse (31) qui se détourne de la source lumineuse non-rougeoyante (21) possède un enfoncement (49) et dans laquelle chaque surface de délimitation (51) de l'enfoncement (49) comprend une surface de réflexion totale (91) de la lumière (81-87) émise par la source lumineuse non-rougeoyante (21),
    caractérisée en ce que
    - le corps de distribution lumineuse (31) fait partie de la diode électroluminescente (20),
    - la portion inférieure (32) du corps de distribution lumineuse (31) reposant sur la source lumineuse non-rougeoyante (21) possède au moins dans un plan sécant, qui englobe l'axe optique (5), une portion d'ellipse en tant qu'enveloppante,
    - au moins un grand demi-axe (36) de cette ellipse est disposé en décalage dans la direction de degré zéro (2) par rapport à la source lumineuse non-rougeoyante (21) et
    - le rayon du cercle osculateur au point d'extrémité (37) du grand demi-axe (36) est compris entre 30% et 90% de la longueur du grand demi-axe (36).
  2. Unité lumineuse selon la revendication 1, caractérisée en ce que le corps de distribution de lumière (31) est symétrique en rotation par rapport à l'axe optique (5) de l'unité lumineuse (10).
  3. Unité lumineuse selon la revendication 1, caractérisée en ce que la portion supérieure (42) possède au moins approximativement une forme de tronc de cône, dans laquelle le cône s'élargit dans la direction de degré zéro (2).
  4. Unité lumineuse selon la revendication 1, caractérisée en ce que le plan médian de la demie-ellipse (33) est décalé au moins de 1% du diamètre de la diode électroluminescente (20) par rapport à la source lumineuse non-rougeoyante (21).
  5. Unité lumineuse selon la revendication 1, caractérisée en ce que la longueur du corps de distribution de lumière (31) de la diode électroluminescente (20) s'élève au maximum à 70% de son diamètre au dessus de la source lumineuse non-rougeoyante (21).
  6. Unité lumineuse selon la revendication 1, caractérisée en ce que le diamètre du corps de distribution lumineuse (31) est inférieur à 8 millimètres.
  7. Unité lumineuse selon la revendication 1, caractérisée en ce que au moins une surface de réfraction (93) est branchée optiquement en aval de la surface de réflexion totale (91).
  8. Unité lumineuse selon la revendication 1, caractérisée en ce que un réflecteur (70) est branché optiquement en aval de la diode électroluminescente (20).
  9. Unité lumineuse selon la revendication 8, caractérisée en ce que le réflecteur (70) comprend une région de forme conique (71) et une région à configuration parabolique (72).
  10. Unité lumineuse selon la revendication 8, caractérisée en ce que les rayons lumineux (81), sur lesquels se trouvent les centres (38) des cercles osculateurs, et les rayons lumineux (87), qui sont réfléchis sur les extrémités (92) de la surface de réflexion totale (91) éloignées de la puce (21) émettrice de lumière, se coupent en au moins une ligne (89).
  11. Unité lumineuse selon les revendications 2 et 10, caractérisée en ce que la ligne (89) est un cercle, dans laquelle le centre du cercle est situé sur l'axe optique (5).
  12. Unité lumineuse selon les revendications 9 et 11, caractérisée en ce que la transition entre la partie conique (71) et la partie parabolique (72) du réflecteur (70) est située au moins approximativement sur ce cercle.
EP07013173A 2006-07-20 2007-07-05 Unité d'éclairage dotée d'une diode à corps de changement de direction de la lumière intégré Expired - Fee Related EP1881258B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006034070A DE102006034070A1 (de) 2006-07-20 2006-07-20 Leuchteinheit mit einer Leuchtdiode mit integriertem Lichtumlenkkörper

Publications (2)

Publication Number Publication Date
EP1881258A1 EP1881258A1 (fr) 2008-01-23
EP1881258B1 true EP1881258B1 (fr) 2009-04-22

Family

ID=38566292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07013173A Expired - Fee Related EP1881258B1 (fr) 2006-07-20 2007-07-05 Unité d'éclairage dotée d'une diode à corps de changement de direction de la lumière intégré

Country Status (4)

Country Link
US (1) US20080019136A1 (fr)
EP (1) EP1881258B1 (fr)
CN (1) CN101109489A (fr)
DE (2) DE102006034070A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005552A1 (de) 2009-01-20 2010-07-29 Odelo Gmbh Vorrichtung und Verfahren zur Prüfung der Radialsymmetrie der Abstrahlung seitlich emittierender Leuchtdioden (LEDs)
DE102009021182A1 (de) * 2009-05-13 2010-11-18 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Straßen
CN102003676B (zh) * 2009-08-28 2012-10-10 鸿富锦精密工业(深圳)有限公司 透镜
TWI458916B (zh) * 2009-09-15 2014-11-01 Hon Hai Prec Ind Co Ltd 透鏡
DE102010013820B4 (de) 2010-04-03 2022-10-06 Volkswagen Ag Leuchtenvorrichtung für ein Fahrzeug
US8403530B2 (en) 2010-09-21 2013-03-26 Honeywell International Inc. LED spotlight including elliptical and parabolic reflectors
CN102072458B (zh) * 2010-11-20 2012-08-29 特殊光电科技(中山)有限公司 用于led灯具的透镜
EP2530372A1 (fr) 2011-05-30 2012-12-05 Odelo GmbH Guide optique pour éclairage de véhicule automobile
EP2587120B1 (fr) 2011-10-27 2016-04-13 odelo GmbH Conduit de lumière et vèhicule automobile muni d'un tel conduit de lumière
EP2743572A1 (fr) 2012-12-12 2014-06-18 Odelo GmbH Elément conducteur de lumière avec surface à action optique fabriqués séparément par déformage
SI2743565T1 (sl) 2012-12-17 2016-10-28 Odelo Gmbh Svetilna naprava z vodilnim elementom svetlobe v obliki prsta in pripadajoč reflektor z dvema reflektorskima deloma
EP2824387A1 (fr) 2013-07-08 2015-01-14 Odelo GmbH Elément conducteur de lumière, son procédé de fabrication, ainsi que moyen d'éclairage et lampe de véhicule automobile dotés d'un tel élément conducteur de lumière
CN104344347A (zh) * 2014-10-14 2015-02-11 程灏波 一种基于单颗led立式滑行道边灯的自由曲面透镜
EP3366982B8 (fr) 2017-02-28 2019-08-14 Odelo Otomotiv Aydinlatma Anonim Sirketi Dispositif d'éclairage et phare de véhicule équipé d'un tel dispositif

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774021A (en) * 1972-05-25 1973-11-20 Bell Telephone Labor Inc Light emitting device
US6582103B1 (en) * 1996-12-12 2003-06-24 Teledyne Lighting And Display Products, Inc. Lighting apparatus
US6607286B2 (en) * 2001-05-04 2003-08-19 Lumileds Lighting, U.S., Llc Lens and lens cap with sawtooth portion for light emitting diode
US6674096B2 (en) * 2001-06-08 2004-01-06 Gelcore Llc Light-emitting diode (LED) package and packaging method for shaping the external light intensity distribution
AU2002365761A1 (en) * 2001-11-16 2003-06-17 Toyoda Gosei Co., Ltd. Light-emitting diode, led light, and light apparatus
US6679621B2 (en) * 2002-06-24 2004-01-20 Lumileds Lighting U.S., Llc Side emitting LED and lens
JP4153370B2 (ja) * 2002-07-04 2008-09-24 株式会社小糸製作所 車両用灯具
JP2004047220A (ja) * 2002-07-10 2004-02-12 Koito Mfg Co Ltd 車両用灯具
US6851835B2 (en) * 2002-12-17 2005-02-08 Whelen Engineering Company, Inc. Large area shallow-depth full-fill LED light assembly
US6803607B1 (en) * 2003-06-13 2004-10-12 Cotco Holdings Limited Surface mountable light emitting device
EP1660918B1 (fr) * 2003-07-29 2017-03-15 Light Engine Limited Luminaires a emission de lumiere peripherique et elements de lentilles formes par des profils de balayage a axe transversal
US7172324B2 (en) * 2004-01-05 2007-02-06 Leotek Electronics Corporation Internally illuminated light panel with LED modules having light redirecting devices
KR100586965B1 (ko) * 2004-05-27 2006-06-08 삼성전기주식회사 발광 다이오드 소자
US7083313B2 (en) * 2004-06-28 2006-08-01 Whelen Engineering Company, Inc. Side-emitting collimator
US7118262B2 (en) * 2004-07-23 2006-10-10 Cree, Inc. Reflective optical elements for semiconductor light emitting devices
TWI249257B (en) * 2004-09-24 2006-02-11 Epistar Corp Illumination apparatus
KR100677135B1 (ko) * 2004-09-25 2007-02-02 삼성전자주식회사 측 발광 디바이스 및 이를 광원으로 사용하는 백라이트유닛 및 이를 채용한 액정표시장치
KR100688767B1 (ko) * 2004-10-15 2007-02-28 삼성전기주식회사 Led 광원용 렌즈
TWI260380B (en) * 2005-08-05 2006-08-21 Chi Lin Technology Co Ltd Lens for LED
US7254309B1 (en) * 2006-07-14 2007-08-07 Coretronic Corporation Side emitting LED and lens

Also Published As

Publication number Publication date
DE502007000631D1 (de) 2009-06-04
CN101109489A (zh) 2008-01-23
US20080019136A1 (en) 2008-01-24
EP1881258A1 (fr) 2008-01-23
DE102006034070A1 (de) 2008-01-31

Similar Documents

Publication Publication Date Title
EP1881258B1 (fr) Unité d'éclairage dotée d'une diode à corps de changement de direction de la lumière intégré
DE102004042125B4 (de) Leuchteinheit mit einer Vielzahl gekrümmter Flächenelemente
DE4342928C2 (de) Relflektoranordnung mit einer darin angeordneten Lichtquelle für eine Fahrzeugleuchte
DE102004020708B4 (de) Projektoroptikgruppe zur Bildung und Projektion einer Richtcharakteristik mit hohem Gradienten für Fahrzeuge
DE102008001164B4 (de) Linsenanordnung
EP1818599B1 (fr) Feu de croisement, produisant une coupure à contraste importante
DE10051464A1 (de) Stufenlinse
EP1886173A1 (fr) Dispositif d'eclairage
DE102006044641A1 (de) Leuchteinheit mit Leuchtdiode, Lichtleitkörper und Sekundärlinse
EP1818600B1 (fr) Feu de croisement doté d'une production d'un point chaud
DE102011085315A1 (de) Scheinwerferprojektionsmodul für ein Kraftfahrzeug
DE102013212355B4 (de) Kraftfahrzeugbeleuchtungseinrichtung mit einem eine Einkoppeloptik und eine Transport- und Umformoptik aufweisenden Lichtleiter
DE112016000316B4 (de) Optoelektronisches Bauelement
DE10340039B4 (de) Beleuchtungseinheit mit Lichtquelle und dieser nachgeschaltetem transparentem Lichtleitkörper
DE102008002025B4 (de) LED-Projektionsoptikbaugruppe mit erhöhtem Wirkungsgrad
WO2017202670A1 (fr) Lentilles et éclairage doté d'une telle lentille
EP1577608A2 (fr) Luminaire avec une structure optique pour influencer le rayonnement
EP3181988A1 (fr) Homogénéisateur
EP2233820B1 (fr) Dispositif d'éclairage comprenant une source lumineuse à plusieurs chips LEDs, un réflecteur conique et une lentille mobile
DE202006020378U1 (de) LED-Beleuchtungsmodul
DE112013006624T5 (de) Beleuchtungsvorrichtung
DE102007038205B4 (de) Leuchte mit Lichtleiterplatte
DE102017125212B4 (de) Linse und leuchtmodul
EP2435751B1 (fr) Lampe électrique
DE102018128124A1 (de) Optik

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080710

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: G.L.I. GLOBAL LIGHT INDUSTRIES GMBH

Owner name: SCHEFENACKER VISION SYSTEMS GERMANY GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHEFENACKER VISION SYSTEMS GERMANY GMBH

Owner name: ODELO LED GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ODELO GMBH

Owner name: ODELO LED GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 502007000631

Country of ref document: DE

Date of ref document: 20090604

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007000631

Country of ref document: DE

Representative=s name: PATENTANWALTSKANZLEI MEYER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007000631

Country of ref document: DE

Owner name: ODELO LED GMBH, DE

Free format text: FORMER OWNER: ODELO GMBH, ODELO LED GMBH, , DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007000631

Country of ref document: DE

Owner name: ODELO GMBH, DE

Free format text: FORMER OWNER: ODELO GMBH, ODELO LED GMBH, , DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007000631

Country of ref document: DE

Owner name: ODELO GMBH, DE

Free format text: FORMER OWNERS: ODELO GMBH, 71409 SCHWAIKHEIM, DE; ODELO LED GMBH, 47475 KAMP-LINTFORT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007000631

Country of ref document: DE

Owner name: ODELO LED GMBH, DE

Free format text: FORMER OWNERS: ODELO GMBH, 71409 SCHWAIKHEIM, DE; ODELO LED GMBH, 47475 KAMP-LINTFORT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007000631

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21K0007000000

Ipc: F21K0099000000

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200721

Year of fee payment: 14

Ref country code: FR

Payment date: 20200722

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200724

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007000631

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731