EP1879839A1 - Method and device for producing acetylene and synthesis gas by rapidly mixing the reactants - Google Patents

Method and device for producing acetylene and synthesis gas by rapidly mixing the reactants

Info

Publication number
EP1879839A1
EP1879839A1 EP06754796A EP06754796A EP1879839A1 EP 1879839 A1 EP1879839 A1 EP 1879839A1 EP 06754796 A EP06754796 A EP 06754796A EP 06754796 A EP06754796 A EP 06754796A EP 1879839 A1 EP1879839 A1 EP 1879839A1
Authority
EP
European Patent Office
Prior art keywords
burner
acetylene
mixed
holes
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06754796A
Other languages
German (de)
French (fr)
Inventor
Bernd Bartenbach
Kai Rainer Ehrhardt
Arne Hoffmann
Frank KLEINE JÄGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1879839A1 publication Critical patent/EP1879839A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • C01B3/363Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents characterised by the burner used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/78Processes with partial combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components

Definitions

  • the present invention relates to an improved process for the production of acetylene and synthesis gas by thermal partial oxidation in a reactor having a burner with feed-through holes and an apparatus for carrying out the method according to the invention.
  • mixers / burners / firebox / quench combinations customarily used for the BASF Sachsse-Bartholome acetylene process - referred to below as the "reactor" in simplified terms - are described, for example, in DE-PS 875 198 ,
  • the acetylene burners used in today's production scale are characterized by their cylindrical geometry of the combustion chamber (reactor).
  • the starting materials are premixed via a diffuser and fed largely without back-mixing to the burner block, which preferably has hexagonal through-bores.
  • the burner block which preferably has hexagonal through-bores.
  • the subsequent furnace in which the flame of the acetylene-forming partial oxidation reaction is stabilized, is also of cylindrical cross-section and has the appearance of a short tube (of, for example, 533 mm diameter and 400 mm length).
  • quench nozzles are installed on one or more quench distributor rings outside its circumference, which contain the quench medium, e.g. Spray water or oil, with or without the aid of an atomizing medium, and spray approximately perpendicularly to the main flow direction of the reaction gases leaving the combustion chamber.
  • This direct quench has the task of cooling the reacting flow extremely rapidly so that subsequent reactions, i. in particular the degradation of formed acetylene, be frozen.
  • the range and distribution of the quenching beams is ideally dimensioned so that the most homogeneous possible temperature distribution is achieved in the shortest possible time.
  • the premixing of the starting materials in the mixing diffuser takes place in a relatively large volume and under high temperatures. Due to an increased proportion of reactive feedstock components, catalytically active particles and surfaces, e.g. Rust, coke, etc., large residence time distributions e.g. backmixing zones and stagnation point flows may cause induction times for the ignition of the mixture to be exceeded, thereby compromising the economics and effectiveness of the process. Furthermore, the introduction of additional devices such as pilot burner designed as hardly feasible, since due to the resulting flow disturbances also an exceeding of the induction times for the ignition of the mixture is to be feared.
  • a process for the production of acetylene and synthesis gas by thermal partial oxidation was found in a reactor having a through-bore burner, which is characterized in that the reactants to be reacted only immediately before the flame reaction zone in the feedthrough holes of the burner mixing rapidly and completely, wherein in the mixing zone within the feedthrough bores an average flow rate is set which exceeds the flame propagation velocities under the given reaction conditions. Furthermore, an apparatus for carrying out the method according to the invention was found.
  • the unwanted fore and backflashes described can be avoided according to the invention by not carrying out the premixing of the starting materials as usual in a large volume (in the mixing diffuser) at rather low flow velocities, but advantageously adding this premix to the already large number of units that are present anyway
  • the through-bores generally have the task of stabilizing the flame in a locally defined manner Measure, the mixing is divided into many small volumes and it forms in the feedthrough holes from a forward flow, which has a high speed. In the highly turbulent flow present there, the mixture can be produced easily and quickly by means of suitable mixing geometries, at the same time avoiding a flashback due to the far higher flow velocity in the feedthrough bores compared with the flame speed.
  • mixing-in geometries can easily be determined by the person skilled in the art with knowledge of this invention.
  • mixing nozzles that work according to the venturi principle or the principle of the static mixing tube are very well suited for this purpose.
  • Splitting the premixing task also provides ease of transferability and applicability in the standard scaling methods for acetylene torches and reactors.
  • the burners of the BASF Sachsse-Bartholome acetylene process are usually water-cooled cylindrical blocks, which have a large number of likewise cylindrical bores. Due to the resulting obstruction stabilization of the flame is supported so that forms an ideal flat flame in the furnace above the burner plate.
  • the number of holes and their diameter and spacing are chosen at a given burner capacity so that the flow velocity in the holes above the setback - but below a critical Abblas familia.
  • the mixing of the starting materials only takes place immediately before the flame reaction zone in the feedthrough bores and not in a diffuser, as hitherto.
  • the volume of a burner used on a production scale is about 0.6 m 3 while the volume of a mixing element according to the invention is lower by about 3 orders of magnitude.
  • reaction mixtures can be premixed whose ignition delay time is in the millisecond range.
  • the mixing element is characterized by a largely backmixing-free and rapid mixing of the two starting materials while minimizing the pressure loss occurring in this case.
  • the measure makes it possible to avoid stoppages, torch activities and associated emissions and opens up possibilities of raw synthesis gas, (crude) hydrogen or higher fractions (> 10% by volume) of ethane, ethylene or liquid gases (propane, Butane, etc.), to increase the preheat temperatures to over 600X and the reactor pressure to above 1.3 bar, which would otherwise give rise to pre-ignition.
  • This can be realized either yield increases or throughput increases in existing processes.
  • the heat-releasing oxidation reaction is directed to the unsuitable as the acetylene precursor hydrogen and the carbon source for acetylene formation, ie the feed hydrocarbon, spared.
  • the pathway leading to acetylene formation is more pyrolytic and utilizes feedstock hydrocarbon cracking reactions induced by this in-situ heat release.
  • a burner (1) is shown, in which via line (2) of a feedstock is supplied. About the inserted by means of an intermediate flange device part (3) is fed through line (4) of the second feedstock.
  • the two starting materials are by a not shown mixer (5) in the
  • the invention can be applied to all partially oxidative acetylene processes, but especially the BASF acetylene process and its various embodiments. Likewise, a combination with the methods disclosed in the patent applications DE 103 13 527 A1, DE 103 13 528 A1, DE 103 13 529 A1 is expressly advantageous, and reference is hereby made to this.
  • the invention expressly differs from processes in which the premix in the reactor, combustion chamber or combustion chamber in a diffusion flame, with turbulent diffused Mischvor- running temporally and spatially parallel to the combustion reaction is done, as it is disclosed, for example, in DE 20 52 543 C3, especially since it completely avoids the disadvantages mentioned therein of a shift in the yield of acetylene to increased ethylene contents.
  • the retrofittability of existing systems and methods by means of a simple device and thus their transformation to the method according to the invention can be regarded as particularly advantageous.
  • Suitable starting materials are in principle all customary for the production of acetylene and / or synthesis gas hydrocarbons in question, such as. Methane, higher saturated or unsaturated hydrocarbons and biofuels which are gaseous at the selected preheating temperature.
  • the process principle according to the invention can also be used for other processes for the production of acetylene and synthesis gas having the stated advantages.
  • the process of the invention enables an economical production of acetylene and synthesis gas in high yields.
  • the time for premixing the two reactants is significantly reduced, so that high preheating temperatures or pressures of the starting materials and higher proportions of reactive components can be realized without causing pre-ignition in the mixing chamber, thereby further increasing the effectiveness of the process.
  • An additional advantage of the method according to the invention is that in the region of the diffuser, which in the conventional burners accomplishes the mixture and mixture feed to the burner block, the incorporation of flow disturbing parts is no longer prohibited, since the increased in the region of separation vortices local residence time of the Gases can no longer induce pre-ignition. It is thus advantageously possible to realize internals such as pilot burners, which were hitherto unusual in acetylene burners, alternative flame monitoring systems, measuring probes or cooling water feeds, eg for supplying burner types according to DE 103 13 528 A1. The method can be advantageously realized even with existing burners by a simple conversion cost and with little procedural effort. Examples:
  • gas-fired applications typically achieve product gas compositions containing 8.5% by volume of acetylene.
  • a feedstock gas is reacted according to the invention, which contains 6 vol% ethane in addition to natural gas.
  • concentrations of acetylene can be increased to 9% by volume in the cracking gas.
  • Acetylene concentration in the cleavage gas to be increased to over 9.5% acetylene, which means a further increase in yield.

Abstract

The invention relates to a method for producing acetylene and synthesis gas by partial thermal oxidation in a reactor comprising a burner provided with boreholes. According to said method, reactants are rapidly and thoroughly mixed only directly in front of the flame reaction zone, in the boreholes of the burner. An average flow speed is adjusted in the mixing region inside the boreholes, such that it exceeds the flame propagation speeds under the defined reaction conditions.

Description

Verfahren und Vorrichtung zur Herstellung von Acetylen und Synthesegas durch schnelle Mischung der ReaktandenProcess and apparatus for the production of acetylene and synthesis gas by rapid mixing of the reactants
Beschreibungdescription
Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Acetylen und Synthesegas durch thermische partielle Oxidation in einem Reaktor, welcher einen Brenner mit Durchführungsbohrungen aufweist sowie eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens.The present invention relates to an improved process for the production of acetylene and synthesis gas by thermal partial oxidation in a reactor having a burner with feed-through holes and an apparatus for carrying out the method according to the invention.
Die für das BASF-Sachsse-Bartholome-Acetylenverfahren üblicherweise eingesetzten Mischer/Brenner/Feuerraum/Quench-Kombinationen - im folgenden, wenn auf die Kombination bezug genommen wird, vereinfacht als „Reaktor" bezeichnet - sind beispielsweise in der DE-PS 875 198 beschrieben.The mixers / burners / firebox / quench combinations customarily used for the BASF Sachsse-Bartholome acetylene process - referred to below as the "reactor" in simplified terms - are described, for example, in DE-PS 875 198 ,
Die im heutigen Produktionsmaßstab eingesetzten Acetylenbrenner zeichnen sich durch ihre zylinderförmige Geometrie des Feuerraums (Reaktors) aus. Die Einsatzstoffe werden über einen Diffusor vorgemischt und weitgehend rückvermischungsfrei dem Brennerblock zugeführt, der vorzugsweise hexagonal angeordnete Durchführungsboh- rungen aufweist. In einer Ausführungsform sind z.B. 127 Bohrungen ä 27 mm Innendurchmesser hexagonal auf einem kreisförmigen Grundquerschnitt mit Durchmesser von ca. 500 mm angeordnet. Der anschließende Feuerraum, in der die Flamme der acetylenbildenden partiellen Oxidationsreaktion stabilisiert wird, ist ebenfalls von zylindrischem Querschnitt und entspricht im Erscheinungsbild dem eines kurzen Rohres (von z.B. 533 mm Durchmesser und 400 mm Länge). Der gesamte Brenner aus Brennerblock und Feuerraum wird in einen Quenchbehälter größeren Querschnitts über einen Flansch von oben eingehängt. Auf Höhe der Austrittsebene aus dem Feuerraum sind außerhalb von dessen Umfang Quenchdüsen auf einem oder mehreren Quench- verteilerringen installiert, die das Quenchmedium, z.B. Wasser oder Öl, mit oder ohne Zuhilfenahme eines Zerstäubungsmedium zerstäuben und näherungsweise senkrecht zur Hauptströmungsrichtung der den Feuerraum verlassenden Reaktionsgase eindü- sen. Dieser direkte Quench hat die Aufgabe, die reagierende Strömung extrem schnell abzukühlen, so dass Folgereaktionen, d.h. insbesondere der Abbau von gebildetem Acetylen, eingefroren werden. Die Reichweite und Verteilung der Quenchstrahlen ist dabei idealerweise so bemessen, dass eine möglichst homogene Temperaturverteilung in möglichst kurzer Zeit erreicht wird.The acetylene burners used in today's production scale are characterized by their cylindrical geometry of the combustion chamber (reactor). The starting materials are premixed via a diffuser and fed largely without back-mixing to the burner block, which preferably has hexagonal through-bores. In one embodiment, e.g. 127 bores of 27 mm internal diameter arranged hexagonally on a circular base cross-section with a diameter of approx. 500 mm. The subsequent furnace, in which the flame of the acetylene-forming partial oxidation reaction is stabilized, is also of cylindrical cross-section and has the appearance of a short tube (of, for example, 533 mm diameter and 400 mm length). The entire burner of burner block and combustion chamber is suspended in a quench of larger cross-section via a flange from above. At the level of the exit plane from the combustion chamber, quench nozzles are installed on one or more quench distributor rings outside its circumference, which contain the quench medium, e.g. Spray water or oil, with or without the aid of an atomizing medium, and spray approximately perpendicularly to the main flow direction of the reaction gases leaving the combustion chamber. This direct quench has the task of cooling the reacting flow extremely rapidly so that subsequent reactions, i. in particular the degradation of formed acetylene, be frozen. The range and distribution of the quenching beams is ideally dimensioned so that the most homogeneous possible temperature distribution is achieved in the shortest possible time.
Da beim BASF-Sachsse-Bartholome-Acetylenverfahren und ähnlichen thermischen Partialoxidationen die Einsatzstoffe (Kohlenwasserstoffe bzw. Sauerstoff) vorgeheizt und vorgemischt werden, entsteht dadurch die Gefahr der Vor- und Rückzündung aufgrund der, auch zeitlich, begrenzten thermischen Stabilität der Mischungen. Die daraus resultierende Folgen sind gemeinhin bekannt, es können sich Betriebsunterbrechun- gen und Fackeltätigkeit mit Emissionsgefahren ergeben, besonders bei höheren Anteilen reaktiver Einsatzstoffkomponenten wie Wasserstoff oder Flüssiggas (LPG). Gerade der Einsatz dieser Einsatzstoffkomponenten ist jedoch wünschenswert, da sie Ausbeute- und/oder Kapazitätssteigerungen ermöglichen können.Since the constituents (hydrocarbons or oxygen) are preheated and premixed in the BASF Sachsse-Bartholome acetylene process and similar thermal partial oxidations, the risk of pre-ignition and restrike arises as a result of the limited thermal stability of the mixtures. The resulting consequences are generally known, and business interruptions can occur. emissions and flaring, especially at higher levels of reactive feedstock components such as hydrogen or LPG. However, it is precisely the use of these feedstock components that is desirable, since they can enable increases in yield and / or capacity.
Bei den bekannten Verfahren erfolgt die Vormischung der Einsatzstoffe in dem Misch- diffusor in einem relativ großen Volumen und unter hohe Temperaturen. Aufgrund eines erhöhten Anteils reaktiver Einsatzstoffkomponenten, katalytisch wirkender Partikel und Oberflächen, z.B. Rost, Koks, etc., großer Verweilzeitverteilungen z.B. durch Rückvermischungszonen und Staupunktströmungen kann es passieren, dass die Induktionszeiten für die Zündung des Gemisches überschritten werden, wodurch die Wirtschaftlichkeit und Effektivität des Verfahrens beeinträchtigt wird. Weiterhin gestaltet sich das Einbringen zusätzlicher Vorrichtungen wie beispielsweise Zündbrenner als kaum machbar, da aufgrund der damit entstehenden Strömungsstörungen ebenfalls eine Überschreitung der Induktionszeiten für die Zündung des Gemisches zu befürchten ist.In the known methods, the premixing of the starting materials in the mixing diffuser takes place in a relatively large volume and under high temperatures. Due to an increased proportion of reactive feedstock components, catalytically active particles and surfaces, e.g. Rust, coke, etc., large residence time distributions e.g. backmixing zones and stagnation point flows may cause induction times for the ignition of the mixture to be exceeded, thereby compromising the economics and effectiveness of the process. Furthermore, the introduction of additional devices such as pilot burner designed as hardly feasible, since due to the resulting flow disturbances also an exceeding of the induction times for the ignition of the mixture is to be feared.
Es stellte sich somit die Aufgabe, ein verbessertes Verfahren zur Herstellung von Ace- tylen und Synthesegas zu finden, welches die genannten Nachteile vermeidet und wel- ches weiterhin höhere Vorwärmtemperaturen und den Einsatz höherer Drücke ermöglicht. Hierbei sollte dieses Verfahren leicht und wirtschaftlich realisiert werden können, wobei es auch einfach bei bereits vorhandenen, konventionellen Brennern durchgeführt werden sollte.It was therefore the object to find an improved process for the preparation of acetylene and synthesis gas, which avoids the disadvantages mentioned and which also allows higher preheating temperatures and the use of higher pressures. In this case, this method should be easy and economical to implement, and it should also be easily performed on existing, conventional burners.
Demgemäß wurde ein Verfahren zur Herstellung von Acetylen und Synthesegas durch thermische partielle Oxidation in einem Reaktor, welcher einen Brenner mit Durchführungsbohrungen aufweist, gefunden, welches dadurch gekennzeichnet ist, dass man die zur Reaktion zu bringenden Einsatzstoffe erst unmittelbar vor der Flammenreaktionszone in den Durchführungsbohrungen des Brenners schnell und vollständig ver- mischt, wobei man in der Mischzone innerhalb der Durchführungsbohrungen eine mittlere Strömungsgeschwindigkeiten einstellt, welche die Flammenausbreitungsgeschwindigkeiten bei den gegebenen Reaktionsbedingungen überschreitet. Weiterhin wurde eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens gefunden.Accordingly, a process for the production of acetylene and synthesis gas by thermal partial oxidation was found in a reactor having a through-bore burner, which is characterized in that the reactants to be reacted only immediately before the flame reaction zone in the feedthrough holes of the burner mixing rapidly and completely, wherein in the mixing zone within the feedthrough bores an average flow rate is set which exceeds the flame propagation velocities under the given reaction conditions. Furthermore, an apparatus for carrying out the method according to the invention was found.
Die beschriebenen unerwünschten Vor- und Rückzündungen können erfindungsgemäß dadurch vermieden werden, dass man die Vormischung der Einsatzstoffe nicht wie bisher üblich in einem großen Volumen (im Mischdiffusor) bei eher geringen Strömungsgeschwindigkeiten durchführt, sondern diese Vormischung vorteilhafterweise in die sowieso typischerweise schon vorhandene große Anzahl von Brennerblockbohrungen („Durchführungsbohrungen") verlegt. Die Durchführungsbohrungen haben generell die Aufgabe, die Flamme lokal definiert zu stabilisieren. Durch die erfindungsgemäße Maßnahme wird die Vermischung in viele kleine Volumina verteilt und es bildet sich in den Durchführungsbohrungen eine vorwärts gerichtete Strömung aus, welche eine hohe Geschwindigkeit aufweist. In der dort vorliegenden hochturbulenten Strömung ist durch geeignete Einmischgeometrien die Mischung leicht und schnell herzustellen, wobei gleichzeitig ein Flammenrückschlag durch die gegenüber der Flammengeschwindigkeit weit höhere Strömungsgeschwindigkeit in den Durchführungsbohrungen vermieden wird. Die Ausgestaltung der Einmischgeometrien kann vom Fachmann in Kenntnis dieser Erfindung leicht ermittelt werden. Gut eignen sich hierfür beispielsweise Mischdüsen, die nach dem Venturiprinzip oder dem Prinzip des statischen Misch- rohres arbeiten. Ein Aufteilen der Vormischaufgabe bietet auch bei den üblichen Skalierungsmethoden für Acetylenbrenner und -reaktoren eine einfache Übertragbarkeit und Anwendbarkeit.The unwanted fore and backflashes described can be avoided according to the invention by not carrying out the premixing of the starting materials as usual in a large volume (in the mixing diffuser) at rather low flow velocities, but advantageously adding this premix to the already large number of units that are present anyway The through-bores generally have the task of stabilizing the flame in a locally defined manner Measure, the mixing is divided into many small volumes and it forms in the feedthrough holes from a forward flow, which has a high speed. In the highly turbulent flow present there, the mixture can be produced easily and quickly by means of suitable mixing geometries, at the same time avoiding a flashback due to the far higher flow velocity in the feedthrough bores compared with the flame speed. The configuration of the mixing-in geometries can easily be determined by the person skilled in the art with knowledge of this invention. For example, mixing nozzles that work according to the venturi principle or the principle of the static mixing tube are very well suited for this purpose. Splitting the premixing task also provides ease of transferability and applicability in the standard scaling methods for acetylene torches and reactors.
Die Brenner des BASF-Sachsse-Bartholome-Acetylenverfahrens sind üblicherweise wassergekühlte zylindrische Blöcke, die eine Vielzahl ebenfalls zylindrischer Bohrungen besitzen. Aufgrund der hierdurch entstehenden Versperrungen wird die Stabilisierung der Flamme unterstützt so dass sich im Feuerraum über der Brennerplatte eine idealerweise ebene Flamme ausbildet. Die Anzahl der Bohrungen sowie deren Durchmesser und Abstand werden bei gegebener Brennerkapazität dabei so gewählt, dass die Strömungsgeschwindigkeit in den Bohrungen oberhalb der Rückschlag - aber unterhalb einer kritischen Abblasgeschwindigkeit liegt.The burners of the BASF Sachsse-Bartholome acetylene process are usually water-cooled cylindrical blocks, which have a large number of likewise cylindrical bores. Due to the resulting obstruction stabilization of the flame is supported so that forms an ideal flat flame in the furnace above the burner plate. The number of holes and their diameter and spacing are chosen at a given burner capacity so that the flow velocity in the holes above the setback - but below a critical Abblasgeschwindigkeit.
Erfindungsgemäß erfolgt die Vermischung der Einsatzstoffe erst unmittelbar vor der Flammenreaktionszone in den Durchführungsbohrungen und nicht wie bisher in einem Diffusor. Das Volumen eines im Produktionsmaßstab eingesetzten Brenners liegt etwa bei 0,6m3 während das Volumen eines erfindungsgemäßen Mischelements um ca. 3 Größenordnungen geringer ist.According to the invention, the mixing of the starting materials only takes place immediately before the flame reaction zone in the feedthrough bores and not in a diffuser, as hitherto. The volume of a burner used on a production scale is about 0.6 m 3 while the volume of a mixing element according to the invention is lower by about 3 orders of magnitude.
Hierdurch lassen sich die Verweilzeiten im Mischelement auf 0,001 - 0,005 s reduzie- ren, während sie bei der herkömmlichen Mischung über den Einzeldiffusor bei 0, 1 - 0,3 s liegen. Damit lassen sich Reaktionsgemische vormischen, deren Zündverzugszeit bei im Millisekundenbereich liegt. Das Mischelement ist gekennzeichnet durch eine weitestgehend rückvermischungsfreie und schnelle Vermischung der beiden Einsatzstoffe bei Minimierung des hierbei auftretenden Druckverlusts. Durch entsprechende Auslegung kann auch der Vordruck eines der beiden Einsatzstoffe zur Ansaugung und Mischung nach dem Prinzip eines statischen Mischrohrs verwendet werden.As a result, the residence times in the mixing element can be reduced to 0.001-0.005 s, while in the case of the conventional mixture, they are at 0.1-1.3 s via the individual diffuser. Thus, reaction mixtures can be premixed whose ignition delay time is in the millisecond range. The mixing element is characterized by a largely backmixing-free and rapid mixing of the two starting materials while minimizing the pressure loss occurring in this case. By appropriate design and the form of one of the two starting materials for suction and mixing can be used on the principle of a static mixing tube.
Besonders einfach und vorteilhaft lässt sich eine für die Durchführung des erfindungsgemäßen Verfahrens geeignete Vorrichtung durch Nachrüstung vorhandener Brenner über einen Zwischenflansch zur getrennten Einsatzstoffzufuhr realisieren. Hierbei wird einer der beiden Einsatzstoffe über den bisherigen Vormischdiffusor zugeführt, während der jeweils andere über den Zwischenflansch auf die einzelnen Mischelemente verteilt wird. Liegt einer der beiden Einsatzstoffe bei erhöhtem Druck vor, kann das Einbringen dieses Stoffes durch Querstrahlen erfolgen. Besitzen die beiden Einsatzstoffe nahezu den gleichen Vordruck wird derjenige mit dem höheren Vordruck vorzugsweise über den bisherigen Vormischdiffusor zugeführt, so dass das Mischrohr nach dem Prinzip des statischen Mischers arbeitet. Die Funktion des Mischrohrs übernehmen hierbei die Durchführungsbohrungen des bereits vorhandenen Brennerblocks, so dass dieser geringfügig angepasst in seiner Funktion verbleibt. In beiden Realisierungsvarianten lassen sich durch die Maßnahme Betriebsunterbrechungen, Fackeltätigkeiten und verbundene Emissionen vermeiden und es eröffnen sich Möglichkeiten, Rohsynthesegas, (Roh-)Wasserstoff oder höhere Anteile (> 10 Vol.-%) an Ethan, Ethy- len oder Flüssiggasen (Propan, Butan usw.) einzusetzen bzw. rückzuführen, die Vorheiztemperaturen auf über 600X sowie den Reaktordruck auf über 1 ,3 bar zu erhöhen, die sonst Anlass zu Vorzündungen geben würden. Damit lassen sich entweder Ausbeutesteigerungen oder Durchsatzerhöhungen bei den bestehenden Verfahren realisieren. Für die Rückführung von Wasserstoff oder wasserstoffhaltigen Rohsynthesegasen, welche als Neben- und Koppelprodukte bei allen großtechnisch ausgeübten Acetylenverfahren anfallen, besteht der Vorteil in deren bevorzugter Oxidation, aufgrund der höheren Reaktivität des Wasserstoffs gegenüber dem häufig üblichen Einsatzstoff Methan (aus Erdgas). Damit wird in den partiell oxidativen Verfahren die wärmefreisetzende Oxidationsreaktion auf den als Acetylenvorläufer ungeeigneten Wasserstoff gelenkt und die Kohlenstoffquelle für die Acetylenbildung, d.h. der Einsatzkohlenwasserstoff, geschont. Der zur Acetylenbildung führende Pfad ist eher pyrolytisch geprägt und nutzt Crackreaktionen des Einsatzkohlenwasserstoffs, die durch diese in-situ Wärmefreisetzung induziert werden.It is particularly simple and advantageous to realize a device suitable for carrying out the method according to the invention by retrofitting existing burners via an intermediate flange for the separate feedstock feed. In this case, one of the two feedstocks is fed via the previous premix diffuser, while the other is supplied via the intermediate flange to the individual mixing elements is distributed. If one of the two starting materials is at elevated pressure, the introduction of this substance can take place by transverse blasting. If the two starting materials have almost the same admission pressure, the one with the higher admission pressure is preferably supplied via the previous premixing diffuser, so that the mixing tube works on the principle of the static mixer. The function of the mixing tube in this case take over the lead-through holes of the existing burner block, so that this remains slightly adjusted in its function. In both implementation variants, the measure makes it possible to avoid stoppages, torch activities and associated emissions and opens up possibilities of raw synthesis gas, (crude) hydrogen or higher fractions (> 10% by volume) of ethane, ethylene or liquid gases (propane, Butane, etc.), to increase the preheat temperatures to over 600X and the reactor pressure to above 1.3 bar, which would otherwise give rise to pre-ignition. This can be realized either yield increases or throughput increases in existing processes. For the recycling of hydrogen or hydrogen-containing Rohsynthesegasen incurred as by-products and by-products in all industrially practiced acetylene, there is the advantage in their preferred oxidation, due to the higher reactivity of hydrogen over the common feed methane (natural gas). Thus, in the partially oxidative process, the heat-releasing oxidation reaction is directed to the unsuitable as the acetylene precursor hydrogen and the carbon source for acetylene formation, ie the feed hydrocarbon, spared. The pathway leading to acetylene formation is more pyrolytic and utilizes feedstock hydrocarbon cracking reactions induced by this in-situ heat release.
Die erfindungsgemäße Vorrichtung wird anhand der Figur exemplarisch näher erläutert. Es ist hier ein Brenner (1) dargestellt, in welchen über Leitung (2) der eine Einsatzstoff zugeführt wird. Über das mittels eines Zwischenflansches eingesetzte Vorrichtungsteil (3) wird durch Leitung (4) der zweite Einsatzstoff zugeleitet. Die beiden Einsatzstoffe werden durch einen nicht genauer dargestellten Mischer (5) in denThe device according to the invention will be explained in more detail by way of example with reference to the FIGURE. Here, a burner (1) is shown, in which via line (2) of a feedstock is supplied. About the inserted by means of an intermediate flange device part (3) is fed through line (4) of the second feedstock. The two starting materials are by a not shown mixer (5) in the
Durchführungsbohrungen (6) des Brenners unmittelbar vor Eintritt in die Brennkammer (7) vermischt.Feedthrough holes (6) of the burner immediately before entering the combustion chamber (7) mixed.
Die Erfindung lässt sich auf alle partiell oxidativen Acetylenverfahren, besonders aber das BASF-Acetylenverfahren und seine verschiedenen Ausführungsformen anwenden. Ebenfalls ist eine Kombination mit den in den Patentanmeldungen DE 103 13 527 A1, DE 103 13 528 A1, DE 103 13 529 A1, offenbarten Verfahren ausdrücklich vorteilhaft, und es wird hierauf Bezug genommen.The invention can be applied to all partially oxidative acetylene processes, but especially the BASF acetylene process and its various embodiments. Likewise, a combination with the methods disclosed in the patent applications DE 103 13 527 A1, DE 103 13 528 A1, DE 103 13 529 A1 is expressly advantageous, and reference is hereby made to this.
Die Erfindung unterscheidet sich ausdrücklich von Verfahren, in denen die Vormischung im Reaktor, Brenn- oder Feuerraum in einer Diffusionsflamme, mit zeitlich und örtlich parallel zur Verbrennungsreaktion ablaufenden turbulent diffusiven Mischvor- gangen erfolgt, wie sie z.B. in der DE 20 52 543 C3 offenbart ist, zumal sie die dort genannten Nachteile einer Verschiebung der Ausbeute von Acetylen zu erhöhten Ethy- lenanteilen vollständig vermeidet. Außerdem bleibt hervorzuheben, dass die Nachrüst- barkeit bestehender Anlagen und Verfahren mittels einer einfachen Vorrichtung und damit deren Transformation zum erfindungsgemäßen Verfahren als besonders vorteilhaft angesehen werden kann.The invention expressly differs from processes in which the premix in the reactor, combustion chamber or combustion chamber in a diffusion flame, with turbulent diffused Mischvor- running temporally and spatially parallel to the combustion reaction is done, as it is disclosed, for example, in DE 20 52 543 C3, especially since it completely avoids the disadvantages mentioned therein of a shift in the yield of acetylene to increased ethylene contents. In addition, it should be emphasized that the retrofittability of existing systems and methods by means of a simple device and thus their transformation to the method according to the invention can be regarded as particularly advantageous.
Als Einsatzstoffe kommen grundsätzlich alle zur Acetylen- und/oder Synthesegasherstellung gebräuchlichen Kohlenwasserstoffe in Frage, wie z.B. Methan, höhere gesät- tigte oder ungesättigte Kohlenwasserstoffe sowie Biokraftstoffe, die bei der gewählten Vorwärmtemperatur gasförmig vorliegen.Suitable starting materials are in principle all customary for the production of acetylene and / or synthesis gas hydrocarbons in question, such as. Methane, higher saturated or unsaturated hydrocarbons and biofuels which are gaseous at the selected preheating temperature.
Das erfindungsgemäße Verfahrensprinzip kann auch für andere Verfahren zur Acetylen- und Synthesegasherstellung mit den genannten Vorzügen eingesetzt werden.The process principle according to the invention can also be used for other processes for the production of acetylene and synthesis gas having the stated advantages.
Das erfindungsgemäße Verfahren ermöglicht eine wirtschaftliche Herstellung von Acetylen und Synthesegas in hohen Ausbeuten. Die Zeit zur Vormischung der beiden Reaktionspartner wird deutlich abgesenkt, so dass sich hohe Vorwärmtemperaturen bzw. Drücke der Einsatzstoffe sowie höhere Anteile reaktiver Einsatzkomponenten realisie- ren lassen, ohne dass es zu Vorzündungen im Mischraum kommt, wodurch die Effektivität des Verfahrens weiter gesteigert wird.The process of the invention enables an economical production of acetylene and synthesis gas in high yields. The time for premixing the two reactants is significantly reduced, so that high preheating temperatures or pressures of the starting materials and higher proportions of reactive components can be realized without causing pre-ignition in the mixing chamber, thereby further increasing the effectiveness of the process.
Ein zusätzlicher Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass im Bereich des Diffusors, der bei den konventionellen Brennern die Mischung und Gemisch- zufuhr zum Brennerblock bewerkstelligt, sich der Einbau von strömungsstörenden Teilen nicht mehr verbietet, da die im Bereich von Ablösewirbeln erhöhte lokale Verweilzeit des Gases keine Vorzündungen mehr induzieren kann. So lassen sich vorteilhafterweise Einbauten wie Zündbrenner, die bislang in Acetylenbrennern unüblich waren, alternative Flammenüberwachungssysteme, Messsonden oder Kühlwasserzuführun- gen z.B. zur Versorgung von Brennertypen nach DE 103 13 528 A1 nunmehr realisieren. Das Verfahren lässt sich vorteilhafterweise auch bei bereits vorhandenen Brennern durch einen einfachen Umbau kostengünstig und mit geringem, verfahrenstechnischem Aufwand realisieren. Beispiele:An additional advantage of the method according to the invention is that in the region of the diffuser, which in the conventional burners accomplishes the mixture and mixture feed to the burner block, the incorporation of flow disturbing parts is no longer prohibited, since the increased in the region of separation vortices local residence time of the Gases can no longer induce pre-ignition. It is thus advantageously possible to realize internals such as pilot burners, which were hitherto unusual in acetylene burners, alternative flame monitoring systems, measuring probes or cooling water feeds, eg for supplying burner types according to DE 103 13 528 A1. The method can be advantageously realized even with existing burners by a simple conversion cost and with little procedural effort. Examples:
1. Beim Betrieb eines herkömmlichen 25 Tagestonnen Acetylenbrenners werden mit Erdgaseinsatz typischerweise Produktgaszusammensetzungen erreicht, die 8,5 Vol% Acetylen enthalten.1. When operating a conventional 25-daytoned acetylene torch, gas-fired applications typically achieve product gas compositions containing 8.5% by volume of acetylene.
2. In einem zweiten Versuch wird ein Einsatzstoffgas erfindungsgemäß umgesetzt, welches neben Erdgas 6 Vol% Ethan enthält. Hierdurch kann die Konzentrationen an Acetylen auf 9 Vol% im Spaltgas erhöht werden.2. In a second experiment, a feedstock gas is reacted according to the invention, which contains 6 vol% ethane in addition to natural gas. As a result, the concentrations of acetylene can be increased to 9% by volume in the cracking gas.
3. Wird der Ethangehalt auf über 20 Vol.-% gesteigert, kommt es aufgrund der deutlich kürzen Zündverzugszeit zu einem massiven Anstieg von Vorzündungen und den damit verbundenen Fackeltätigkeiten, so dass ein wirtschaftliches Betreiben einer herkömmlichen Anlage nicht mehr möglich ist. Mit Hilfe des er- findungsgemäßen Verfahrens können diese Rückzündungen vermieden, und die3. If the ethane content increased to more than 20 vol .-%, it comes to a massive increase of pre-ignition and the associated torch activities due to the significantly shorter Zündverzugszeit, so that an economic operation of a conventional system is no longer possible. With the aid of the method according to the invention, these flashbacks can be avoided and the
Acetylenkonzentration im Spaltgas auf über 9,5% Acetylen gesteigert werden, was eine weitere Ausbeutesteigerung bedeutet. Acetylene concentration in the cleavage gas to be increased to over 9.5% acetylene, which means a further increase in yield.

Claims

Patentansprüche Patent claims
1. Verfahren zur Herstellung von Acetylen und Synthesegas durch thermische partielle Oxidation in einem Reaktor, welcher einen Brenner mit Durchführungsboh- rungen aufweist, dadurch gekennzeichnet, dass man die zur Reaktion zu bringenden Einsatzstoffe erst unmittelbar vor der Flammenreaktionszone in den Durchführungsbohrungen des Brenners schnell und vollständig vermischt, wobei man in der Mischzone innerhalb der Durchführungsbohrungen eine mittlere Strömungsgeschwindigkeit einstellt, welche die Flammenausbreitungsgeschwin- digkeiten bei den gegebenen Reaktionsbedingungen überschreitet.1. Process for the production of acetylene and synthesis gas by thermal partial oxidation in a reactor which has a burner with through-holes, characterized in that the starting materials to be reacted are only introduced quickly and completely immediately before the flame reaction zone in the through-holes of the burner mixed, whereby an average flow velocity is set in the mixing zone within the feedthrough holes which exceeds the flame propagation speeds under the given reaction conditions.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man in den dem Brenner vorgeschalteten Diffusor, durch welchen einer der Einsatzstoffe dem Brenner zugeleitet wird, einen oder mehrere Zündbrenner einbringt, welche die Hauptreaktion innerhalb des Brenners zünden.2. The method according to claim 1, characterized in that one or more pilot burners are introduced into the diffuser upstream of the burner, through which one of the feedstocks is fed to the burner, which ignite the main reaction within the burner.
3. Verfahren nach Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass man die den Reaktor verlassenden Nebenproduktströme, insbesondere Wasserstoff, in den Reaktor zurückführt und mit dem eingesetzten Kohlenwasserstoff vor Eintritt in den Brenner vermischt.3. Process according to claims 1 or 2, characterized in that the by-product streams leaving the reactor, in particular hydrogen, are returned to the reactor and mixed with the hydrocarbon used before entering the burner.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man den rückgeführten Nebenproduktstrom mit dem eingesetzten Kohlenwasserstoff und Sauerstoff vor Eintritt in den Brenner vermischt.4. The method according to claim 3, characterized in that the recycled by-product stream is mixed with the hydrocarbon and oxygen used before entering the burner.
5. Verfahren nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass man von Erdgas verschiedene Kohlenwasserstoffgemische in Anteilen über 10 Vol.-%, besonders über 20 Vol.-% dem Erdgas vor dem Brenner vorzugsweise vor dem Vorwärmer zur Vorwärmung der Einsatzstoffe zumischt.5. Process according to claims 1 to 4, characterized in that hydrocarbon mixtures other than natural gas are mixed in proportions of over 10% by volume, especially over 20% by volume, to the natural gas before the burner, preferably before the preheater to preheat the feedstock.
6. Verfahren nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass man von Erdgas verschiedene Kohlenwasserstoffgemische wie Ethan, Ethen, Flüssiggas sowie weitere höhere gesättigte oder ungesättigte Kohlenwasserstoffe, die bei den angewendeten Vorwärmtemperaturen gasförmig sind, anstelle von Erdgas einsetzt.6. Process according to claims 1 to 5, characterized in that hydrocarbon mixtures other than natural gas, such as ethane, ethene, liquid gas and other higher saturated or unsaturated hydrocarbons, which are gaseous at the preheating temperatures used, are used instead of natural gas.
7. Vorrichtung zur Durchführung der Verfahren nach Ansprüchen 1 bis 6, welche einen konventionellen Brenner zur Acetylenherstellung umfasst, der durch einen Zwischenflansch mit einer Mischeinrichtung ergänzt wurde, welche eine Vermi- schung der Einsatzstoffe in den Durchführungsbohrungen des Brenners ermöglicht.7. Device for carrying out the processes according to claims 1 to 6, which comprises a conventional burner for acetylene production, which has been supplemented by an intermediate flange with a mixing device, which enables the feed materials to be mixed in the through-holes of the burner.
1. Fig. 1. Fig.
8. Vorrichtung nach Anspruch 7, wobei der Übergang des Reaktionsraumes in den Quenchbereich in Form eines Ringspaltes ausgebildet ist. 8. The device according to claim 7, wherein the transition of the reaction space into the quench area is designed in the form of an annular gap.
EP06754796A 2005-04-23 2006-04-21 Method and device for producing acetylene and synthesis gas by rapidly mixing the reactants Withdrawn EP1879839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005018981A DE102005018981A1 (en) 2005-04-23 2005-04-23 Preparing acetylene by partial thermal oxidation in a reactor exhibiting a burner with execution holes, comprises mixing an use material for bringing it to the reaction directly before the flame reaction zone in the holes of the burner
PCT/EP2006/061768 WO2006114399A1 (en) 2005-04-23 2006-04-21 Method and device for producing acetylene and synthesis gas by rapidly mixing the reactants

Publications (1)

Publication Number Publication Date
EP1879839A1 true EP1879839A1 (en) 2008-01-23

Family

ID=36691581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754796A Withdrawn EP1879839A1 (en) 2005-04-23 2006-04-21 Method and device for producing acetylene and synthesis gas by rapidly mixing the reactants

Country Status (6)

Country Link
US (1) US7956228B2 (en)
EP (1) EP1879839A1 (en)
CN (1) CN101163654B (en)
DE (1) DE102005018981A1 (en)
RU (1) RU2419599C2 (en)
WO (1) WO2006114399A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2252567B1 (en) * 2008-03-05 2013-08-07 Basf Se Method and device for thermal partial oxidation of hydrocarbons
CN102417433B (en) * 2010-09-27 2015-02-11 中国石油化工集团公司 Acetylene-producing device and application method thereof
US8506924B2 (en) * 2010-11-11 2013-08-13 Basf Se Process and apparatus for preparing acetylene and synthesis gas
CN103030493B (en) * 2012-12-12 2015-02-18 清华大学 Method for preparing ethylene and acetylene from ethane
US10407305B2 (en) 2013-08-29 2019-09-10 Basf Se Apparatus and process for preparing acetylene and synthesis gas
CN105879806B (en) * 2016-06-13 2018-01-19 北京凯瑞英科技有限公司 Hydrocarbon partial oxidation prepares the large-scale reactor of acetylene and synthesis gas
CN107261993B (en) * 2017-07-26 2020-08-21 北京联创鼎新石化设备有限公司 Cracking furnace for preparing acetylene by adopting natural gas partial oxidation method
CN107525072A (en) * 2017-09-11 2017-12-29 陈丽霞 The fire cover of high thermal efficiency and the burner using the fire cover
CN111867717B (en) 2018-03-07 2021-07-06 沙伯环球技术有限公司 Process and reactor for the pyrolytic conversion of hydrocarbon gases
WO2020086681A2 (en) 2018-10-23 2020-04-30 Sabic Global Technologies B.V. Method and reactor for conversion of hydrocarbons
CN110043899A (en) * 2019-04-09 2019-07-23 安徽省宁国市长乐林产品开发有限公司 A kind of biomass carbonization gas fuel burning head
CN115155347B (en) * 2022-06-10 2023-11-17 中国石油化工股份有限公司 Mixer for mixing ethylene and oxygen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB794157A (en) * 1956-05-30 1958-04-30 Monsanto Chemicals Process for the production of acetylene and ethylene
GB2099843B (en) * 1981-06-10 1985-01-30 Texaco Development Corp Partial oxidation process
GB8709265D0 (en) * 1987-04-16 1987-05-20 British Petroleum Co Plc Conversion process
DE4422815A1 (en) * 1994-06-29 1996-01-04 Basf Ag Process for the production of acetylene and synthesis gas
DE19914226A1 (en) * 1999-03-29 2000-10-05 Basf Ag Process for the production of acetylene and synthesis gas
FR2850372B1 (en) * 2003-01-23 2006-06-09 Inst Francais Du Petrole NEW PARTIAL OXIDATION REACTOR
DE10313528A1 (en) * 2003-03-26 2004-10-14 Basf Ag Method for scale-up of a reactor for carrying out a high-temperature reaction, reactor and use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006114399A1 *

Also Published As

Publication number Publication date
CN101163654B (en) 2011-06-15
DE102005018981A1 (en) 2006-10-26
CN101163654A (en) 2008-04-16
WO2006114399A1 (en) 2006-11-02
US20080188698A1 (en) 2008-08-07
RU2419599C2 (en) 2011-05-27
US7956228B2 (en) 2011-06-07
RU2007142994A (en) 2009-05-27

Similar Documents

Publication Publication Date Title
EP1879839A1 (en) Method and device for producing acetylene and synthesis gas by rapidly mixing the reactants
DE2824839C2 (en) Process for the thermal cracking of hydrocarbons
DE976236C (en) Process and device for the production of carbon black
EP2252567B1 (en) Method and device for thermal partial oxidation of hydrocarbons
DE2204601C3 (en) Burners for synthesis gas production
DE10041739A1 (en) Premix burner block for partial oxidation processes
DE2122800A1 (en) Process for the production of carbon black
EP2892864A1 (en) Method for producing acetylene and synthesis gas
EP2637775B1 (en) Method and device for producing acetylene and syngas
EP3038742B1 (en) Device and method for producing acetylenes and synthesis gas
DE4000675A1 (en) METHOD AND APPARATUS FOR STEAM CRACKING IN A CONVECTION HEATED REACTION ZONE
EP2861527B1 (en) Method for producing acetylene and synthesis gas
EP2637967B1 (en) Process and apparatus for preparing acetylene and synthesis gas
DE1568953A1 (en) Process for thermal cracking of hydrocarbon feeds
EP1462160B1 (en) Process to obtain a high-temperature reaction, reactor for the implementation of this process and use thereof
DE102009001045A1 (en) Thermal partial oxidation of hydrocarbons in a reactor for producing acetylene and synthesis gas, comprises introducing raw materials into the reactor and mixing in mixing zone, and supplying the mixture by diffuser into burner block
DE2253385A1 (en) Synthesis gas - from oil using temp modifying gas to displace combustion from burner tip
DE1795025C3 (en) Method and device for the continuous production of a gas containing gaseous hydrocarbons
AT210867B (en) Process for the pyrolysis of hydrocarbons
AT227241B (en) Process for the thermal treatment of hydrocarbons
DE1418939C (en) Apparatus for the production of unsaturated hydrocarbons by thermal cleavage of hydrocarbons
DE1229068B (en) Process for the production of olefins, in particular ethylene, by thermal splitting of gaseous and / or vaporizable hydrocarbons
WO2007082820A1 (en) Method for producing acetylene by partial oxidation of hydrocarbons
AT211289B (en) Device for the thermal cracking of hydrocarbons
DD204939A5 (en) METHOD FOR PRODUCING OLEFINES FROM HEAVY SOIL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20080227

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120419