EP1877210A1 - Ingot mold for continuous metal casting - Google Patents

Ingot mold for continuous metal casting

Info

Publication number
EP1877210A1
EP1877210A1 EP06725755A EP06725755A EP1877210A1 EP 1877210 A1 EP1877210 A1 EP 1877210A1 EP 06725755 A EP06725755 A EP 06725755A EP 06725755 A EP06725755 A EP 06725755A EP 1877210 A1 EP1877210 A1 EP 1877210A1
Authority
EP
European Patent Office
Prior art keywords
cooling
face
channel
passage
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06725755A
Other languages
German (de)
French (fr)
Other versions
EP1877210B1 (en
Inventor
Jean-Marc Jolivet
Yann Le Papillon
Benito Rigucci
Cosimo Salaris
Jacques Barbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal Belval and Differdange SA
Original Assignee
Arcelor Profil Luxembourg SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcelor Profil Luxembourg SA filed Critical Arcelor Profil Luxembourg SA
Priority to EP06725755A priority Critical patent/EP1877210B1/en
Publication of EP1877210A1 publication Critical patent/EP1877210A1/en
Application granted granted Critical
Publication of EP1877210B1 publication Critical patent/EP1877210B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0406Moulds with special profile

Definitions

  • the present invention generally relates to an ingot mold for the continuous casting of metals, particularly for the continuous casting of metals such as steel.
  • the continuous casting operation schematically consists, as is known, in pouring a molten metal into a bottomless mold essentially consisting of a metal mold body, generally a one-piece tubular element (cast of long products) or with assembled plates ( casting of flat products) of copper or copper alloy, defining a passage for the cast metal and whose walls are vigorously cooled by circulation of water; and to extract continuously from this mold a product already solidified externally over several millimeters thick. The solidification then progresses towards the axis of the product and is completed during the descent thereof downstream of the mold in the so-called "secondary cooling" zone under the effect of watering ramps. The product obtained is then cut to length and rolled before shipment to customers or processing on site, bars, wires, profiles, plates, sheets, etc.
  • An important parameter of continuous casting is the energetic cooling of the mold body walls, which is necessary to extract the amounts of heat required for the solidification of the molten metal.
  • the cooling of the mold is done by circulating water along the outer face of the walls of the tubular body.
  • a steel jacket is provided for channeling the circulation around the tubular body, and communicates at its lower end with an introduction chamber and at its upper end with an evacuation chamber, so that the circulation of the water from bottom to top.
  • a rigid riser made of insulating refractory material is placed on the top of the tubular mold body to extend upwardly the internal passage of the metal tubular body in which the molten metal is cast. .
  • the level of the free surface of the molten metal (also called meniscus) is maintained in the riser, generally at a distance of 10 to 20 cm above the tubular body where solidification begins. This makes it possible to raise the meniscus upstream of the solidification zone, and thus avoids the appearance of surface or subcutaneous defects that would otherwise be inevitably caused by the variation of the meniscus level.
  • the volume of molten metal in the riser acts as a buffer, which dampens the flow turbulence that inevitably develops under the effect of the metal feed stream.
  • the use of the riser therefore makes it possible to obtain a flow of relatively quiet molten metal at the level at which its solidification begins, which contributes to a good quality of the solidified product and in particular to the regularity of the formation of the first skin upon contact with the cooled copper wall.
  • a recognized problem of the continuous casting under load is the difficulty of cooling well the upper part of the mold body, because the conventional cooling structure described above is not sufficiently efficient.
  • a first cooling circuit includes a plurality of vertical cooling channels distributed around the passage for the metal, in which water flows from bottom to top.
  • a lower distribution chamber provides for the introduction of water into the cooling channels
  • an upper distribution chamber collects water from the upper end of the channels.
  • the second cooling circuit comprises one or more cooling channels arranged horizontally between the upper end of the vertical cooling channels and the upper inlet face of the cooling channel. mold body.
  • the object of the present invention is to provide an ingot mold for the continuous casting of metals, of simple design and having a high cooling capacity, especially at its inlet end. According to the invention, this objective is achieved by an ingot mold for the continuous casting of metals according to claim 1.
  • the present invention relates to an ingot mold for the continuous casting of metals, in particular steel, comprising a metal mold body having a passage for the cast metal extending between an inlet face and an outlet face. A plurality of cooling channels for a cooling fluid are arranged along the passage. A distribution chamber for the coolant communicates with the end of the cooling channels on the input side side.
  • the cooling channels extend as far as the inlet face, and their ends communicate with the distribution chamber via respective intermediate connecting channels.
  • the distribution chamber is arranged recessed with respect to the inlet face and with respect to the ends of the inlet side cooling channels.
  • the most critical hot zone of the mold is thus cooled by the cooling channels, which extend to under the entrance face, in the vicinity of it to form their end.
  • the distribution chamber is deported backwards and the cooling fluid is channeled between the end of each cooling channel and the distribution chamber by an intermediate connecting channel, typically oblique with respect to the direction of the cooling channel.
  • Such an intermediate channel thus constitutes a return line from the inlet face to the distribution chamber, which makes it possible to better preserve high cooling fluid speeds in the critical hot part of the mold.
  • the intermediate channels preferably have a section equal to or smaller than that of the cooling channels.
  • the channelization of the flow in the ingot mold part close to the inlet face and the offset of the distribution chamber prevent turbulence and other boiling phenomena, which are unacceptable for a stable casting process, which may occur.
  • the cooling channel opens directly into a distribution chamber of larger section.
  • the configuration of the mold according to the invention therefore allows the mold body to be cooled further towards its inlet end, which makes it particularly suitable for continuous casting under load, in particular the continuous casting in vertical load of the mold. 'steel.
  • a cooling circuit according to the invention can easily be realized with ingot mold bodies of various sizes and shapes.
  • the present invention particularly relates to ingot molds for the continuous casting in vertical load of small sections, typically of dimensions 100x100x12 mm to 300x300x20 mm with casting speeds in the range of 5 to 10 m / min.
  • another distribution chamber communicating with the end of the cooling channels is provided for side of the exit face.
  • the end of each cooling channel on the exit face side is in communication with this other introduction chamber through a respective passage.
  • the passage section in the cooling channels is reduced close to the inlet face of the mold body. This makes it possible to increase the speed of the cooling fluid in this region of the mold body, and thus to increase the cooling capacity. Such a reduction of the passage section can be obtained by machining.
  • the section reduction is preferably done by means of a section reducing device which is installed in the end of each inlet side cooling channel.
  • the section reducing device is advantageously designed so as to partially close the cooling channel near its cold face (farthest from the casting space) and allow the flow of cooling fluid along the hot face ( thermally charged) of the cooling channel.
  • Such a section reducing device therefore makes it possible to increase the speed of the cooling fluid in the critical part of the mold body, and to circulate the fluid in the portion of the hottest cooling channel.
  • the section reduction device comprises an oblong body with three faces: a convex face whose curvature corresponds to that of the cooling channel, and two concave faces contiguous to the convex face and meeting at the level of the 'a stop. Viewed in cross section, the maximum distance between the edge and the convex face is substantially equal to the section of the cooling channel.
  • the section reducing device is oriented in the channel so that its edge is turned towards the hot channel, so that the cooling fluid is forced to flow in two reduced section channels along the hot face of the cooling channel.
  • the elongate body is extended at its lower end by a tapered foot, the height of which is greater than the distance between the end of the cooling channel on the outlet side and the opening of the intermediate channel. coming into this area.
  • This foot avoids clogging of the intermediate channel close to the exit face, should the device fall to the bottom of the cooling channel.
  • the convex face When the section reducing device is positioned in the cooling channel with its edge against the hot face, the convex face is against the cold face of the cooling channel. It is usually in this cold face that opens the intermediate channel on the side of the input face. Therefore, in each concave side face, a passage hole connecting the latter to the convex face will preferably be provided to allow the flow of the cooling fluid directly into the intermediate channel.
  • the cooling channels preferably extend substantially the entire length of the passage (or casting space) in the mold body. In addition, they advantageously follow the contour of the passage, which depends on the metal product to be cast (slab, beam, or other profile).
  • the passage section provided by the cooling channels is preferably identical and constant over their entire length, except, where appropriate, near the inlet face where the passage section can be reduced as indicated above.
  • the mold body depends on the type of metal product to be cast.
  • the mold body will generally comprise a monolithic tubular element of copper or copper alloy.
  • the cooling channels are preferably drilled in the wall of this monolithic tubular element and distributed all around the passage.
  • the mold body generally comprises a four-plate assembly defining a rectangular passage for the cast metal. In this case, the cooling channels with the intermediate channels are arranged in at least one of said plates.
  • the mold will typically comprise a riser comprising a rigid refractory element with thermo-insulating property extending the passage of the ingot mold body above the inlet face.
  • a gas preferably inert
  • the present invention relates to an ingot mold for the continuous casting of metals comprising a mold body having a passage for the cast metal and at least one cooling cooling channel along the passage, wherein a Section reducer device is installed in the cooling channel. The section reducing device closes the channel along the cold face and allows the flow of cooling fluid along the hot side of the cooling channel.
  • FIG. 1 is a diagrammatic longitudinal sectional view of an ingot mold according to the invention, in a configuration for continuous casting in vertical load of the steel;
  • FIG. 2 a perspective view from below and in partial section of an ingot mold tube according to a preferred variant
  • FIG. 3 is a perspective view of a section reducing device
  • FIG. 4 is a cross-sectional view of the section reduction device installed in a cooling channel.
  • Fig.1 shows a schematic section of an ingot mold 10 according to the present invention, in an application to continuous casting in vertical load steel.
  • the mold 10 comprises an ingot mold body 12 having an upper inlet face 14 and a lower outlet face 16, and which is provided with a passage 18 for the molten metal defining the casting space extending between the inlet face 14 and outlet face 16.
  • the mold body 12 is surmounted by a riser, generally indicated 20, into which the molten metal is poured from a tundish (or "tundish", not shown) and which maintains the free surface of the molten metal at a distance from the mold body 12 where the solidification begins.
  • the riser 20 takes place on the upper end of the mold body 12 and is in fact made of two aligned tubular elements: a lower element, ring 22, compact refractory material having good mechanical strength such as SiAION; and an upper element, sleeve 24, made of a thermally insulating refractory material.
  • the mold body 12 is vigorously cooled by circulating water internally to extract the heat necessary for cooling the molten metal.
  • the cooling water circulates, preferably from below upwards, in a plurality of vertical cooling channels 26 (only one shown in FIG. 1) provided on the periphery of the passage 18.
  • each cooling channel 26 communicates with a so-called introducer distribution chamber 28, which allows the introduction of the cooling water into the channels 26 with a pressure adapted to establish the desired flow rate.
  • the water thus rises in the cooling channels 26 along the passage 18, and is collected after its exit from each channel 26 in another so-called evacuation distribution chamber 30 (of section substantially greater than the channels 26).
  • evacuation distribution chamber 30 of section substantially greater than the channels 26.
  • the cooling channels extend as far as the inlet face 14 of the mold body 12, which makes it possible to have cooling channels 26 which extend almost the entire length (height) of the passage 18, and therefore especially in the upper region of the mold body 12 towards the interface with the riser 20 where the solidification.
  • the evacuation chamber 30 is set back with respect to the inlet face 14 of the ingot mold body 12 and at the upper end of the cooling channels 26. The circulation of the water from the end of the cooling channel 26 on the inlet side face 14 to the evacuation chamber 30 is made through an intermediate evacuation channel 32 (or intermediate connecting channel) which leaves the end of the channel 26 and departs from the inlet face 14 towards the rear to open into the remote evacuation chamber 30.
  • the intermediate connecting channel 32 thus extends obliquely with respect to the axis of the cooling channel 26 with which it is associated.
  • Such an intermediate connecting channel 32 thus constitutes a return line from the inlet face 14 towards the distribution chamber, which makes it possible to maintain high cooling fluid velocities up to the evacuation chamber 30.
  • the structure of the cooling circuit in the mold 10 allows to evacuate large amounts of heat in the critical hot zone of the mold, and avoids the problems of evaporation and dead zones in this part of the mold.
  • the mold body comprises, assembled to each other, a bottomless monolithic tubular element 33 made of copper or copper alloy, defining the casting space in the form of a central passage 18 for the cast metal and a mantle 39 surrounding the element 33 at a distance.
  • This tubular element 33 has an upper flange 34 whose free end comes into sealing contact with the upper edge of the mantle 39 and whose upper face constitutes the inlet face 14 of the casting space 18.
  • the mantle 39 has at its lower end a return flange 36 coming from its free end in sealing contact with the lower edge of the tubular body 33 and whose lower face constitutes the outlet face 16 of the casting space 18.
  • the introduction chambers 28 and the evacuation chambers 30 are delimited laterally by the mantle 39 and frontally by the lower flanges 36 and upper 34 respectively. They are arranged one above the other, separated by a watertight partition 37 coming from the construction of the tubular element 33 and cooperating at its end with a corresponding bearing surface 31 of the mantle 39 with the interposition of a seal toric 25.
  • the hydraulic communication between the introduction chamber 28 and the cooling channels 26 is made through passages 38 drilled in line with the tubular element 33 flush with the bottom of the chamber 28.
  • the communication between the channels 26 and the evacuation chamber 30 is effected by means of intermediate connecting channels 32 obliquely drilled in the upper flange 34 in order to connect the upper outlet end of each channel. cooling device 26 to the exhaust chamber 30 at its upper end.
  • intermediate connecting channels 32 are made as short as possible by piercing them, as shown in FIG. 1, at the location of the connection fillet 35 between the upper flange 34 and the tubular element 33.
  • the cooling channels 26 can be easily made by drilling from the lower face 16 in the wall of the tube. The channels 26 are then closed on the outlet side by plugs 40. Similarly, the intermediate discharge channels 32 may be made by drilling the upper flange 34. Drilling is still the preferred solution for the intermediate inlet channel 38 .
  • Fig.2 illustrates a preferred embodiment of the tubular mold member 33 of Fig.1; the same reference signs are used.
  • the passage 18 of the ingot mold body 33 has a shape (section) adapted to the casting of beams.
  • the cooling channels 26 are uniformly distributed all around the passage 18 and follow the shape. In the present variant, they have an identical and constant section over their entire length. As can be seen, the cooling channels extend as far as the upper face 14 of the flange 34, and the evacuation channels 32 extend from the upper end of the channels 26 through the flange 34 to open into the top of the discharge chamber 30.
  • the section of the intermediate channels 32 is preferably not greater than the maximum passage section of the cooling channels 26.
  • the drilling embodiment allows an easy arrangement of the vertical cooling channels 26 at the periphery of the passage 18.
  • the structure of the cooling circuit in the present mold 10 is particularly well suited for mold bodies of reduced size and complex shapes, such as for the manufacture of small sections.
  • the use of a plurality of channels of relatively smaller cross-section, uniformly distributed makes it possible to better distribute the heat extraction, and thus to obtain a better homogeneity of cooling on the perimeter.
  • the vertical cooling channels For the continuous casting of profiles of small dimensions, that is to say generally of dimensions 100x100x12 mm to 300x300x20 mm, the vertical cooling channels have for example a diameter between 7 and 10 mm, and their upper end is located unless 8 mm of the input face 14 (upper surface of the flange 34), preferably between 4 and 6 mm.
  • the distance between the hot face of the channels 26 and the inner face of the passage 18 may be between 5 and 10 mm.
  • each cooling channel 26 there is a section reducing device 50 arranged in the upper end of each cooling channel 26.
  • a section reducing device 50 makes it possible to locally reduce the passage section in the channel. 26, thereby increasing the speed of circulation of the cooling water.
  • this device 50 is designed to to promote the passage of the cooling water near the ingot mold passage, and more precisely along the hot (heat-laden) face of the cooling channel 26.
  • Such a reduction device of section 50 is shown in more detail in FIGS. 3 and 4. It comprises an oblong body 52, preferably solid, with three lateral faces 54, 56 and 58.
  • a convex face 54 has a curvature corresponding to to the cooling channel 26.
  • the other two faces 56 and 58 are concave, substantially the same dimensions, and start from the convex face 54 to join at an edge 60.
  • the maximum distance between the ridge 60 and the convex face 54 corresponds essentially to the diameter of the cooling channel 26.
  • the dimensions of the body 52 are chosen to allow attachment in the channel 26 by tight fit.
  • the devices 50 are installed in the channels 26 before the plugs 40 are put in place.
  • the device 50 is positioned in the cooling channel 26 with the edge 60 turned towards the ingot mold passage 18.
  • the convex face 54 presses on the cold face of the cooling channel 26 (farthest from the ingot mold passage) and prevents the flow of water along it.
  • the side faces 56 and 58 define with the hot face of the cooling channel (close to the ingot mold passage and thus thermally charged) two cooling channels 62 and 62 'of restricted section, which force the circulation of the water along the hot face of channel 26.
  • a through-hole 64 is provided between each of the concave faces 56, 58 and the convex face 54. These passage holes 64 are therefore advantageously positioned to open directly into the intermediate evacuation channel 32 when the needle is installed in the channel cooling 26.
  • the body 52 is advantageously extended in its lower part by a tapered foot 66, whose length is greater than the distance between the bottom of the cooling channel 26 (outlet side) and the opening of the introduction channel 38.
  • the foot 66 keeps the body 52 of the device 50 above the opening of the introduction channel 38 and prevents clogging.
  • the reduction of section can also be obtained by playing on the machining of the cooling channels 26.
  • the use of reducing devices of section 50 has the advantage of being flexible in use because modifications cooling conditions are possible without modifying the machining of the ingot mold tube 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

The mold, comprising a metal body (12) with a passage (18) for the poured metal extending from an inlet face (14) to an outlet face (16), and a distribution chamber (30) for a cooling fluid linked to the ends of cooling channels (26), has the channels extending to just under the inlet face. The distribution chamber is set back from the inlet face and the adjacent ends of the cooling channels, which are connected to the chamber by intermediate oblique channels (32). The body of the mold is in the form of a one-piece tubular element (33) which is pierced with the main and intermediate cooling channels.

Description

LINGOTIERE POUR LA COULEE CONTINUE DES METAUX LINGOTIERE FOR THE CONTINUOUS CASTING OF METALS
Domaine TechniqueTechnical area
La présente invention concerne généralement une lingotière pour la coulée continue des métaux, en particulier pour la coulée continue en charge des métaux tels que l'acier.The present invention generally relates to an ingot mold for the continuous casting of metals, particularly for the continuous casting of metals such as steel.
Etat de la techniqueState of the art
L'opération de coulée continue consiste schématiquement comme on le sait, à verser un métal en fusion dans une lingotière sans fond essentiellement constituée d'un corps de lingotière métallique, généralement un élément tubulaire monobloc (coulée de produits longs) ou à plaques assemblées (coulée de produits plats) en cuivre ou alliage de cuivre, définissant un passage pour le métal coulé et dont les parois sont énergiquement refroidies par circulation d'eau ; et à extraire en continu de cette lingotière un produit déjà solidifié extérieurement sur plusieurs millimètres d'épaisseur. La solidification progresse ensuite vers l'axe du produit et s'achève au cours de la descente de celui-ci en aval de la lingotière dans la zone dite de "refroidissement secondaire" sous l'effet de rampes d'arrosage d'eau. Le produit obtenu est ensuite découpé à longueur, puis laminé avant expédition à la clientèle ou transformation sur place, en barres, fils, profilés, plaques, tôles, etc.The continuous casting operation schematically consists, as is known, in pouring a molten metal into a bottomless mold essentially consisting of a metal mold body, generally a one-piece tubular element (cast of long products) or with assembled plates ( casting of flat products) of copper or copper alloy, defining a passage for the cast metal and whose walls are vigorously cooled by circulation of water; and to extract continuously from this mold a product already solidified externally over several millimeters thick. The solidification then progresses towards the axis of the product and is completed during the descent thereof downstream of the mold in the so-called "secondary cooling" zone under the effect of watering ramps. The product obtained is then cut to length and rolled before shipment to customers or processing on site, bars, wires, profiles, plates, sheets, etc.
Un paramètre important de la coulée continue est le refroidissement énergique des parois du corps de lingotière, qui est nécessaire pour extraire les quantités de chaleur requises pour la solidification du métal en fusion. Le refroidissement de la lingotière se fait par circulation d'eau le long de la face extérieure des parois du corps tubulaire. Classiquement, une chemise en acier est prévue pour canaliser la circulation autour du corps tubulaire, et communique à son extrémité inférieure avec une chambre d'introduction et à son extrémité supérieure avec une chambre d'évacuation, de sorte que la circulation de l'eau se fasse du bas vers le haut. Dans la technique dite de "coulée continue en charge verticale", une rehausse rigide en matériau réfractaire isolant est placée sur le dessus du corps tubulaire de lingotière pour prolonger vers le haut le passage intérieur du corps tubulaire métallique dans lequel est coulé le métal en fusion. Au cours de la coulée, le niveau de la surface libre du métal en fusion (encore appelée ménisque) est maintenu dans la rehausse, généralement à une distance de 10 à 20 cm au-dessus du corps tubulaire où débute la solidification. Cela permet donc de remonter le ménisque en amont de la zone de solidification, et évite ainsi l'apparition de défauts de surface ou sous cutanés qui sinon seraient immanquablement causés par la variation du niveau du ménisque. En outre, le volume de métal en fusion dans la rehausse joue un rôle de tampon, qui amortit les turbulences d'écoulement qui se développent inévitablement sous l'effet du flux d'arrivée de métal.An important parameter of continuous casting is the energetic cooling of the mold body walls, which is necessary to extract the amounts of heat required for the solidification of the molten metal. The cooling of the mold is done by circulating water along the outer face of the walls of the tubular body. Conventionally, a steel jacket is provided for channeling the circulation around the tubular body, and communicates at its lower end with an introduction chamber and at its upper end with an evacuation chamber, so that the circulation of the water from bottom to top. In the so-called "continuous casting in vertical load" technique, a rigid riser made of insulating refractory material is placed on the top of the tubular mold body to extend upwardly the internal passage of the metal tubular body in which the molten metal is cast. . During casting, the level of the free surface of the molten metal (also called meniscus) is maintained in the riser, generally at a distance of 10 to 20 cm above the tubular body where solidification begins. This makes it possible to raise the meniscus upstream of the solidification zone, and thus avoids the appearance of surface or subcutaneous defects that would otherwise be inevitably caused by the variation of the meniscus level. In addition, the volume of molten metal in the riser acts as a buffer, which dampens the flow turbulence that inevitably develops under the effect of the metal feed stream.
L'emploi de la rehausse permet donc d'obtenir un écoulement de métal en fusion relativement calme au niveau où s'amorce sa solidification, ce qui contribue à une bonne qualité du produit solidifié et notamment à la régularité de la formation de la première peau dès le contact avec la paroi en cuivre refroidie. Toutefois, un problème reconnu de la coulée continue en charge est la difficulté de bien refroidir la partie haute du corps de lingotière, car la structure de refroidissement classique décrite ci-dessus n'est pas suffisamment performante.The use of the riser therefore makes it possible to obtain a flow of relatively quiet molten metal at the level at which its solidification begins, which contributes to a good quality of the solidified product and in particular to the regularity of the formation of the first skin upon contact with the cooled copper wall. However, a recognized problem of the continuous casting under load is the difficulty of cooling well the upper part of the mold body, because the conventional cooling structure described above is not sufficiently efficient.
Afin d'améliorer les capacités de refroidissement de la lingotière dans la partie supérieure du corps de lingotière, le document EP 0 868 952 par exemple propose l'utilisation de deux circuits de refroidissement indépendants. Un premier circuit de refroidissement comprend une pluralité de canaux de refroidissement verticaux distribués autour du passage pour le métal, dans lesquels l'eau circule de bas en haut. Typiquement, une chambre de répartition inférieure assure l'introduction de l'eau dans les canaux de refroidissement, et une chambre de répartition supérieure collecte l'eau sortant de l'extrémité supé- heure des canaux. Le deuxième circuit de refroidissement comprend un ou des canaux de refroidissement disposés horizontalement, entre l'extrémité supérieure des canaux de refroidissement verticaux et la face supérieure d'entrée du corps de lingotière.In order to improve the cooling capacity of the mold in the upper part of the mold body, EP 0 868 952 for example proposes the use of two independent cooling circuits. A first cooling circuit includes a plurality of vertical cooling channels distributed around the passage for the metal, in which water flows from bottom to top. Typically, a lower distribution chamber provides for the introduction of water into the cooling channels, and an upper distribution chamber collects water from the upper end of the channels. The second cooling circuit comprises one or more cooling channels arranged horizontally between the upper end of the vertical cooling channels and the upper inlet face of the cooling channel. mold body.
Si une telle structure de lingotière a fait ses preuves en pratique, la mise en place de la circulation périphérique horizontale nécessite un deuxième circuit d'alimentation d'eau haute pression comprenant pompes, surpresseurs et canalisations, ce qui est relativement coûteux. De plus, cette structure peut se révéler difficile à adapter suivant la forme du corps de lingotière. En particulier, la complexité de la forme de la lingotière pour la coulée de petits profilés rend la mise en place du deuxième circuit de refroidissement assez difficile.If such a mold structure has been proven in practice, the establishment of the horizontal peripheral circulation requires a second high pressure water supply circuit including pumps, boosters and pipes, which is relatively expensive. In addition, this structure can be difficult to adapt depending on the shape of the mold body. In particular, the complexity of the shape of the mold for casting small sections makes the implementation of the second cooling circuit quite difficult.
Objet de l'inventionObject of the invention
L'objet de la présente invention est de proposer une lingotière pour la cou- lée continue des métaux, de conception simple et présentant une forte capacité de refroidissement, notamment à son extrémité d'entrée. Conformément à l'invention, cet objectif est atteint par une lingotière pour la coulée continue des métaux selon la revendication 1.The object of the present invention is to provide an ingot mold for the continuous casting of metals, of simple design and having a high cooling capacity, especially at its inlet end. According to the invention, this objective is achieved by an ingot mold for the continuous casting of metals according to claim 1.
Description générale de l'inventionGeneral description of the invention
La présente invention concerne une lingotière pour la coulée continue des métaux, notamment de l'acier, comprenant un corps de lingotière métallique pourvu d'un passage pour le métal coulé s'étendant entre une face d'entrée et une face de sortie. Une pluralité de canaux de refroidissement pour un fluide de refroidissement sont agencés le long du passage. Une chambre de répartition pour le fluide de refroidissement communique avec l'extrémité des canaux de refroidissement du côté de la face d'entrée.The present invention relates to an ingot mold for the continuous casting of metals, in particular steel, comprising a metal mold body having a passage for the cast metal extending between an inlet face and an outlet face. A plurality of cooling channels for a cooling fluid are arranged along the passage. A distribution chamber for the coolant communicates with the end of the cooling channels on the input side side.
Selon l'invention, les canaux de refroidissement s'étendent jusque sous la face d'entrée, et leurs extrémités communiquent avec la chambre de répartition via des canaux de liaison intermédiaires respectifs. En outre, la chambre de répartition est agencée en retrait par rapport à la face d'entrée et par rapport aux extrémités des canaux de refroidissement côté face d'entrée.According to the invention, the cooling channels extend as far as the inlet face, and their ends communicate with the distribution chamber via respective intermediate connecting channels. In addition, the distribution chamber is arranged recessed with respect to the inlet face and with respect to the ends of the inlet side cooling channels.
Dans la présente lingotière, la zone chaude la plus critique de la lingotière est donc refroidie par les canaux de refroidissement, qui se prolongent jusque sous la face d'entrée, au voisinage de celle-ci pour y former leur extrémité. La chambre de répartition est déportée vers l'arrière et le fluide de refroidissement est canalisé entre l'extrémité de chaque canal de refroidissement et la chambre de répartition par un canal de liaison intermédiaire, typiquement oblique par rapport à la direction du canal de refroidissement. Un tel canal intermédiaire constitue donc une conduite de retour depuis la face d'entrée vers la chambre de répartition, qui permet de conserver au mieux des vitesses de fluide de refroidissement élevées dans la partie chaude critique de la lingotière. Les canaux intermédiaires ont de préférence une section égale ou inférieure à celle des canaux de refroidissement. Plus particulièrement, la canalisation de l'écoulement dans la partie de lingotière proche de la face d'entrée et le déport de la chambre de répartition évitent les turbulences et autres phénomènes d'ébullition, rédhibitoires pour un processus de coulée stable, qui peuvent intervenir lorsque le canal de refroidissement débouche directement dans une chambre de répartition de section plus importante.In the present mold, the most critical hot zone of the mold is thus cooled by the cooling channels, which extend to under the entrance face, in the vicinity of it to form their end. The distribution chamber is deported backwards and the cooling fluid is channeled between the end of each cooling channel and the distribution chamber by an intermediate connecting channel, typically oblique with respect to the direction of the cooling channel. Such an intermediate channel thus constitutes a return line from the inlet face to the distribution chamber, which makes it possible to better preserve high cooling fluid speeds in the critical hot part of the mold. The intermediate channels preferably have a section equal to or smaller than that of the cooling channels. More particularly, the channelization of the flow in the ingot mold part close to the inlet face and the offset of the distribution chamber prevent turbulence and other boiling phenomena, which are unacceptable for a stable casting process, which may occur. when the cooling channel opens directly into a distribution chamber of larger section.
La configuration de la lingotière selon l'invention permet donc un refroidissement accru du corps de lingotière du côté de son extrémité d'entrée, ce qui la rend particulièrement bien adaptée à la coulée continue en charge, notamment la coulée continue en charge verticale de l'acier. Un circuit de refroidissement conforme à l'invention peut aisément être réalisé avec des corps de lingotière de dimensions et formes variées. La présente invention concerne particulièrement des lingotières pour la coulée continue en charge verticale de petits profilés, typiquement de dimensions 100x100x12 mm à 300x300x20 mm avec des vitesses de coulée dans la gamme de 5 à 10 m/min.The configuration of the mold according to the invention therefore allows the mold body to be cooled further towards its inlet end, which makes it particularly suitable for continuous casting under load, in particular the continuous casting in vertical load of the mold. 'steel. A cooling circuit according to the invention can easily be realized with ingot mold bodies of various sizes and shapes. The present invention particularly relates to ingot molds for the continuous casting in vertical load of small sections, typically of dimensions 100x100x12 mm to 300x300x20 mm with casting speeds in the range of 5 to 10 m / min.
On observera encore qu'un deuxième circuit de refroidissement n'est pas nécessaire, ce qui simplifie la réalisation de la lingotière et réduit les coûts de production avec une installation de coulée continue équipée de la présente lingotière. Selon un mode de réalisation préféré, une autre chambre de répartition communiquant avec l'extrémité des canaux de refroidissement est prévue du côté de la face de sortie. L'extrémité de chaque canal de refroidissement coté face de sortie est en communication avec cette autre chambre d'introduction à travers un passage respectif.It will be observed again that a second cooling circuit is not necessary, which simplifies the realization of the mold and reduces production costs with a continuous casting plant equipped with the present mold. According to a preferred embodiment, another distribution chamber communicating with the end of the cooling channels is provided for side of the exit face. The end of each cooling channel on the exit face side is in communication with this other introduction chamber through a respective passage.
Avantageusement, la section de passage dans les canaux de refroidisse- ment est réduite à proximité de la face d'entrée du corps de lingotière. Cela permet d'augmenter la vitesse du fluide de refroidissement dans cette région du corps de lingotière, et donc d'accroître la capacité de refroidissement. Une telle réduction de la section de passage peut être obtenue par usinage.Advantageously, the passage section in the cooling channels is reduced close to the inlet face of the mold body. This makes it possible to increase the speed of the cooling fluid in this region of the mold body, and thus to increase the cooling capacity. Such a reduction of the passage section can be obtained by machining.
Toutefois, la réduction de section se fait préférablement au moyen d'un dispositif réducteur de section qui est installé dans l'extrémité de chaque canal de refroidissement côté face d'entrée. Le dispositif réducteur de section est avantageusement conçu de sorte à obturer partiellement le canal de refroidissement à proximité de sa face froide (la plus éloignée de l'espace de coulée) et permettre l'écoulement de fluide de refroidissement le long de la face chaude (chargée thermiquement) du canal de refroidissement. Un tel dispositif réducteur de section permet donc d'augmenter la vitesse du fluide de refroidissement dans la partie critique du corps de lingotière, et de faire circuler le fluide dans la portion du canal de refroidissement la plus chaude.However, the section reduction is preferably done by means of a section reducing device which is installed in the end of each inlet side cooling channel. The section reducing device is advantageously designed so as to partially close the cooling channel near its cold face (farthest from the casting space) and allow the flow of cooling fluid along the hot face ( thermally charged) of the cooling channel. Such a section reducing device therefore makes it possible to increase the speed of the cooling fluid in the critical part of the mold body, and to circulate the fluid in the portion of the hottest cooling channel.
Dans une variante préférée du dispositif réducteur de section, celui-ci comprend un corps oblong à trois faces: une face convexe dont la courbure correspond à celle du canal de refroidissement, et deux faces concaves contiguës à la face convexe et se rejoignant au niveau d'une arête. Vu en section transversale, la distance maximale entre l'arête et la face convexe est sensiblement égale à la section du canal de refroidissement. Le dispositif réducteur de section est orienté dans le canal de sorte que son arête soit tournée vers le canal chaud, de sorte que le fluide de refroidissement est forcé de circuler dans deux canaux de section réduite le long de la face chaude du canal de refroidissement.In a preferred variant of the section reduction device, the latter comprises an oblong body with three faces: a convex face whose curvature corresponds to that of the cooling channel, and two concave faces contiguous to the convex face and meeting at the level of the 'a stop. Viewed in cross section, the maximum distance between the edge and the convex face is substantially equal to the section of the cooling channel. The section reducing device is oriented in the channel so that its edge is turned towards the hot channel, so that the cooling fluid is forced to flow in two reduced section channels along the hot face of the cooling channel.
Avantageusement, le corps oblong se prolonge à son extrémité inférieure par un pied effilé, dont la hauteur est supérieure à la distance entre l'extrémité du canal de refroidissement côté sortie et l'ouverture du canal intermédiaire découchant dans cette zone. Ce pied permet d'éviter un bouchage du canal intermédiaire proche de la face de sortie, si jamais le dispositif venait à tomber au fond du canal de refroidissement.Advantageously, the elongate body is extended at its lower end by a tapered foot, the height of which is greater than the distance between the end of the cooling channel on the outlet side and the opening of the intermediate channel. coming into this area. This foot avoids clogging of the intermediate channel close to the exit face, should the device fall to the bottom of the cooling channel.
Lorsque le dispositif réducteur de section est positionné dans le canal de refroidissement avec son arête contre la face chaude, la face convexe se trouve contre la face froide du canal de refroidissement. C'est en général dans cette face froide que débouche le canal intermédiaire du côté de la face d'entrée. On prévoira donc de préférence, dans chaque face latérale concave, un trou de passage reliant celle-ci à la face convexe, pour permettre l'écoulement du fluide de refroidissement directement dans le canal intermédiaire.When the section reducing device is positioned in the cooling channel with its edge against the hot face, the convex face is against the cold face of the cooling channel. It is usually in this cold face that opens the intermediate channel on the side of the input face. Therefore, in each concave side face, a passage hole connecting the latter to the convex face will preferably be provided to allow the flow of the cooling fluid directly into the intermediate channel.
Pour un refroidissement optimal du passage, les canaux de refroidissement s'étendent de préférence essentiellement sur toute la longueur du passage (ou espace de coulée) dans le corps de lingotière. En outre, ils suivent avantageusement le contour du passage, qui dépend du produit métallique à couler (brame, poutrelle, ou autre profilé). La section de passage offerte par les canaux de refroidissement est de préférence identique et constante sur toute leur longueur, sauf, le cas échéant, à proximité de la face d'entrée où la section de passage peut être réduite comme indiqué ci-dessus.For optimum cooling of the passage, the cooling channels preferably extend substantially the entire length of the passage (or casting space) in the mold body. In addition, they advantageously follow the contour of the passage, which depends on the metal product to be cast (slab, beam, or other profile). The passage section provided by the cooling channels is preferably identical and constant over their entire length, except, where appropriate, near the inlet face where the passage section can be reduced as indicated above.
La conception du corps de lingotière dépend du type de produit métallique à couler. Pour les profilés, notamment des petits profilés (du type poutrelles ou autres), le corps de lingotière comprendra généralement un élément tubulaire monolitique en cuivre ou alliage de cuivre. Les canaux de refroidissement sont de préférence percés dans la paroi de cet élément tubulaire monolithique et distribués tout autour du passage. Pour la fabrication de brames, le corps de lingotière comprend en général un assemblage de quatre plaque définissant un passage rectangulaire pour le métal coulé. Dans ce cas, les canaux de refroidissement avec les canaux intermédiaires sont agencés dans au moins une desdites plaques.The design of the mold body depends on the type of metal product to be cast. For the profiles, in particular small sections (of the beam or other type), the mold body will generally comprise a monolithic tubular element of copper or copper alloy. The cooling channels are preferably drilled in the wall of this monolithic tubular element and distributed all around the passage. For the manufacture of slabs, the mold body generally comprises a four-plate assembly defining a rectangular passage for the cast metal. In this case, the cooling channels with the intermediate channels are arranged in at least one of said plates.
Pour l'utilisation dans une installation de coulée continue en charge verti- cale, la lingotière comprendra classiquement une rehausse comprenant un élément réfractaire rigide à propriété thermo-isolante prolongeant le passage du corps de lingotière au-dessus de la face d'entrée. En outre, on pourra prévoir des moyens pour l'injection d'un gaz, préférablement inerte, sous pression dans le passage et sur tout son pourtour, au niveau de l'interface entre la rehausse et le corps de lingotière. Selon un autre aspect, la présente invention concerne une lingotière pour la coulée continue des métaux comprenant un corps de lingotière pourvu d'un passage pour le métal coulé et d'au moins un canal de refroidissement de refroidissement le long du passage, dans laquelle un dispositif réducteur de section est installé dans le canal de refroidissement. Le dispositif réducteur de section obture le canal le long de la face froide et autorise l'écoulement de fluide de refroidissement le long de la face chaude du canal de refroidissement.For use in a continuous casting plant in vertical load, the mold will typically comprise a riser comprising a rigid refractory element with thermo-insulating property extending the passage of the ingot mold body above the inlet face. In addition, there may be provided means for the injection of a gas, preferably inert, under pressure in the passage and all around the interface at the interface between the riser and the mold body. In another aspect, the present invention relates to an ingot mold for the continuous casting of metals comprising a mold body having a passage for the cast metal and at least one cooling cooling channel along the passage, wherein a Section reducer device is installed in the cooling channel. The section reducing device closes the channel along the cold face and allows the flow of cooling fluid along the hot side of the cooling channel.
Description des dessinsDescription of the drawings
D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée de quelques modes de réalisation avantageux présentés ci-dessous, à titre d'illustration, en se référant aux dessins annexés. Ceux-ci montrent:Other features and characteristics of the invention will become apparent from the detailed description of some advantageous embodiments presented below, by way of illustration, with reference to the accompanying drawings. These show:
FIG.1 : une vue en coupe longitudinale schématique d'une lingotière selon l'invention, dans une configuration pour la coulée continue en charge verticale de l'acier ;FIG. 1 is a diagrammatic longitudinal sectional view of an ingot mold according to the invention, in a configuration for continuous casting in vertical load of the steel;
FIG.2: une vue en perspective du dessous et en coupe partielle d'un tube de lingotière selon une variante préférée ;FIG. 2: a perspective view from below and in partial section of an ingot mold tube according to a preferred variant;
FIG.3: une vue en perspective d'un dispositif réducteur de section; etFIG. 3 is a perspective view of a section reducing device; and
FIG.4: une vue en coupe transversale du dispositif réducteur de section installé dans un canal de refroidissement.FIG. 4 is a cross-sectional view of the section reduction device installed in a cooling channel.
Sur les figures, les mêmes signes de référence désignent des éléments identiques ou similaires.In the figures, the same reference signs designate identical or similar elements.
Description détaillée de quelques modes de réalisation préférésDetailed description of some preferred embodiments
La Fig.1 montre une coupe schématique d'une lingotière 10 selon la présente invention, dans une application à la coulée continue en charge verticale de l'acier. La lingotière 10 comprend un corps de lingotière 12 ayant une face supérieure d'entrée 14 et une face inférieure de sortie 16, et qui est pourvu d'un passage 18 pour le métal en fusion définissant l'espace de coulée s'étendant entre la face d'entrée 14 et la face de sortie 16. Classiquement, le corps de lingotière 12 est surmonté d'une rehausse, indiquée généralement 20, dans laquelle est versé le métal en fusion depuis un répartiteur (ou "tundish", non représenté), et qui permet de maintenir la surface libre du métal en fusion à une certaine distance du corps de lingotière 12 où débute la solidification. Comme on le voit sur la Fig.1 , la rehausse 20 prend place sur l'extrémité supérieure du corps de lingotière 12 et est en fait constituée de deux éléments tubulaires alignés : un élément inférieur, anneau 22, en matériau réfractaire compact présentant une bonne tenue mécanique tel que du SiAION; et un élément supérieur, manchon 24, en un matériau réfractaire thermo-isolant. Le corps de lingotière 12 est énergiquement refroidi par circulation d'eau en interne pour extraire la chaleur nécessaire au refroidissement du métal en fusion. L'eau de refroidissement circule, de préférence de bas en haut, dans une pluralité de canaux de refroidissement 26 verticaux (un seul représenté sur la Fig.1 ) prévus à la périphérie du passage 18. Pour ce faire, l'extrémité inférieure de chaque canal de refroidissement 26 communique avec une chambre de répartition dite d'introduction 28, qui permet l'introduction de l'eau de refroidissement dans les canaux 26 avec une pression adaptée pour établir la vitesse de circulation désirée. L'eau remonte donc dans les canaux de refroidissement 26 le long du passage 18, et est collectée après sa sortie de chaque canal 26 dans une autre chambre de répartition dite d'évacuation 30 (de section sensiblement supérieure aux canaux 26). Bien qu'une circulation de l'eau du bas vers le haut soit préférée, il est possible de faire circuler un fluide de refroidissement du haut vers le bas; la chambre 30 deviendrait alors chambre d'introduction et la chambre 28 chambre d'évacuation. On appréciera que dans la présente lingotière 10 les canaux de refroidissement se prolongent jusque sous la face d'entrée 14 du corps de lingotière 12, ce qui permet d'avoir des canaux de refroidissement 26 qui s'étendent quasiment sur toute la longueur (hauteur) du passage 18, et notamment donc dans la région supérieure du corps de lingotière 12 vers l'interface avec la rehausse 20 où débute la solidification. On notera également que la chambre d'évacuation 30 est en retrait par rapport à la face d'entrée 14 du corps de lingotière 12 et à l'extrémité supérieure des canaux de refroidissement 26. La circulation de l'eau depuis l'extrémité du canal de refroidissement 26 coté face d'entrée 14 jusqu'à la chambre d'évacuation 30 se fait à travers un canal intermédiaire d'évacuation 32 (ou canal de liaison intermédiaire) qui part de l'extrémité du canal 26 et s'écarte de la face d'entrée 14 vers l'arrière pour déboucher dans la chambre d'évacuation déportée 30. Le canal de liaison intermédiaire 32 s'étend donc obliquement par rapport à l'axe du canal de refroidissement 26 auquel il est associé. Un tel canal de liaison intermédiaire 32 constitue donc une conduite de retour depuis la face d'entrée 14 vers la chambre de répartition, qui permet de conserver des vitesses de fluide de refroidissement élevées jusqu'à la chambre d'évacuation 30. La structure du circuit de refroidissement dans la lingotière 10 permet d'évacuer des quantités de chaleur importantes dans la zone chaude critique de la lingotière, et évite les problèmes d'évaporation et de zones mortes dans cette partie de la lingotière. Dans la présente variante, le corps de lingotière comprend, assemblés l'un à l'autre, un élément tubulaire 33 monolithique sans fond, en cuivre ou alliage de cuivre, définissant l'espace de coulée sous forme d'un passage central 18 pour le métal coulé et un manteau 39 entourant l'élément 33 à distance.Fig.1 shows a schematic section of an ingot mold 10 according to the present invention, in an application to continuous casting in vertical load steel. The mold 10 comprises an ingot mold body 12 having an upper inlet face 14 and a lower outlet face 16, and which is provided with a passage 18 for the molten metal defining the casting space extending between the inlet face 14 and outlet face 16. Conventionally, the mold body 12 is surmounted by a riser, generally indicated 20, into which the molten metal is poured from a tundish (or "tundish", not shown) and which maintains the free surface of the molten metal at a distance from the mold body 12 where the solidification begins. As seen in Fig.1, the riser 20 takes place on the upper end of the mold body 12 and is in fact made of two aligned tubular elements: a lower element, ring 22, compact refractory material having good mechanical strength such as SiAION; and an upper element, sleeve 24, made of a thermally insulating refractory material. The mold body 12 is vigorously cooled by circulating water internally to extract the heat necessary for cooling the molten metal. The cooling water circulates, preferably from below upwards, in a plurality of vertical cooling channels 26 (only one shown in FIG. 1) provided on the periphery of the passage 18. To do this, the lower end of each cooling channel 26 communicates with a so-called introducer distribution chamber 28, which allows the introduction of the cooling water into the channels 26 with a pressure adapted to establish the desired flow rate. The water thus rises in the cooling channels 26 along the passage 18, and is collected after its exit from each channel 26 in another so-called evacuation distribution chamber 30 (of section substantially greater than the channels 26). Although bottom-up water circulation is preferred, it is possible to circulate a cooling fluid from top to bottom; the chamber 30 would then become the introduction chamber and the chamber 28 evacuation chamber. It will be appreciated that in the present mold 10 the cooling channels extend as far as the inlet face 14 of the mold body 12, which makes it possible to have cooling channels 26 which extend almost the entire length (height) of the passage 18, and therefore especially in the upper region of the mold body 12 towards the interface with the riser 20 where the solidification. It will also be noted that the evacuation chamber 30 is set back with respect to the inlet face 14 of the ingot mold body 12 and at the upper end of the cooling channels 26. The circulation of the water from the end of the cooling channel 26 on the inlet side face 14 to the evacuation chamber 30 is made through an intermediate evacuation channel 32 (or intermediate connecting channel) which leaves the end of the channel 26 and departs from the inlet face 14 towards the rear to open into the remote evacuation chamber 30. The intermediate connecting channel 32 thus extends obliquely with respect to the axis of the cooling channel 26 with which it is associated. Such an intermediate connecting channel 32 thus constitutes a return line from the inlet face 14 towards the distribution chamber, which makes it possible to maintain high cooling fluid velocities up to the evacuation chamber 30. The structure of the cooling circuit in the mold 10 allows to evacuate large amounts of heat in the critical hot zone of the mold, and avoids the problems of evaporation and dead zones in this part of the mold. In the present variant, the mold body comprises, assembled to each other, a bottomless monolithic tubular element 33 made of copper or copper alloy, defining the casting space in the form of a central passage 18 for the cast metal and a mantle 39 surrounding the element 33 at a distance.
Cet élément tubulaire 33 présente de fabrication une bride supérieure 34 dont l'extrémité libre vient en contact étanche avec le bord supérieur du manteau 39 et dont la face supérieure constitue la face d'entrée 14 de l'espace de coulée 18. De manière symétrique, le manteau 39 présente à son extrémité inférieure une bride en retour 36 venant par son extrémité libre en contact étanche avec le bord inférieur du corps tubulaire 33 et dont la face inférieure constitue la face de sortie 16 de l'espace de coulée 18.This tubular element 33 has an upper flange 34 whose free end comes into sealing contact with the upper edge of the mantle 39 and whose upper face constitutes the inlet face 14 of the casting space 18. Symmetrically , the mantle 39 has at its lower end a return flange 36 coming from its free end in sealing contact with the lower edge of the tubular body 33 and whose lower face constitutes the outlet face 16 of the casting space 18.
Comme on le voit sur la Fig.1 , les chambres d'introduction 28 et d'évacua- tion 30 sont délimitées latéralement par le manteau 39 et frontalement par les brides inférieure 36 et supérieure 34 respectivement. Elles sont disposées l'une au dessus de l'autre, séparées par une cloison étanche 37 venant de construction de l'élément tubulaire 33 et coopérant à son extrémité avec une portée correspondante 31 du manteau 39 avec interposition d'un joint d'étanchéité torique 25.As can be seen in FIG. 1, the introduction chambers 28 and the evacuation chambers 30 are delimited laterally by the mantle 39 and frontally by the lower flanges 36 and upper 34 respectively. They are arranged one above the other, separated by a watertight partition 37 coming from the construction of the tubular element 33 and cooperating at its end with a corresponding bearing surface 31 of the mantle 39 with the interposition of a seal toric 25.
La communication hydraulique entre la chambre d'introduction 28 et les canaux de refroidissement 26 se fait à travers des passages 38 percés au droit de l'élément tubulaire 33 au ras du fond de la chambre 28. En revanche, conformément à une caractéristique propre à l'invention, la communication entre les canaux 26 et la chambre d'évacuation 30 s'opère à l'aide de canaux de liaison intermédiaires 32 percés en oblique dans la bride supérieure 34 afin de relier l'extrémité de sortie haute de chaque canal de refroidissement 26 à la chambre d'évacuation 30 à son extrémité supérieure. De préférence, on ménagera des canaux de liaison intermédiaires 32 les plus courts possibles en les perçant, comme le montre la Fig.1 , à l'endroit du congé de raccordement 35 entre la bride supérieure 34 avec l'élément tubulaire 33.The hydraulic communication between the introduction chamber 28 and the cooling channels 26 is made through passages 38 drilled in line with the tubular element 33 flush with the bottom of the chamber 28. In contrast, according to a characteristic of In the invention, the communication between the channels 26 and the evacuation chamber 30 is effected by means of intermediate connecting channels 32 obliquely drilled in the upper flange 34 in order to connect the upper outlet end of each channel. cooling device 26 to the exhaust chamber 30 at its upper end. Preferably, intermediate connecting channels 32 are made as short as possible by piercing them, as shown in FIG. 1, at the location of the connection fillet 35 between the upper flange 34 and the tubular element 33.
Dans un tel élément tubulaire 33, les canaux de refroidissement 26 peuvent être facilement réalisés par perçage depuis la face inférieure 16, dans la paroi du tube. Les canaux 26 sont ensuite obturés du côté sortie par des bouchons 40. De même, les canaux intermédiaires d'évacuation 32 peuvent être réalisés par perçage de la bride supérieure 34. Le perçage est encore la solution préférée pour le canaux intermédiaires d'introduction 38.In such a tubular element 33, the cooling channels 26 can be easily made by drilling from the lower face 16 in the wall of the tube. The channels 26 are then closed on the outlet side by plugs 40. Similarly, the intermediate discharge channels 32 may be made by drilling the upper flange 34. Drilling is still the preferred solution for the intermediate inlet channel 38 .
La Fig.2 illustre un exemple de réalisation préféré de l'élément tubulaire de lingotière 33 de la Fig.1 ; les mêmes signes de référence sont utilisés. Le passage 18 du corps de lingotière 33 a une forme (section) adaptée à la coulée de poutrelles. Les canaux de refroidissement 26 sont uniformément répartis sur tout le pourtour du passage 18 et en suivent la forme. Dans la présente variante, ils ont une section identique et constante sur toute leur longueur. Comme on le voit, les canaux de refroidissement s'étendent jusque sous la face supérieure 14 de la bride 34, et les canaux d'évacuation 32 s'étendent depuis l'extrémité supérieure des canaux 26 à travers la bride 34 pour déboucher dans le haut de la chambre d'évacuation 30. La section des canaux intermédiaires 32 n'est, de préférence, pas supérieure à la section de passage maximale des canaux de refroidissement 26. La réalisation par perçage permet un agencement aisé des canaux de refroidissement verticaux 26 à la périphérie du passage 18. L'agencement des canaux intermédiaires d'évacuation 32 dans certaines zones, notamment dans la partie supérieure de lingotière au niveau du congé de raccordement entre âme et aile du profilé, requiert préférablement un déploiement dans l'espace afin d'éviter qu'ils ne se rencontrent. Cela peut être constaté sur la Fig.2, où l'on voit que les différents canaux d'évacuation 32 ne débouchent pas à la même hauteur dans la chambre d'évacuation 30.Fig.2 illustrates a preferred embodiment of the tubular mold member 33 of Fig.1; the same reference signs are used. The passage 18 of the ingot mold body 33 has a shape (section) adapted to the casting of beams. The cooling channels 26 are uniformly distributed all around the passage 18 and follow the shape. In the present variant, they have an identical and constant section over their entire length. As can be seen, the cooling channels extend as far as the upper face 14 of the flange 34, and the evacuation channels 32 extend from the upper end of the channels 26 through the flange 34 to open into the top of the discharge chamber 30. The section of the intermediate channels 32 is preferably not greater than the maximum passage section of the cooling channels 26. The drilling embodiment allows an easy arrangement of the vertical cooling channels 26 at the periphery of the passage 18. The arrangement of the intermediate discharge channels 32 in certain areas, especially in the upper part of the mold at the connection fillet between the soul and wing of the profile, preferably requires a deployment in space to prevent them from meeting. This can be seen in Fig.2, where it can be seen that the different discharge channels 32 do not open at the same height in the evacuation chamber 30.
La structure du circuit de refroidissement dans la présente lingotière 10 est particulièrement bien adapté pour des corps de lingotière de taille réduite et de formes complexes, tel que pour la fabrication de petits profilés. Comparativement aux lingotières connues employant une circulation d'eau périphérique horizontale, l'utilisation d'une pluralité de canaux, de section relativement plus petite, uniformément répartis permet de mieux répartir l'extraction de chaleur, et donc d'obtenir une meilleur homogénéité de refroidissement sur le périmètre. Pour la coulée continue de profilés de petites dimensions, c'est-à-dire généralement de dimensions 100x100x12 mm à 300x300x20 mm, les canaux de refroidissement verticaux ont par exemple un diamètre entre 7 et 10 mm, et leur extrémité supérieure se situe à moins de 8 mm de la face d'entrée 14 (surface supérieure de la bride 34), de préférence entre 4 et 6 mm. La distance entre la face chaude des canaux 26 et la face intérieure du passage 18 peut être entre 5 et 10 mm.The structure of the cooling circuit in the present mold 10 is particularly well suited for mold bodies of reduced size and complex shapes, such as for the manufacture of small sections. Compared to known molds employing horizontal peripheral water circulation, the use of a plurality of channels of relatively smaller cross-section, uniformly distributed, makes it possible to better distribute the heat extraction, and thus to obtain a better homogeneity of cooling on the perimeter. For the continuous casting of profiles of small dimensions, that is to say generally of dimensions 100x100x12 mm to 300x300x20 mm, the vertical cooling channels have for example a diameter between 7 and 10 mm, and their upper end is located unless 8 mm of the input face 14 (upper surface of the flange 34), preferably between 4 and 6 mm. The distance between the hot face of the channels 26 and the inner face of the passage 18 may be between 5 and 10 mm.
Dans l'exécution de la Fig.2, on notera la présence d'un dispositif réducteur de section 50 agencé dans l'extrémité supérieure de chaque canal de refroidissement 26. Un tel dispositif 50 permet de réduire localement la section de passage dans le canal de refroidissement 26, augmentant ainsi la vitesse de circulation de l'eau de refroidissement. En outre, ce dispositif 50 est conçu pour favoriser le passage de l'eau de refroidissement à proximité du passage de lingotière, et plus précisément le long de la face chaude (chargée thermique- ment) du canal de refroidissement 26.In the embodiment of FIG. 2, it will be noted the presence of a section reducing device 50 arranged in the upper end of each cooling channel 26. Such a device 50 makes it possible to locally reduce the passage section in the channel. 26, thereby increasing the speed of circulation of the cooling water. In addition, this device 50 is designed to to promote the passage of the cooling water near the ingot mold passage, and more precisely along the hot (heat-laden) face of the cooling channel 26.
Un tel dispositif réducteur de section 50 est représenté plus en détails sur les Figs.3 et 4. Il comprend un corps oblong 52, de préférence massif, à trois face latérales 54, 56 et 58.. Une face convexe 54 a une courbure correspond à celle du canal de refroidissement 26. Les deux autres faces 56 et 58 sont concaves, sensiblement de même dimensions, et partent de la face convexe 54 pour se rejoindre au niveau d'une arête 60. Comme on le voit, la distance maximale entre l'arête 60 et la face convexe 54 correspond essentiellement au diamètre du canal de refroidissement 26. De préférence, les dimensions du corps 52 sont choisies pour permettre une fixation dans le canal 26 par ajustement serré. Les dispositifs 50 sont installés dans les canaux 26 avant la mise en place des bouchons 40. Le dispositif 50 est positionné dans le canal de refroidissement 26 avec l'arête 60 tournée vers le passage de lingotière 18. Ainsi, la face convexe 54 s'appuie sur la face froide du canal de refroidissement 26 (la plus éloignée du passage de lingotière) et empêche l'écoulement de l'eau le long de celle-ci. En revanche, les faces latérales 56 et 58 définissent avec la face chaude du canal de refroidissement (proche du passage de lingotière et donc chargée thermi- quement) deux canaux de refroidissement 62 et 62' de section restreinte, qui forcent la circulation de l'eau le long de la face chaude du canal 26.Such a reduction device of section 50 is shown in more detail in FIGS. 3 and 4. It comprises an oblong body 52, preferably solid, with three lateral faces 54, 56 and 58. A convex face 54 has a curvature corresponding to to the cooling channel 26. The other two faces 56 and 58 are concave, substantially the same dimensions, and start from the convex face 54 to join at an edge 60. As can be seen, the maximum distance between the ridge 60 and the convex face 54 corresponds essentially to the diameter of the cooling channel 26. Preferably, the dimensions of the body 52 are chosen to allow attachment in the channel 26 by tight fit. The devices 50 are installed in the channels 26 before the plugs 40 are put in place. The device 50 is positioned in the cooling channel 26 with the edge 60 turned towards the ingot mold passage 18. Thus, the convex face 54 presses on the cold face of the cooling channel 26 (farthest from the ingot mold passage) and prevents the flow of water along it. On the other hand, the side faces 56 and 58 define with the hot face of the cooling channel (close to the ingot mold passage and thus thermally charged) two cooling channels 62 and 62 'of restricted section, which force the circulation of the water along the hot face of channel 26.
Afin de permettre à l'eau de refroidissement qui circule le long du dispositif réducteur de section 50 et de la face chaude du canal de refroidissement 26 de s'échapper dans le canal d'évacuation 32 qui débouche dans la face froide du canal 26, on prévoit un trou de passage 64 entre chacune des faces concaves 56, 58 et la face convexe 54. Ces trous de passage 64 sont donc avantageusement positionnés pour déboucher directement dans le canal intermédiaire d'évacuation 32 lorsque l'aiguille est installée dans le canal de refroidissement 26.In order to allow the cooling water circulating along the section reducing device 50 and the hot face of the cooling channel 26 to escape into the discharge channel 32 which opens into the cold face of the channel 26, a through-hole 64 is provided between each of the concave faces 56, 58 and the convex face 54. These passage holes 64 are therefore advantageously positioned to open directly into the intermediate evacuation channel 32 when the needle is installed in the channel cooling 26.
Enfin, le corps 52 est avantageusement prolongé dans sa partie inférieure par un pied effilé 66, dont la longueur est supérieure à la distance entre le fond du canal de refroidissement 26 (côté sortie) et l'ouverture du canal d'introduction 38. Au cas où le dispositif 50 viendrait anormalement à tomber dans le fond du canal de refroidissement 26, le pied 66 permet de maintenir le corps 52 du dispositif 50 au dessus de l'ouverture du canal d'introduction 38 et évite tout bouchage.Finally, the body 52 is advantageously extended in its lower part by a tapered foot 66, whose length is greater than the distance between the bottom of the cooling channel 26 (outlet side) and the opening of the introduction channel 38. In the event that the device 50 would abnormally fall into the bottom of the cooling channel 26, the foot 66 keeps the body 52 of the device 50 above the opening of the introduction channel 38 and prevents clogging.
Il reste à noter que la réduction de section peut également être obtenue en jouant sur l'usinage des canaux de refroidissement 26. Toutefois, l'utilisation de dispositifs réducteurs de section 50 présente l'avantage d'être flexible d'utilisation car des modifications des conditions de refroidissement sont possibles sans modifier l'usinage du tube de lingotière 33. It should be noted that the reduction of section can also be obtained by playing on the machining of the cooling channels 26. However, the use of reducing devices of section 50 has the advantage of being flexible in use because modifications cooling conditions are possible without modifying the machining of the ingot mold tube 33.

Claims

Revendications claims
1. Lingotière pour la coulée continue des métaux, notamment de l'acier, comprenant : un corps de lingotière (12) métallique pourvu d'un passage (18) pour le métal coulé s'étendant entre une face d'entrée (14) et une face de sortie (16) ; une pluralité de canaux de refroidissement (26) pour un fluide de refroidissement s'étendant le long dudit passage (18) ; et une chambre de répartition (30) pour le fluide de refroidissement en communication avec l'extrémité des canaux de refroidissement (26) du coté de ladite face d'entrée (14) ; dans laquelle lesdits canaux de refroidissement (26) sont distribués tout autour dudit passage de coulée (18) et s'étendent jusque sous ladite face d'entrée (14) à son voisinage immédiat, en présentant à proximité de ladite face d'entrée (14) une section de passage réduite ; ladite chambre de répartition (30) est agencée en retrait par rapport à ladite face d'entrée (14) du corps de lingotière (12) et à l'extrémité des canaux de refroidissement (26) côté face d'entrée ; l'extrémité de chaque canal de refroidissement (26) du côté de ladite face d'entrée (14) communique avec ladite chambre de répartition (30) via un canal intermédiaire oblique (32) respectif; et une rehausse en matériau réfractaire (20) est présente qui prolonge le passage de coulée (18) dudit corps de lingotière (12) au-dessus de ladite face d'entrée (14) et comprenant un élément (24) en matériau réfractaire rigide tourné du coté dudit passage (18). An ingot mold for the continuous casting of metals, especially steel, comprising: a mold body (12) having a metal passage (18) for the cast metal extending between an inlet face (14) and an exit face (16); a plurality of cooling channels (26) for cooling fluid extending along said passage (18); and a distribution chamber (30) for the cooling fluid in communication with the end of the cooling channels (26) on the side of said inlet face (14); wherein said cooling channels (26) are distributed all around said pouring passage (18) and extend to said inlet face (14) in its immediate vicinity, presenting in the vicinity of said inlet face ( 14) a reduced passage section; said distribution chamber (30) is arranged recessed with respect to said inlet face (14) of the mold body (12) and at the end of the inlet side cooling channels (26); the end of each cooling channel (26) on the side of said inlet face (14) communicates with said distribution chamber (30) via a respective oblique intermediate channel (32); and a riser of refractory material (20) is present which extends the casting passage (18) of said mold body (12) above said inlet face (14) and comprising a rigid refractory material element (24) turned on the side of said passage (18).
2. Lingotière selon la revendication 1 , caractérisée en ce qu'un dispositif réducteur de section (50) est installé dans l'extrémité de chaque canal de refroidissement (26) côté face d'entrée (14), lequel obture ledit canal de refroidissement (26) le long de sa face froide et permet l'écoulement de fluide de refroidissement le long de sa face chaude.An ingot mold according to claim 1, characterized in that a section reducing device (50) is installed in the end of each inlet side cooling channel (26) which closes off said inlet channel. cooling (26) along its cold side and allows cooling fluid flow along its hot face.
3. Lingotière selon la revendication 2, caractérisée en ce que ledit dispositif réducteur de section (50) comprend un corps oblong massif (52) présentant une face latérale convexe (54), et deux faces latérales concaves (56, 58) contiguës à ladite face convexe (54) se rejoignant au niveau d'une arête (60); et en ce que, vu en section transversale, la distance maximale entre l'arête (60) et la face convexe (54) est sensiblement égale à la section du canal de refroidissement (26). 3. Mold according to claim 2, characterized in that said section reducing device (50) comprises a solid oblong body (52) having a convex side face (54), and two concave side faces (56, 58) contiguous to said convex face (54) joining at one edge (60); and in that, viewed in cross-section, the maximum distance between the ridge (60) and the convex face (54) is substantially equal to the section of the cooling channel (26).
4. Lingotière selon la revendication 3, caractérisée en ce que ledit dispositif réducteur de section (50) est orienté de sorte que l'arête (60) soit tournée vers la face chaude dudit canal de refroidissement (26).4. Mold according to claim 3, characterized in that said section reducing device (50) is oriented so that the edge (60) is facing the hot face of said cooling channel (26).
5. Lingotière selon la revendication 3 ou 4, caractérisée en ce que un trou de passage (64) relie chaque face concave (56, 58) à ladite face convexe (54), chaque trou de passage (64) étant positionné dans l'extrémité dudit canal de refroidissement (26) pour déboucher dans ladite faxe convexe (54) à hauteur du canal intermédiaire (32) associé.An ingot mold according to claim 3 or 4, characterized in that a through hole (64) connects each concave face (56, 58) to said convex face (54), each through hole (64) being positioned in the end of said cooling channel (26) to open into said convex fax (54) at the associated intermediate channel (32).
6. Lingotière selon la revendication 3, 4, ou 5, caractérisée en ce que ledit corps oblong (52) se prolonge à son extrémité inférieure par un pied effilé (66), dont la hauteur est supérieure à la distance entre l'extrémité du canal de refroidissement (26) côté sortie (16) et l'ouverture dudit autre canal intermédiaire (38).6. Mold according to claim 3, 4 or 5, characterized in that said elongate body (52) extends at its lower end by a tapered foot (66), the height of which is greater than the distance between the end of the cooling channel (26) on the outlet side (16) and the opening of said other intermediate channel (38).
7. Lingotière selon la revendication 1 , caractérisée par des moyens pour l'injection d'un gaz inerte sous pression dans ledit passage (18) et sur tout son pourtour, au niveau de l'interface entre ladite rehausse (20) et ledit corps de lingotière (12).7. An ingot mold according to claim 1, characterized by means for injecting an inert gas under pressure into said passage (18) and all around its periphery, at the interface between said extension (20) and said body ingot mold (12).
8. Lingotière selon l'une quelconque des revendications précédentes, caractérisée en ce que chaque canal intermédiaire (32) présente une section égale ou inférieure à celle d'un canal de refroidissement (26) dans la partie de lingotière du coté face d'entrée (14). 8. Mold according to any one of the preceding claims, characterized in that each intermediate channel (32) has a section equal to or smaller than that of a cooling channel (26) in the ingot mold part of the face of entry (14).
9. Utilisation d'une lingotière selon l'une quelconque des revendications précédentes pour la coulée continue des métaux, notamment de l'acier, et particulièrement pour la coulée continue en charge de petits profilés en acier, caractérisée en ce que ledit corps de lingotière (12) comprend un i élément tubulaire (33) métallique monolithique définissant le passage de coulée (18), et en ce que lesdits canaux de refroidissement (26) et lesdits canaux intermédiaires (32) sont percés dans ledit élément tubulaire (33). 9. Use of an ingot mold according to any one of the preceding claims for the continuous casting of metals, in particular steel, and particularly for the continuous casting in charge of small steel sections, characterized in that said mold body (12) comprises a monolithic metal tubular element (33) defining the casting passage (18), and in that said cooling channels (26) and said intermediate channels (32) are drilled in said tubular member (33).
EP06725755A 2005-04-13 2006-04-13 Ingot mold for continuous metal casting Not-in-force EP1877210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06725755A EP1877210B1 (en) 2005-04-13 2006-04-13 Ingot mold for continuous metal casting

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05102921A EP1712313A1 (en) 2005-04-13 2005-04-13 Continuous metal casting mould
EP06725755A EP1877210B1 (en) 2005-04-13 2006-04-13 Ingot mold for continuous metal casting
PCT/EP2006/061596 WO2006108872A1 (en) 2005-04-13 2006-04-13 Ingot mold for continuous metal casting

Publications (2)

Publication Number Publication Date
EP1877210A1 true EP1877210A1 (en) 2008-01-16
EP1877210B1 EP1877210B1 (en) 2008-09-24

Family

ID=34939264

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05102921A Withdrawn EP1712313A1 (en) 2005-04-13 2005-04-13 Continuous metal casting mould
EP06725755A Not-in-force EP1877210B1 (en) 2005-04-13 2006-04-13 Ingot mold for continuous metal casting

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05102921A Withdrawn EP1712313A1 (en) 2005-04-13 2005-04-13 Continuous metal casting mould

Country Status (5)

Country Link
EP (2) EP1712313A1 (en)
AT (1) ATE409089T1 (en)
DE (1) DE602006002881D1 (en)
ES (1) ES2313638T3 (en)
WO (1) WO2006108872A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2723520B1 (en) 2011-06-23 2015-05-20 Arcelormittal Investigacion y Desarrollo, S.L. Method and device for continuously casting a profile member blank
CN102248138B (en) * 2011-07-22 2013-01-30 北京科技大学 Horizontal continuous casting crystallizer capable of realizing circumferential uniform cooling
ITUD20130053A1 (en) * 2013-04-23 2014-10-24 Danieli Off Mecc APPARATUS FOR CONTINUOUS CASTING
ITUB20154787A1 (en) * 2015-11-06 2017-05-06 Milorad Pavlicevic PERFECTED CRYSTALLIZER AND ADAPTANT SPEAKER AS THE CRYSTALLIZER

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE554125A (en) *
FR1382665A (en) * 1964-02-14 1964-12-18 Davy & United Eng Co Ltd Mold for continuous casting of molten metal
AT359225B (en) * 1978-03-23 1980-10-27 Voest Alpine Ag TURNING FRAME CONTINUOUS CHOCOLATE
DE4127333C2 (en) * 1991-08-19 2000-02-24 Schloemann Siemag Ag Continuous casting mold

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006108872A1 *

Also Published As

Publication number Publication date
WO2006108872A1 (en) 2006-10-19
ATE409089T1 (en) 2008-10-15
ES2313638T3 (en) 2009-03-01
EP1877210B1 (en) 2008-09-24
WO2006108872A8 (en) 2006-12-14
DE602006002881D1 (en) 2008-11-06
EP1712313A1 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
FR2626508A1 (en) CASTING MOLD OF METALS, EQUIPPED WITH A SLEEVE CONTAINING A FILTER
EP1877210B1 (en) Ingot mold for continuous metal casting
CA2706131C (en) Mould for direct-cast aluminothermic welding
EP0620062A1 (en) Process for continuous casting of metals using a hot top, and method used therefor
CH630274A5 (en) COOLING SHIRT FOR CONTINUOUS CASTING LINGOTIERE.
EP0989918B1 (en) Ingot mould head for continuous vertical load casting of elongated flat metal products
EP0743114B2 (en) Process for the lubrication of the walls of a continuous casting mould for metals and mould for carrying out the process
EP1091818B1 (en) Method for preparing a casting mould
WO2006108874A1 (en) Method for continuous casting of blanks of metal sections
EP0907439B1 (en) Continuous casting ingot mould for the vertical casting of metals
EP0868952B1 (en) Continuous casting mould for metals
EP0463911B1 (en) Process, mould and device for low-pressure multi-stage casting of metal
EP0499563B1 (en) Ingot mould for continuous casting of metallic products
CA2251007C (en) Facility and method for the continuous casting of metals and its installation
FR2776216A1 (en) CONTINUOUS CASTING INSTALLATION, PARTICULARLY FOR STEEL
EP1056559B1 (en) Ingot mould with multiple angles for loaded continuous casting of metallurgical product
EP0911096B1 (en) Pouring nozzle for metal continuous casting machine, especially for twin roll caster
BE1015358A3 (en) Continuous pouring procedure for molten metal uses feeder of refractory material and double meniscus
FR2642683A1 (en) REAR SPACER OF A PRESSURE CAST MOLD OF FLAT METAL PRODUCTS SUCH AS SLABS
FR2642681A1 (en) LOWER STRUCTURE OF A PRESSURE CASTING MOLD OF FLAT PRODUCTS SUCH AS SLABS AND METHOD OF ASSEMBLING AND DISASSEMBLING THE LOWER SPACER OF THIS MOLD
FR2498958A1 (en) Casting iron bath tubs - in vertically jointed vacuum maintained moulds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JOLIVET, JEAN-MARC

Inventor name: LE PAPILLON, YANN

Inventor name: BARBE, JACQUES

Inventor name: SALARIS, COSIMO

Inventor name: RIGUCCI, BENITO

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELORMITTAL BELVAL & DIFFERDANGE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OFFICE ERNEST T. FREYLINGER S.A. C/O SCHLUEP & DEG

REF Corresponds to:

Ref document number: 602006002881

Country of ref document: DE

Date of ref document: 20081106

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2313638

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006002881

Country of ref document: DE

Representative=s name: PATENTANWALTSKANZLEI VIEL & WIESKE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20120327

Year of fee payment: 7

Ref country code: CH

Payment date: 20120326

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120326

Year of fee payment: 7

Ref country code: GB

Payment date: 20120328

Year of fee payment: 7

Ref country code: BE

Payment date: 20120329

Year of fee payment: 7

Ref country code: IT

Payment date: 20120322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120402

Year of fee payment: 7

Ref country code: DE

Payment date: 20120326

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120601

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120410

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120323

Year of fee payment: 7

BERE Be: lapsed

Owner name: ARCELORMITTAL BELVAL & DIFFERDANGE

Effective date: 20130430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 409089

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130413

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130414

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006002881

Country of ref document: DE

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130413