EP1869115A1 - Polymerisierbare oligomere urethan-zusammensetzungen mit nanopartikeln - Google Patents

Polymerisierbare oligomere urethan-zusammensetzungen mit nanopartikeln

Info

Publication number
EP1869115A1
EP1869115A1 EP06738131A EP06738131A EP1869115A1 EP 1869115 A1 EP1869115 A1 EP 1869115A1 EP 06738131 A EP06738131 A EP 06738131A EP 06738131 A EP06738131 A EP 06738131A EP 1869115 A1 EP1869115 A1 EP 1869115A1
Authority
EP
European Patent Office
Prior art keywords
brightness enhancing
enhancing film
acrylate
meth
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06738131A
Other languages
English (en)
French (fr)
Inventor
Clinton L. Jones
Emily S. Goenner
David B. Olson
Brant U. Kolb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of EP1869115A1 publication Critical patent/EP1869115A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer

Definitions

  • Brightness enhancing films are utilized in many electronic products to increase the brightness of a backlit flat panel display such as a liquid crystal display (LCD) including those used in electroluminescent panels, laptop computer displays, word processors, desktop monitors, televisions, video cameras, as well as automotive and aviation displays.
  • LCD liquid crystal display
  • Brightness enhancing films desirably exhibit specific optical and physical properties including the index of refraction of a brightness enhancing film that is related to the brightness gain (i.e. "gain") produced.
  • gain the brightness gain
  • Improved brightness can allow the electronic product to operate more efficiently by using less power to light the display, thereby reducing the power consumption, placing a lower heat load on its components, and extending the lifetime of the product.
  • Brightness enhancing films have been prepared from high index of refraction monomers that are cured or polymerized, as described for example in U.S. Pat. Nos. 5,908,874; 5,932,626; 6,107,364; 6,280,063; 6,355,754; as well as EP 1 014113 and WO 03/076528.
  • microstructured articles such as a brightness enhancing film or optical turning film.
  • the microstructured articles comprise a brightness enhancing polymerized structure comprising the reaction product of a composition comprising an organic component having at least one oligomeric urethane (meth)acrylate and surface modified silica nanoparticles.
  • FIG. 1 is a schematic view of an illustrative micro-structured article of the present invention in a backlit liquid crystal display
  • FIG. 2 is a perspective view of an illustrative polymerized structure bearing a micro-structured surface
  • FIG. 3 is a cross-sectional view of an illustrative micro-structured article that has prism elements of varying height
  • FIG. 4 is a cross-sectional view of an illustrative micro-structured article that has prism elements of varying height
  • FIG. 5 is a cross-sectional view of an illustrative micro-structured article
  • FIG. 6 is a cross-sectional view of an illustrative micro-structured article in which the prism elements are of different heights and have their bases in different planes;
  • FIG. 7 is a cross-sectional view of an illustrative micro-structured article
  • FIG. 8 is a cross-sectional view of an illustrative micro-structured article
  • FIG. 9 is a cross-sectional view of an illustrative micro-structured article
  • FIG. 10 is a schematic view of an illumination device including a turning film
  • FIG. 11 is a cross-sectional view of a turning film
  • FIG. 12 is a cross-sectional view of another turning film.
  • microstructure is used herein as defined and explained in U.S. Pat. No.
  • 4,576,850 means the configuration of a surface that depicts or characterizes the predetermined desired utilitarian purpose or function of the article having the microstructure. Discontinuities such as projections and indentations in the surface of said article will deviate in profile from the average center line drawn through the microstructure such that the sum of the areas embraced by the surface profile above the center line is equal to the sum of the areas below the line, said line being essentially parallel to the nominal surface (bearing the microstructure) of the article. The heights of said deviations will typically be about +/- 0.005 to +/- 750 microns, as measured by an optical or electron microscope, through a representative characteristic length of the surface, e.g., 1-30 cm.
  • Said average center line can be piano, concave, convex, aspheric or combinations thereof.
  • Articles where said deviations are of low order, e.g., from +/- 0.005 +/- 0.1 or, preferably, +/- 0.05 microns, and said deviations are of infrequent or minimal occurrence, i.e., the surface is free of any significant discontinuities are those where the microstructure-bearing surface is an essentially "flat" or “smooth" surface, such articles being useful, for example, as precision optical elements or elements with a precision optical interface, such as ophthalmic lenses.
  • Articles where said deviations are of low order and of frequent occurrence include those having anti-reflective microstructure.
  • Articles where said deviations are of high-order, e.g., from +/- 0.1 to +/- 750 microns, and attributable to microstructure comprising a plurality of utilitarian discontinuities which are the same or different and spaced apart or contiguous in a random or ordered manner, are articles such as retroreflective cube-corner sheeting, linear Fresnel lenses, video discs and brightness enhancing films.
  • the microstructure-bearing surface can contain utilitarian discontinuities of both said low and high orders.
  • the microstructure-bearing surface may contain extraneous or non-utilitarian discontinuities so long as the amounts or types thereof do not significantly interfere with or adversely affect the predetermined desired utilities of said articles.
  • Brightness enhancing films generally enhance on-axis luminance (referred herein as "brightness") of a lighting device.
  • Brightness enhancing films can be light transmissible, microstructured films.
  • the microstructured topography can be a plurality of prisms on the film surface such that the films can be used to redirect light through reflection and refraction.
  • the heights of the prisms typically range from about 1 to 75 microns.
  • the microstructured optical film can increase brightness of an optical display by limiting light escaping from the display to within a pair of planes disposed at desired angles from a normal axis running through the optical display.
  • Retro-reflective films generally are capable of returning a significant percentage of incident light at relatively high entrance angles regardless of the rotational orientation of the sheeting about an axis perpendicular to its major surface.
  • Cube corner retro-reflective film can include a body portion typically having a substantially planar base surface and a structured surface comprising a plurality of cube corner elements opposite the base surface.
  • Each cube corner element can include three mutually substantially perpendicular optical faces that typically intersect at a single reference point, or apex.
  • the base of the cube corner element acts as an aperture through which light is transmitted into the cube corner element.
  • polymer will be understood to include polymers, copolymers (e.g., polymers formed using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that can be formed in a miscible blend by, for example, coextrusion or reaction, including transesterification. Both block and random copolymers are included, unless indicated otherwise.
  • refractive index is defined herein as the absolute refractive index of a material that is understood to be the ratio of the speed of electromagnetic radiation in free space to the speed of the radiation in that material.
  • the refractive index can be measured using known methods and is generally measured using an Abbe Refractometer in the visible light region.
  • nanoparticles is defined herein to mean particles (primary particles or associated primary particles) with a diameter less than about 100 nm.
  • associated particles refers to a grouping of two or more primary particles that are aggregated and/or agglomerated.
  • aggregation is descriptive of a strong association between primary particles that may be chemically bound to one another. The breakdown of aggregates into smaller particles is difficult to achieve.
  • Agglomeration is descriptive of a weak association of primary particles that may be held together by charge or polarity and can be broken down into smaller entities.
  • primary particle size is defined herein as the size of a non-associated single particle.
  • sol is defined herein as a dispersion or suspension of colloidal particles in a liquid phase.
  • stable dispersion is defined herein as a dispersion in which the colloidal nanopartiqles do not agglomerate after standing for a period of time, such as about 24 hours, under ambient conditions - e.g. room temperature (about 20-22° C), atmospheric pressure, and no extreme electromagnetic forces.
  • gain is defined herein as a measure of the improvement in brightness of a display due to a brightness enhancing film, and is a property of the optical material, and also of the geometry of the brightness enhancing film. Typically, the viewing angle decreases as the gain increases. A high gain is desired for a brightness enhancing film because improved gain provides an effective increase in the brightness of the backlight display.
  • microstructured articles wherein the microstructured surface layer is formed from the reaction product of a polymerizable composition
  • a polymerizable composition comprising an organic component having at least one oligomeric urethane (also known as a (meth)acrylated urethane oligomers) and silica nanoparticles.
  • the polymerizable composition is preferably a substantially solvent-free radiation curable inorganic filled organic composite.
  • the organic component can be a solid or comprise a solid component provided that the melting point is less than the coating temperature.
  • the organic component can be a liquid at ambient temperature.
  • the organic component typically has a refractive index of at least 1.47 for most product applications; whereas the organic component of a turning films may have a refractive index as low as 1.44.
  • Durable articles can include a polymerized structure having a plurality of surface modified colloidal nanoparticles.
  • the durable article can be an optical element or optical product constructed of a base layer and an optical layer.
  • the base layer and optical layer can be formed from the same or different polymer material.
  • the polymerized structure having a plurality of surface modified colloidal nanoparticles has the advantage that it can be formed in a solvent-less system.
  • the durable optical film includes a polymerized optical film structure having a microstructured surface and a scratch contrast ratio value in a range of 1.0 to 1.15, or 1.0 to 1.12, or 1.0 to 1.10, or 1.0 to 1.05 as determined according to the test method described in U.S. Patent Application Serial No. 10/938006 filed Sept. 10, 2004.
  • the scratch contrast ratio value can range from 1.0 to 1.65, or 1.0 to 1.4, or 1.0 to 1.10.
  • the cured articles preferably exhibit a haze rating corresponding to a value no greater than 5%, as determined by ASTM procedure D 1003 on a flat film 3.2 mm thick on a bisphenol A polycarbonate substrate.
  • Other preferred properties are an abrasion rating no greater than 20, preferably no greater than 10, as determined by the falling sand abrasion test (ASTM procedure D968), and an adhesion rating to bisphenol A polycarbonate of 5B as determined by the Crosshatch adhesion test (ASTM procedure D3359).
  • the organic phase and/or polymerizable resin is preferably sufficiently crosslinked to provide a glass transition temperature (Tg) of at least 35°C after curing, preferably at least 40°C, and more preferably at least 45°C.
  • Tg glass transition temperature
  • the glass transition temperature can be measured by methods known in the art, such as Differential Scanning Calorimetry (DSC), modulated DSC, or Dynamic Mechanical Analysis.
  • DSC Differential Scanning Calorimetry
  • modulated DSC modulated DSC
  • Dynamic Mechanical Analysis Dynamic Mechanical Analysis.
  • the polymerizable composition can be polymerized by conventional free radical polymerization methods.
  • Other properties of the cured composition include a tensile strength in the range of about 70-700 kg/cm , a modulus of elasticity in the range of about 140-14,000 kg/cm ; an elongation to break in the range of about 5-300%, an optical homogeneity of at least about 91% transmission, a haze value of less than about 5%, a birefringence of less than about 0.002 and/or a dynamic tensile modulus, E', that falls within the boundary of the area A-B- C-D in FIG. 2 of U.S. Patent No. 6,833,176.
  • the dynamic tensile modulus typically ranges from about 4 X 10 7 Pa to about 1 X 10 9 Pa at about 20°C.
  • the dynamic tensile modulus typically ranges from about 3 X 10 6 Pa to about 5 X 10 8 Pa at about 60°C. Further, the dynamic tensile modulus typically ranges from about 1 X 10 6 Pa to about 1 X 10 8 Pa at about 100 0 C.
  • the articles described herein are formed from the reaction product of a polymerizable composition comprising at least one oligomeric urethane (meth)acrylate.
  • the oligomeric urethane (meth)acrylate is a multi(meth)acrylate.
  • the term "(meth)acrylate” is used to designate esters of acrylic and methacrylic acids, and "multi(meth)acrylate” designates a molecule containing more than one (meth)acrylic group, as opposed to "poly(meth)acrylate” which commonly designates (meth)acrylate polymers.
  • the multi(meth)acrylate is a di(meth)acrylate, but it is also contemplated to employ tri(meth)acrylates, tetra(meth)acrylates and so on.
  • Oligomeric urethane multi(meth)acrylates may be obtained commercially; e.g., from Sartomer under the trade designation "Photomer 6000 Series", such as “Photomer 6010” and “Photomer 6020", and also under the trade designation “CN 900 Series”, such as “CN966B85", “CN964" and “CN972”. Oligomeric urethane (meth)acrylates are also available from Surface Specialties, such as available under the trade designations "Ebecryl 8402", “Ebecryl 8807” and "Ebecryl 4827".
  • Oligomeric urethane (meth)acrylates may also be prepared by the initial reaction of an alkylene or aromatic diisocyanate of the formula OCN--R 3 -NCO with a polyol.
  • the polyol is a diol of the formula HO-R 4 —OH, wherein R 3 is a C 2-100 alkylene or an arylene group and R 4 is a C 2-10O alkylene group.
  • the intermediate product is then a urethane diol diisocyanate, which subsequently can undergo reaction with a hydroxyalkyl (meth)acrylate.
  • Suitable diisocyanates include 2,2,4-trimethylhexylene diisocyanate and toluene diisocyanate; alkylene diisocyanates are generally preferred.
  • a particularly preferred compound of this type may be prepared from 2,2,4-trimethylhexylene diisocyanate, poly(caprolactone)diol and 2-hydroxy ethyl methacrylate.
  • the urethane (meth)acrylate is preferably aliphatic.
  • the radiation curable compositions forming the articles of the invention may also comprise at least one other monomer (i.e. other than an oligomeric urethane (meth)acrylate).
  • the other monomer may reduce viscosity and/or improve thermomechanical properties and/or increase refractive index.
  • Monomers having these properties include acrylic monomers (i.e., acrylate and methacrylate esters, acrylamides and methacrylamides), styrenic monomers and ethylenically unsaturated nitrogen heterocycles.
  • Suitable acrylic monomers include monomeric (meth)acrylate esters. They include alkyl (meth)acrylates such as methyl acrylate, ethyl acrylate, 1 -propyl acrylate, methyl methacrylate and t-butyl acrylate.
  • (meth)acrylate esters having other functionality.
  • Compounds of this type are illustrated by the 2-(N-butylcarbamyl)ethyl (meth)acrylates, 2,4- dichlorophenyl acrylate, 2,4,6-tribromophenyl acrylate, tribromophenoxylethyl acrylate, t- butylphenyl acrylate, phenyl acrylate, phenyl thioacrylate, phenylthioethyl acrylate, alkoxylated phenyl acrylate, isobornyl acrylate and phenoxyethyl acrylate.
  • the reaction product of tetrabromobisphenol A diepoxide and (meth)acrylic acid is also suitable.
  • the other monomer may also be a monomeric N-substituted or N,N-disubstituted (meth)acrylamide, especially an acrylamide.
  • These include N-alkylacrylamides and N,N- dialkylacrylamides, especially those containing C 1-4 alkyl groups. Examples are N- isopropylacrylamide, N-t-butylacrylamide, N,N-dimethylacrylamide and N 3 N- diethylacrylamide.
  • the other monomer may further be a polyol multi(meth)acrylate. Such compounds are typically prepared from aliphatic diols, triols and/or tetraols containing 2-10 carbon atoms.
  • poly(meth)acrylates examples include ethylene glycol diacrylate, 1,6- hexanediol diacrylate, 2-ethyl-2-hydroxymethyl- 1,3 -propanediol triacrylate (trimethylolpropane triacrylate), di(trimethylolpropane) tetraacrylate, pentaerythritol tetraacrylate, the corresponding methacrylates and the (meth)acrylates of alkoxylated (usually ethoxylated) derivatives of said polyols.
  • Monomers having two or more (ethylenically unsaturated groups can serve as a crosslinker.
  • Styrenic compounds suitable for use as the other monomer include styrene, dichlorostyrene, 2,4,6-trichlorostyrene, 2,4,6-tribromostyrene, 4-methylstyrene and 4- phenoxystyrene.
  • Ethylenically unsaturated nitrogen heterocycles include N- vinylpyrrolidone and vinylpyridine.
  • the organic component can comprise about 30-100% oligomeric urethane multi(meth)acrylate, with any balance being the other (meth)acrylate monomer ethylenically unsaturated groups.
  • the polymerizable composition contains silica particles.
  • the size of the silica particles is generally chosen to avoid significant visible light scattering.
  • the surface modified silica nanoparticles have a particle size or associated particle size of greater than 1 nm and less than 100 nm, as measured with transmission electron miscroscopy (TEM).
  • TEM transmission electron miscroscopy
  • the surface modified (e.g. colloidal) silica nanoparticles are preferably substantially fully condensed.
  • Fully condensed nanoparticles such as the collidal silica used herein, typically have substantially no hydroxyls in their interiors.
  • Non-silica containing fully condensed nanoparticles typically have a degree of crystallinity (measured as isolated metal oxide particles) greater than 55%, preferably greater than 60%, and more preferably greater than 70%.
  • the degree of crystallinity can range up to about 86%.
  • the degree of crystallinity can be determined by X-ray defraction techniques.
  • Condensed crystalline (e.g. zirconia) nanoparticles have a high refractive index whereas amorphous nanoparticles typically have a lower refractive index.
  • Silica nanoparticles can have a particle size from 5 to 75 nm or 10 to 30 nm. Silica nanoparticles are typically in an amount from 10 to 60 wt-%. Typically the amount of silica is less than 40 wt-%.
  • Suitable silicas are commercially available from Nalco Chemical Co. (Naperville, 111.) under the trade designation NALCO COLLOIDAL SILICAS.
  • silicas include NALCO trade designations 1040, 1042, 1050, 1060, 2327 and 2329.
  • Suitable fumed silicas include for example, products sold under the tradename, AEROSIL series OX-50, -130, -150, and -200 available from DeGussa AG, (Hanau, Germany), and CAB- O-SPERSE 2095, CAB-O-SPERSE Al 05, CAB-O-SIL M5 available from Cabot Corp. (Tuscola, Dl.).
  • the polymerizable compositions may consist of silica(s) as the sole inorganic nanoparticles.
  • silica may be used in combination with other inorganic oxide particles including but not limited to zirconia, titania, antimony oxides, alumina, tin oxides, and/or mixed metal oxide nanoparticles.
  • These optional (non-silica) inorganic oxide particles have a particles size or associated particle size from 5 to 50 nm, or 5 to 15 nm, or 10 nm.
  • These optional (non-silica) inorganic oxide nanoparticles can be present in an amount from 10 to 70 wt-%, or 30 to 50 wt-%.
  • a suitable mixed metal oxide is commercially available from Catalysts & Chemical Industries Corp., (Kawasaki, Japan) under the product designation Optolake 3.
  • a suitable zirconia is commercially available from Nalco Chemical Co. (Naperville, 111.) under the product designation NALCO OOSSOO8.
  • Surface-treating the nano-sized particles can provide a stable dispersion in the polymeric resin.
  • the surface-treatment stabilizes the nanoparticles so that the particles will be well dispersed in the polymerizable resin and result in a substantially homogeneous composition.
  • the nanoparticles can be modified over at least a portion of its surface with a surface treatment agent so that the stabilized particle can copolymerize or react with the polymerizable resin during curing.
  • the nanoparticles are preferably treated with a surface treatment agent.
  • a surface treatment agent has a first end that will attach to the particle surface (covalently, ionically or through strong physisorption) and a second end that imparts compatibility of the particle with the resin and/or reacts with resin during curing.
  • surface treatment agents include alcohols, amines, carboxylic acids, sulfonic acids, phospohonic acids, silanes and titanates.
  • the preferred type of treatment agent is determined, in part, by the chemical nature of the metal oxide surface. Silanes are preferred for silica and other for siliceous fillers. Silanes and carboxylic acids are preferred for metal oxides such as zirconia.
  • the surface modification can be done either subsequent to mixing with the monomers or after mixing. It is preferred in the case of silanes to react the silanes with the particle or nanoparticle surface before incorporation into the resin.
  • the required amount of surface modifier is dependant upon several factors such particle size, particle type, modifier molecular wt, and modifier type. In general it is preferred that approximately a monolayer of modifier is attached to the surface of the particle. The attachment procedure or reaction conditions required also depend on the surface modifier used. For silanes it is preferred to surface treat at elevated temperatures under acidic or basic conditions for from 1-24 hr approximately. Surface treatment agents such as carboxylic acids may not require elevated temperatures or extended time.
  • surface treatment agents suitable for the durable compositions include compounds such as, for example, isooctyl trimethoxy-silane, N-(3- triethoxysilylpropyl) methoxyethoxyethoxyethyl carbamate (PEG3TES), N-(3- triethoxysilylpropyl) methoxyethoxyethoxyethyl carbamate (PEG2TES), 3- (methacryloyloxy)propyltrimethoxy silane, 3-acryloxypropyltrimethoxysilane, 3 - (methacryloyloxy)propyltriethoxysilane, 3 -(methacryloyloxy) propylmethyldimethoxy silane, 3-(acryloyloxypropyl)methyldimethoxysilane, 3- (methacryloyloxy)propyldimethylethoxysilane, 3 -(methacryloyloxy) propyldimethylethoxys
  • the surface modification of the particles in the colloidal dispersion can be accomplished in a variety of ways.
  • the process involves the mixture of an inorganic dispersion with surface modifying agents.
  • a co-solvent can be added at this point, such as for example, 1 -methoxy-2-propanol, ethanol, isopropanol, ethylene glycol, N,N-dimethylacetamide and l-methyl-2-pyrrolidinone.
  • the co-solvent can enhance the solubility of the surface modifying agents as well as the surface modified particles.
  • the mixture comprising the inorganic sol and surface modifying agents is subsequently reacted at room or an elevated temperature, with or without mixing.
  • the mixture can be reacted at about 85 degree C for about 24 hours, resulting in the surface modified sol.
  • the surface treatment of the metal oxide can preferably involve the adsorption of acidic molecules to the particle surface.
  • the surface modification of the heavy metal oxide preferably takes place at room temperature.
  • the surface modification of ZrO 2 with silanes can be accomplished under acidic conditions or basic conditions.
  • the silanes are heated under acid conditions for a suitable period of time.
  • the dispersion is combined with aqueous ammonia (or other base).
  • This method allows removal of the acid counter ion from the ZrO 2 surface as well as reaction with the silane.
  • the particles are precipitated from the dispersion and separated from the liquid phase.
  • a combination of surface modifying agents can be useful, wherein at least one of the agents has a functional group co-polymerizable with a hardenable resin.
  • the polymerizing group can be ethylenically unsaturated or a cyclic function subject to ring opening polymerization.
  • An ethylenically unsaturated polymerizing group can be, for example, an acrylate or methacrylate, or vinyl group.
  • a cyclic functional group subject to ring opening polymerization generally contains a heteroatom such as oxygen, sulfur or nitrogen, and preferably a 3-membered ring containing oxygen such as an epoxide.
  • a preferred combination of surface modifying agent includes at least one surface modifying agent having a functional group that is co-polymerizable with the (organic component of the) hardenable resin and a second modifying agent different than the first modifying agent.
  • the second modifying agent is optionally co-polymerizable with the organic component of the polymerizable composition.
  • the second modifying agent may have a low refractive index (i.e. less than 1.52 or less than 1.50).
  • the second modifying agent is preferably a polyalkyleneoxide containing modifying agent that is optionally co- polymerizable with the organic component of the polymerizable composition.
  • the surface modified particles can then be incorporated into the curable resin in various methods.
  • a solvent exchange procedure is utilized whereby the resin is added to the surface modified sol, followed by removal of the water and co-solvent (if used) via evaporation, thus leaving the particles dispersed in the polyerizable resin.
  • the evaporation step can be accomplished for example, via distillation, rotary evaporation or oven drying.
  • the surface modified particles can be extracted into a water immiscible solvent followed by solvent exchange, if so desired.
  • another method for incorporating the surface modified nanoparticles in the polymerizable resin involves the drying of the modified particles into a powder, followed by the addition of the resin material into which the particles are dispersed.
  • the drying step in this method can be accomplished by conventional means suitable for the system, such as, for example, oven drying or spray drying.
  • the polymerizable compositions described herein can also contain one or more other useful additive as known in art including but not limited to surfactants, pigments, fillers, polymerization inhibitors, antioxidants, anti-static agents, and other possible ingredients.
  • the radiation curable articles of this invention may be prepared by simply blending the components thereof, with efficient mixing to produce a homogeneous mixture, and then removing any solvent employed in preparation of said components. Air bubbles can be removed by application of vacuum or the like, with gentle heating if the mixture is viscous, and casting or otherwise creating a film of the resulting blend on a desired surface. The film can then be charged to a mold bearing the microstructure to be replicated and polymerized by exposure to ultraviolet radiation, producing cured optical resinous articles of the invention having the aforementioned properties. If polymerized on a surface other than the one on which it is to be used, the optical resinous article can be transferred to another surface.
  • Such a polymerization process lends itself to rapid, mass production of articles with no adverse environmental impact because no or only a minor amount of solvent or other volatiles are evolved.
  • the process also lends itself to replication of articles with microstructure comprising utilitarian discontinuities, such as projections and depressions, which are readily released from the mold without loss of the detail of the mold and with retention of the replication of such detail under a wide variety of conditions during use.
  • the articles can be formed with a wide variety of desired properties, such as toughness, flexibility, optical clarity and homogeneity, and resistance to common solvents, the microstructure of such articles having high thermal dimensional stability, resistance to abrasion and impact, and integrity even when the articles are bent.
  • Suitable methods of polymerization include solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization, as are known in the art. Suitable methods include heating in the presence of a free-radical initiator as well as irradiation with electromagnetic radiation such as ultraviolet or visible light in the presence of a photoinitiator. Inhibitors are frequently used in the synthesis of the polymerizable composition to prevent premature polymerization of the resin during synthesis, transportation and storage. Suitable inhibitors include hydroquinone, 4- methoxy phenol, and hindered amine nitroxide inhibitors at levels of 50-1000 ppm. Other kinds and/or amounts of inhibitors may be employed as known to those skilled in the art.
  • the radiation (e.g. UV) curable compositions comprise a least one photoinitiator.
  • a single photoinitiator or blends thereof may be employed in the brightness enhancement film of the invention.
  • the photoinitiator(s) are at least partially soluble (e.g. at the processing temperature of the resin) and substantially colorless after being polymerized.
  • the photoinitiator may be (e.g. yellow) colored, provided that the photoinitiator is rendered substantially colorless after exposure to the UV light source.
  • Suitable photoinitiators include monoacylphosphine oxide and bisacylphosphine oxide.
  • Commercially available mono or bisacylphosphine oxide photoinitiators include 2,4,6-trimethylbenzoydiphenylphosphine oxide, commercially available from BASF (Charlotte, NC) under the trade designation "Lucirin TPO"; ethyl-2,4,6- trimethylbenzoylphenyl phosphinate, also commercially available from BASF under the trade designation "Lucirin TPO-L”; and bis (2,4,6-trimethylbenzoyl)-phenyl ⁇ hosphine oxide commercially available from Ciba Specialty Chemicals under the trade designation "Irgacure 819".
  • photoinitiators include 2-hydroxy-2-methyl-l-phenyl- propan-1-one, commercially available from Ciba Specialty Chemicals under the trade designation “Darocur 1173” as well as other photoinitiators commercially available from Ciba Specialty Chemicals under the trade designations "Darocur 4265”, “Irgacure 651”, “Irgacure 1800”, “Irgacure 369”, “Irgacure 1700”, and "Irgacure 907".
  • the photoinitiator can be used at a concentration of about 0.1 to about 10 weight percent. More preferably, the photoinitiator is used at a concentration of about 0.5 to about 5 wt-%. Greater than 5 wt-% is generally disadvantageous in view of the tendency to cause yellow discoloration of the brightness enhancing film.
  • Other photoinitiators and photoinitiator may also suitably be employed as may be determined by one of ordinary skill in the art.
  • a microstructure-bearing article e.g. brightness enhancing film
  • a method including the steps of (a) preparing a polymerizable composition (i.e.
  • the polymerizable composition of the invention comprises (b) depositing the polymerizable composition onto a master negative microstructured molding surface in an amount barely sufficient to fill the cavities of the master; (c) filling the cavities by moving a bead of the polymerizable composition between a preformed base and the master, at least one of which is flexible; and (d) curing the composition.
  • the master can be metallic, such as nickel, nickel-plated copper or brass, or can be a thermoplastic material that is stable under the polymerization conditions, and that preferably has a surface energy that allows clean removal of the polymerized material from the master.
  • One or more the surfaces of the base film can be optionally be primed or otherwise be treated to promote adhesion of the optical layer to the base.
  • Composition that are too high in viscosity to be used in the process just described can optionally be prepared into brightness enhancing film with extrusion processes as are known in the art.
  • the optical layer can directly contact the base layer or be optically aligned to the base layer, and can be of a size, shape and thickness allowing the optical layer to direct or concentrate the flow of light.
  • the optical layer can have a structured or micro-structured surface that can have any of a number of useful patterns such as described and shown in the FIGURES.
  • the micro-structured surface can be a plurality of parallel longitudinal ridges extending along a length or width of the film. These ridges can be formed from a plurality of prism apexes.
  • These apexes can be sharp, rounded or flattened or truncated.
  • the ridges can be rounded to a radius in a range of 4 to 7 to 15 micrometers.
  • regular or irregular prismatic patterns can be an annular prismatic pattern, a cube-corner pattern or any other lenticular microstructure.
  • a useful microstructure is a regular prismatic pattern that can act as a totally internal reflecting film for use as a brightness enhancement film.
  • Another useful microstructure is a corner-cube prismatic pattern that can act as a retro-reflecting film or element for use as reflecting film.
  • Another useful microstructure is a prismatic pattern that can act as an optical element for use in an optical display.
  • Another useful microstructure is a prismatic pattern that can act as an optical turning film or element for use in an optical display.
  • the base layer can be of a nature and composition suitable for use in an optical product, i.e. a product designed to control the flow of light. Almost any material can be used as a base material as long as the material is sufficiently optically clear and is structurally strong enough to be assembled into or used within a particular optical product. A base material can be chosen that has sufficient resistance to temperature and aging that performance of the optical product is not compromised over time.
  • the particular chemical composition and thickness of the base material for any optical product can depend on the requirements of the particular optical product that is being constructed. That is, balancing the needs for strength, clarity, temperature resistance, surface energy, adherence to the optical layer, among others.
  • Useful base materials include, for example, styrene-acrylonitrile, cellulose acetate butyrate, cellulose acetate propionate, cellulose triacetate, polyether sulfone, polymethyl methacrylate, polyurethane, polyester, polycarbonate, polyvinyl chloride, polystyrene, polyethylene naphthalate, copolymers or blends based on naphthalene dicarboxylic acids, polycyclo-olefins, polyimides, and glass.
  • the base material can contain mixtures or combinations of these materials.
  • the base may be multi- layered or may contain a dispersed phase suspended or dispersed in a continuous phase.
  • examples of preferred base materials include polyethylene terephthalate (PET) and polycarbonate.
  • PET polyethylene terephthalate
  • useful PET films include photograde polyethylene terephthalate and MELINEXTM PET available from DuPont Films of Wilmington, Del.
  • base materials can be optically active, and can act as polarizing materials.
  • a number of bases, also referred to herein as films or substrates, are known in the optical product art to be useful as polarizing materials.
  • Polarization of light through a film can be accomplished, for example, by the inclusion of dichroic polarizers in a film material that selectively absorbs passing light.
  • Light polarization can also be achieved by including inorganic materials such as aligned mica chips or by a discontinuous phase dispersed within a continuous film, such as droplets of light modulating liquid crystals dispersed within a continuous film.
  • a film can be prepared from microfme layers of different materials.
  • the polarizing materials within the film can be aligned into a polarizing orientation, for example, by employing methods such as stretching the film, applying electric or magnetic fields, and coating techniques.
  • Examples of polarizing films include those described in U.S. Pat. Nos. 5,825,543 and 5,783,120. The use of these polarizer films in combination with a brightness enhancement film has been described in U.S. Pat. No. 6,111,696.
  • a second example of a polarizing film that can be used as a base are those films described in U.S. Pat. No. 5,882,774. Films available commercially are the multilayer films sold under the trade designation DBEF (Dual Brightness Enhancement Film) from 3M. The use of such multilayer polarizing optical film in a brightness enhancement film has been described in U.S. Pat. No. 5,828,488.
  • DBEF Double Brightness Enhancement Film
  • base materials are not exclusive, and as will be appreciated by those of skill in the art, other polarizing and non-polarizing films can also be useful as the base for the optical products of the invention. These base materials can be combined with any number of other films including, for example, polarizing films to form multilayer structures.
  • additional base materials can include those films described in U.S. Pat. Nos. 5,612,820 and 5,486,949, among others.
  • the thickness of a particular base can also depend on the above-described requirements of the optical product.
  • Durable microstructure-bearing articles can be constructed in a variety of forms, including those having a series of alternating tips and grooves sufficient to produce a totally internal reflecting film.
  • Such a film is a brightness enhancing film having a regular repeating pattern of symmetrical tips and grooves, while other examples have patterns in which the tips and grooves are not symmetrical.
  • Examples of microstructure bearing articles useful as brightness enhancing films are described by U.S. Pat. Nos. 5,175,030 and 5,183,597.
  • a microstructure-bearing article can be prepared by a method including the steps of (a) preparing a polymerizable composition; (b) depositing the polymerizable composition onto a master negative microstructured molding surface in an amount barely sufficient to fill the cavities of the master; (c) filling the cavities by moving a bead of the polymerizable composition between a preformed base and the master, at least one of which is flexible; and (d) curing the composition.
  • the master can be metallic, such as nickel, nickel-plated copper or brass, or can be a thermoplastic material that is stable under polymerization conditions and that preferably has a surface energy that permits clean removal of the polymerized material from the master.
  • microstructure topography can be similar to the molding process described in U.S. Patent No. 5,691,846.
  • the microstructure article according to the invention can be formed from a continuous process at any desired length such as, for example, 5, 10, 100, 1000 meters or more.
  • the durable article can be used in applications needing durable micro-structured film including, for example, brightness enhancing films.
  • the structure of these durable brightness enhancing films can include a wide variety of micro-structured films such as, for example, U.S. Patent No. 5,771,328, U.S. Patent No. 5,917,664, U.S. Patent No. 5,919,551, U.S. Patent No. 6,280,063, and U.S. Patent No. 6,356,391.
  • a backlit liquid crystal display generally indicated at 10 in FIG. 1 includes a brightness enhancement film 11 of the present invention that can be positioned between a diffuser 12 and a liquid crystal display panel 14.
  • the backlit liquid crystal display can also includes a light source 16 such as a fluorescent lamp, a light guide 18 for transporting light for reflection toward the liquid crystal display panel 14, and a white reflector 20 for reflecting light also toward the liquid crystal display panel.
  • the brightness enhancement film 11 collimates light emitted from the light guide 18 thereby increasing the brightness of the liquid crystal display panel 14. The increased brightness enables a sharper image to be produced by the liquid crystal display panel and allows the power of the light source 16 to be reduced to produce a selected brightness.
  • the brightness enhancement film 11 in the backlit liquid crystal display is useful in equipment such as computer displays (laptop displays and computer monitors), televisions, video recorders, mobile communication devices, handheld devices (i.e. cellphone, PDA), automobile and avionic instrument displays, and the like, represented by reference character 21.
  • the brightness enhancement film 11 includes an array of prisms typified by prisms
  • Each prism for example, such as prism 22, has a first facet 30 and a second facet 32.
  • the prisms 22, 24, 26, and 28 can be formed on a body portion 34 that has a first surface 36 on which the prisms are formed and a second surface 38 that is substantially flat or planar and opposite the first surface.
  • a linear array of regular right prisms can provide both optical performance and ease of manufacture.
  • right prisms it is meant that the apex angle ⁇ is approximately 90°, but can also range from approximately 70° to 120° or from approximately 80° to 100°.
  • the prism facets need not be identical, and the prisms may be tilted with respect to each other.
  • the relationship between the thickness 40 of the film and the height 42 of the prisms is not critical, but it is desirable to use thinner films with well defined prism facets.
  • the angle that the facets can form with the surface 38 if the facets were to be projected can be 45°. However, this angle would vary depending on the pitch of the facet or the angle ⁇ of the apex.
  • FIGS. 3-9 illustrate representative embodiments of a construction for an optical element. It should be noted that these drawings are not to scale and that, in particular, the size of the structured surface is greatly exaggerated for illustrative purposes.
  • the construction of the optical element can include combinations or two or more of the described embodiments below.
  • the film 130 includes a first surface 132 and an opposing structured surface 134 which includes a plurality of substantially linearly extending prism elements 136.
  • Each prism element 136 has a first side surface 138 and a second side surface 138', the top edges of which intersect to define the peak, or apex 142 of the prism element 136.
  • the bottom edges of side surfaces 138, 138' of adjacent prism elements 136 intersect to form a linearly extending groove 144 between prism elements.
  • the dihedral angle defined by the prism apex 142 measures approximately 90 degrees, however it will be appreciated that the exact measure of the dihedral angle in this and other embodiments may be varied in accordance with desired optical parameters.
  • the structured surface 134 of film 130 may be described as having a plurality of alternating zones of prism elements having peaks which are spaced at different distances from a common reference plane.
  • the common reference plane may be arbitrarily selected.
  • One convenient example of a common reference plane is the plane which contains first surface 132; another is the plane defined by the bottom of the lower most grooves of the structured surface, indicated by dashed line 139.
  • the shorter prism elements measure approximately 50 microns in width and approximately 25 microns in height, measured from dashed line 139, while the taller prism elements measure approximately 50 microns in width and approximately 26 microns in height.
  • the width of the zone which includes the taller prism elements can measure between about 1 micron and 300 microns.
  • the width of the zone that includes the shorter prism elements is not critical and can measures between 200 microns and 4000 microns. In any given embodiment the zone of shorter prism elements can be at least as wide as the zone of taller prism elements. It will be appreciated by one of ordinary skill in the art that the article depicted in FIG. 3 is merely exemplary and is not intended to limit the scope of the present invention.
  • the height or width of the prism elements may be changed within practicable limits—it is practicable to machine precise prisms in ranges extending from about 1 micron to about 200 microns.
  • the dihedral angles may be changed or the prism axis may be tilted to achieve a desired optical effect.
  • the width of the first zone can be less than about 200 to 300 microns. Under normal viewing conditions, the human eye has difficulty resolving small variations in the intensity of light that occur in regions less than about 200 to 300 microns in width. Thus, when the width of the first zone is reduced to less than about 200 to 300 microns, any optical coupling that may occur in this zone is not detectable to the human eye under normal viewing conditions.
  • a variable height structured surface may also be implemented by varying the height of one or more prism elements along its linear extent to create alternating zones which include portions of prism elements having peaks disposed at varying heights above a common reference plane.
  • FIG. 4 illustrates another embodiment of the optical element similar to FIG. 3 except that the film 150 includes a structured surface 152 which has a zone of relatively shorter prism elements 154 separated by a zone including a single taller prism element 156.
  • the taller prism element limits the physical proximity of a second sheet of film to structured surface 152, thereby reducing the likelihood of a visible wet-out condition.
  • FIG. 5 is a representative example of another embodiment of an optical element in which the prism elements are approximately the same size but are arranged in a repeating stair step or ramp pattern.
  • the film 160 depicted in FIG. 5 includes a first surface 162 and an opposing structured surface 164 including a plurality of substantially linear prism elements 166.
  • Each prism element has opposing lateral faces 168, 168' which intersect at their upper edge to define the prism peaks 170.
  • the dihedral angle defined by opposing lateral faces 168, 168' measures approximately 90 degrees.
  • the highest prisms may be considered a first zone and adjacent prisms may be considered a second zone. Again, the first zone can measure less than about 200 to 300 microns.
  • FIG. 6 illustrates a further embodiment of an optical element.
  • the film 180 disclosed in FIG. 6 includes a first surface 182 and an opposing structured surface 184.
  • This film may be characterized in that the second zone which includes relatively shorter prism elements contains prism elements of varying height.
  • the structured surface depicted in FIG. 6 has the additional advantage of substantially reducing the visibility to the human eye of lines on the surface of the film caused by the variations in the height of the prism elements.
  • FIG. 7 shows another embodiment of an optical element for providing a soft cutoff.
  • FIG. 7 shows a brightness enhancement film, designated generally as 240, according to the invention.
  • Brightness enhancement film 240 includes a substrate 242 and a structured surface material 244.
  • Substrate 242 is can generally be a polyester material and structured surface material 244 can be an ultraviolet-cured acrylic or other polymeric material discussed herein.
  • the exterior surface of substrate 242 is preferably flat, but could have structures as well. Furthermore, other alternative substrates could be used.
  • Structured surface material 244 has a plurality of prisms such as prisms 246, 248, and 250, formed thereon.
  • Prisms 246, 248, and 250 have peaks 252, 254, and 256, respectively. All of peaks 252, 254, and 256 have peak or prism angles of preferably 90 degrees, although included angles in the range 60 degrees to 120 degrees.
  • Between prisms 246 and 248 is a valley 258.
  • Between prisms 248 and 250 is a valley 260.
  • Valley 258 may be considered to have the valley associated with prism 246 and has a valley angle of 70 degrees and valley 260 may be considered the valley associated with prism 248 and has a valley angle of 110 degrees, although other values could be used.
  • brightness enhancement film 240 increases the apparent on axis brightness of a backlight by reflecting and recycling some of the light and refracting the remainder like prior art brightness enhancement film, but with the prisms canted in alternating directions.
  • the effect of canting the prisms is to increase the size of the output light cone.
  • FIG. 8 shows another embodiment of an optical element having rounded prism apexes.
  • the brightness enhancement article 330 features a flexible, base layer 332 having a pair of opposed surfaces 334, 336, both of which are integrally formed with base layer 332.
  • Surface 334 features a series of protruding light-diffusing elements 338. These elements may be in the form of "bumps" in the surface made of the same material as layer 332.
  • Surface 336 features an array of linear prisms having blunted or rounded peaks 340 integrally formed with base layer 332.
  • chord width 342 is characterized by a chord width 342, cross-sectional pitch width 344, radius of curvature 346, and root angle 348 in which the chord width is equal to about 20-40% of the cross-sectional pitch width and the radius of curvature is equal to about 20-50% of the cross-sectional pitch width.
  • the root angle ranges from about 70-110 degrees, or from about 85-95 degrees, with root angles of about 90 degrees being preferred.
  • the placement of the prisms within the array is selected to maximize the desired optical performance.
  • FIG. 9 shows another embodiment of an optical element having flat or planar prism apexes.
  • the brightness enhancement article 430 features a flexible, base layer 432 having a pair of opposed surfaces 434, 436, both of which are integrally formed with base layer 432.
  • Surface 434 features a series of protruding light-diffusing elements 438. These elements may be in the form of "flat bumps" in the surface made of the same material as layer 432.
  • Surface 436 features an array of linear prisms having flattened or planar peaks 440 integrally formed with base layer 432. These peaks are characterized by a flattened width 442 and cross-sectional pitch width 444, in which the flattened width can be equal to about 0-30% of the cross-sectional pitch width.
  • Another method of extracting light from a lightguide is by use of frustrated total internal reflection (TIR).
  • TIR frustrated total internal reflection
  • the lightguide has a wedge shape, and light rays incident on a thick edge of the lightguide are totally internally reflected until achieving critical angle relative to the top and bottom surfaces of the lightguide.
  • These sub-critical angle light rays are then extracted, or more succinctly refract from the lightguide, at a glancing angle to the output surface.
  • these light rays must then be turned substantially parallel to a viewing, or output, axis of the display device. This turning is usually accomplished using a turning lens or turning film.
  • FIGs. 10-12 illustrate an illumination device including a turning film.
  • the turning film can include the inventive material disclosed herein for form a durable turning film.
  • a turning lens or turning film typically includes prism structures formed on an input surface, and the input surface is disposed adjacent the lightguide. The light rays exiting the lightguide at the glancing angle, usually less than 30 degrees to the output surface, encounter the prism structures. The light rays are refracted by a first surface of the prism structures and are reflected by a second surface of the prism structures such that they are directed by the turning lens or film in the desired direction, e.g., substantially parallel to a viewing axis of the display.
  • Turning films may have rounded apexes, having a radius for example of at least 0.5 micrometers and typically no greater than 10 micrometers.
  • an illumination system 510 includes optically coupled a light source 512; a light source reflector 514; a lightguide 516 with an output surface 518, a back surface 520, an input surface 521 and an end surface 522; a reflector 524 adjacent the back surface 520; a first light redirecting element 526 with an input surface 528 and an output surface 530; a second light redirecting element 532; and a reflective polarizer 534.
  • the lightguide 516 may be a wedge or a modification thereof.
  • the purpose of the lightguide is to provide for the uniform distribution of light from the light source 512 over an area much larger than the light source 512, and more particularly, substantially over an entire area formed by output surface 518.
  • the lightguide 516 further preferably accomplishes these tasks in a compact, thin package.
  • the light source 512 may be a CCFL that is edge coupled to the input surface 521 of the lightguide 516, and the lamp reflector 514 may be a reflective film that wraps around the light source 512 forming a lamp cavity.
  • the reflector 524 backs the lightguide 516 and may be an efficient back reflector, e.g., a lambertian or a specular film or a combination.
  • the edge-coupled light propagates from the input surface 521 toward the end surface 522, confined by TIR.
  • the light is extracted from the lightguide 516 by frustration of the TIR.
  • a ray confined within the lightguide 516 increases its angle of incidence relative to the plane of the top and bottom walls, due to the wedge angle, with each TIR bounce.
  • the light eventually refracts out of each of the output surface 518 and the back surface 520 because it is no longer contained by TIR.
  • the light refracting out of the back surface 520 is either specularly or diffusely reflected by the reflector 524 back toward and largely through the lightguide 516.
  • the first light redirecting element 526 is arranged to redirect the light rays exiting the output surface 518 along a direction substantially parallel to a preferred viewing direction.
  • the preferred viewing direction may be normal to the output surface 518, but will more typically be at some angle to the output surface 518.
  • the first light redirecting element 526 is a light transmissive optical film where the output surface 530 is substantially planar and the input surface 528 is formed with an array 536 of prisms 538, 540 and 542.
  • the second light redirecting element 532 may also be a light transmissive film, for example a brightness enhancing film such as the 3 M Brightness Enhancement Film product (sold as BEFIII) available from Minnesota Mining and Manufacturing Company, St. Paul, Minn.
  • the reflective polarizer 534 may be an inorganic, polymeric, cholesteric liquid crystal reflective polarizer or film.
  • a suitable film is the 3 M Diffuse Reflective Polarizer film product (sold as DRPF) or the Specular Reflective Polarizer film product (sold as DBEF), both of which are available from Minnesota Mining and Manufacturing Company.
  • each prism 538, 540 and 542 may be formed with differing side angles as compared to its respective neighbor prisms. That is, prism 540 may be formed with different side angles (angles C and D) than prism 538 (angles A and B), and prism 542 (angles E and F). As shown, prisms 538 have a prism angle, i.e., the included angle, equal to the sum of the angles A and B. Similarly, prisms 540 have a prism angle equal to the sum of the angles C and D, while prisms 542 have a prism angle equal to the sum of the angles E and F. While array 536 is shown to include three different prism structures based upon different prism angle, it should be appreciated that virtually any number of different prisms may be used.
  • Prisms 538, 540 and 542 may also be formed with a common prism angle but with a varied prism orientation.
  • a prism axis " I " is illustrated in FIG. 11 for prism 538.
  • the prism axis I may be arranged normal to the output surface 530, as shown for prism 538, or at an angle to the output surface either toward or away from the light source as illustrated by phantom axes " t “ and “ f “, respectively, for prisms 540 and 542.
  • Prisms 538, 540 and 542 may be arranged within array 536 as shown in FIG. 11 in a regular repeating pattern or clusters 543 of prisms, and while the array 536 is not shown to have like prisms adjacent like prisms, such a configuration may also be used. Moreover, within the array 536, the prisms 538, 540 and 542 may change continuously from a first prism configuration, such as prism configuration 538, to a second prism configuration, such as prism configuration 540, and so on. For example, the prism configuration may change in a gradient manner from the first prism configuration to the second prism configuration. Alternatively, the prisms may change in a step-wise manner, similar to the configuration shown in FIG. 11.
  • the prisms have a prism pitch, which is selected to be smaller than the spatial ripple frequency.
  • the clusters may have a regular cluster pitch.
  • the prism array can be symmetrical as shown in FIG. 11 or the prism array can be non-symmetrical.
  • an array of prisms such as array 536' shown in FIG. 12 formed in light redirecting element 526', may be used.
  • prisms 538' for example, has angle A' unequal to angle B'.
  • angle C is unequal to angle A' and angle D 1
  • angle E' is unequal to either of angle A', angle C or angle F'.
  • the array 536' may be advantageously formed using a single diamond cutting tool of a predetermined angle, and tilting the tool for each cut producing prisms of differing prism angle and symmetry.
  • One purpose of the prism side angle variation is to spread and add variable amounts of optical power into the first light redirecting element 526. The varying configuration of prisms
  • PEG2TES refers to N-(3-triethoxysilylpropyl) methoxyethoxyethyl carbamate. It was prepared as follows: A 250 ml round-bottomed flask equipped with a magnetic stir bar was charged with 35 g diethylene glycol methyl ether and 77 g methyl ethyl ketone followed by rotary evaporation of a substantial portion of the solvent mix to remove water. 3- (Triethoxysilyl)propylisocyanate (68.60 g) was charged to the flask. Dibutyltin dilaurate (approx. 3 mg) was added and the mixture stirred. The reaction proceeded with a mild exotherm.
  • Example 2 A mixture of 49.5 parts of an oligomeric polyester urethane diacrylate commercially available under the trade designation "CN-985B88" from Sartomer Co. and appropriate amounts of Example 2 can be combined to provide polymerizable compositions having, 5 wt-% silica (Example 3), 10 wt-% silica (Example 4), 15 wt-% silica (Example 5), 20 wt- % silica (Example 6), and 25 wt-% silica (Example 7), 30 wt-% silica (Example 8), 35 wt- % silica (Example 9), 40 wt-% silica (Example 10), 45 wt-% silica (Example 11), 50 wt-% silica (Example 12), 55 wt-% silica (Example 13) and 60 wt-% silica (Example 14).
  • the polymerizable silica-containing compositions can be vacuum stripped and 0.5 part of "Darocur 4265" (in the form of a 10% solution in l-methoxy-2-propanol) can be added.
  • the resulting composition can be spin coated from l-methoxy-2-propanol on a bisphenol A polycarbonate plaque and cured by exposure to ultraviolet radiation emitted by a single "H" bulb.
  • compositions can be prepared in propylene glycol methyl ether acetate from appropriate amounts of the oligomer dimethacrylate of Example 1, the silica nanoparticle dispersion of Example 2, "Darocur 4265” (0.5%) as photoinitiator, and hexanediol diacrylate ("HDDA"). Upon removal of the solvent and water the compositions would result in the amounts indicated in the following Table I.
  • Example 17 The polymerizable composition of Example 17 was prepared into microstructured brightness enhancing film similar to those described in U.S. Patent Nos. 5,175,030 and 5,183,597 or co-assigned U.S. Patent Application Serial No. 10/436377 filed 12 May 2003, and U.S. Patent Application Serial No. 10/662,085 filed 12 September 2003,
  • the micro-prismatic structures had a 90° apex angle as defined by the slope of the sides of the prisms with the mean distance between adjacent apices being about 50 micrometers.
  • the prism vertices or apexes were sharp and the prismatic pattern was similar to that commercially available from 3M Co. as Vikuity BEF III 90/50.
  • the gain of the resulting microstructured brightness enhancing film was measured on a SpectraScanTM PR-650 SpectraColorimeter available from Photo Research, Inc, Chatsworth, CA.
  • Examples 22-34 of following Table II are additional oligomeric urethane (meth) acrylate based compositions that were prepared.
  • Example 35 and 36 exemplify additional suitable formulations that can be prepared.
  • Each of the oligomeric urethane (meth)acrylate compositions of Examples 22-34 can be combined with appropriate amounts of the silica dispersion of Example 2 to provide polymerizable compositions having, 5 wt-% silica, 10 wt-% silica , 15 wt-% silica, 20 wt-% silica , and 25 wt-% silica, 30 wt-% silica, 35 wt-% silica, 40 wt-% silica, 45 wt- % silica, 50 wt-% silica, 55 wt-% silica and 60 wt-% silica.
  • the described polymerizable compositions (i.e. having a suitable viscosity) can be prepared into microstructured brightness enhancing film similar to those described in U.S. Patent Nos. 5,175,030 and 5,183,597 or co-assigned U.S. Patent Application Serial No. 10/436377 filed 12 May 2003, and U.S. Patent Application Serial No. 10/662,085 filed 12 September 2003.
  • the micro-prismatic structures can have a 90° apex angle as defined by the slope of the sides of the prisms with the mean distance between adjacent apices being about 50 micrometers.
  • the prism vertices or apexes can have a 7 micron radius rounding or the apexes can be sharp and have a prismatic pattern similar to that of brightness enhancing film commercially available from 3M Company under the trade designation "Vikuity BEF III 90/50".
  • the resulting microstructured brightness enhancing film can be evaluated according to the Scratch Contrast Ratio as previously described.
  • the gain of the resulting microstructured brightness enhancing film can be measured according to the test method described with reference to Example 17.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Light Guides In General And Applications Therefor (AREA)
EP06738131A 2005-03-11 2006-03-10 Polymerisierbare oligomere urethan-zusammensetzungen mit nanopartikeln Withdrawn EP1869115A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66096205P 2005-03-11 2005-03-11
PCT/US2006/009037 WO2006099375A1 (en) 2005-03-11 2006-03-10 Polymerizable oligomeric urethane compositions comprising nanoparticles

Publications (1)

Publication Number Publication Date
EP1869115A1 true EP1869115A1 (de) 2007-12-26

Family

ID=36608550

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06738131A Withdrawn EP1869115A1 (de) 2005-03-11 2006-03-10 Polymerisierbare oligomere urethan-zusammensetzungen mit nanopartikeln

Country Status (6)

Country Link
EP (1) EP1869115A1 (de)
JP (1) JP2008535949A (de)
KR (1) KR20070110349A (de)
CN (1) CN101137706A (de)
TW (1) TW200635774A (de)
WO (1) WO2006099375A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060112451A (ko) * 2005-04-27 2006-11-01 삼성전자주식회사 디스플레이 패널용 플라스틱 기판 및 그 제조방법
US7478913B2 (en) * 2006-11-15 2009-01-20 3M Innovative Properties Back-lit displays with high illumination uniformity
US7789538B2 (en) * 2006-11-15 2010-09-07 3M Innovative Properties Company Back-lit displays with high illumination uniformity
US8690373B2 (en) 2006-11-15 2014-04-08 3M Innovative Properties Company Back-lit displays with high illumination uniformity
US7530721B2 (en) * 2007-04-18 2009-05-12 Skc Haas Display Films Co., Ltd. Double-sided turning film
KR101483625B1 (ko) * 2007-12-31 2015-01-19 삼성디스플레이 주식회사 광학플레이트, 이를 포함한 백라이트 어셈블리 및 표시장치
CN101586031B (zh) * 2009-04-09 2013-07-03 深圳华映显示科技有限公司 液晶复合物及其制造方法
JP5960605B2 (ja) * 2009-12-29 2016-08-02 スリーエム イノベイティブ プロパティズ カンパニー ポリウレタンナノコンポジット
CN101839441B (zh) * 2010-04-23 2011-07-27 上海凯鑫森产业投资控股有限公司 一种用于背光模块的光学棱镜片
CN101852948B (zh) * 2010-04-23 2011-07-27 上海凯鑫森产业投资控股有限公司 一种用于背光模块的光学复合片
US9194995B2 (en) 2011-12-07 2015-11-24 Google Inc. Compact illumination module for head mounted display
JP6044071B2 (ja) * 2011-12-26 2016-12-14 日立化成株式会社 液状硬化性樹脂組成物、これを用いた画像表示用装置の製造方法、及び画像表示用装置
WO2014074406A2 (en) * 2012-11-07 2014-05-15 Corning Incorporated Films for display covers and display devices comprising the same
CN103176228A (zh) * 2013-03-07 2013-06-26 创维液晶器件(深圳)有限公司 棱镜膜、背光模组及液晶显示装置
DE102014213549A1 (de) * 2014-07-11 2016-01-14 Osram Opto Semiconductors Gmbh Hinterleuchtungseinrichtung
CN107057010B (zh) * 2017-05-26 2019-08-23 哈尔滨工业大学 一种掺杂核-壳微球制备吸声材料的方法
CN110627981B (zh) * 2018-06-22 2022-01-07 万华化学集团股份有限公司 一种光学树脂组合物、光学树脂材料及其制备方法和用途
CN110903788B (zh) * 2018-08-28 2021-11-12 深圳光峰科技股份有限公司 反射固化胶、透明固化胶、投影屏幕及其制备方法
CN109581742A (zh) * 2018-12-21 2019-04-05 宁波激智科技股份有限公司 一种增亮膜及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768351B1 (de) * 1995-04-28 2001-09-19 BASF NOF Coatings Co., Ltd., Überzugszusammensetzung, verfahren zu ihrer herstellung und verfahren zur herstellung einer anorganischen oxidsoldispersion
US6593392B2 (en) * 2001-06-22 2003-07-15 Corning Incorporated Curable halogenated compositions
EP1388581B1 (de) * 2002-08-08 2007-06-06 Nissan Motor Co., Ltd. Acryl-urethan-Beschichtungszusammensetzung
US6974850B2 (en) * 2003-05-30 2005-12-13 3M Innovative Properties Company Outdoor weatherable photopolymerizable coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006099375A1 *

Also Published As

Publication number Publication date
CN101137706A (zh) 2008-03-05
KR20070110349A (ko) 2007-11-16
JP2008535949A (ja) 2008-09-04
TW200635774A (en) 2006-10-16
WO2006099375A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US7427438B2 (en) Polymerizable oligomeric urethane compositions comprising nanoparticles
JP7138491B2 (ja) 低分子量有機成分を含む重合性組成物
US20060204679A1 (en) Polymerizable compositions comprising nanoparticles
WO2006099375A1 (en) Polymerizable oligomeric urethane compositions comprising nanoparticles
US7943206B2 (en) Brightness enhancement film comprising polymerized organic phase having low glass transition temperature
US8361599B2 (en) Durable optical element
US8168271B2 (en) Optical film assembly and display device
US7361409B2 (en) Microstructured article comprising a polymerized composition having low glass transition temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071003

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090910

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121002