EP1866264A1 - Non-toxic, metallic-metal free zinc peroxide-containing, ir tracer compositions and ir tracer projectiles containing same for generating a dim visibility ir trace - Google Patents

Non-toxic, metallic-metal free zinc peroxide-containing, ir tracer compositions and ir tracer projectiles containing same for generating a dim visibility ir trace

Info

Publication number
EP1866264A1
EP1866264A1 EP06721718A EP06721718A EP1866264A1 EP 1866264 A1 EP1866264 A1 EP 1866264A1 EP 06721718 A EP06721718 A EP 06721718A EP 06721718 A EP06721718 A EP 06721718A EP 1866264 A1 EP1866264 A1 EP 1866264A1
Authority
EP
European Patent Office
Prior art keywords
weight
zinc peroxide
metallic
toxic
tracer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06721718A
Other languages
German (de)
French (fr)
Other versions
EP1866264A4 (en
Inventor
Louise Guindon
Carol Jalbert
Daniel Lepage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Dynamics Ordnance and Tactical Systems Canada Inc
Original Assignee
General Dynamics Ordnance and Tactical Systems Canada Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Dynamics Ordnance and Tactical Systems Canada Inc filed Critical General Dynamics Ordnance and Tactical Systems Canada Inc
Priority to EP11166798A priority Critical patent/EP2360134A3/en
Publication of EP1866264A1 publication Critical patent/EP1866264A1/en
Publication of EP1866264A4 publication Critical patent/EP1866264A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C15/00Pyrophoric compositions; Flints

Definitions

  • This invention relates to non-toxic, zinc peroxide-containing, IR tracer compositions and to IR tracer projectiles containing such compositions which, when fired, generate a dim visibility IR trace.
  • US Patent No. 5,661 ,257 patented Aug 26, 1997, MULTISPECTRAL COVERT TARGET MARKER.
  • Such patented target marker included a near-IR emitting photodiode which was encased in a hardened polymeric molding material.
  • Those patented target markers suffered from the defect that they were not easily amenable to be incorporated into an IR projectile.
  • compositions included metallic magnesium as well as strontium nitrate, sodium nitrate and barium therein.
  • IR tracer compositions suffer from the defects that barium is a toxic element and that sodium emits yellow light.
  • Tracer projectiles provide a reliable means of determining whether projectiles impact on the desired target or whether adjustments in aim are necessary.
  • One problem with the use of conventional tracer projectiles is that they emit visible light, which thereby makes the source of the tracer ammunition discernable to the enemy.
  • An object of a second aspect of the present invention is to provide improved IR tracer projectiles which generate an IR trace which is substantially-completely IR radiation.
  • heavy metals e.g., barium nor any other toxic elements
  • a broad aspect of the present invention provides a non- toxic substantially- metallic-metal-free, zinc peroxide-containing, IR tracer composition
  • a non-toxic substantially- metallic-metal-free, zinc peroxide-containing, IR tracer composition comprising: from about 26 to about 30% by weight, or from about 65 to about 80% by weight, of zinc peroxide peroxide; from about 40 to about 47% by weight of potassium nitrate; from about 10 to about 25% by weight of a non-metallic fuel which consists of sodium salicylate; from about 5 to about 26% by weight of a retardant which consists of either iron carbonate or magnesium carbonate or calcium carbonate; from about 5 to about 10% by weight of at least one binder which is either calcium resinate, or a synthetic resin binder which consists of a copolymer of hexafluoropropylene and vinylidene fluoride, or from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up
  • the present invention in another aspect, provides an IR tracer projectile comprising a hollow cylindrical shell made of a suitable metallic material, and having a conical nose; a conventional heavy filler disposed in the hollow conical nose; the non-toxic, metallic-metal-free, zinc peroxide-containing, infrared tracer composition as disclosed hereinabove in its generic, sub-generic and specific aspects, compressed immediately against the filler; a conventional ignition material compressed against said compressed tracer composition; and a metal disc capping the hollow shell.
  • the present invention provides infrared-producing (hereinafter "IR"- producing) compositions which are capable of producing a consistent IR output when provided in IR tracer projectiles which are medium caliber, e.g., 0.50 caliber, long range accuracy ammunition (Match grade)
  • IR infrared-producing
  • the IR output includes near IR and far IR bands (0.76 to 3.0 ⁇ m). The intensity of the IR radiation depends on the specific wavelength of these bands.
  • Conventional pyrotechnic mixtures typically contain a finely-divided mixture of an oxidizer and a fuel (metallic, non-metallic or organic fuel).
  • the oxidizer which contains oxygen, is added to sustain combustion and the metallic atoms are responsible for the characteristic color output.
  • the fuel is added in order to sustain combustion of the mixture and to provide heat energy.
  • Finely divided powdered fuel is very reactive with an oxidizing agent. Above a certain temperature, namely, the ignition temperature, the oxidizer decomposes to release oxygen, which then reacts quickly with the fuel in an exothermic reaction.
  • An oxidizer and a fuel alone do not make practical compositions for the purpose of providing suitable emissions.
  • Each of a flame retardant and a binding agent is also incorporated into the mixture.
  • the IR tracer compositions of aspects of the present invention possess unique requirements not generally addressed by the prior art conventional tracer systems. While it is not desired to be limited to any particular theory, it is believed that a hypothesis concerning the formation of purely infrared emission without the presence of visible light may be developed based on black body radiation theory. The requirement would then be for the IR tracer to maximize output at a wavelength of 1 to 3 ⁇ m range.
  • compositions were investigated to maximize the IR intensity while also maximizing the duration of the IR trace and minimizing the generation of excessive amounts of heat for each type of medium caliber projectiles.
  • the compositions to be described hereinafter burn cleanly and relatively coolly and emit relatively-small (i.e., almost negligible) quantities of visible light in proportion to the infrared radiation emitted.
  • the basic components of the IR tracer compositions of aspects of the present invention are able to augment near-IR emissions when fired. This is accomplished by the addition of an IR producing oxidizer and fuel.
  • the IR tracer compositions of aspects of the present invention include zinc peroxide as the oxidizer, an organic fuel, a flame retardant, and a binder.
  • the oxidizer is zinc peroxide.
  • Peroxides of other transition metals e.g., titanium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, etc, are not useful in the IR tracer composition of aspects of the invention.
  • the peroxides of such transition metals either provide inert compositions or provide compositions which emit toxic effluents.
  • the preferred organic fuel is sodium salicylate (C 7 H 5 NaO 3 ). This organic fuel has a low melting point and generates a large amount of gases during the combustion, which facilitates the removal of solid residues and soot inside the tracer cavity of the projectile.
  • lithium salicylate nor potassium salicylate would be suitable since they provide compositions which are too hygroscopic. Furthermore, these compounds are not conveniently commercially available and so the compositions cannot be easily industrialized.
  • Another component of the IR tracer compositions of aspects of the present invention is potassium nitrate.
  • the nitrates of other alkali metals are not useful in IR tracer compositions of aspects of the present invention, since lithium nitrate produces a composition which is too hygroscopic, while sodium nitrate emits a yellow color.
  • the preferred flame retardants in the IR tracer compositions of aspects of the present invention are iron carbonate and magnesium carbonate although calcium carbonate would also be useful.
  • the presence of iron carbonate or magnesium carbonate or calcium carbonate brings about a better control of the rate of burning and reduces substantially the flash and output of visible light.
  • the carbonates of other transition metals are not suitable.
  • the carbonates of chromium and cobalt contaminate the atmosphere, the carbonate of nickel has carcinogenic properties and the carbonate of zirconium has excessive luminosity properties.
  • a binder maintains the other particulate forms of constituents of the IR tracer compositions of aspects of the present invention together.
  • the binder increases the structural integrity of the IR tracer composition to prevent any break up of the trace in flight. It protects the composition from moisture and increases the flowability of the composition.
  • Suitable binders include cellulose acetate butyrate (CAB), calcium resinate, a vinyl acetate resin or the fluoroelastomer known by the trade mark VITON A. Such binders have the properties of acting as a fuel retardant, as a waterproofing agent, and/or as an agent to reduce soot formation.
  • CAB cellulose acetate butyrate
  • VITON A fluoroelastomer
  • Such binders have the properties of acting as a fuel retardant, as a waterproofing agent, and/or as an agent to reduce soot formation.
  • the IR tracer compositions of aspects of the present invention differ significantly over conventional tracer compositions, especially conventional IR tracer compositions, of
  • the IR tracer compositions were prepared by first dry mixing the powdered ingredients to provide a dry intermediate composition.
  • the binder was dissolved in a suitable aprotic solvent, namely, methyl ethyl ketone.
  • the so-formed binder solution was then incorporated into the dry intermediate composition to provide a wet mixture.
  • the wet mixture so provided was transferred to a suitable mixer in order to obtain a substantially-completely homogeneous mixture of all ingredients.
  • the homogenous mixture so-formed was dried in an oven at about 20-40°C until it was sufficiently dry for sieving.
  • the dry mixture was then sieved to break up agglomerated particles.
  • the IR tracer composition was thus provided as relatively small particles of random shape.
  • the tracer projectile 10 includes a hollow shell 12 of, preferably, a copper alloy (90% Cu/ 10% Zn), whose hollow nose 14 is filled with a suitable heavy filler 16.
  • the IR tracer composition 18 is compressed immediately against the filler 16.
  • a conventional ignition material 20 is compressed against the IR tracer composition 18.
  • the IR tracer projectile 10 is capped by means of a brass closure disc 22.
  • each of the IR tracer compositions was inserted into 0.50 caliber tracer projectiles and fired.
  • the IR tracer composition inside the projectile body was ignited by hot gases emitted by a propellant.
  • the IR trace was found to be visible from the firing position and could not be seen with the naked eye by the observers placed at an angle with respect to the trajectory of the IR tracer projectile.
  • the calorific output of the IR tracer composition measured with a calorimeter was about 500 cal/g, which is about one third less than the calorific output generated by conventional IR tracer compositions, (500 cal/g compared to 1200 cal/g for conventional IR tracer compositions).
  • the IR trace can, thus, be designated as a cold trace.
  • the IR intensity of the IR emission as measured with a spectrophotometer equipped with IR filters at a wavelength of 760 nanometers was found to be about 1 to 4 watts/steradian , and at a wavelength of 3,000 nanometers was found to be about 1.7 to 2.1 watts/steradian.
  • the IR tracer compositions of aspects of the present invention was found to have an IR luminosity as measured with a spectrophotometer at a wavelength of 760 nanometers of about 1 to 2 watts/steradian and an IR luminosity as measured with a spectrophotometer at a wavelength of 3000 nanometers of about 1 to 4 watts/steradian.
  • the IR trace can be seen up to 1000m compared to 600m for conventional 0.50 caliber tracer projectiles.
  • the medium caliber , i.e., 0.50 caliber, IR tracer projectiles of an aspect of the present invention containing the IR tracer compositions of aspects of the present invention have been found to increase the length of trace along the firing line by up to about 120%.
  • the IR tracer compositions of aspects of the present invention produce relatively low burn rate materials so that the IR trace can be seen from the firing point to a longer distance down range.
  • the burn rate is adjustable for medium caliber, i.e., 0.50 caliber, ammunition to meet or exceed NATO and specific user requirements.
  • medium caliber i.e. 0.50 caliber
  • ammunition to meet or exceed NATO and specific user requirements.
  • particular burn rates can be adjusted, the ratio of IR radiation to visible light can be optimized (i.e., substantially no visible light), and the general physical and chemical properties can be carefully selected.
  • the medium caliber i.e., 0.50 caliber, IR tracer projectiles of aspects of the present invention containing the IR tracer compositions of aspects of the present invention have a relatively slow burning rate so that the IR tracer can be seen up to 1800m compared to 1500m for conventional 0.50 caliber tracer projectiles.
  • the IR tracer compositions of aspects of the present invention do not degrade with time, when properly stored at a temperature varying between 5°C and 20°C, with a relative humidity which ranged between 50% and 70%.
  • the calorific heat of an IR tracer projectile containing IR tracer compositions of aspects of the present invention at the beginning of the storage period was about 675 cal/g and remained constant over a minimum storage period of 6 months.
  • IR tracer compositions of aspects of the present invention do not contain any toxic elements
  • compositions of aspects of the present invention may easily be industrialized.
  • Not all zinc peroxide-containing compositions satisfy the utility requirements as set forth in the above tests.
  • compositions having the ingredients/proportions set forth in the following Tables 2A, 2B and 2C have been found not to be useful
  • the present invention provides IR tracer compositions for the production of IR projectiles for medium caliber, i.e., 0.50 caliber, ammunition.
  • the IR tracer compositions of aspects of the present invention are non- toxic.
  • the rate of burning is selectively controllable so that the IR trace can be seen at longer distance from the firing position than conventional IR trace projectiles containing conventional IR trace compositions.

Abstract

Novel non-toxic, metallic-metal free, zinc peroxide-containing, IR tracer compositions are provided herein, which, when incorporated into a medium caliber IR tracer projectile and fired, produce a dim visibility IR trace. Such IR tracer compositions comprise from about 26 to about 30% by weight, or from about 65 to about 80% by weight, of zinc peroxide; from about 40 to about 47% by weight of potassium nitrate; from about 10 to about 25% by weight of a non-metallic fuel which consists of sodium salicylate; from about 5 to about 26% by weight of a retardant which consists of either iron carbonate or magnesium carbonate or calcium carbonate; and from about 5 to about 10% by weight of at least one binder which is either calcium resinate, or a synthetic resin binder which consists of a copolymer of hexafluoropropylene and vinylidene fluoride, or from about 5 to about 7.5% by weight of cellulose acetate butyrate. The total percentage of the ingredients adds up to 100%. Medium caliber, i.e., 0.50 caliber, IR tracer projectiles containing such IR tracer compositions are also provided.

Description

NON-TOXIC, METALLIC-METAL FREE ZINC PEROXIDE-CONTAINING,
IR TRACER COMPOSITIONS AND IR TRACER PROJECTILES CONTAINING SAME FOR GENERATING A DIM VISIBILITY IR TRACE FIELD OF THE INVENTION
[001] This invention relates to non-toxic, zinc peroxide-containing, IR tracer compositions and to IR tracer projectiles containing such compositions which, when fired, generate a dim visibility IR trace.
BACKGROUND OF THE INVENTION
[002] The art is replete with patents which are directed to tracer compositions, incendiary compositions and pyrotechnic compositions. Among such prior art patents are the following:
[003] US Patent No. 5,811 ,724, patented Sep 22, 1998, INFRARED TRACER FOR AMMUNITION and assigned to Primex Technologies Inc. Those patented composition included both strontium and barium. However, such IR tracer compositions suffer from the defect that barium is a toxic element.
[004] US Patent No. 5,661 ,257, patented Aug 26, 1997, MULTISPECTRAL COVERT TARGET MARKER. Such patented target marker included a near-IR emitting photodiode which was encased in a hardened polymeric molding material. Those patented target markers suffered from the defect that they were not easily amenable to be incorporated into an IR projectile.
[005] US Patent No. 5,587,552, patented Dec 24, 1996, INFRARED ILLUMINATING COMPOSITION, and assigned to Thiokol Corporation. Those patented compositions included cesium nitrate and rubidium nitrate as IR generators. However, those compositions suffered from the defects that such nitrates were uncommon, and hence that the compositions were not amenable to commercial production, and also that cesium and rubidium are believed to be toxic and suspected carcinogens.
[006] US Patent No. 5,472,536, patented Dec 5, 1995, TRACER MIXTURE FOR
USE WITH LASER HARDENED OPTICS, and assigned to the US Secretary of the Army. Those patented compositions included metallic magnesium as well as strontium nitrate, sodium nitrate and barium therein. However, such IR tracer compositions suffer from the defects that barium is a toxic element and that sodium emits yellow light.
[007] US Patent No. 4,979, 999, patented Dec 18, 1990, TRACER COMPOSITION AND METHOD OF PRODUCING SAME, and assigned to The Minister of National Defence, Canada. Those patented compositions included metallic magnesium and strontium nitrate. Thus, those patented composition suffered from the defect that metallic magnesium emitted an excessive amount of visible light.
[008] US Patent No. 4,597,810, patented JuI 1, 1986, by N.E.Trickel, TRACER UNIT FOR AMMUNITION. Those patented compositions included metallic magnesium and strontium. Thus, those patented composition suffered from the defect that toxic metallic magnesium emitted an excessive amount of visible light.
[009] US Patent No. 4,094,711, patented Jun 13, 1978, TRACER AND COMPOSITION, and assigned to Ford Aerospace & Communications Corporation. Those patented composition included metallic magnesium. Thus, those patented compositions suffered from the defect that they emitted visible light due to the presence of metallic magnesium.
[0010] US Patent No 2,899,291, patented Aug 11, 1959, by R. H. Hieskell COMPOSITION FOR TRACER UNIT. Those patented compositions included metallic magnesium, and barium and antimony sulfides. Thus, those patented compositions suffered from the defects that the presence of barium and antimony rendered the composition toxic and the presence of metallic magnesium resulted in the emission of visible light.
[0011] US Patent No. 4,719,856, patented Jan 19, 1988, PYROTECHNIC DEVICE, and assigned to Pains-Wessex Limited. Those patented compositions included metallic titanium. Those patented compositions suffered from the defects that they generated excessive heat and also emitted visible light due to the presence of metallic titanium. [0012] US Patent No. 3,983,816, patented Oct 5, 1976, COMPOSITIONS FOR PRODUCING FLICKERING SIGNALS and assigned to Thiokol Corporation. Those patented compositions included metallic magnesium and/or aluminum, and barium nitrate or sodium nitrate. Such patented compositions suffered from the defects that they were toxic due to the presence of barium, emitted white light due to the presence of metallic magnesium and/or aluminum and emitted yellow light due to the presence of sodium.
[0013] US Patent No. 4,881,464, patented Nov 21, 1989, SIGNAL OR RESCUE FLARE OF VARIOUS LUMINOSITY, and assigned to the US Secretary of the Army. Such patented compositions included metallic magnesium or metallic aluminum. Those patented compositions suffered from the defect that they produced visible light due to the presence of metallic magnesium or metallic aluminum.
[0014] US Patent No. 3,986,907, patented Oct 19,1976, ILLUMINATING FLARE COMPOSITION CONTAINING TETRANITROCARBAZOLE, and assigned to Thiokol Corporation. Such patented compositions included metallic magnesium granules. Those patented compositions suffered from the defect that they produced visible light due to the presence of metallic magnesium granules.
[0015] US Patent No. 3,503,814, patented Mar 31, 1970, PYROTECHNIC DEVICE CONTAINING NICKEL AND ALUMINUM and assigned to the US Secretary of the Navy. Such patented compositions contained metallic magnesium as well as bismuth oxide. Those patented compositions suffered from the defects that they generated excessive heat, produced visible light due to the presence of metallic magnesium.
SUMMARY OF THE INVENTION AIMS OF THE INVENTION
[0016] Tracer projectiles provide a reliable means of determining whether projectiles impact on the desired target or whether adjustments in aim are necessary. One problem with the use of conventional tracer projectiles is that they emit visible light, which thereby makes the source of the tracer ammunition discernable to the enemy.
[0017] Accordingly it is an object of a first aspect of the present invention to provide improved IR tracer projectiles in which visible emissions are suppressed, whereby camouflage is optimized and an enemy cannot visually locate the source of the tracer projectile or the line of fire in order to direct a counter-attack toward that location.
[0018] An object of a second aspect of the present invention is to provide improved IR tracer projectiles which generate an IR trace which is substantially-completely IR radiation.
[0019] It is an object of a third aspect of the present invention to provide improved IR tracer projectiles which generate an IR trace which is substantially-completely IR radiation, and which has an appropriate burning rate so that it can be observed by the users at a longer distance down range.
[0020] It is an object of a fourth aspect of the present invention to provide improved IR tracer projectiles which generate an IR trace which is substantially-completely IR radiation, and which has a lower energetic output to minimize the risk of fire propagation in bushes and wooded areas where the projectile lands.
[0021] It is an object of a fifth aspect of the present invention to provide improved IR tracer projectiles which generate an IR trace which is substantially-completely IR radiation, and which has a controlled IR emission at any particular point to avoid very high intensity visible light emissions which could temporarily blind an observer using an infrared detection system.
[0022] It is an object of a sixth aspect of the present invention to provide improved IR tracer compositions which have a uniform granularity to facilitate the controlled production of the IR tracer projectiles which generate an IR trace which is substantially-completely IR radiation. [0023] It is an object of a seventh aspect of the present invention to provide improved IR tracer compositions which do not significantly degrade with time under extreme environmental conditions when stored at about 5 to 200C, and thus which provides IR tracer projectiles which generate an IR trace which is substantially-completely IR radiation.
[0024] It is an object of an eighth aspect of the present invention to provide improved IR tracer compositions which do not contain heavy metals, e.g., barium nor any other toxic elements, and which is combined with a non-toxic igniter composition, to provide environmentally- friendly IR tracer compositions which are non-toxic, to provide IR tracer projectiles which generate an IR trace which is substantially- completely IR radiation.
[0025] It is an object of a ninth aspect of the present invention to provide improved IR tracer compositions which are formulated using a selected solvent for mixing the ingredients, in order to facilitate the manufacturing process by providing the IR tracer composition with uniform granularity and improved flowability so that the IR tracer charge weight compressed into IR tracer projectiles which generate an IR trace which is substantially-completely IR radiation, could be better controlled.
STATEMENTS OF INVENTION
[0026] A broad aspect of the present invention provides a non- toxic substantially- metallic-metal-free, zinc peroxide-containing, IR tracer composition comprising: from about 26 to about 30% by weight, or from about 65 to about 80% by weight, of zinc peroxide peroxide; from about 40 to about 47% by weight of potassium nitrate; from about 10 to about 25% by weight of a non-metallic fuel which consists of sodium salicylate; from about 5 to about 26% by weight of a retardant which consists of either iron carbonate or magnesium carbonate or calcium carbonate; from about 5 to about 10% by weight of at least one binder which is either calcium resinate, or a synthetic resin binder which consists of a copolymer of hexafluoropropylene and vinylidene fluoride, or from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%. [0027] Other embodiments and aspects of the invention comprise the following substantially-metallic-metal-free, zinc peroxide-containing, IR tracer compositions:
[0028] From about 26 to about 30% by weight zinc peroxide; from about 40 to about 45% by weight of potassium nitrate; from about 20 to about 25% by weight of iron carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%;
[0029] About 30% by weight zinc peroxide; about 42.5% by weight of potassium nitrate; about 20% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate butyrate, wherein the total percentage of the ingredients add up to 100%;
[0030] From about 65 to about 70% by weight of zinc peroxide; from about 20 to about 25% by weight of sodium salicylate; and from about 8 to about 10% by weight of calcium resinate, wherein the total percentage of the ingredients add up to 100%;
[0031] About 65% by weight of zinc peroxide; about 25% by weight of sodium salicylate; and about 10% by weight of calcium resinate; wherein the total percentage of the ingredients add up to 100%;
[0032] From about 26 to about 28 % by weight of zinc peroxide; from about 40 to about 45% by weight of potassium nitrate; from about 22 to about 26% by weight of iron carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%;
[0033] About 26% by weight of zinc peroxide; about 42.5% by weight of potassium nitrate; about 24% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate butyrate, wherein the total percentage of the ingredients add up to 100%;
[0034] From about 26 to about 30% by weight of zinc peroxide; from about 42 to about 47% by weight of potassium nitrate; from about 15 to about 25% by weight of iron carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%; [0035] About 28% by weight of zinc peroxide; about 44.5% by weight of potassium nitrate; about 20% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%;
[0036] From about 26 to about 30% by weight of zinc peroxide; from about 40 to about 45% by weight of potassium nitrate; from about 15 to about 25% by weight of iron carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%;
[0037] About 28% by weight of zinc peroxide; about 44.5% by weight of potassium nitrate; about 20% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%;
[0038] From about 26 to about 30% by weight of zinc peroxide; from about 42 to about 47% by weight of potassium nitrate; from about 15 to about 25% by weight of magnesium carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%;
[0039] About 28% by weight of zinc peroxide; about 44.5% by weight of potassium nitrate; about 20% by weight of magnesium carbonate; and about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%;
[0040] From about 70 to about 80% by weight of zinc peroxide; from about 15 to about 20% by weight of sodium salicylate; and from about 5 to about 10% by weight of calcium resinate; wherein the total percentage of the ingredients add up to 100%;
[0041] About 75% by weight of zinc peroxide; about 17.5% by weight of sodium salicylate; and about 7.5% by weight of calcium resinate; wherein the total percentage of the ingredients add up to 100%;
[0042] From about 70 to about 80% by weight of zinc peroxide; from about 10 to about 20% by weight of sodium salicylate; and from about 5 to about 12% by weight of calcium resinate; wherein the total percentage of the ingredients add up to 100%; [0043] About 75% by weight of zinc peroxide; about 15% by weight of sodium salicylate; and about 10% by weight of calcium resinate; wherein the total percentage of the ingredients add up to 100%.
[0044] The present invention, in another aspect, provides an IR tracer projectile comprising a hollow cylindrical shell made of a suitable metallic material, and having a conical nose; a conventional heavy filler disposed in the hollow conical nose; the non-toxic, metallic-metal-free, zinc peroxide-containing, infrared tracer composition as disclosed hereinabove in its generic, sub-generic and specific aspects, compressed immediately against the filler; a conventional ignition material compressed against said compressed tracer composition; and a metal disc capping the hollow shell.
GENERALIZED DESCRIPTION OF THE INVENTION
[0045] The present invention provides infrared-producing (hereinafter "IR"- producing) compositions which are capable of producing a consistent IR output when provided in IR tracer projectiles which are medium caliber, e.g., 0.50 caliber, long range accuracy ammunition (Match grade) The IR output includes near IR and far IR bands (0.76 to 3.0 μm). The intensity of the IR radiation depends on the specific wavelength of these bands.
[0046] Conventional pyrotechnic mixtures typically contain a finely-divided mixture of an oxidizer and a fuel (metallic, non-metallic or organic fuel). The oxidizer, which contains oxygen, is added to sustain combustion and the metallic atoms are responsible for the characteristic color output. The fuel is added in order to sustain combustion of the mixture and to provide heat energy.
[0047] Finely divided powdered fuel is very reactive with an oxidizing agent. Above a certain temperature, namely, the ignition temperature, the oxidizer decomposes to release oxygen, which then reacts quickly with the fuel in an exothermic reaction. An oxidizer and a fuel alone, however, do not make practical compositions for the purpose of providing suitable emissions. Each of a flame retardant and a binding agent is also incorporated into the mixture. [0048] The IR tracer compositions of aspects of the present invention possess unique requirements not generally addressed by the prior art conventional tracer systems. While it is not desired to be limited to any particular theory, it is believed that a hypothesis concerning the formation of purely infrared emission without the presence of visible light may be developed based on black body radiation theory. The requirement would then be for the IR tracer to maximize output at a wavelength of 1 to 3 μm range.
[0049] The desired IR range is significantly below the flame temperature of present conventional tracer and flame formulations. This knowledge, coupled with the understanding that visible light output is normally the smallest proportion of energy radiation during combustion, leads to the conclusion that an effective IR tracer according to aspects of the present invention is based on a relatively cool burning tracer formulation.
[0050] Various chemical compositions were investigated to maximize the IR intensity while also maximizing the duration of the IR trace and minimizing the generation of excessive amounts of heat for each type of medium caliber projectiles. The compositions to be described hereinafter burn cleanly and relatively coolly and emit relatively-small (i.e., almost negligible) quantities of visible light in proportion to the infrared radiation emitted.
[0051] The basic components of the IR tracer compositions of aspects of the present invention are able to augment near-IR emissions when fired. This is accomplished by the addition of an IR producing oxidizer and fuel. Thus, the IR tracer compositions of aspects of the present invention include zinc peroxide as the oxidizer, an organic fuel, a flame retardant, and a binder.
[0052] As noted above, the oxidizer is zinc peroxide. Peroxides of other transition metals, e.g., titanium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, etc, are not useful in the IR tracer composition of aspects of the invention. The peroxides of such transition metals either provide inert compositions or provide compositions which emit toxic effluents. [0053] The preferred organic fuel is sodium salicylate (C7H5NaO3). This organic fuel has a low melting point and generates a large amount of gases during the combustion, which facilitates the removal of solid residues and soot inside the tracer cavity of the projectile. Without obstruction, the trace can be seen at a longer distances down range. Neither lithium salicylate nor potassium salicylate would be suitable since they provide compositions which are too hygroscopic. Furthermore, these compounds are not conveniently commercially available and so the compositions cannot be easily industrialized.
[0054] Another component of the IR tracer compositions of aspects of the present invention is potassium nitrate. The nitrates of other alkali metals are not useful in IR tracer compositions of aspects of the present invention, since lithium nitrate produces a composition which is too hygroscopic, while sodium nitrate emits a yellow color.
[0055] The preferred flame retardants in the IR tracer compositions of aspects of the present invention are iron carbonate and magnesium carbonate although calcium carbonate would also be useful. The presence of iron carbonate or magnesium carbonate or calcium carbonate brings about a better control of the rate of burning and reduces substantially the flash and output of visible light. The carbonates of other transition metals are not suitable. For example, the carbonates of chromium and cobalt contaminate the atmosphere, the carbonate of nickel has carcinogenic properties and the carbonate of zirconium has excessive luminosity properties.
[0056] A binder maintains the other particulate forms of constituents of the IR tracer compositions of aspects of the present invention together. The binder increases the structural integrity of the IR tracer composition to prevent any break up of the trace in flight. It protects the composition from moisture and increases the flowability of the composition. Suitable binders include cellulose acetate butyrate (CAB), calcium resinate, a vinyl acetate resin or the fluoroelastomer known by the trade mark VITON A. Such binders have the properties of acting as a fuel retardant, as a waterproofing agent, and/or as an agent to reduce soot formation. [0057] The IR tracer compositions of aspects of the present invention differ significantly over conventional tracer compositions, especially conventional IR tracer compositions, of the prior art in the absence of any metallic metal, e.g., boron.
BRIEF DESCRIPTION OF THE DRAWING
[0058] Embodiments of the present invention will be described, by way of example only, with reference also to the attached Figure which is a one-half longitudinal cross- section of a tracer projectile according to one embodiment of the present invention.
EXAMPLES
PREPARATION OF IR TRACER COMPOSITIONS
[0059] The IR tracer compositions were prepared by first dry mixing the powdered ingredients to provide a dry intermediate composition. The binder was dissolved in a suitable aprotic solvent, namely, methyl ethyl ketone. The so-formed binder solution was then incorporated into the dry intermediate composition to provide a wet mixture. The wet mixture so provided was transferred to a suitable mixer in order to obtain a substantially-completely homogeneous mixture of all ingredients. The homogenous mixture so-formed was dried in an oven at about 20-40°C until it was sufficiently dry for sieving. The dry mixture was then sieved to break up agglomerated particles. The IR tracer composition was thus provided as relatively small particles of random shape.
[0060] A series of IR tracer compositions according to aspects of the present invention was prepared according to the proportion of ingredients as set forth in the following Tables IA and IB.
TABLE IA
TABLE IB
PREPARATION OF TEST PROJECTILES
[0061] Each of the above IR tracer compositions of aspects of the present invention was compressed into a projectile body of a desired medium caliber. For the tests which are to be described below, the caliber of the projectile body was 0.50 caliber. Thus, as seen in the drawing, the tracer projectile 10 includes a hollow shell 12 of, preferably, a copper alloy (90% Cu/ 10% Zn), whose hollow nose 14 is filled with a suitable heavy filler 16. The IR tracer composition 18 is compressed immediately against the filler 16. A conventional ignition material 20 is compressed against the IR tracer composition 18. The IR tracer projectile 10 is capped by means of a brass closure disc 22.
TEST PROCEDURES
[0062] For these series of tests, each of the IR tracer compositions was inserted into 0.50 caliber tracer projectiles and fired. When such IR tracer projectile was fired, the IR tracer composition inside the projectile body was ignited by hot gases emitted by a propellant.
[0063] Several important criteria for the IR trace, namely its stablility, its intensity, whether any visible light was detected and if a spark occurred at the firing point were evaluated as follows:
[0064] Three observers were stationed, one each, at the point of firing, at 250m down range and at 400m down range. These observers noted each of the above criteria.
[0065] The visibility with night vision goggles was determined by the same observers at the same three positions [0066] The distinctness of the trace was noted at a barrier located 1000m down range. NATO criteria is distinctness at 600m down range
[0067] The visibility with the naked eye of the tracer projectile was determined by the same observers at the firing position along the trajectory path and perpendicular to the trajectory path at 200m down range and at 400m down range from the firing position.
[0068] The calorific output of the tracer projectile was measured with a calorimeter. [0069] The results are summarized as follows:
[0070] The IR trace was found to be visible from the firing position and could not be seen with the naked eye by the observers placed at an angle with respect to the trajectory of the IR tracer projectile.
[0071] The calorific output of the IR tracer composition measured with a calorimeter was about 500 cal/g, which is about one third less than the calorific output generated by conventional IR tracer compositions, (500 cal/g compared to 1200 cal/g for conventional IR tracer compositions). The IR trace can, thus, be designated as a cold trace.
[0072] The IR intensity of the IR emission as measured with a spectrophotometer equipped with IR filters at a wavelength of 760 nanometers was found to be about 1 to 4 watts/steradian , and at a wavelength of 3,000 nanometers was found to be about 1.7 to 2.1 watts/steradian. The IR tracer compositions of aspects of the present invention was found to have an IR luminosity as measured with a spectrophotometer at a wavelength of 760 nanometers of about 1 to 2 watts/steradian and an IR luminosity as measured with a spectrophotometer at a wavelength of 3000 nanometers of about 1 to 4 watts/steradian.
[0073] For medium caliber, i.e., 0.50 caliber, IR tracer projectiles, the IR trace can be seen up to 1000m compared to 600m for conventional 0.50 caliber tracer projectiles. [0074] The medium caliber , i.e., 0.50 caliber, IR tracer projectiles of an aspect of the present invention containing the IR tracer compositions of aspects of the present invention have been found to increase the length of trace along the firing line by up to about 120%.
[0075] It has been found that the IR tracer compositions of aspects of the present invention produce relatively low burn rate materials so that the IR trace can be seen from the firing point to a longer distance down range. The burn rate is adjustable for medium caliber, i.e., 0.50 caliber, ammunition to meet or exceed NATO and specific user requirements. Thus, particular burn rates can be adjusted, the ratio of IR radiation to visible light can be optimized (i.e., substantially no visible light), and the general physical and chemical properties can be carefully selected.
[0076] The medium caliber i.e., 0.50 caliber, IR tracer projectiles of aspects of the present invention containing the IR tracer compositions of aspects of the present invention have a relatively slow burning rate so that the IR tracer can be seen up to 1800m compared to 1500m for conventional 0.50 caliber tracer projectiles. [0077] The IR tracer compositions of aspects of the present invention do not degrade with time, when properly stored at a temperature varying between 5°C and 20°C, with a relative humidity which ranged between 50% and 70%. For example, the calorific heat of an IR tracer projectile containing IR tracer compositions of aspects of the present invention at the beginning of the storage period was about 675 cal/g and remained constant over a minimum storage period of 6 months.
[0078] The IR tracer compositions of aspects of the present invention do not contain any toxic elements
[0079] The IR tracer compositions of aspects of the present invention may easily be industrialized. [0080] Not all zinc peroxide-containing compositions satisfy the utility requirements as set forth in the above tests. Thus, compositions having the ingredients/proportions set forth in the following Tables 2A, 2B and 2C have been found not to be useful
TABLE 2A
TABLE 2B
TABLE 2C
SUMMARY
[0081] In summary, the present invention provides IR tracer compositions for the production of IR projectiles for medium caliber, i.e., 0.50 caliber, ammunition. The IR tracer compositions of aspects of the present invention are non- toxic. When incorporated into medium caliber, i.e., 0.50 caliber, IR tracer projectiles and fired, they have a lower calorific output than conventional compositions and they produce a cool IR trace which is not visible to the naked eye, i.e., it is a dim trace. The rate of burning is selectively controllable so that the IR trace can be seen at longer distance from the firing position than conventional IR trace projectiles containing conventional IR trace compositions.
[0082] The above-described embodiments of aspects of the invention are intended to be examples of the present invention. Alterations, modifications and variations may be effected to the particular embodiments by those of ordinary skill in the art, without departing from the spirit and scope of the invention, which is defined solely by the claims appended hereto

Claims

1. A non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition comprising: from about 26 to about 30% by weight, or from about 65 to about 80% by weight of zinc peroxide; from about 40 to about 47% by weight of potassium nitrate; from about 10 to about 25% by weight of a non-metallic fuel which consists of sodium salicylate; from about 5 to about 26% by weight of a retardant which is selected from the group consisting of iron carbonate, magnesium carbonate and calcium carbonate; from about 5 to about 10% by weight of at least one binder which is selected from the group consisting of calcium resinate, and a synthetic resin binder which consists of a copolymer of hexafluoropropylene and vinylidene fluoride, or from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of the ingredients add up to 100%.
2. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 1 , comprising: from about 26 to about 30% by weight zinc peroxide; from about 40 to about 45% by weight of potassium nitrate; from about 20 to about 25% by weight of iron carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
3. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 2, comprising: about 30% by weight zinc peroxide; about 42.5% by weight of potassium nitrate; about 20% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
4. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 1 , comprising: from about 65 to about 70% by weight of zinc peroxide; from about 20 to about 25% by weight of sodium salicylate; and from about 8 to about 10% by weight of calcium resinate; wherein the total percentage of said ingredients add up to 100%.
5. The non- toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 4, comprising: about 65% by weight of zinc peroxide; about 25% by weight of sodium salicylate; and about 10% by weight of calcium resinate; wherein the total percentage of said ingredients add up to 100%.
6. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 1 , comprising: from about 26 to about 28 % by weight of zinc peroxide; from about 40 to about 45% by weight of potassium nitrate; from about 22 to about 26% by weight of iron carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
7. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 6, comprising: about 26% by weight of zinc peroxide; about 42.5% by weight of potassium nitrate; about 24% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
8. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 1, comprising: from about 26 to about 30% by weight of zinc peroxide; from about 42 to about 47% by weight of potassium nitrate; from about 15 to about 25% by weight of iron carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
9. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 8, comprising: about 28% by weight of zinc peroxide; about 44.5% by weight of potassium nitrate; about 20% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
10. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 1 , comprising: from about 26 to about 30% by weight of zinc peroxide; from about 40 to about 45% by weight of potassium nitrate; form about 15 to about 25% by weight of iron carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
11. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 10, comprising: about 28% by weight of zinc peroxide; about 44.5% by weight of potassium nitrate; about 20% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
12. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 11, comprising: from about 26 to about 30% by weight of zinc peroxide; from about 42 to about 47% by weight of potassium nitrate; from about 15 to about 25% by weight of magnesium carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
13. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 12, comprising: about 28% by weight of zinc peroxide; about 44.5% by weight of potassium nitrate; about 20% by weight of magnesium carbonate; and about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage of said ingredients add up to 100%.
14. The non- toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 1, comprising: from about 70 to about 80% by weight of zinc peroxide; from about 15 to about 20% by weight of sodium salicylate; and from about 5 to about 10% by weight of calcium resinate; wherein the total percentage of said ingredients add up to 100%.
15. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 14, comprising: about 75% by weight of zinc peroxide; about 17.5% by weight of sodium salicylate; and about 7.5% by weight of calcium resinate; wherein the total percentage of said ingredients add up to 100%.
16. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 1 , comprising: from about 70 to about 80% by weight of zinc peroxide; from about 10 to about 20% by weight of sodium salicylate; and from about 5 to about 12% by weight of calcium resinate; wherein the total percentage of said ingredients add up to 100%.
17. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared tracer composition as claimed in claim 16, comprising: about 75% by weight of zinc peroxide; about 15% by weight of sodium salicylate; and about 10% by weight of calcium resinate; wherein the total percentage of said ingredients add up to 100%.
18. An IR tracer projectile comprising: a hollow cylindrical shell made of a suitable metallic material, and having a conical nose; a conventional heavy filler disposed in said hollow conical nose; the non-toxic, substantially-metallic-metal-free, zinc peroxide-containing infrared tracer composition as claimed in claim 1 compressed immediately against said filler; a conventional ignition material compressed against said compressed tracer composition; and a metal disc capping said hollow shell.
EP06721718A 2005-04-05 2006-03-28 Non-toxic, metallic-metal free zinc peroxide-containing, ir tracer compositions and ir tracer projectiles containing same for generating a dim visibility ir trace Withdrawn EP1866264A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11166798A EP2360134A3 (en) 2005-04-05 2006-03-28 Non-toxic, heavy metal-free zinc peroxide-containing IR tracer compositions and IR tracer projectiles containing same generating a dim visability IR trace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/098,368 US20060219339A1 (en) 2005-04-05 2005-04-05 Non-toxic, metallic-metal free zinc peroxide-containing, IR tracer compositions and IR tracer projectiles containing same for generating a dim visibility IR trace
PCT/CA2006/000455 WO2006105635A1 (en) 2005-04-05 2006-03-28 Non-toxic, metallic-metal free zinc peroxide-containing, ir tracer compositions and ir tracer projectiles containing same for generating a dim visibility ir trace

Publications (2)

Publication Number Publication Date
EP1866264A1 true EP1866264A1 (en) 2007-12-19
EP1866264A4 EP1866264A4 (en) 2009-07-01

Family

ID=37068910

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11166798A Withdrawn EP2360134A3 (en) 2005-04-05 2006-03-28 Non-toxic, heavy metal-free zinc peroxide-containing IR tracer compositions and IR tracer projectiles containing same generating a dim visability IR trace
EP06721718A Withdrawn EP1866264A4 (en) 2005-04-05 2006-03-28 Non-toxic, metallic-metal free zinc peroxide-containing, ir tracer compositions and ir tracer projectiles containing same for generating a dim visibility ir trace

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11166798A Withdrawn EP2360134A3 (en) 2005-04-05 2006-03-28 Non-toxic, heavy metal-free zinc peroxide-containing IR tracer compositions and IR tracer projectiles containing same generating a dim visability IR trace

Country Status (4)

Country Link
US (1) US20060219339A1 (en)
EP (2) EP2360134A3 (en)
CA (1) CA2604977C (en)
WO (1) WO2006105635A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304078B6 (en) * 2011-12-19 2013-10-02 Sellier & Bellot Special fuels suitable for pyrotechnical mixtures emitting in near IR region
USD751167S1 (en) * 2014-05-13 2016-03-08 Physical Optics Corporation Projectile

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1708187A (en) * 1926-01-18 1929-04-09 Sterner St P Meek Combustible composition
US3677842A (en) * 1970-03-10 1972-07-18 Us Army Low light level tracer mix
US4363679A (en) * 1979-12-22 1982-12-14 Dynamit Nobel Aktiengesellschaft Use of zinc peroxide as oxidant for explosives and pyrotechnical mixtures
US5472536A (en) * 1994-12-19 1995-12-05 The United States Of America As Represented By The Secretary Of The Army Tracer mixture for use with laser hardened optics
US5639984A (en) * 1995-03-14 1997-06-17 Thiokol Corporation Infrared tracer compositions
WO1997023434A1 (en) * 1995-12-23 1997-07-03 Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik Priming-explosive-free igniting mixture
US5811724A (en) * 1997-09-09 1998-09-22 Primex Technologies, Inc. Infrared tracer for ammunition

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899291A (en) 1948-06-29 1959-08-11 heiskell
US2988438A (en) * 1957-04-04 1961-06-13 Olin Mathieson Combustible compositions
US3503814A (en) 1968-05-03 1970-03-31 Us Navy Pyrotechnic composition containing nickel and aluminum
US3983816A (en) 1974-01-16 1976-10-05 Thiokol Corporation Compositions for producing flickering signals
US3986907A (en) 1975-03-07 1976-10-19 Thiokol Corporation Illuminating flare composition containing tetranitrocarbazole
US4128443A (en) * 1975-07-24 1978-12-05 Pawlak Daniel E Deflagrating propellant compositions
US4094711A (en) 1977-09-01 1978-06-13 Ford Aerospace & Communications Corporation Tracer and composition
GB2191477B (en) 1981-04-01 1988-08-10 Pains Wessex Ltd Pyrotechnic device
US4597810A (en) * 1985-06-20 1986-07-01 Trickel Neal E Tracer unit for ammunition
US4881464A (en) 1989-03-06 1989-11-21 The United States Of America As Represented By The Secretary Of The Army Signal or rescue flare of variable luminosity
CA1320832C (en) 1989-09-29 1993-08-03 Paul Briere Tracer composition and method of producing same
US5587552A (en) 1993-11-09 1996-12-24 Thiokol Corporation Infrared illuminating composition
US5661257A (en) 1996-01-16 1997-08-26 Thiokol Corporation Multispectral covert target marker
NL1004618C2 (en) * 1996-11-26 1998-05-27 Tno Gas generating preparation and application thereof in an air bag.
US6036794A (en) * 1998-03-31 2000-03-14 The United States Of America As Represented By The Secretary Of The Army Igniter composition
JP2002543031A (en) * 1999-04-27 2002-12-17 デイナミート ノーベル ゲゼルシャフト ミット ベシュレンクテル ハフツング エクスプロジーフシュトッフ− ウント ジステームテヒニク Granular gas charge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1708187A (en) * 1926-01-18 1929-04-09 Sterner St P Meek Combustible composition
US3677842A (en) * 1970-03-10 1972-07-18 Us Army Low light level tracer mix
US4363679A (en) * 1979-12-22 1982-12-14 Dynamit Nobel Aktiengesellschaft Use of zinc peroxide as oxidant for explosives and pyrotechnical mixtures
US5472536A (en) * 1994-12-19 1995-12-05 The United States Of America As Represented By The Secretary Of The Army Tracer mixture for use with laser hardened optics
US5639984A (en) * 1995-03-14 1997-06-17 Thiokol Corporation Infrared tracer compositions
WO1997023434A1 (en) * 1995-12-23 1997-07-03 Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik Priming-explosive-free igniting mixture
US5811724A (en) * 1997-09-09 1998-09-22 Primex Technologies, Inc. Infrared tracer for ammunition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006105635A1 *

Also Published As

Publication number Publication date
CA2604977C (en) 2012-09-18
EP2360134A2 (en) 2011-08-24
EP2360134A3 (en) 2012-09-19
CA2604977A1 (en) 2006-10-12
EP1866264A4 (en) 2009-07-01
US20060219339A1 (en) 2006-10-05
WO2006105635A1 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US5639984A (en) Infrared tracer compositions
JP2002540058A (en) A pyrotechnic active material that generates an aerosol that is strongly radioactive in the infrared spectrum and impermeable in the visible spectrum
ES2310419T3 (en) NON-TOXIC PRIMERS FOR SMALL CALIBER AMMUNITION.
Koch Special materials in pyrotechnics: V. Military applications of phosphorus and its compounds
GB2191477A (en) Pyrotechnic device
EP2468700B1 (en) Pyrotechnic decoy material for infra-red decoys
RU2203259C2 (en) Pyrotechnical infrared tracer mixture
US3972291A (en) Extended range tracer folded cup
US4302259A (en) MgH2 and Sr(NO3)2 pyrotechnic composition
CA2604980C (en) Non-toxic boron-containing ir tracer compositions and ir tracer projectiles containing the same for generating a dim visibility ir trace
US3788908A (en) Tracer incendiary composition of alkylaluminum,inorganic oxidizer,and zirconium
US20060219339A1 (en) Non-toxic, metallic-metal free zinc peroxide-containing, IR tracer compositions and IR tracer projectiles containing same for generating a dim visibility IR trace
US8066833B2 (en) Non-toxic boron-containing IR tracer compositions and IR tracer projectiles containing the same for generating a dim visibility IR trace
US7985311B2 (en) Non-toxic heavy-metal free-zinc peroxide-containing IR tracer compositions and IR tracer projectiles containing same for generating a dim visibility IR trace
CA1175658A (en) Incendiary composition containing a metallic fuel formed of the group ivb of the periodic table of the elements
Shaw et al. Advanced boron carbide-based visual obscurants for military smoke grenades
Sabatini Advances toward the development of “Green” pyrotechnics
KR100917149B1 (en) Tracer composition of high performance for both naked eye and thermal imaging system
Shaw et al. Pyrotechnic Smoke Compositions Containing Boron Carbide
DE102010053812A1 (en) Pyrotechnic mock target active mass useful for infrared mock target, comprises a first particle comprising a first fuel, a second particle comprising the first or a second fuel, an oxidant for the first fuel and a binder
Glück Development and characterization of environmentally benign light and smoke-producing pyrotechnical formulations
Douda Survey of military pyrotechnics
JPH07172970A (en) Smoking composition
Juknelevičius Illuminating pyrotechnic compositions and their specific features
EP2794519B1 (en) Fuel for pyrotechnic mixtures emitting in the near-infrared region

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20090604

17Q First examination report despatched

Effective date: 20110119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110803