EP1854998B1 - Ignition device for a combustion engine - Google Patents

Ignition device for a combustion engine Download PDF

Info

Publication number
EP1854998B1
EP1854998B1 EP07006779A EP07006779A EP1854998B1 EP 1854998 B1 EP1854998 B1 EP 1854998B1 EP 07006779 A EP07006779 A EP 07006779A EP 07006779 A EP07006779 A EP 07006779A EP 1854998 B1 EP1854998 B1 EP 1854998B1
Authority
EP
European Patent Office
Prior art keywords
primary
ignition
voltage
current
ignition coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07006779A
Other languages
German (de)
French (fr)
Other versions
EP1854998A2 (en
EP1854998A3 (en
Inventor
Markus Kraus
Markus Kröll
Arno Gschirr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innio Jenbacher GmbH and Co OG
Original Assignee
GE Jenbacher GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Jenbacher GmbH and Co OHG filed Critical GE Jenbacher GmbH and Co OHG
Publication of EP1854998A2 publication Critical patent/EP1854998A2/en
Publication of EP1854998A3 publication Critical patent/EP1854998A3/en
Application granted granted Critical
Publication of EP1854998B1 publication Critical patent/EP1854998B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • F02P3/051Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/053Opening or closing the primary coil circuit with semiconductor devices using digital techniques

Definitions

  • the present invention relates to an ignition device for an internal combustion engine, in particular for a gas engine, with an ignition coil which can be fed by a voltage source on its primary side and with a secondary current measuring device for measuring the course of the secondary current and with a control device for at least temporary control of the primary-side voltage and / or the primary-side current as a function of the measured course of the secondary-side current.
  • Object of the present invention is to improve generic ignition devices to the effect that after premature extinction the most effective reconstruction of the spark is possible.
  • the control device following an interruption of the primary side voltage and / or power supply of the ignition coil during an ignition or subsequent to the fall of the primary side voltage and / or the primary side current through the ignition coil below a predetermined threshold during the Ignition, the primary-side voltage and / or power supply of the ignition coil only turns on again or above the threshold, if the induced secondary current in the direction of, preferably immediately, previously determined course of the secondary-side current acts.
  • control device activates the primary side of the ignition coil in such a way that the current induced on the secondary side is tuned in terms of time and direction to the current still flowing on the secondary side through the preceding ignition process, that a positive or additive superimposition takes place.
  • the spark can thereby be rebuilt quickly and energetically effective, so that the intended total burning time of an ignition is achieved.
  • the control device switches on the primary-side voltage and / or power supply of the ignition coil at or after a polarity change or zero crossing of the secondary-side current or regulates the pre-determinable threshold.
  • the reclosing or over the predetermined threshold rules can be provided directly at the polarity change or zero crossing of the secondary current. It is more favorable, however, to provide a predefinable time offset following the polarity change or zero crossing, and to switch the primary-side voltage and / or current supply back on again after this time offset or to regulate it via the threshold value that can be determined beforehand.
  • the predefinable time offset essentially corresponds to a quarter of the natural period, preferably the secondary side of the ignition device, wherein the natural period is the reciprocal of the natural frequency.
  • the control principle described below can be used to control a modulated high-voltage capacitor ignition (HCC).
  • the modulated HKZ is based on the idea of gradually feeding the ignition energy of the capacitor to the ignition coil.
  • This can basically be controlled or regulated.
  • the controlled variant is realized and described below.
  • the primary side of the ignition coil is switched to the supply voltage depending on the condition of the spark on the secondary side.
  • An advantage of this system lies in the time extension of the spark while at the same time Control of the spark characteristic. Burning times, preferably up to 5,000 microseconds can be achieved easily with this system. Especially in gas engines, a high voltage supply up to 40 kV (kilovolts) is often required.
  • the burn time is typically set by the controller between 100 and 1200 microseconds.
  • the spark is controlled by an adjustable specification of the fuel flow setpoint I rated (see Fig. 2 Characterized.
  • the control device must control the primary-side voltage supply of the ignition coil so that the predetermined characteristic of the spark or the desired course of the secondary-side current l rated is achieved as well as possible.
  • Combustion concepts and internal combustion engines with high efficiency also have very high turbulence in the combustion chamber. Due to these turbulences, the spark of a secondary side triggered by an ignition spark plug is spatially extended and it can lead to premature extinction. To prevent a misfire in the combustion chamber due to insufficient burning time, the spark must be restored in the shortest possible time. The necessary ignition voltage can be quite close to the high voltage supply of the ignition coil. In order to generate a new spark as quickly as possible, it should be taken into account that residual energy is still present in the resonant circuit of the high-voltage circuit, ie on the secondary side of the ignition coil when the ignition spark goes out. To restore the spark, therefore, a time must be chosen that positively uses the existing energy in the system.
  • the control device. 12 following an interruption of the primary-side voltage and / or power supply of the ignition coil during an ignition or subsequent to the fall of the primary-side voltage and / or the primary-side current I pri by the ignition coil 3 below a predetermined threshold during the ignition, the primary-side voltage will switch on and / or power supply of the ignition coil 3 or adjusts it above the threshold value when the secondary-side current induced thereby acts in the direction of the preferably immediately previously determined course of the secondary-side current I sek I sek -.
  • Fig. 1 schematically shows a control principle for an inventively modulated ignition device, here in the form of a high voltage capacitor ignition.
  • the ignition coil 3 is a well-known transformer, on its primary side 15th a power supply is provided and on the secondary side 16, the spark plug 5 is supplied to generate a spark with high voltage.
  • the primary side is a DC voltage source, which here consists of the DC-DC converter 1 and a capacitor 2 connected in parallel thereto.
  • the control 13 switch 4 is provided on the primary side of the controlled by the control device 12 via the control 13 switch 4. This can be designed as a semiconductor switch.
  • the switch 4 has at least a first switching state, in which the voltage of the voltage source is applied to the ignition coil 3, and at least a second switching state, in which the voltage of the voltage source is not applied to the ignition coil 3, on.
  • a freewheeling diode 18 is connected in parallel to the primary-side winding of the ignition coil 3. This is used for de-energizing the primary side 15 described below in the switched-off state of the voltage source when the switch 4 is open.
  • an additional ohmic resistor 19 can also be connected in series with the freewheeling diode 18. This means a loss of energy.
  • the resistor 19 and the achieved attenuation of the primary side 15 in the de-energizing faster reconnection after the extinction of a spark is possible.
  • the switching on and off of the voltage source 1, 2 takes place in this embodiment so only through the switch 4.
  • This value I pri is forwarded to the control device 12.
  • a shunt 6 for the current in the spark in series On the secondary side 16 is connected to the corresponding winding of the ignition coil 3, a shunt 6 for the current in the spark in series.
  • a secondary current measuring device 7 and a secondary voltage measuring device 8 are provided.
  • the secondary-side current I sec measured by means of the secondary current measuring device 7 is evaluated in this exemplary embodiment by means of the polarity evaluating device 9 with respect to its polarity and by means of the current intensity evaluating device 10 with respect to its amplitude or current intensity. It is in the illustrated embodiment provided that the evaluation of the amount, ie the current strength of the secondary-side current I sec limited to whether this is greater than or equal to a predetermined minimum value or not. This will be explained below using Fig. 2 further explained in detail. As a rule, the nominal fuel flow rate I rated will be used as a predefinable minimum value.
  • the values determined by the polarity evaluating device 9 and the current intensity evaluating device 10 in any case reproduce not singular single values but the profile of the secondary-side current I sec and forward this to the regulating device 12.
  • the same can also apply to the secondary-side voltage U sec measured by means of the secondary voltage measuring device 8. This is evaluated with the high-voltage evaluation device 11, which in turn forwards the voltage information to the control device 12.
  • the control device 12 activates the primary-side switch 4 and thus regulates the current and voltage supply of the primary side 15 of the ignition coil 3.
  • Fig. 2 is shown on the basis of various parameters, a course of an ignition during which the spark breaks off and is rebuilt.
  • the operation of the control device will be explained in more detail below with reference to the individual phases of this ignition process.
  • the control passes through the phases of ionization Ph1, current control Ph2, de-energization Ph3 and synchronization. The latter is realized at the transition between Ph3 and subsequent Ph1.
  • U sec shows the secondary voltage curve.
  • I sec shows the course of the measured secondary current.
  • I rated shows the setpoint course of the secondary-side current and thus preferably also the course of the minimum value on the basis of which the Stromstarnausute 10 decides whether the measured secondary side current I sec reaches or exceeds the target current value or below.
  • FB1 shows the evaluation result of the current intensity evaluation device 10.
  • FB1 assumes the value 1 if I sec is greater than or equal to I rated . In the other cases, FB1 assumes the value 0.
  • FB2 shows the result of the polarity evaluation device 9. If the measured secondary side current I sec is in the positive range, FB2 assumes the value 1. If the secondary-side current is negative, FB2 assumes the value 0.
  • T Switch shows the course of the control signal of the control device 12 to the switch 4. If this 1, then the switch 4 is closed and the voltage or power supply is applied to the primary side of the ignition coil 3. If the drive signal is equal to 0, the switch 4 is opened, whereby the voltage and power supply of the Primary side 15 of the ignition coil 3 is disconnected.
  • the graph I pri shows the course of the primary-side current during the ignition process. All graphs thus represent the time course of the parameters.
  • the current setpoint of the secondary-side current I rated is adjustable via the control device 12 and is supplied to the current intensity evaluation device 10 in this exemplary embodiment for the determination of FB1.
  • the Strombutnauslus pain 10 may be designed for this purpose as a comparator.
  • the setpoint course of the secondary-side current I rated can preferably be set by the control device 12 to different values both with regard to the burning time and with regard to the current intensity.
  • the control device 12 is first switched to the ionization phase Ph1.
  • This is a turn-on interval ⁇ t an1 in which the high voltage is built up, which is needed for the generation of the spark.
  • .DELTA.t an1 it is preferably provided that, when the switch 4 is closed, the voltage of the voltage source 1, 2 is permanently applied to the primary side 15 of the ignition coil 3 in full height and at least for the predefinable time duration .DELTA.t an1 .
  • the ignition coil 3 is thus connected on the primary side to the supply voltage on the primary side during the entire ionization phase or during the entire on-time interval.
  • the ionization phase for a fixed set time, which is necessary to generate the high voltage and thus the secondary side spark is connected.
  • the ionization phase can optionally also be switched off when the high voltage output by the ignition coil is exceeded in comparison with a limit value.
  • the control device 12 monitors the secondary-side current I sec via the secondary current measuring device 7 and / or the secondary side of the ignition coil 3 output voltage U sec via the secondary voltage measuring device 8 and the primary-side voltage supply of the ignition coil 3 during the Anschaltzeitintervall .DELTA.t interrupts when the secondary-side current I sec and / or the voltage U sec output by the ignition coil on the secondary side exceeds (exceeds) a specifiable limit value (e). This option protects the system from destruction if the spark plug, spark plug plug, or other malfunction is defective.
  • the spark is spatially extended, which increases the voltage at the spark plug and requires more energy to be supplied to the spark plug.
  • the current setpoint I rated can no longer be achieved and the spark must be deliberately extinguished by initiating the phase of de-energization Ph3.
  • the requirements of the internal combustion engine can be met especially well if the rated fuel input I rated during the spark can be changed.
  • the phasing phase Ph3 is needed in two cases. On the one hand, this can be the case if the spark unintentionally breaks off during the planned ignition process and has to be rebuilt. On the other hand, deenergizing may be necessary if the magnetism level or the magnetic induction B on the primary side 15 of the ignition coil 12 becomes too large. To explain the latter event is on Fig. 3 directed. This shows the relationship between the current strength of the primary-side current I pri and the amount of magnetic induction B on the primary side 15 of the ignition coil 3. Here it can be seen that - as is well known - the amount of magnetic induction B with increasing current I pri in reaches the area of saturation.
  • the control device 12 which on the primary side 15 of the ignition coil 12th applied voltage interrupts or reduced when the amount of the magnetic induction B on the primary side 15 of the ignition coil 12 exceeds a predetermined maximum value B max .
  • the predefinable maximum value B max of the amount of the magnetic induction B is the upper limit of a working range 17 in which there is an at least approximately linear relationship between the amount of the magnetic induction B and the primary-side current I pri .
  • the predefinable maximum value B max is favorably arranged far below the saturated region of the ignition coil 3.
  • two current changes ⁇ I 1 and ⁇ I 2 of the primary side current in Fig. 3 which is required to cause the same change in the amount of magnetic induction B (amount of ⁇ B 1 is equal to the amount of ⁇ B 2 ).
  • the comparatively small current change ⁇ I 1 is sufficient due to the more or less linear relationship between the primary current I pri and the amount of the magnetic induction B.
  • a considerably larger current change ⁇ I 2 must be used.
  • the magnetism level or the magnetic induction B is an image of the magnitude of the primary-side current I pri .
  • a limitation of the amount of the magnetic induction B thus avoids destruction of the primary-side components through high currents. Therefore, it is preferably provided that when the maximum value B max is exceeded, the ignition coil 3 is de-energized in order to reduce the magnetism level or the amount of the magnetic induction B.
  • the magnetism level can be determined by evaluating the switch-on and switch-off times of the switch 3.
  • the control device 12 determines the amount of the magnetic induction B on the primary side 15 of the ignition coil 3 indirectly via an evaluation of a duration of switch-on time (s) and switch-off time (s), wherein during the switch-on time (s) voltage the voltage source is applied to the primary side 15 of the ignition coil 3 and during the off-time (s) the voltage of the voltage source is not applied to the primary side 15 of the ignition coil 3.
  • a useful variant provides that the maximum value is a predefinable period of time and the control device this Period of time with the sum of the turn-on, preferably from the beginning of an ignition, minus the sum of the turn-off, preferably from the beginning of the ignition process compares.
  • the ignition device has a primary current measuring device 14 and the controller 12 determines the amount of magnetic induction B on the primary side 15 of the ignition coil 3 indirectly via a rating of the primary-side current I pri .
  • the maximum value B max is substituted by a predefinable maximum current value, wherein the control device 12 compares this with the magnitude of the primary-side current I pri .
  • the primary-side voltage supply is switched off by opening the switch 4 until the magnetism level has been lowered to an acceptable value.
  • the control device 12 following an interruption or a reduction of the voltage applied to the primary side 15 of the ignition coil 12, the control device 12 only permits or restarts the voltage again when the amount of the magnetic induction B on the Primary side 15 of the ignition coil 12 below the predetermined maximum value B max or corresponding maximum values of the above-mentioned replacement parameters or a predetermined reclosing setpoint value.
  • the restart setpoint value can also be selected to be lower than the maximum value used for the evaluation depending on the variant embodiment.
  • Fig. 2 is drawn on the exemplary course of the secondary side current I sec a phase of deenergization Ph3, in which the secondary side current initially drops sharply, whereupon the polarity of the secondary side current is negative and then at time t n at a zero crossing back to the positive region.
  • the course of the primary-side current I pri is shown as the lowest graph. This shows the general tendency of the increase of the primary-side current, while in the phase of the de-excitation Ph3 a decrease of the primary-side current I pri can be seen.
  • the control device 12 after an interruption of the primary side voltage and / or power supply of the ignition coil 3 during an ignition or subsequent to the fall of the primary-side voltage and / or the primary-side current I pri by the ignition coil 3 under a predeterminable threshold value during the ignition process will switch on the primary-side voltage and / or current supply of the ignition coil 3 or adjusts it above the threshold value if the thus induced secondary-side current acts in the direction of the preferably immediately previously determined course of the secondary-side current I sek I sek , The switch 4 should therefore not be turned on when the secondary current I sec is negative.
  • Switching is advantageously carried out only in or after the time t n , in which the polarity of the secondary current changes and thus the secondary side induced current via the connection of the primary-side voltage supply acts in the direction of the predetermined course of the secondary-side current I sec .
  • the start of the now following ionization phase Ph1 or of the on-time interval ⁇ t an2 is thus synchronized with the secondary-side profile of the current.
  • the switch 4 remains closed until the desired high voltage supply is reached.
  • the starting time t n of the ionization phase is determined from the monitoring of the polarity of the secondary-side current I sec (see also FB2 Fig. 2 ). Since the natural frequency of the ignition device is determined by its components, this is known. Conveniently, it can therefore be provided that the control device 12, the primary-side voltage and / or power supply of the ignition coil 3, preferably Immediately, after a predetermined time offset following a polarity change or zero crossing of the secondary current I sec reconnects or regulates the pre-determinable threshold, preferably the predetermined time offset substantially a quarter of the natural period, preferably the secondary side 16, the ignition corresponds. Accordingly, the ionization phase begins with a delay of one quarter of the natural period of the system after the secondary current I sec enters the positive region.
  • the ionization phase is prevented from being interrupted by the maximum value of the amount of magnetic induction B being reached. It is provided that the ionization phase can only be started when the magnetization level or the amount of magnetic induction B on the primary side 15 of the ignition coil is low enough at the beginning. If this is not the case, the system must be de-energized (phase Ph3) until the required low magnetization level is reached.
  • the ionization phase for the reconstruction of the spark can thus be started preferably only when the magnetization level and the synchronization condition in the resonant circuits are met.
  • switch-on times of the switch 4 are summed during the given burning time. If the summed on time of the switch 4 exceeds a predetermined limit value, the ignition process is aborted. This monitoring is conveniently independent of the magnetization level.
  • the quality of the ignition process is usually assessed based on the actual spark duration of the spark.
  • the burning time is measured between the attainment of the predetermined nominal fuel flow value I rated up to the zero value of the secondary current I sec . If the spark extinguishes during the given burning time and this is rebuilt, the measurement is restarted when the preset current set point is reached and stopped again at the zero value of the secondary current I sec .
  • the measured values of the individual measuring processes are summed up.
  • the combustion duration measurement is stopped and the measured value is evaluated.
  • the combustion duration measurement is reset when the measurement from reaching the Combustion current target value is to the zero value of the secondary-side current I sek shorter than the ionization. In this case, no spark has formed in the first ionization phase. This circumstance is considered a mistake or a dropout.
  • a capacitive current can build up in the secondary circuit due to the capacitive loading of the high voltage cabling and the spark plug. This current flows independently whether a spark is generated at the spark plug 5 or not.
  • the combustion current target value I rated is selected in the ionization so that the value must be safely crossed. The reaching of the combustion current setpoint is queried shortly before the end of the ionization phase. If the secondary current I sec is not high enough at this time, then there is a hardware error in the system.

Abstract

The device has a control device (12) regulating or switching a threshold in connection to interruption of a primary sided voltage and/or electric power supply of an ignition coil (3) during ignition. The device is in connection to the dropping in the primary voltage and/or primary current through the coil under an allowed threshold during the process of ignition of the voltage and/or the supply of the coil. The device regulates the threshold when an induced secondary current is operated in the direction of characteristics of the secondary current.

Description

Die vorliegende Erfindung betrifft eine Zündeinrichtung für eine Brennkraftmaschine, insbesondere für einen Gasmotor, mit einer Zündspule, die auf ihrer Primärseite von einer Spannungsquelle speisbar ist und mit einer Sekundärstrommesseinrichtung zur Messung des Verlaufs des sekundärseitigen Stromes und mit einer Regeleinrichtung zur zumindest zeitweiligen Regelung der primärseitigen Spannung und/oder des primärseitigen Stromes in Abhängigkeit des gemessenen Verlaufs des sekundärseitigen Stromes.The present invention relates to an ignition device for an internal combustion engine, in particular for a gas engine, with an ignition coil which can be fed by a voltage source on its primary side and with a secondary current measuring device for measuring the course of the secondary current and with a control device for at least temporary control of the primary-side voltage and / or the primary-side current as a function of the measured course of the secondary-side current.

Solche Zündeinrichtungen sind beim Stand der Technik bereits bekannt siehe z.B. DE 10039725 . Durch die primärseitige Regelung in Abhängigkeit des sekundärseitigen Stromverlaufes wird beim Stand der Technik sowohl der Beginn als auch der Verlauf des Zündvorgangs kontrolliert. Dabei kommt es im realen Betrieb immer wieder zum vorzeitigen Erlöschen des Zündfunkens, der auf der Sekundärseite der Zündspule angeordneten Zündkerze. Um die vorgesehene Brenndauer des Zündfunkens zu erreichen, ist es dann notwendig, diesen wieder zu zünden.Such ignition devices are already known in the prior art see, for example DE 10039725 , Due to the primary-side regulation as a function of the secondary-side current profile, both the beginning and the course of the ignition process are controlled in the prior art. It comes in real operation again and again to premature extinction of the spark, arranged on the secondary side of the ignition coil spark plug. In order to achieve the intended burning time of the spark, it is then necessary to ignite it again.

Aufgabe der vorliegenden Erfindung ist es, gattungsgemäße Zündeinrichtungen dahingehend zu verbessern, dass nach vorzeitigem Erlöschen ein möglichst effektiver Wiederaufbau des Zündfunkens möglich ist.Object of the present invention is to improve generic ignition devices to the effect that after premature extinction the most effective reconstruction of the spark is possible.

Dies wird erfindungsgemäß erreicht, indem die Regeleinrichtung im Anschluss an eine Unterbrechung der primärseitigen Spannungs- und/oder Stromversorgung der Zündspule während eines Zündvorgangs oder im Anschluss an das Abfallen der primärseitigen Spannung und/oder des primärseitigen Stromes durch die Zündspule unter einen vorgebbaren Schwellwert während des Zündvorgangs die primärseitige Spannungsund/oder Stromversorgung der Zündspule erst dann wieder einschaltet oder über den Schwellwert regelt, wenn der dadurch induzierte sekundärseitige Strom in Richtung des, vorzugsweise unmittelbar, vorab bestimmten Verlaufs des sekundärseitigen Stromes wirkt.This is achieved according to the invention by the control device following an interruption of the primary side voltage and / or power supply of the ignition coil during an ignition or subsequent to the fall of the primary side voltage and / or the primary side current through the ignition coil below a predetermined threshold during the Ignition, the primary-side voltage and / or power supply of the ignition coil only turns on again or above the threshold, if the induced secondary current in the direction of, preferably immediately, previously determined course of the secondary-side current acts.

Es ist erfindungsgemäß somit vorgesehen, dass die Regeleinrichtung die Primärseite der Zündspule in der Weise ansteuert, dass der sekundärseitig dadurch induzierte Strom zeitlich und richtungsmäßig so auf den durch den vorhergehenden Zündvorgang noch auf der Sekundärseite fließenden Strom abgestimmt ist, dass eine positive bzw. additive Überlagerung stattfindet. Hierdurch wird verhindert, dass der induzierte und der noch auf der Sekundärseite vorhandene Strom gegeneinander wirken, was sowohl einen Zeitverlust beim Wiederaufbau des Zündfunkens als auch einen Energieverlust bedeuten würde. Der Zündfunke kann dadurch rasch und energetisch effektiv wieder aufgebaut werden, sodass die vorgesehene Gesamtbrenndauer eines Zündvorgangs erreicht wird.It is thus provided according to the invention that the control device activates the primary side of the ignition coil in such a way that the current induced on the secondary side is tuned in terms of time and direction to the current still flowing on the secondary side through the preceding ignition process, that a positive or additive superimposition takes place. This prevents that the induced current and the current still present on the secondary side act against each other, resulting in both a loss of time during the Rebuilding the spark as well as losing energy. The spark can thereby be rebuilt quickly and energetically effective, so that the intended total burning time of an ignition is achieved.

Günstigerweise ist dabei vorgesehen, dass die Regeleinrichtung die primärseitige Spannungs- und/oder Stromversorgung der Zündspule bei oder nach einem Polaritätswechsel bzw. Nulldurchgang des sekundärseitigen Stromes wieder einschaltet oder über den vorab bestimmbaren Schwellwert regelt. Das Wiedereinschalten bzw. über den vorab bestimmten Schwellwert Regeln kann dabei unmittelbar beim Polaritätswechsel bzw. Nulldurchgang des sekundärseitigen Stromes vorgesehen sein. Günstiger ist es aber, einen vorgebbaren Zeitversatz im Anschluss an den Polaritätswechsel bzw. Nulldurchgang vorzusehen und erst nach diesem Zeitversatz die primärseitige Spannungs- und/oder Stromversorgung wieder einzuschalten bzw. über den vorab bestimmbaren Schwellwert zu regeln. Um den Zeitversatz an die Eigenfrequenz der Zündeinrichtung anzupassen, ist es dabei günstig, dass der vorgebbare Zeitversatz im Wesentlichen ein Viertel der Eigenperiode, vorzugsweise der Sekundärseite, der Zündeinrichtung entspricht, wobei die Eigenperiode der Kehrwert der Eigenfrequenz ist.Conveniently, it is provided that the control device switches on the primary-side voltage and / or power supply of the ignition coil at or after a polarity change or zero crossing of the secondary-side current or regulates the pre-determinable threshold. The reclosing or over the predetermined threshold rules can be provided directly at the polarity change or zero crossing of the secondary current. It is more favorable, however, to provide a predefinable time offset following the polarity change or zero crossing, and to switch the primary-side voltage and / or current supply back on again after this time offset or to regulate it via the threshold value that can be determined beforehand. In order to adapt the time offset to the natural frequency of the ignition device, it is favorable that the predefinable time offset essentially corresponds to a quarter of the natural period, preferably the secondary side of the ignition device, wherein the natural period is the reciprocal of the natural frequency.

Weitere Merkmale und Einzelheiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung. Dabei zeigen:

Fig. 1
einen schematischen Schaltplan zu einem erfindungsgemäßen Ausführungsbeispiel einer Zündeinrichtung,
Fig. 2
den Verlauf verschiedener Parameter zur Darstellung eines Zündvorgangs und
Fig. 3
eine schematische Darstellung zum Zusammenhang zwischen Primärstrom und magnetischer Induktion auf der Primärseite der Zündspule.
Further features and details of the present invention will become apparent from the following description of the figures. Showing:
Fig. 1
a schematic circuit diagram of an embodiment of an ignition device according to the invention,
Fig. 2
the course of various parameters to represent an ignition process and
Fig. 3
a schematic representation of the relationship between primary current and magnetic induction on the primary side of the ignition coil.

Das nachstehend beschriebene Regelprinzip kann zur Ansteuerung einer modulierten Hochspannungskondensatorzündung (HKZ) verwendet werden. Die modulierte HKZ basiert auf der Idee, die Zündenergie des Kondensators schrittweise der Zündspule zuzuführen. Dies kann grundsätzlich gesteuert oder geregelt erfolgen. Gemäß der vorliegenden Erfindung wird die geregelte Variante realisiert und im Folgenden beschrieben. In der geregelten Version wir die primäre Seite der Zündspule in Abhängigkeit vom Zustand des Zündfunkens auf der Sekundärseite an die Versorgungsspannung geschaltet. Ein Vorteil dieses Systems liegt in der zeitlichen Verlängerung des Zündfunkens bei gleichzeitiger Steuerung der Zündfunkencharakteristik. Brenndauern, vorzugsweise bis 5.000 Mikrosekunden sind mit diesem System problemlos zu erreichen. Insbesondere bei Gasmotoren wird häufig ein Hochspannungsangebot bis 40 kV (Kilovolt) benötigt. Dies kann beim Erregen eines erfindungsgemäßen Systems in weniger als 100 Mikrosekunden erreicht werden. Die Brenndauer wird von der Regeleinrichtung typischerweise zwischen 100 und 1.200 Mikrosekunden vorgegeben. Während dieser Zeit wird der Zündfunke durch eine verstellbare Vorgabe des Brennstromsollwertes Irated (siehe Fig. 2) charakterisiert. Die Regeleinrichtung muss dabei die primärseitige Spannungsversorgung der Zündspule so ansteuern, dass die vorgegebene Charakteristik des Zündfunkens bzw. der Sollverlauf des sekundärseitigen Stromes lrated möglichst gut erreicht wird.The control principle described below can be used to control a modulated high-voltage capacitor ignition (HCC). The modulated HKZ is based on the idea of gradually feeding the ignition energy of the capacitor to the ignition coil. This can basically be controlled or regulated. According to the present invention, the controlled variant is realized and described below. In the regulated version, the primary side of the ignition coil is switched to the supply voltage depending on the condition of the spark on the secondary side. An advantage of this system lies in the time extension of the spark while at the same time Control of the spark characteristic. Burning times, preferably up to 5,000 microseconds can be achieved easily with this system. Especially in gas engines, a high voltage supply up to 40 kV (kilovolts) is often required. This can be achieved in energizing a system according to the invention in less than 100 microseconds. The burn time is typically set by the controller between 100 and 1200 microseconds. During this time, the spark is controlled by an adjustable specification of the fuel flow setpoint I rated (see Fig. 2 Characterized. The control device must control the primary-side voltage supply of the ignition coil so that the predetermined characteristic of the spark or the desired course of the secondary-side current l rated is achieved as well as possible.

Verbrennungskonzepte bzw. Brennkraftmaschinen mit hohem Wirkungsgrad weisen auch sehr hohe Turbulenzen im Verbrennungsraum auf. Durch diese Turbulenzen wird der Zündfunken einer sekundärseitig von einer Zündeinrichtung angesteuerten Zündkerze räumlich verlängert und es kann zum vorzeitigen Erlöschen kommen. Um einen Verbrennungsaussetzer im Brennraum aufgrund von zu geringer Brenndauer zu verhindern, muss der Zündfunken in möglichst kurzer Zeit wieder hergestellt werden. Die notwendige Zündspannung kann dabei durchaus nahe dem Hochspannungsangebot der Zündspule liegen. Um möglichst schnell einen neuen Zündfunken zu erzeugen, sollte berücksichtigt werden, dass beim Erlöschen des Zündfunkens noch Restenergie im Schwingkreis des Hochspannungskreises, also auf der Sekundärseite der Zündspule vorhanden ist. Zum Wiederherstellen des Zündfunkens muss daher ein Zeitpunkt gewählt werden, der die vorhandene Energie im System positiv nutzt. Dies wird erreicht, indem die Regeleinrichtung. 12 im Anschluss an eine Unterbrechung der primärseitigen Spannungs- und/oder Stromversorgung der Zündspule während eines Zündvorgangs oder im Anschluss an das Abfallen der primärseitigen Spannung und/oder des primärseitigen Stromes Ipri durch die Zündspule 3 unter einen vorgebbaren Schwellwert während des Zündvorgangs die primärseitige Spannungs- und/oder Stromversorgung der Zündspule 3 erst dann wieder einschaltet oder über den Schwellwert regelt, wenn der dadurch induzierte sekundärseitige Strom Isek in Richtung des, vorzugsweise unmittelbar, vorab bestimmten Verlaufs des sekundärseitigen Stromes Isek wirkt.Combustion concepts and internal combustion engines with high efficiency also have very high turbulence in the combustion chamber. Due to these turbulences, the spark of a secondary side triggered by an ignition spark plug is spatially extended and it can lead to premature extinction. To prevent a misfire in the combustion chamber due to insufficient burning time, the spark must be restored in the shortest possible time. The necessary ignition voltage can be quite close to the high voltage supply of the ignition coil. In order to generate a new spark as quickly as possible, it should be taken into account that residual energy is still present in the resonant circuit of the high-voltage circuit, ie on the secondary side of the ignition coil when the ignition spark goes out. To restore the spark, therefore, a time must be chosen that positively uses the existing energy in the system. This is achieved by the control device. 12 following an interruption of the primary-side voltage and / or power supply of the ignition coil during an ignition or subsequent to the fall of the primary-side voltage and / or the primary-side current I pri by the ignition coil 3 below a predetermined threshold during the ignition, the primary-side voltage will switch on and / or power supply of the ignition coil 3 or adjusts it above the threshold value when the secondary-side current induced thereby acts in the direction of the preferably immediately previously determined course of the secondary-side current I sek I sek -.

Fig. 1 zeigt schematisch ein Regelungsprinzip für eine erfindungsgemäß modulierte Zündeinrichtung, hier in Form einer Hochspannungskondensatorzündung. Bei der Zündspule 3 handelt es sich um einen allgemein bekannten Transformator, auf dessen Primärseite 15 eine Spannungsversorgung vorgesehen ist und auf dessen Sekundärseite 16 die Zündkerze 5 zur Erzeugung eines Zündfunkens mit Hochspannung versorgt wird. Beim vorliegenden Ausführungsbeispiel handelt es sich primärseitig um eine Gleichstromspannungsquelle, die hier aus dem DC-DC-Konverter 1 und einem dazu parallel geschalteten Kondensator 2 besteht. Darüber hinaus ist auf der Primärseite der von der Regeleinrichtung 12 über die Ansteuerung 13 angesteuerte Schalter 4 vorgesehen. Dieser kann als Halbleiterschalter ausgebildet sein. Der Schalter 4 weist zumindest einen ersten Schaltzustand, bei dem die Spannung der Spannungsquelle an der Zündspule 3 anliegt, und zumindest einen zweiten Schaltzustand, bei dem die Spannung der Spannungsquelle nicht an der Zündspule 3 anliegt, auf. Darüber hinaus ist zur primärseitigen Wicklung der Zündspule 3 eine Freilaufdiode 18 parallel geschaltet. Diese dient der weiter unten beschriebenen Entregung der Primärseite 15 im abgeschalteten Zustand der Spannungsquelle bei geöffnetem Schalter 4. Durch die Verwendung der Freilaufdiode 18 wird bei der Entregung die Energie maximal im primärseitigen Kreis gehalten. Optional kann in Reihe zur Freilaufdiode 18 aber auch ein zusätzlicher ohmscher Widerstand 19 geschaltet werden. Dieser bedeutet zwar einen Energieverlust. Durch den Widerstand 19 und die dadurch erreichte Dämpfung der Primärseite 15 bei der Entregung ist aber andererseits ein schnelleres Wiedereinschalten nach dem Erlöschen eines Zündfunkens möglich. Fig. 1 schematically shows a control principle for an inventively modulated ignition device, here in the form of a high voltage capacitor ignition. The ignition coil 3 is a well-known transformer, on its primary side 15th a power supply is provided and on the secondary side 16, the spark plug 5 is supplied to generate a spark with high voltage. In the present embodiment, the primary side is a DC voltage source, which here consists of the DC-DC converter 1 and a capacitor 2 connected in parallel thereto. In addition, on the primary side of the controlled by the control device 12 via the control 13 switch 4 is provided. This can be designed as a semiconductor switch. The switch 4 has at least a first switching state, in which the voltage of the voltage source is applied to the ignition coil 3, and at least a second switching state, in which the voltage of the voltage source is not applied to the ignition coil 3, on. In addition, a freewheeling diode 18 is connected in parallel to the primary-side winding of the ignition coil 3. This is used for de-energizing the primary side 15 described below in the switched-off state of the voltage source when the switch 4 is open. By using the freewheeling diode 18, the energy is maximally maintained in the primary-side circuit during de-energizing. Optionally, however, an additional ohmic resistor 19 can also be connected in series with the freewheeling diode 18. This means a loss of energy. On the other hand, by the resistor 19 and the achieved attenuation of the primary side 15 in the de-energizing faster reconnection after the extinction of a spark is possible.

Das An- und Abschalten der Spannungsquelle 1, 2 erfolgt in diesem Ausführungsbeispiel also ausschließlich über den Schalter 4. Auf der Primärseite 15 gestrichelt dargestellt, ist eine im bevorzugten Ausführungsbeispiel vorgesehene Primärstrommesseinrichtung 14, die zur Bestimmung des im Primärkreis fließenden Stromes Ipri dient. Dieser Wert Ipri wird an die Regeleinrichtung 12 weitergegeben. Darüber hinaus kann optional, anstelle und/oder zusätzlich primärseitig auch noch eine Spannungsmesseinrichtung vorgesehen sein. Diese ist hier aber explizit nicht dargestellt. Ist sie vorhanden, so gibt sie den an der Primärseite der Zündspule 3 gemessenen Spannungswert ebenfalls an die Regeleinrichtung 12 weiter.The switching on and off of the voltage source 1, 2 takes place in this embodiment so only through the switch 4. On the primary side 15 shown in phantom, provided in the preferred embodiment primary current measuring device 14, which serves to determine the current flowing in the primary circuit current I pri . This value I pri is forwarded to the control device 12. In addition, may optionally be provided instead of and / or additionally primary side even a voltage measuring device. This is not explicitly shown here. If it is present, it also sends the voltage value measured on the primary side of the ignition coil 3 to the control device 12.

Auf der Sekundärseite 16 ist mit der entsprechenden Wicklung der Zündspule 3 ein Shunt 6 für den Strom im Zündfunken in Reihe geschaltet. Darüber hinaus ist eine Sekundärstrommesseinrichtung 7 sowie eine Sekundärspannungsmesseinrichtung 8 vorgesehen. Der mittels der Sekundärstrommesseinrichtung 7 gemessene sekundärseitige Strom Isek wird in diesem Ausführungsbeispiel mittels der Polaritätsauswerteeinrichtung 9 bezüglich seiner Polarität und mittels der Stromstärkenauswerteeinrichtung 10 bezüglich seiner Amplitude bzw. Stromstärke ausgewertet. Dabei ist im gezeigten Ausführungsbeispiel vorgesehen, dass sich die Auswertung des Betrages, also der Stromstärke des sekundärseitigen Stromes Isek darauf beschränkt, ob dieser größer oder gleich eines vorgebbaren Mindestwertes ist oder nicht. Dies wird weiter unten anhand von Fig. 2 im Detail weiter erläutert. Als vorgebbarer Mindestwert wird dabei in der Regel der Brennstromsollwertverlauf Irated herangezogen werden.On the secondary side 16 is connected to the corresponding winding of the ignition coil 3, a shunt 6 for the current in the spark in series. In addition, a secondary current measuring device 7 and a secondary voltage measuring device 8 are provided. The secondary-side current I sec measured by means of the secondary current measuring device 7 is evaluated in this exemplary embodiment by means of the polarity evaluating device 9 with respect to its polarity and by means of the current intensity evaluating device 10 with respect to its amplitude or current intensity. It is in the illustrated embodiment provided that the evaluation of the amount, ie the current strength of the secondary-side current I sec limited to whether this is greater than or equal to a predetermined minimum value or not. This will be explained below using Fig. 2 further explained in detail. As a rule, the nominal fuel flow rate I rated will be used as a predefinable minimum value.

Die von der Polaritätsauswerteeinrichtung 9 und der Stromstärkenauswerteeinrichtung 10 bestimmten Werte geben jedenfalls nicht singuläre Einzelwerte sondern den Verlauf des sekundärseitigen Stromes Isek wieder und diesen an die Regeleinrichtung 12 weiter. Das gleiche kann auch für die mittels der Sekundärspannungsmesseinrichtung 8 gemessene sekundärseitige Spannung Usek gelten. Diese wird mit der Hochspannungsauswerteeinrichtung 11 ausgewertet, wobei diese die Spannungsinformation wiederum an die Regeleinrichtung 12 weitergibt. In Abhängigkeit der genannten Eingabeparameter steuert die Regeleinrichtung 12 den primärseitigen Schalter 4 an und regelt damit die Strom- und Spannungsversorgung der Primärseite 15 der Zündspule 3.The values determined by the polarity evaluating device 9 and the current intensity evaluating device 10 in any case reproduce not singular single values but the profile of the secondary-side current I sec and forward this to the regulating device 12. The same can also apply to the secondary-side voltage U sec measured by means of the secondary voltage measuring device 8. This is evaluated with the high-voltage evaluation device 11, which in turn forwards the voltage information to the control device 12. Depending on the input parameters mentioned, the control device 12 activates the primary-side switch 4 and thus regulates the current and voltage supply of the primary side 15 of the ignition coil 3.

In Fig. 2 ist anhand von verschiedenen Parametern ein Verlauf eines Zündvorgangs dargestellt, währenddessen der Zündfunke abreißt und wieder aufgebaut wird. Die Funktionsweise der Regeleinrichtung wird anhand der einzelnen Phasen dieses Zündvorgangs im folgenden dann näher erläutert. Die Regelung durchläuft dabei die Phasen Ionisation Ph1, Stromregelung Ph2, Entregung Ph3 und Synchronisation. Letztere ist am Übergang zwischen Ph3 und nachfolgender Ph1 realisiert. Usek zeigt den sekundärseitigen Spannungsverlauf. Isek zeigt den Verlauf des gemessenen sekundärseitigen Stromes. Irated zeigt den Sollwertverlauf des sekundärseitigen Stromes und bevorzugt damit auch den Verlauf des Mindestwertes anhand dessen die Stromstärkenauswerteeinrichtung 10 entscheidet, ob der gemessene sekundärseitige Strom Isek den Sollstromwert erreicht bzw. überschreitet oder darunter liegt. FB1 zeigt dabei das Auswerteergebnis der Stromstärkenauswerteeinrichtung 10. FB1 nimmt den Wert 1 an, wenn Isek größer oder gleich Irated ist. In den anderen Fällen nimmt FB1 den Wert 0 an. FB2 zeigt das Ergebnis der Polaritätsauswerteeinrichtung 9. Liegt der gemessene sekundärseitige Strom Isek im positiven Bereich, so nimmt FB2 den Wert 1 an. Ist der sekundärseitige Strom negativ, so nimmt FB2 den Wert 0 an. TSwitch zeigt den Verlauf des Ansteuersignals der Regeleinrichtung 12 an den Schalter 4. Ist dieses 1, so ist der Schalter 4 geschlossen und die Spannungs- bzw. Stromversorgung liegt an der Primärseite der Zündspule 3 an. Ist das Ansteuersignal gleich 0, so ist der Schalter 4 geöffnet, womit die Spannungs- und Stromversorgung von der Primärseite 15 der Zündspule 3 getrennt ist. Der Graph Ipri zeigt den Verlauf des primärseitigen Stromes während des Zündvorgangs. Alle Graphen stellen somit den zeitlichen Verlauf der Parameter dar.In Fig. 2 is shown on the basis of various parameters, a course of an ignition during which the spark breaks off and is rebuilt. The operation of the control device will be explained in more detail below with reference to the individual phases of this ignition process. The control passes through the phases of ionization Ph1, current control Ph2, de-energization Ph3 and synchronization. The latter is realized at the transition between Ph3 and subsequent Ph1. U sec shows the secondary voltage curve. I sec shows the course of the measured secondary current. I rated shows the setpoint course of the secondary-side current and thus preferably also the course of the minimum value on the basis of which the Stromstärkenauswerteeinrichtung 10 decides whether the measured secondary side current I sec reaches or exceeds the target current value or below. FB1 shows the evaluation result of the current intensity evaluation device 10. FB1 assumes the value 1 if I sec is greater than or equal to I rated . In the other cases, FB1 assumes the value 0. FB2 shows the result of the polarity evaluation device 9. If the measured secondary side current I sec is in the positive range, FB2 assumes the value 1. If the secondary-side current is negative, FB2 assumes the value 0. T Switch shows the course of the control signal of the control device 12 to the switch 4. If this 1, then the switch 4 is closed and the voltage or power supply is applied to the primary side of the ignition coil 3. If the drive signal is equal to 0, the switch 4 is opened, whereby the voltage and power supply of the Primary side 15 of the ignition coil 3 is disconnected. The graph I pri shows the course of the primary-side current during the ignition process. All graphs thus represent the time course of the parameters.

Der Stromsollwert des sekundärseitigen Stromes Irated ist über die Regeleinrichtung 12 einstellbar und wird der Stromstärkenauswerteeinrichtung 10 in diesem Ausführungsbeispiel zur Bestimmung von FB1 zugeführt. Die Stromstärkenauswerteeinrichtung 10 kann hierfür als Komparator ausgebildet sein. Der Sollwertverlauf des sekundärseitigen Stromes Irated kann von der Regeleinrichtung 12 bevorzugt sowohl bezüglich der Brenndauer als auch bezüglich der Stromstärke auf verschiedene Werte eingestellt werden. Optional ist es auch möglich, die Spannung an der Zündkerze zu messen und dieses Signal in die Regelung einzubinden.The current setpoint of the secondary-side current I rated is adjustable via the control device 12 and is supplied to the current intensity evaluation device 10 in this exemplary embodiment for the determination of FB1. The Stromstärkenauswerteeinrichtung 10 may be designed for this purpose as a comparator. The setpoint course of the secondary-side current I rated can preferably be set by the control device 12 to different values both with regard to the burning time and with regard to the current intensity. Optionally, it is also possible to measure the voltage at the spark plug and to integrate this signal into the control.

Zu Beginn des Zündvorgangs zum Zündzeitpunkt t0 wird die Regeleinrichtung 12 zunächst in die Ionisationsphase Ph1 geschaltet. Diese ist ein Anschaltintervall Δtan1 in der die Hochspannung aufgebaut wird, die für die Erzeugung des Zündfunkens benötigt wird. Während des gesamten Anschaltintervalls Δtan1 ist bevorzugt vorgesehen, dass bei geschlossenem Schalter 4 auf der Primärseite 15 der Zündspule 3 die Spannung der Spannungsquelle 1, 2 in voller Höhe und zumindest für die vorgebbare Zeitdauer Δtan1 permanent anliegt. Die Zündspule 3 ist primärseitig somit während der gesamten Ionisationsphase bzw. während des gesamten Anschaltzeitintervalls primärseitig an die Versorgungsspannung geschaltet. Im einfachsten Fall wird die Ionisationsphase für eine fix eingestellte Zeit, welche zur Erzeugung der Hochspannung und damit des sekundärseitigen Zündfunkens notwendig ist, angeschlossen. Um Beschädigungen des Systems durch zu hohe Spannungen zu vermeiden, kann die lonisationsphase optional auch beim Überschreiten der von der Zündspule ausgegebenen Hochspannung im Vergleich mit einem Grenzwert abgeschaltet werden. Hierzu ist vorgesehen, dass die Regeleinrichtung 12 während des Anschaltzeitintervalls Δtan1, Δtan2 den sekundärseitigen Strom Isek über die Sekundärstrommesseinrichtung 7 und/oder die sekundärseitig von der Zündspule 3 abgegebene Spannung Usek über die Sekundärspannungsmesseinrichtung 8 überwacht und die primärseitige Spannungsversorgung der Zündspule 3 unterbricht, wenn der sekundärseitige Strom Isek und/oder die sekundärseitig von der Zündspule abgegebene Spannung Usek (einen) vorgebbare(n) Grenzwert(e) überschreitet (überschreiten). Diese Option schützt das System bei einer schadhaften Zündkerze, fehlendem Zündkerzenstecker oder einer anderen Fehlfunktion vor Zerstörung. Beim gezeigten Ausführungsbeispiel ist also vorgesehen, dass während des Ionisationsphase Ph1 bzw. dem Anschaltzeitintervall Δtan1 keine Regelung in Abhängigkeit des sekundärseitigen Stromes vorgenommen wird. Diese setzt bei dieser Variante erst nach Abschluss der Ionisationsphase Ph1 und bei Eintritt in die Stromregelungsphase Ph2 ein. In dieser Phase Ph2 wird der sekundärseitige Strom Isek (im Zündfunken) mittels des Komparators der Stromstärkenauswerteeinrichtung 10 mit dem Verlauf des Sollwertes Irated verglichen. Aus diesem Vergleich ergibt sich - wie bereits geschildert - das Signal FB1. Nimmt dieses den Wert 1 an und ist damit der Istwert des sekundärseitigen Stromes Isek höher als oder gleich dem Sollwert Irated wird die Energiezufuhr auf der Primärseite 15 der Zündspule 3 durch Öffnen des Schalters 4 unterbrochen. Im ungekehrten Fall wird die Zündspule 3 an die Spannungsversorgung 1, 2 geschaltet. Mit dieser Regelung kann der Strom im Zündfunken eingestellt werden und im Idealfall kann die Phase Ph2 der Brennstromregelung bis zum Ende der eingestellten Brenndauer beibehalten werden.At the beginning of the ignition process at the ignition time t 0 , the control device 12 is first switched to the ionization phase Ph1. This is a turn-on interval Δt an1 in which the high voltage is built up, which is needed for the generation of the spark. During the entire turn-on interval .DELTA.t an1 it is preferably provided that, when the switch 4 is closed, the voltage of the voltage source 1, 2 is permanently applied to the primary side 15 of the ignition coil 3 in full height and at least for the predefinable time duration .DELTA.t an1 . The ignition coil 3 is thus connected on the primary side to the supply voltage on the primary side during the entire ionization phase or during the entire on-time interval. In the simplest case, the ionization phase for a fixed set time, which is necessary to generate the high voltage and thus the secondary side spark is connected. In order to avoid damage to the system due to excessive voltages, the ionization phase can optionally also be switched off when the high voltage output by the ignition coil is exceeded in comparison with a limit value. For this purpose, it is provided that the control device 12 monitors the secondary-side current I sec via the secondary current measuring device 7 and / or the secondary side of the ignition coil 3 output voltage U sec via the secondary voltage measuring device 8 and the primary-side voltage supply of the ignition coil 3 during the Anschaltzeitintervall .DELTA.t interrupts when the secondary-side current I sec and / or the voltage U sec output by the ignition coil on the secondary side exceeds (exceeds) a specifiable limit value (e). This option protects the system from destruction if the spark plug, spark plug plug, or other malfunction is defective. Thus, in the embodiment shown provided that during the ionization phase Ph1 and the Anschaltzeitintervall .DELTA.t an1 no regulation is made in dependence on the secondary-side current. In this variant, this only starts after completion of the ionization phase Ph1 and on entry into the current control phase Ph2. In this phase Ph2 the secondary-side current I sec (in the spark) is compared by means of the comparator of Stromstärkenauswerteeinrichtung 10 with the course of the setpoint I rated . From this comparison results - as already described - the signal FB1. If this assumes the value 1 and the actual value of the secondary-side current I sec is higher than or equal to the desired value I rated , the power supply to the primary side 15 of the ignition coil 3 is interrupted by opening the switch 4. In the opposite case, the ignition coil 3 is connected to the power supply 1, 2. With this control, the current in the spark can be adjusted and, ideally, phase Ph2 of the fuel flow control can be maintained until the end of the set burn time.

Durch die Turbulenzen im Brennraum wird in der Praxis der Funken jedoch räumlich verlängert, wodurch die Spannung an der Zündkerze steigt und der Zündkerze mehr Energie zugeführt werden muss. In diesem Fall kann der Stromsollwert Irated nicht mehr erreicht werden und der Zündfunken muss bewusst zum Erlöschen gebracht werden, indem die Phase der Entregung Ph3 eingeleitet wird. Die Anforderungen der Brennkraftmaschine können besonders gut dann erfüllt werden, wenn die Brennstromvorgabe Irated während des Zündfunkens verändert werden kann.However, due to the turbulence in the combustion chamber, in practice the spark is spatially extended, which increases the voltage at the spark plug and requires more energy to be supplied to the spark plug. In this case, the current setpoint I rated can no longer be achieved and the spark must be deliberately extinguished by initiating the phase of de-energization Ph3. The requirements of the internal combustion engine can be met especially well if the rated fuel input I rated during the spark can be changed.

Die Phase der Entregung Ph3 wird in zwei Fällen benötigt. Zum einen kann dies sein, wenn während des vorgesehenen Zündvorgangs unbeabsichtigt der Zündfunke abreißt und neu aufgebaut werden muss. Zum anderen kann eine Entregung notwendig werden, wenn der Magnetismuslevel bzw. die magnetische Induktion B auf der Primärseite 15 der Zündspule 12 zu groß wird. Zur Erläuterung des zuletzt genannten Ereignisses wird auf Fig. 3 verwiesen. Diese zeigt den Zusammenhang zwischen der Stromstärke des primärseitigen Stromes Ipri und dem Betrag der magnetischen Induktion B auf der Primärseite 15 der Zündspule 3. Hier ist zu sehen, dass - wie allgemein bekannt - der Betrag der magnetischen Induktion B mit zunehmendem Strom Ipri in den Bereich einer Sättigung gelangt. In diesem Bereich müssen sehr große Änderungen der Stromstärke Ipri vorgenommen werden, um vergleichsweise geringe Änderungen der magnetischen Induktion B zu bewirken. Dies ist bei Zündsystemen mit Zündspule 3 nicht wünschenswert. Um dies zu verhindern, kann vorgesehen sein, dass die Regeleinrichtung 12, die an der Primärseite 15 der Zündspule 12 angelegte Spannung unterbricht oder reduziert, wenn der Betrag der magnetischen Induktion B auf der Primärseite 15 der Zündspule 12 einen vorgebbaren Maximalwert Bmax überschreitet. Dabei ist günstigerweise vorgesehen, dass der vorgebbare Maximalwert Bmax des Betrages der magnetischen Induktion B die Obergrenze eines Arbeitsbereiches 17 ist, in dem ein zumindest annähernd linearer Zusammenhang zwischen dem Betrag der magnetischen Induktion B und dem primärseitigen Strom Ipri vorliegt. Der vorgebbare Maximalwert Bmax ist dabei günstigerweise weit unterhalb des gesättigten Bereiches der Zündspule 3 angeordnet. Zum Vergleich sind zwei Stromänderungen ΔI1 und ΔI2 des primärseitigen Stromes in Fig. 3 eingezeichnet, die dazu benötigt werden dieselbe Änderung des Betrages der magnetischen Induktion B (Betrag von ΔB1 ist gleich Betrag von ΔB2) hervorzurufen. Innerhalb des Arbeitsbereiches 17 reicht aufgrund des mehr oder weniger linearen Zusammenhangs zwischen Primärstrom Ipri und dem Betrag der magnetischen Induktion B die vergleichsweise geringe Stromänderung ΔI1. Oberhalb des Arbeitsbereiches 17 muss, um dieselbe Änderung des Betrages der magnetischen Induktion B hervorzurufen, eine wesentlich größere Stromänderung ΔI2 aufgewendet werden.The phasing phase Ph3 is needed in two cases. On the one hand, this can be the case if the spark unintentionally breaks off during the planned ignition process and has to be rebuilt. On the other hand, deenergizing may be necessary if the magnetism level or the magnetic induction B on the primary side 15 of the ignition coil 12 becomes too large. To explain the latter event is on Fig. 3 directed. This shows the relationship between the current strength of the primary-side current I pri and the amount of magnetic induction B on the primary side 15 of the ignition coil 3. Here it can be seen that - as is well known - the amount of magnetic induction B with increasing current I pri in reaches the area of saturation. In this range, very large changes in the current intensity I pri must be made to cause comparatively small changes in the magnetic induction B. This is not desirable in ignition systems with ignition coil 3. To prevent this, it can be provided that the control device 12, which on the primary side 15 of the ignition coil 12th applied voltage interrupts or reduced when the amount of the magnetic induction B on the primary side 15 of the ignition coil 12 exceeds a predetermined maximum value B max . In this case, it is advantageously provided that the predefinable maximum value B max of the amount of the magnetic induction B is the upper limit of a working range 17 in which there is an at least approximately linear relationship between the amount of the magnetic induction B and the primary-side current I pri . The predefinable maximum value B max is favorably arranged far below the saturated region of the ignition coil 3. For comparison, two current changes ΔI 1 and ΔI 2 of the primary side current in Fig. 3 which is required to cause the same change in the amount of magnetic induction B (amount of ΔB 1 is equal to the amount of ΔB 2 ). Within the working range 17, the comparatively small current change ΔI 1 is sufficient due to the more or less linear relationship between the primary current I pri and the amount of the magnetic induction B. Above the working area 17, in order to produce the same change in the amount of magnetic induction B, a considerably larger current change ΔI 2 must be used.

Aufgrund des geschilderten und in Fig. 3 dargestellten Zusammenhangs ist es also sinnvoll, den Betrag der magnetischen Induktion B auf der Primärseite 15 der Zündspule 12 im Arbeitsbereich 17 zu halten. Dabei ergibt sich aus Fig. 3, dass der Magnetismuslevel bzw. die magnetische Induktion B ein Abbild der Höhe des primärseitigen Stromes Ipri ist. Umso höher der Magnetismuslevel bzw. der Betrag der magnetischen Induktion B ist, desto höher ist auch der primärseitige Strom Ipri durch die Zündspule 3 und den Schalter 4. Eine Begrenzung des Betrages der magnetischen Induktion B vermeidet somit auch eine Zerstörung der primärseitigen Bauteile durch zu hohe Stromstärken. Daher ist vorzugsweise vorgesehen, dass beim Überschreiten des Maximalwertes Bmax die Zündspule 3 entregt wird, um den Magnetismuslevel bzw. den Betrag der magnetischen Induktion B zu verringern.Due to the described and in Fig. 3 As shown, it makes sense to keep the amount of magnetic induction B on the primary side 15 of the ignition coil 12 in the working area 17. This results from Fig. 3 in that the magnetism level or the magnetic induction B is an image of the magnitude of the primary-side current I pri . The higher the magnetism level or the amount of the magnetic induction B, the higher the primary-side current I pri through the ignition coil 3 and the switch 4. A limitation of the amount of the magnetic induction B thus avoids destruction of the primary-side components through high currents. Therefore, it is preferably provided that when the maximum value B max is exceeded, the ignition coil 3 is de-energized in order to reduce the magnetism level or the amount of the magnetic induction B.

Der Magnetismuslevel kann über die Bewertung der Ein- und Ausschaltzeiten des Schalters 3 ermittelt werden. In dieser Variante ist somit vorgesehen, dass die Regeleinrichtung 12 den Betrag der magnetischen Induktion B auf der Primärseite 15 der Zündspule 3 indirekt über eine Bewertung einer Dauer von Einschaltzeit(en) und Ausschaltzeit(en) bestimmt, wobei während der Einschaltzeit(en) Spannung der Spannungsquelle an der Primärseite 15 der Zündspule 3 anliegt und während der Ausschaltzeit(en) die Spannung der Spannungsquelle nicht an der Primärseite 15 der Zündspule 3 anliegt. Eine sinnvolle Variante sieht dabei vor, dass der Maximalwert eine vorgebbare Zeitspanne ist und die Regeleinrichtung diese Zeitspanne mit der Summe der Einschaltzeiten, vorzugsweise ab Beginn eines Zündvorgangs, abzüglich der Summe der Ausschaltzeiten, vorzugsweise ab Beginn des Zündvorgangs, vergleicht.The magnetism level can be determined by evaluating the switch-on and switch-off times of the switch 3. In this variant, it is thus provided that the control device 12 determines the amount of the magnetic induction B on the primary side 15 of the ignition coil 3 indirectly via an evaluation of a duration of switch-on time (s) and switch-off time (s), wherein during the switch-on time (s) voltage the voltage source is applied to the primary side 15 of the ignition coil 3 and during the off-time (s) the voltage of the voltage source is not applied to the primary side 15 of the ignition coil 3. A useful variant provides that the maximum value is a predefinable period of time and the control device this Period of time with the sum of the turn-on, preferably from the beginning of an ignition, minus the sum of the turn-off, preferably from the beginning of the ignition process compares.

Als Alternative zur Bewertung der Ein- und Ausschaltzeiten kann aber auch vorgesehen sein, dass die Zündeinrichtung eine Primärstrommesseinrichtung 14 aufweist und die Regeleinrichtung 12 den Betrag der magnetischen Induktion B auf der Primärseite 15 der Zündspule 3 indirekt über eine Bewertung des primärseitigen Stromes Ipri bestimmt. Hierbei wird der Maximalwert Bmax durch einen vorgebbaren maximalen Stromwert substituiert, wobei die Regeleinrichtung 12 diesen mit dem Betrag des primärseitigen Stromes Ipri vergleicht.As an alternative to the evaluation of the switching on and off but can also be provided that the ignition device has a primary current measuring device 14 and the controller 12 determines the amount of magnetic induction B on the primary side 15 of the ignition coil 3 indirectly via a rating of the primary-side current I pri . In this case, the maximum value B max is substituted by a predefinable maximum current value, wherein the control device 12 compares this with the magnitude of the primary-side current I pri .

Sowohl bei der Bewertung der Ein- und Ausschaltzeiten, als auch bei der Bewertung des primärseitigen Stromes handelt es sich somit um indirekte Vorgehensweisen, um den Betrag der magnetischen Induktion B auf der Primärseite 15 der Zündspule 12 zu überwachen. In weiteren Varianten ist es aber auch möglich, den Betrag der magnetischen Induktion B direkt oder indirekt über andere - an sich bekannte Methoden - zu bestimmen.Both the evaluation of the on and off times, as well as the evaluation of the primary-side current are thus indirect approaches to monitor the amount of magnetic induction B on the primary side 15 of the ignition coil 12. In other variants, it is also possible to determine the amount of magnetic induction B directly or indirectly via other methods known per se.

Ist der ermittelte Wert des Magnetismuslevel bzw. des Betrages der magnetischen Induktion B zu hoch, so wird die primärseitige Spannungsversorgung durch Öffnen des Schalters 4 solange abgeschaltet, bis der Magnetismuslevel auf einem akzeptablen Wert abgesenkt wurde. Hierbei kann vorgesehen sein, dass die Regeleinrichtung 12 im Anschluss an eine Unterbrechung oder eine Reduktion der an der Primärseite 15 der Zündspule 12 angelegten Spannung ein Wiedereinschalten bzw. Erhöhen der Spannung erst dann wieder zulässt oder einleitet, wenn der Betrag der magnetischen Induktion B auf der Primärseite 15 der Zündspule 12 den vorgebbaren Maximalwert Bmax bzw. entsprechende Maximalwerte der oben genannten Ersatzparameter oder einen vorgebbaren Wiedereinschaltsollwert unterschreitet. Der Wiedereinschaltsollwert kann also zum Beispiel auch niedriger als der je nach Ausführungsvariante zur Bewertung verwendete Maximalwert gewählt werden.If the determined value of the magnetism level or the amount of the magnetic induction B is too high, the primary-side voltage supply is switched off by opening the switch 4 until the magnetism level has been lowered to an acceptable value. In this case, it can be provided that, following an interruption or a reduction of the voltage applied to the primary side 15 of the ignition coil 12, the control device 12 only permits or restarts the voltage again when the amount of the magnetic induction B on the Primary side 15 of the ignition coil 12 below the predetermined maximum value B max or corresponding maximum values of the above-mentioned replacement parameters or a predetermined reclosing setpoint value. For example, the restart setpoint value can also be selected to be lower than the maximum value used for the evaluation depending on the variant embodiment.

Während der Zeit der Entregung wird die Polarität des sekundärseitigen Stromes Isek beobachtet. Wird die Polarität negativ, so ist der Zündfunken erloschen und muss wieder aufgebaut werden. Günstigerweise ist dabei vorgesehen, dass die Regeleinrichtung 12 im Anschluss an eine Unterbrechung oder Reduktion der an der Primärseite 15 der Zündspule 12 angelegten Spannung ein Wiederanschalten bzw. Erhöhen der primärseitigen Spannung erst dann wieder zulässt, wenn eine Polarität des sekundärseitigen Stromes Isek wechselt. In Fig. 2 ist am beispielhaften Verlauf des sekundärseitigen Stromes Isek eine Phase der Entregung Ph3 gezeichnet, in der der sekundärseitige Strom zunächst stark abfällt, woraufhin die Polarität des sekundärseitigen Stromes negativ wird und anschließend zum Zeitpunkt tn bei einem Nulldurchgang wieder in den positiven Bereich wechselt. Als unterster Graph ist dabei der Verlauf des primärseitigen Stromes Ipri dargestellt. Dieser zeigt die generelle Tendenz der Zunahme des primärseitigen Stromes, während in der Phase der Entregung Ph3 eine Abnahme des primärseitigen Stromes Ipri zu sehen ist.During the time of de-energizing the polarity of the secondary current I sec is observed. If the polarity is negative, the spark has gone out and must be rebuilt. Conveniently, it is provided that the control device 12 after a break or reduction of the voltage applied to the primary side 15 of the ignition coil 12 voltage restarting or increasing the primary-side voltage again only when a polarity of the secondary-side current I sec changes. In Fig. 2 is drawn on the exemplary course of the secondary side current I sec a phase of deenergization Ph3, in which the secondary side current initially drops sharply, whereupon the polarity of the secondary side current is negative and then at time t n at a zero crossing back to the positive region. In this case, the course of the primary-side current I pri is shown as the lowest graph. This shows the general tendency of the increase of the primary-side current, while in the phase of the de-excitation Ph3 a decrease of the primary-side current I pri can be seen.

Erlischt der Zündfunken während der geforderten Brenndauer, muss dieser wieder in möglichst kurzer Zeit hergestellt werden. Hierzu kann eine Spannung, welche nahe des Hochspannungsangebotes des Systems liegt, notwendig sein. Um diese Anforderung zu erreichen, sollten die Energieverhältnisse im System berücksichtigt werden. Hierzu ist vorgesehen, dass die Regeleinrichtung 12 im Anschluss an eine Unterbrechung der primärseitigen Spannungs- und/oder Stromversorgung der Zündspule 3 während eines Zündvorgangs oder im Anschluss an das Abfallen der primärseitigen Spannung und/oder des primärseitigen Stromes Ipri durch die Zündspule 3 unter einen vorgebbaren Schwellwert während des Zündvorgangs die primärseitige Spannungs- und/oder Stromversorgung der Zündspule 3 erst dann wieder einschaltet oder über den Schwellwert regelt, wenn der dadurch induzierte sekundärseitige Strom Isek in Richtung des, vorzugsweise unmittelbar, vorab bestimmten Verlaufs des sekundärseitigen Stromes Isek wirkt. Der Schalter 4 sollte also nicht eingeschaltet werden, wenn der sekundäre Strom Isek negativ ist. Ein Einschalten erfolgt günstigerweise erst im oder nach dem Zeitpunkt tn, bei dem die Polarität des sekundärseitigen Stromes wechselt und damit der über das Anschalten der primärseitigen Spannungsversorgung sekundärseitig induzierte Strom in Richtung des vorab bestimmten Verlaufes des sekundärseitigen Stromes Isek wirkt. Der Start der nun folgenden Ionisierungsphase Ph1 bzw. des Anschaltzeitintervalls Δtan2 wird somit mit dem sekundärseitigen Verlauf des Stromes synchronisiert. In der nun folgenden Ionisierungsphase bleibt der Schalter 4 solange geschlossen, bis das gewünschte Hochspannungsangebot erreicht wird. Es herrschen ähnliche Verhältnisse zum ersten Anschaltzeitintervall Δtan1, wenn die sekundäre Spannung Usek aus der positiven Halbwelle durch den Nulldurchgang geht. Der Startzeitpunkt tn der Ionisierungsphase wird aus der Überwachung der Polarität des sekundärseitigen Stromes Isek bestimmt (siehe auch FB2 aus Fig. 2). Da die Eigenfrequenz der Zündeinrichtung durch ihre Komponenten bestimmt wird, ist diese bekannt. Günstigerweise kann daher vorgesehen sein, dass die Regeleinrichtung 12 die primärseitige Spannungs- und/oder Stromversorgung der Zündspule 3, vorzugsweise unmittelbar, nach einem vorgebbaren Zeitversatz im Anschluss an einen Polaritätswechsel bzw. Nulldurchgang des sekundärseitigen Stromes Isek wiedereinschaltet oder über den vorab bestimmbaren Schwellwert regelt, wobei vorzugsweise der vorgebbare Zeitversatz im Wesentlichen ein Viertel der Eigenperiode, vorzugsweise der Sekundärseite 16, der Zündeinrichtung entspricht. Die Ionisierungsphase beginnt demnach mit einer Verzögerung um ein Viertel der Eigenperiode des Systems, nachdem der sekundäre Strom Isek in den positiven Bereich kommt.If the spark extinguishes during the required burning time, it must be re-established in the shortest possible time. For this purpose, a voltage which is close to the high voltage supply of the system may be necessary. To achieve this requirement, the energy conditions in the system should be taken into account. For this purpose, it is provided that the control device 12 after an interruption of the primary side voltage and / or power supply of the ignition coil 3 during an ignition or subsequent to the fall of the primary-side voltage and / or the primary-side current I pri by the ignition coil 3 under a predeterminable threshold value during the ignition process will switch on the primary-side voltage and / or current supply of the ignition coil 3 or adjusts it above the threshold value if the thus induced secondary-side current acts in the direction of the preferably immediately previously determined course of the secondary-side current I sek I sek , The switch 4 should therefore not be turned on when the secondary current I sec is negative. Switching is advantageously carried out only in or after the time t n , in which the polarity of the secondary current changes and thus the secondary side induced current via the connection of the primary-side voltage supply acts in the direction of the predetermined course of the secondary-side current I sec . The start of the now following ionization phase Ph1 or of the on-time interval Δt an2 is thus synchronized with the secondary-side profile of the current. In the now following ionization phase, the switch 4 remains closed until the desired high voltage supply is reached. There are similar conditions to the first turn-on time interval Δt an1 when the secondary voltage U sec goes from the positive half cycle through the zero crossing. The starting time t n of the ionization phase is determined from the monitoring of the polarity of the secondary-side current I sec (see also FB2 Fig. 2 ). Since the natural frequency of the ignition device is determined by its components, this is known. Conveniently, it can therefore be provided that the control device 12, the primary-side voltage and / or power supply of the ignition coil 3, preferably Immediately, after a predetermined time offset following a polarity change or zero crossing of the secondary current I sec reconnects or regulates the pre-determinable threshold, preferably the predetermined time offset substantially a quarter of the natural period, preferably the secondary side 16, the ignition corresponds. Accordingly, the ionization phase begins with a delay of one quarter of the natural period of the system after the secondary current I sec enters the positive region.

In einer bevorzugten Ausgestaltungsform wird verhindert, dass die Ionisierungsphase durch das Erreichen des Maximalwertes des Betrages der magnetischen Induktion B unterbrochen wird. Dabei ist vorgesehen, dass die Ionisierungsphase nur dann gestartet werden kann, wenn der Magnetisierungslevel bzw. der Betrag der magnetischen Induktion B auf der Primärseite 15 der Zündspule zu Beginn gering genug ist. Ist dies nicht der Fall, muss das System solange entregt werden (Phase Ph3), bis der benötigte niedrige Magnetisierungslevel erreicht ist. Die Ionisierungsphase zum Wiederaufbau des Zündfunkens kann also bevorzugt nur dann gestartet werden, wenn der Magnetisierungslevel und die Synchronisationsbedingung im Schwingkreise erfüllt sind.In a preferred embodiment, the ionization phase is prevented from being interrupted by the maximum value of the amount of magnetic induction B being reached. It is provided that the ionization phase can only be started when the magnetization level or the amount of magnetic induction B on the primary side 15 of the ignition coil is low enough at the beginning. If this is not the case, the system must be de-energized (phase Ph3) until the required low magnetization level is reached. The ionization phase for the reconstruction of the spark can thus be started preferably only when the magnetization level and the synchronization condition in the resonant circuits are met.

Darüber hinaus können weitere Überwachungen des Systems bezüglich negativer Beeinträchtigungen oder Zerstörungen vorgesehen sein. Um die Spannungsversorgung nicht zu überlasten, werden die Einschaltzeiten des Schalters 4 während der vorgegebenen Brenndauer summiert. Überschreitet die summierte Einschaltzeit des Schalters 4 einen vorgegebenen Grenzwert, wird der Zündvorgang abgebrochen. Diese Überwachung erfolgt günstigerweise unabhängig vom Magnetisierungslevel.In addition, further monitoring of the system for adverse effects or destruction may be provided. In order not to overload the power supply, the switch-on times of the switch 4 are summed during the given burning time. If the summed on time of the switch 4 exceeds a predetermined limit value, the ignition process is aborted. This monitoring is conveniently independent of the magnetization level.

Die Qualität des Zündvorgangs wird in der Regel auf Grundlage der tatsächlichen Brenndauer des Zündfunkens beurteilt. Die Brenndauer wird zwischen dem Erreichen des vorgegebenen Brennstromsollwertes Irated bis zum Nullwert des sekundären Stroms Isek gemessen. Erlischt der Zündfunke während der vorgegebenen Brenndauer und wird dieser wieder aufgebaut, so wird die Messung mit dem Erreichen des vorgegebenen Stromsollwertes wieder gestartet und beim Nullwert des sekundären Stroms Isek wieder gestoppt. Die Messwerte der einzelnen Messvorgänge werden summiert. Nach Abschluss des Zündvorgangs wird die Brenndauermessung gestoppt und der gemessene Wert ausgewertet. Zur Messung bzw. Erkennung von Zündaussetzern wird die Brenndauermessung zurückgesetzt, wenn die Messung vom Erreichen des Brennstromsollwerts bis zum Nullwert des sekundärseitigen Stroms Isek kürzer als die Ionisationsphase ist. In diesem Fall ist in der ersten lonisationsphase kein Zündfunke entstanden. Dieser Umstand wird als Fehler bzw. als Aussetzer gewertet.The quality of the ignition process is usually assessed based on the actual spark duration of the spark. The burning time is measured between the attainment of the predetermined nominal fuel flow value I rated up to the zero value of the secondary current I sec . If the spark extinguishes during the given burning time and this is rebuilt, the measurement is restarted when the preset current set point is reached and stopped again at the zero value of the secondary current I sec . The measured values of the individual measuring processes are summed up. After completion of the ignition process, the combustion duration measurement is stopped and the measured value is evaluated. For the measurement or detection of misfires, the combustion duration measurement is reset when the measurement from reaching the Combustion current target value is to the zero value of the secondary-side current I sek shorter than the ionization. In this case, no spark has formed in the first ionization phase. This circumstance is considered a mistake or a dropout.

Durch Hardwareprobleme kann sich im sekundärseitigen Kreis durch die kapazitive Belastung der Hochspannungsverkabelung und der Zündkerze ein kapazitiver Strom aufbauen. Dieser Strom fließt unabhängig ob ein Zündfunke an der Zündkerze 5 entsteht oder nicht. Um dies zu erkennen, wird der Brennstromsollwert Irated in der Ionisationsphase so gewählt, dass der Wert sicher überschritten werden muss. Das Erreichen des Brennstromsollwertes wird kurz vor Ende der Ionisationsphase abgefragt. Ist der sekundäre Strom Isek zu diesem Zeitpunkt nicht hoch genug, dann liegt ein Hardwarefehler im System vor.Due to hardware problems, a capacitive current can build up in the secondary circuit due to the capacitive loading of the high voltage cabling and the spark plug. This current flows independently whether a spark is generated at the spark plug 5 or not. To realize this, the combustion current target value I rated is selected in the ionization so that the value must be safely crossed. The reaching of the combustion current setpoint is queried shortly before the end of the ionization phase. If the secondary current I sec is not high enough at this time, then there is a hardware error in the system.

Claims (21)

  1. An ignition device for an internal combustion engine comprising an ignition coil (3) which can be fed on its primary side (15) by a voltage source and a secondary current measuring device (7) for measuring the variation in the secondary-side current (Isek) and a regulating device (12) for at least temporarily regulating the primary-side voltage or the primary-side current (Ipri) in dependence on the measured variation in the secondary-side current (Isek), characterised in that the voltage source has at least one dc voltage source and at least one capacitor (2) connected parallel thereto and that the regulating device (12) subsequent to an interruption in the primary-side voltage or current supply to the ignition coil (3) during an ignition process or subsequent to the drop in the primary-side voltage or the primary-side current (Ipri) through the ignition coil (3) below a predeterminable threshold value during the ignition process switches the primary-side voltage or current supply to the ignition coil (3) on again or regulates it above the threshold value only when the secondary-side current (Isek) induced thereby acts in the direction of the previously determined variation in the secondary-side current (Isek).
  2. An ignition device according to claim 1 characterised in that the regulating device (12) is adapted for at least temporarily regulating the primary-side voltage and the primary-side current (Ipri) in dependence on the measured variation in the secondary-side current (Isek).
  3. An ignition device according to claim 1 or claim 2 characterised in that the regulating device (12) switches the primary-side voltage and/or current supply to the ignition coil (3) on again or regulates it above the previously determinable threshold value upon or after a change in polarity or a zero crossing of the secondary-side current (Isek).
  4. An ignition device according to claim 3 characterised in that the regulating device (12) switches the primary-side voltage and/or current supply to the ignition coil (3) on again or regulates it above the previously determinable threshold value, preferably immediately, after a predeterminable time delay following a change in polarity or zero crossing of the secondary-side current (Isek).
  5. An ignition device according to claim 4 characterised in that the predeterminable time delay substantially corresponds to a quarter of the characteristic period, preferably of the secondary side (16), of the ignition device.
  6. An ignition device according to one of claims 1 to 5 characterised in that when the ignition device is switched on at the beginning of an ignition process and/or subsequently to an interruption in the primary-side voltage and/or current supply to the ignition coil (3) or subsequently to the drop in the primary-side voltage and/or the primary-side current (Ipri) through the ignition coil (3) below the previously predeterminable threshold value during an ignition process the regulating device (12) provides an activation time interval (Δtan1, Δtan2), during which on the primary side (15) of the ignition coil (3) the voltage of the voltage source is applied permanently at its full height and/or for a predeterminable period of time.
  7. An ignition device according to claim 6 characterised in that during the activation time interval (Δtan1, Δtan2) the regulating device (12) monitors the secondary-side current (Isek) by way of the secondary current measuring device (7) and/or a secondary-side voltage (Usek) delivered by the ignition coil (3) by way of a secondary voltage measuring device (8) and interrupts the primary-side voltage supply to the ignition coil (3) when the secondary-side current (Isek) and/or the voltage (Usek) delivered by the ignition coil on the secondary side exceeds or exceed a predeterminable limit value or values.
  8. An ignition device according to claim 6 or claim 7 characterised in that the regulating device (12) regulates the primary-side voltage and/or the primary-side current (Ipri) only subsequently to the activation time intervals (Δtan1, Δtan2) in dependence on the variation in the secondary-side current (Isek).
  9. An ignition device according to one of claims 1 to 8 characterised in that provided on the primary side (15) of the ignition coil (3) is a switch (4) which is actuated by the regulating device (12) and which has at least a first switching state in which the voltage of the voltage source is applied to the ignition coil (3) and at least one second switching state in which the voltage of the voltage source is not applied to the ignition coil (3).
  10. An ignition device according to one of claims 1 to 9 characterised in that the regulating device by means of the secondary current measuring device (7) evaluates the variation in the secondary-side current (Isek) in respect of its polarity and/or its magnitude.
  11. An ignition device according to claim 10 characterised in that the regulating device (12) by means of the secondary current measuring device (7) evaluates whether the magnitude of the secondary-side current (Isek) is greater than or equal to a predeterminable minimum value or not.
  12. An ignition device according to one of claims 1 to 11 characterised in that the regulating device (12) is provided to interrupt or reduce the voltage applied to the primary side (15) of the ignition coil (12) when a magnitude of a magnetic induction B on the primary side (15) of the ignition coil (3) exceeds a predeterminable maximum value.
  13. An ignition device according to claim 12 characterised in that the predeterminable maximum value (Bmax) of the magnitude of the magnetic induction B is an upper limit of a working range (17) in which there is an at least approximately linear relationship between the magnitude of the magnetic induction B and a primary-side current (Ipri).
  14. An ignition device according to claim 12 or claim 13 characterised in that the predeterminable maximum value (Bmax) of the magnitude of the magnetic induction B is below the saturated range of the ignition coil (3).
  15. An ignition device according to one of claims 12 to 14 characterised in that the regulating device (12) determines the magnitude of the magnetic induction B on the primary side (15) of the ignition coil (3) indirectly by way of an evaluation of a duration of switch-on time or times and switch-off time or times, wherein during the switch-on time or times voltages of the voltage source are applied to the primary side (15) of the ignition coil (3) and during the switch-off time or times the voltage of the voltage source is not applied to the primary side (15) of the ignition coil (3).
  16. An ignition device according to claim 15 characterised in that the maximum value is a predeterminable period of time and the regulating device compares that period of time to the sum of the switch-on times, preferably from the beginning of an ignition process, less the sum of the switch-off times, preferably from the beginning of the ignition process.
  17. An ignition device according to claims 12 to 14 characterised in that the ignition device has a primary current measuring device (14) and the regulating device (12) determines the magnitude of the magnetic induction B on the primary side (15) of the ignition coil (3) indirectly by way of an evaluation of the primary-side current (Ipri).
  18. An ignition device according to claim 17 characterised in that the maximum value is a predeterminable maximum current value and the regulating device (12) compares same to the magnitude of the primary-side current (Ipri).
  19. An ignition device according to one of claims 12 to 18 characterised in that subsequently to an interruption or reduction in the voltage applied at the primary side (15) of the ignition coil (12) the regulating device (12) allows the voltage to be switched on again or increased or initiates same only when the magnitude of the magnetic induction (B) on the primary side (15) of the ignition coil (12) falls below the predeterminable maximum value (Bmax) or a predeterminable threshold value in respect of switching on again.
  20. An ignition device according to claim 19 characterised in that subsequently to an interruption or reduction in the voltage applied at the primary side (15) of the ignition coil (12) the regulating device (12) allows the primary-side voltage to be switched on again or increased only when a polarity of the secondary-side current (Isek) changes.
  21. An ignition device according to one of claims 1 to 20 characterised in that the voltage source has a DC/DC converter.
EP07006779A 2006-05-12 2007-03-31 Ignition device for a combustion engine Active EP1854998B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0082006A AT504369B8 (en) 2006-05-12 2006-05-12 IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE

Publications (3)

Publication Number Publication Date
EP1854998A2 EP1854998A2 (en) 2007-11-14
EP1854998A3 EP1854998A3 (en) 2008-05-28
EP1854998B1 true EP1854998B1 (en) 2010-12-29

Family

ID=38445619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07006779A Active EP1854998B1 (en) 2006-05-12 2007-03-31 Ignition device for a combustion engine

Country Status (5)

Country Link
US (1) US8607770B2 (en)
EP (1) EP1854998B1 (en)
AT (2) AT504369B8 (en)
DE (1) DE502007006072D1 (en)
ES (1) ES2358840T3 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057925B4 (en) * 2009-12-11 2012-12-27 Continental Automotive Gmbh Method for operating an ignition device for an internal combustion engine and ignition device for an internal combustion engine for carrying out the method
DE102010045044B4 (en) * 2010-06-04 2012-11-29 Borgwarner Beru Systems Gmbh A method for igniting a fuel-air mixture of a combustion chamber, in particular in an internal combustion engine, by generating a corona discharge
AT510034B1 (en) 2010-08-06 2012-01-15 Ge Jenbacher Gmbh & Co Ohg ZÜNDFUNKENBRENNDAUERBESTIMMUNG
US20120186569A1 (en) * 2011-01-24 2012-07-26 Diamond Electric Mfg. Co., Ltd. Internal combustion engine ignition system
DE102011005651A1 (en) 2011-03-16 2012-09-20 Man Diesel & Turbo Se Method for ignition plug selective determination of wear of ignition plugs of internal combustion engine, involves detecting whether actual value of actuating parameter or operating parameter has reached predetermined threshold value
EP2930348A4 (en) * 2012-12-05 2016-07-13 Toyota Motor Co Ltd Control device of internal combustion engine
JP6455190B2 (en) 2014-04-10 2019-01-23 株式会社デンソー Ignition device and ignition system
JP6373932B2 (en) * 2016-11-02 2018-08-15 三菱電機株式会社 Discharge stop device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945362A (en) * 1973-09-17 1976-03-23 General Motors Corporation Internal combustion engine ignition system
US5060623A (en) * 1990-12-20 1991-10-29 Caterpillar Inc. Spark duration control for a capacitor discharge ignition system
JPH05231280A (en) * 1991-03-12 1993-09-07 Aisin Seiki Co Ltd Ignition device
JP2657941B2 (en) * 1994-02-18 1997-09-30 阪神エレクトリック株式会社 Overlap discharge type ignition device for internal combustion engine
JPH0953555A (en) * 1995-08-09 1997-02-25 Denso Corp Flame failure detecting method for internal combustion engine
DE19605803A1 (en) * 1996-02-16 1997-08-21 Daug Deutsche Automobilgesells Circuit arrangement for ion current measurement
US6186130B1 (en) 1999-07-22 2001-02-13 Delphi Technologies, Inc. Multicharge implementation to maximize rate of energy delivery to a spark plug gap
DE10155972A1 (en) * 2001-11-14 2003-05-22 Bosch Gmbh Robert Electrical spark ignition system for internal combustion engine incorporates function control circuit and ignition transistor transmitting pulse signals to step-up transistor
JP2004301016A (en) * 2003-03-31 2004-10-28 Kokusan Denki Co Ltd Ignition device for internal combustion engine
KR100598799B1 (en) * 2003-07-07 2006-07-10 현대자동차주식회사 Misfire detection apparatus of ignition coil on vehicle
US7667564B2 (en) * 2005-10-18 2010-02-23 Delphi Technologies, Inc. Multicharge ignition coil with primary routed in shield slot
AT504010B1 (en) * 2006-05-12 2008-10-15 Ge Jenbacher Gmbh & Co Ohg IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
DE502007006072D1 (en) 2011-02-10
EP1854998A2 (en) 2007-11-14
AT504369B8 (en) 2008-09-15
AT504369B1 (en) 2008-05-15
ES2358840T3 (en) 2011-05-16
US8607770B2 (en) 2013-12-17
US20080035131A1 (en) 2008-02-14
EP1854998A3 (en) 2008-05-28
AT504369A4 (en) 2008-05-15
ATE493579T1 (en) 2011-01-15

Similar Documents

Publication Publication Date Title
EP1854997B1 (en) Ignition device for a combustion engine
EP1854998B1 (en) Ignition device for a combustion engine
DE102012106207B3 (en) Method for actuating spark plug in combustion engine of vehicle, involves charging and discharging primary and secondary windings repeatedly, and disconnecting primary windings from direct current supply until start signal is produced
EP0704097B1 (en) Process and device for controlling electromagnetic consumers
EP1251991A1 (en) Method for regulating and/or controlling a welding current source with a resonance circuit
EP2547897B1 (en) Ignition method and ignition system therefor
DE1132594B (en) Power amplifier equipped with a controllable four-layer diode
DE10138936A1 (en) Switch-on device for a gas discharge lamp
DE3323400C2 (en) Power supply circuit for an electromagnetic actuator
WO2015071062A1 (en) Ignition system and method for operating an ignition system
EP2564674B1 (en) Method and control circuit for starting a gas-discharge lamp
DE10319950A1 (en) Operating device and method for operating gas discharge lamps
EP1670294B1 (en) Device and method for operating discharge lamps
EP3436687B1 (en) Method for operating a with a step-up converter provided spark system
EP1679942B1 (en) Igniter for a gas discharge lamp
DE724252C (en) Automatic electrical control device using a glow discharge path
DE914030C (en) Device to increase the stability of an inverter working on an independent AC network
DE102014221496A1 (en) Device for a monitored switching stage
EP0035710A2 (en) Direct current actuating circuit
DE922060C (en) Switching arrangement for interrupting or converting electrical currents
EP2282614B1 (en) Switchg system and method for igniting a discharge lamp
DE102007025192B4 (en) Ballast for high-pressure gas discharge lamps in motor vehicles
DE102012106158A1 (en) Inductive ignition system for four stroke Otto engine that is utilized as lean-burn engine in vehicle, has spark plugs comprising two ignition coils that produce elongated arc-overs or sequence of sparks at plugs during time period
CH297588A (en) Contact converter.
WO2015071056A1 (en) Ignition system and method for limiting a cut-off current of a boost converter in an ignition system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081119

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007006072

Country of ref document: DE

Date of ref document: 20110210

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006072

Country of ref document: DE

Effective date: 20110210

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2358840

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110504

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110329

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

BERE Be: lapsed

Owner name: GE JENBACHER GMBH & CO OHG

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007006072

Country of ref document: DE

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20220215

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220401

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 17

Ref country code: AT

Payment date: 20230222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230221

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240222

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 18

Ref country code: GB

Payment date: 20240220

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240507