EP1852197A1 - Material for foundry core with aerogel sand comprising water swellable clay - Google Patents

Material for foundry core with aerogel sand comprising water swellable clay Download PDF

Info

Publication number
EP1852197A1
EP1852197A1 EP07106978A EP07106978A EP1852197A1 EP 1852197 A1 EP1852197 A1 EP 1852197A1 EP 07106978 A EP07106978 A EP 07106978A EP 07106978 A EP07106978 A EP 07106978A EP 1852197 A1 EP1852197 A1 EP 1852197A1
Authority
EP
European Patent Office
Prior art keywords
sand
core material
clay
airgel
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07106978A
Other languages
German (de)
French (fr)
Other versions
EP1852197B1 (en
Inventor
Lorenz Prof. Ratke
Sabine Dr. Brück
Elmar Nolte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP1852197A1 publication Critical patent/EP1852197A1/en
Application granted granted Critical
Publication of EP1852197B1 publication Critical patent/EP1852197B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/167Mixtures of inorganic and organic binding agents

Definitions

  • the invention relates to a core material of clay-containing sand containing Aerogelsand and a process for its preparation.
  • Casting in bonded sand molds is a standard casting technique used to make workpieces of various alloys, especially aluminum, magnesium, titanium or cast iron alloys.
  • Models of castings are made of wood, styrofoam and other materials, fixed in suitable mold boxes and filled with sand, the sands are compacted.
  • the sands are usually chemically or thermally bound by organic binders (plastics), giving the sand mold sufficient strength.
  • organic binders plastics
  • Cavities within the mold must be preformed stable by means of a core.
  • Such cores are usually produced because of the prevailing high thermal and mechanical stress from plastic-bonded sands.
  • Disadvantage of today's conventional method for core production is that the removal of the cores from the casting, especially in light metal alloys is possible only with great effort (eg mechanical destruction, shaking, thermal decomposition), the distribution of the sands in the core is inhomogeneous and / or cracking germs Among other things, the break under thermal-mechanical Can lead to stress.
  • the thermal decomposition of the organic binder is problematic in light metal casting and not solved. As a rule, core fragments remain in the casting, which must be removed mechanically.
  • Aerogels are highly porous, open-pore solids, which are usually obtained via sol-gel processes via the gelation of colloidally disperse solutions and subsequent supercritical drying. For some years, it has also been possible to gel plastics using sol-gel processes and to convert them by supercritical drying into a highly porous organic solid (see, for example, US Pat DE 195 23 382 A1 . DE 694 09 161 T2 and US Patent No. 5,086,085 ). Pyrolysis of such plastic aerogels under inert gas or in vacuo at temperatures above 1000 ° C converts them into carbon aerogels.
  • plastic and carbon aerogels Like the oxidic aerogels, plastic and carbon aerogels have extremely low effective thermal conductivities (of the order of a few mW / K / m) and are considerably lighter.
  • the physical and mechanical properties of plastic and carbon aerogels are documented in the literature ( RW Pekala, CT Alviso, FM Kong, SS Hulsey; J. Non-Cryst. Solids 145 (1992) 90 ; RW Pekala, CT Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3 ; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J. Non-Cryst. Solids (1998 )). They can be varied within a wide range by the starting materials, their mixture and the production process.
  • EP 1 077 097 A1 describes the preparation and use of highly porous, open-pored plastic and / or carbon aerogels obtainable by sol-gel polymerization of organic plastic materials.
  • the described aerogelsands can also be used as core materials, but the aerogelsands can be removed by oxidation at a temperature of less than 500 ° C.
  • Aerogelsands arise from the combination of conventional foundry sands and aerogels. If, in particular, RF aerogelsands are pyrolyzed, carbon aerogelsands are formed. Typically, carbon and carbonaceous products only burn at a noticeable rate at temperatures above 800 ° C. This means that carbon-bonded aerogelsands would be out of the question as a core material for aluminum casting. Carbon aerogelsands oxidize noticeably from 480 ° C ( DE 10200427382.0 ).
  • RF aerogelsands are made from foundry sands, resorcinol and formaldehyde. Resorcinol and formaldehyde are mixed as major constituents of the binder in a molar ratio of about 1.3: 1, and Na 2 Co 3 is added as a catalyst and deionized water. The sol is mixed with the sand and gelled under exclusion of air. Drying the mixture of wet gel and sand at 20-40 ° C produces the airgel sands.
  • Aerogelsande can be introduced at levels between 50 and 90 wt .-% in so-called Aerogelsande. Their shape and size as well as their chemical composition are the factors influencing the properties of a core.
  • Alodur ® - (96% Al 2 O 3), and Siliziumcarbidsand (SiC) are used. Aerogelsande have sufficient strengths that can be changed with the grain size of the sands but also the binder content.
  • the thermal conductivities are in the range of conventional mold and core material systems.
  • the RF Aerogelsands are the necessary prerequisite to produce carbon aerogelsands. Pyrolysis can be used to produce carbon aerogelsands from them. In this case, bodies of RF airgel-bound sands are used in an oven; the furnace evacuated and flooded with argon. Heating the oven to above 1000 ° C and holding at this temperature for a few hours, depending on the size of the shaped body, converts the RF aerogels to carbon aerogels. After a cooling process, the C-aerogels or carbon-Aerogelsande be taken. The shaped bodies of sand and carbon airgel thus obtained do not lose their shape and are mechanically stable, comparable to the starting material - the plastic Aerogelsand.
  • clay has hitherto been added to the sand or natural sand types have been selected in which clay has already been present in sufficient quantity (molding sand).
  • the clay-bound sands are generally bound with water.
  • these molding materials have no high strength and are therefore unsuitable for core production in principle.
  • cores are being made for molding with polymeric binders such as phenolic or furan resins.
  • polymeric binders such as phenolic or furan resins.
  • these can not be used in combination with natural sands, since they must necessarily have a high water content for swelling the layer material. This water would lead to a dilution of the resins and thus to a significant reduction in the binding capacity.
  • the swelling ability of clay materials depends on external circumstances, such as the water vapor pressure or electrolyte-containing pore waters. From 90 ° C, the interlayer water begins to escape, from about 250 ° C it is completely expelled. Upon cooling, rehydration already takes place again. The swelling also depends on the location of the cargoes. Charges in the O-layers are preferred over the T-layers.
  • the swelling depends on the charge of the elemental layers and the Z cations.
  • K + as Z-cation can lower the charge to 0.6 to 0.7 / O 10 (OH) 2 .
  • mica passes into smectitic structures, with other cations then from 0.9 onwards into vermiculite.
  • Smectite with i 0.2 to 0.7, such as montmorillonite and beidellite.
  • Montmorillonite has a low total charge, 0.25 to 0.5 / O 10 (OH) 2 .
  • the charge is predominantly generated by the Mg 2+ in the O-layers.
  • Diellit has the charge lying mostly in the T-layers.
  • He is the Al-richest smectite.
  • Trioctahedral smectite i 0.2 to 0.7. They rarely occur as weathering products under surface conditions. Mainly under marine conditions, for example saponite, a trioctahedral smectite with a high Mg content.
  • Bentonite is the term used to describe clayey rocks that have been formed by the weathering of volcanic ash. Bentonite was named after the first site of Fort Benton, Wyoming (USA). Its unusual properties are determined by the clay mineral montmorillonite. The name montmorillonite derives from the southern French town of Montmorillon, where clay also occurs.
  • Montmorillonite is an aluminum hydrosilicate belonging to the group of phyllosilicates (foliar structure silicates). Montmorillonite is the major representative in the group of three-layer silicates, also referred to as smectites. In practice, bentonite, smectite and montmorillonite are synonyms for Swellable multi-layer silicates used. Bentonite may also contain accompanying minerals such as quartz, feldspar, mica. Bentonite deposits are found throughout the world. However, due to the different genes, the mineralogical compositions and thus also the technical usability are very different. In general, a distinction is made between primary and secondary deposits. Primary deposits are the result of the local weathering of volcanic rocks (for example in the Westerwald). In secondary deposits (for example in Bavaria), volcanic ash was first transported, for example by wind, deposition and subsequent weathering.
  • the most important two-layer material is the kaolinite. Its elemental layer is composed of an SiO 2 tetrahedral layer and an Al 2 O 3 octahedron layer. In three-layer minerals, the elemental layer consists of two outer tetrahedral layers and one inner octahedral layer. This group includes the swellable montmorillonite or bentonite.
  • the swelling process is caused by the fact that water penetrates between the elemental layers and can change their distance.
  • intracrystalline swelling ie the widening of the distance of the elemental layers by the entry of excess water
  • osmotic swelling which results from concentration differences between “inner solution” and “external solution”. If the swelling of a montmorillonite occurs within a limited volume (for example in a sealing layer), a swelling pressure is built up, which can reach several bar depending on the density. The swelling pressure prevents further penetration of water.
  • a montmorillonite crystal is composed of about 15 to 20 elemental layers. Between these layers are next to the crystal water exchangeable cations that compensate for the negative excess charges of the grid. These are not particularly tightly bound and can be replaced by other cations or by positively charged organic molecules. Bentonite or montmorillonite has a special ability for ion exchange and for the addition of positively charged particles. Because adsorption processes are surface reactions, the required adsorption capacity is significantly dependent on the specific surface area of the clay mineral. The specific surface area of montmorillonite can be up to 800 sqm / g.
  • Object of the present invention is therefore to provide a core material of airgel and sand, which is much easier and cheaper to manufacture.
  • a core material for the casting of sand-containing airgel which is characterized in that the sand contains clay-containing 3 to 10% by weight layer silicates.
  • Clay sand in the sense of the invention is a sand (molding sand), which is moist on the one hand and on the other hand contains a substantial amount of clay.
  • Typical clay-containing sands contain, for example, between 5 and 15% by weight of clay.
  • Clay-containing sand in the sense of the invention is thus a clay mineral sand. This contains so-called clay minerals, in particular phyllosilicates in an amount of 3 to 10 wt.%, Such as illite, kaolinite or montmorillonite.
  • the core material of airgel and clay-containing sand compared to conventional core materials of airgel and foundry sand has a particularly high strength and cures quickly. This is possible This may be explained by the fact that polymer-based aerogels in particular naturally have a high water content and thus combine the high binding power of the clay mineral with the good binding properties of the airgel. Particularly advantageous in the subject matter of the present invention is also the special low price of clay-containing sand, which allows the production of cores for molding at a particularly low cost. Due to the high strength of the core material according to the invention, the core material can be manufactured with a significantly reduced binder content.
  • the water formation in the polycondensation reaction does not disturb here, but rather causes the gel to be formed better.
  • According to the invention can get the moisture out of the core body, because that is in the aerogels as opposed to the commercial binders prior art. Therefore, the use of sands with a high proportion of swellable phyllosilicates (vermiculite, montmorillonite, etc.) is a wonderful possibility that is not obvious to the skilled person and not even if he has knowledge about aerogels binder.
  • the airgel is advantageously a resorcinol-formaldehyde airgel.
  • These aerogels are obtained by drying a sol of resorcinol and formaldehyde. This material is therefore particularly advantageous because it is already used in the previous foundry technology as a non-porous and solid polymer-based binder resorcinol-formaldehyde resin.
  • the airgel is present as binder in a quantity range of 6 to 15 wt .-% in the core material. If the amount of the airgel is well below this range, increased abrasion and low strength of the core material are observed. If the proportion of airgel as a binder is well above 15% by weight, the gelling time in the production of the core material of a few minutes for the core material according to the invention is extended up to several hours for a core material containing more airgel.
  • the clay-containing sand is advantageously contained in a quantity range of 85 to 94 wt .-% in the core material.
  • a higher content of clay-containing sand leads to lower stability of the core material.
  • a lower content of clay-containing sand leads to a significantly longer gel time.
  • the strength of the core material is advantageously at least 100 N / cm 2 (1 MPa).
  • the mean grain diameter of the clay-containing sand is advantageously at least 100 microns.
  • the clay content of the clay-containing sand is advantageously in a range of 3 to 20 wt .-%, in particular 8 to 15 wt .-%.
  • the water content of the natural sand used is advantageously in a range of 3 to 10 wt .-%.
  • the thermal conductivity of the core material according to the invention is advantageously in a range of 0.1 to 0.5 W / mK.
  • the core material according to the invention can be used for applications such as aluminum casting and cast steel.
  • the process according to the invention differs above all in that a considerable shortening of the gelation time can be achieved with this process. While in the known method, the gelling was often several hours, can be achieved with the inventive method, surprisingly, a gelling time of only a few minutes. Due to the higher resulting strength of the core material, in contrast to the known methods, a significantly lower binding fraction can also be used.
  • clay-containing sand having a water content in a range from 3 to 10% by weight is used in the process according to the invention. At this water content it could be observed that a particularly high strength of the resulting core material could be achieved.
  • the object underlying the invention is achieved by the use of the core material according to the invention as a core material for molding.

Abstract

Core material, for sand mold casting containing aerogel sand, comprises clayey sand with a content of phyllosilicate (3-20%). An independent claim is included for a method for preparing core material comprising preparing a sol, mixing the sol with clayey sand, gelling the sol and drying the gel.

Description

Gegenstand der Erfindung ist ein Kernwerkstoff aus tonhaltigem Sand enthaltendem Aerogelsand sowie ein Verfahren zu dessen Herstellung.The invention relates to a core material of clay-containing sand containing Aerogelsand and a process for its preparation.

Gießen in Formen aus gebundenen Sanden ist eine Standardguss-technik, um Werkstücke aus verschiedensten Legierungen, insbesondere von Aluminium, Magnesium, Titan oder Graugusslegierungen herzustellen. Modelle der Gusskörper werden aus Holz, Styropor und anderen Materialien hergestellt, in geeigneten Formkästen fixiert und mit Sanden umfüllt, wobei die Sande verdichtet werden. Die Sande werden in der Regel durch organische Bindemittel (Kunststoffe) chemisch oder thermisch gebunden, wodurch der Sandform eine ausreichende Festigkeit verliehen wird. ( J.Sprunk, W. Blank, W. Grossmann, E. Hauschild, H. Rieksmeier, H.G. Rosselnbruch; Feinguss für alle Industriebereiche, 2. Auflage, Zentrale für Gussverwendung, Düsseldorf 1987 ; K.A. Krekeler, Feingießen, in: Handbuch der Fertigungstechnik Bd. 1., Herausgeber: G. Speer, Hanser Verlag, München 1981 , W. Tilch, E. Fleming, Formstoffe und Formverfahren, Deutsche Verlag für Grundstoffindustrie, Leipzig/Stuttgart 1993 ).Casting in bonded sand molds is a standard casting technique used to make workpieces of various alloys, especially aluminum, magnesium, titanium or cast iron alloys. Models of castings are made of wood, styrofoam and other materials, fixed in suitable mold boxes and filled with sand, the sands are compacted. The sands are usually chemically or thermally bound by organic binders (plastics), giving the sand mold sufficient strength. ( J. Sprunk, W. Blank, W. Grossmann, E. Hauschild, H. Rieksmeier, HG Rosselnbruch; Investment casting for all industrial sectors, 2nd edition, headquarters for casting use, Düsseldorf 1987 ; KA Krekeler, Feingießen, in: Handbuch der Fertigungstechnik Bd. 1, publisher: G. Speer, Hanser Verlag, Munich 1981 . W. Tilch, E. Fleming, molding materials and molding process, German publishing house for primary industry, Leipzig / Stuttgart 1993 ).

Hohlräume innerhalb der Gussform müssen mittels eines Kernes stabil vorgeformt werden. Solche Kerne werden in der Regel wegen der dort herrschenden hohen thermischen und mechanischen Belastung aus kunststoffgebundenen Sanden hergestellt. Nachteil der heute üblichen Verfahren zur Kernherstellung ist, dass die Entfernung der Kerne aus dem Gussstück, insbesondere bei Leichtmetalllegierungen nur mit hohem Aufwand möglich ist (z.B. mechanische Zerstörung, Rütteln, thermische Zersetzung), die Verteilung der Sande im Kern inhomogen ist und/oder Risskeime existieren, die unter anderem zum Bruch unter thermisch-mechanischer Belastung führen können. Insbesondere die thermische Zersetzung der organischen Binder ist im Leichtmetallguss problematisch und nicht gelöst. In der Regel bleiben Kernfragmente im Gusskörper, die mechanisch entfernt werden müssen.Cavities within the mold must be preformed stable by means of a core. Such cores are usually produced because of the prevailing high thermal and mechanical stress from plastic-bonded sands. Disadvantage of today's conventional method for core production is that the removal of the cores from the casting, especially in light metal alloys is possible only with great effort (eg mechanical destruction, shaking, thermal decomposition), the distribution of the sands in the core is inhomogeneous and / or cracking germs Among other things, the break under thermal-mechanical Can lead to stress. In particular, the thermal decomposition of the organic binder is problematic in light metal casting and not solved. As a rule, core fragments remain in the casting, which must be removed mechanically.

Aerogele sind hochporöse, offenporige Festkörper, die in der Regel über Sol-Gel-Verfahren über die Gelation kolloiddisperser Lösungen und anschließender überkritischer Trocknung gewonnen werden. Seit einigen Jahren ist es gelungen, auch Kunststoffe über Sol-Gel-Verfahren zu gelieren und durch überkritische Trocknung in einen hochporösen organischen Festkörper umzuwandeln (siehe beispielsweise DE 195 23 382 A1 , DE 694 09 161 T2 und US-A-5,086,085 ). Pyrolyse solcher Kunststoffaerogele unter Schutzgas oder im Vakuum bei Temperaturen oberhalb 1000 °C wandelt diese in Kohlenstoffaerogele um. Wie die oxidischen Aerogele haben Kunststoff- und Kohlenstoffaerogele extrem geringe effektive Wärmeleitfähigkeiten (Größenordnung einige mW/K/m) und sind erheblich leichter. Die physikalischen und mechanischen Eigenschaften von Kunststoff- und Kohlenstoffaerogelen sind in der Literatur dokumentiert ( R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey; J. Non-Cryst. Solids 145 (1992) 90 ; R.W. Pekala, C.T. Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3 ; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J.Non-Cryst.Solids (1998 )). Sie lassen sich durch die Ausgangsstoffe, ihr Gemisch und das Herstellungsverfahren in weiten Grenzen variieren.Aerogels are highly porous, open-pore solids, which are usually obtained via sol-gel processes via the gelation of colloidally disperse solutions and subsequent supercritical drying. For some years, it has also been possible to gel plastics using sol-gel processes and to convert them by supercritical drying into a highly porous organic solid (see, for example, US Pat DE 195 23 382 A1 . DE 694 09 161 T2 and US Patent No. 5,086,085 ). Pyrolysis of such plastic aerogels under inert gas or in vacuo at temperatures above 1000 ° C converts them into carbon aerogels. Like the oxidic aerogels, plastic and carbon aerogels have extremely low effective thermal conductivities (of the order of a few mW / K / m) and are considerably lighter. The physical and mechanical properties of plastic and carbon aerogels are documented in the literature ( RW Pekala, CT Alviso, FM Kong, SS Hulsey; J. Non-Cryst. Solids 145 (1992) 90 ; RW Pekala, CT Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3 ; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J. Non-Cryst. Solids (1998 )). They can be varied within a wide range by the starting materials, their mixture and the production process.

EP 1 077 097 A1 beschreibt die Herstellung und Verwendung von hochporösen, offenporigen Kunststoff- und/oder Kohlenstoffaerogelen, erhältlich durch Sol-Gel-Polymerisation von organischen Kunststoffmaterialien. Die beschriebenen Aerogelsande können auch als Kernwerkstoffe eingesetzt werden, wobei die Aerogelsande jedoch durch Oxidation bei einer Temperatur von weniger als 500 °C entfernt werden können. EP 1 077 097 A1 describes the preparation and use of highly porous, open-pored plastic and / or carbon aerogels obtainable by sol-gel polymerization of organic plastic materials. The described aerogelsands can also be used as core materials, but the aerogelsands can be removed by oxidation at a temperature of less than 500 ° C.

Aerogelsande entstehen aus der Kombination von konventionellen Gießereisanden und Aerogelen. Werden insbesondere RF-Aerogelsande pyrolisiert, entstehen Kohlenstoff-Aerogelsande. Typischerweise verbrennen Kohlenstoff und kohlenstoffhaltige Produkte erst mit merklicher Geschwindigkeit bei Temperaturen oberhalb 800 °C. Dies bedeutet, dass Kohlenstoff-gebundene Aerogelsande als Kernwerkstoff für Aluminiumguss nicht in Frage kämen. Kohlenstoff-Aerogelsande oxidieren aber schon merklich ab 480 °C ( DE 10200427382.0 ).Aerogelsands arise from the combination of conventional foundry sands and aerogels. If, in particular, RF aerogelsands are pyrolyzed, carbon aerogelsands are formed. Typically, carbon and carbonaceous products only burn at a noticeable rate at temperatures above 800 ° C. This means that carbon-bonded aerogelsands would be out of the question as a core material for aluminum casting. Carbon aerogelsands oxidize noticeably from 480 ° C ( DE 10200427382.0 ).

RF-Aerogelsande werden aus Gießereisanden, Resorcin und Formaldehyd hergestellt. Resorcin und Formaldehyd werden als Hauptbestandteile des Binders in einem Stoffmengenverhältnis von etwa 1,3 : 1 gemischt und Na2Co3 als Katalysator und deionisiertes Wasser hinzugefügt. Das Sol wird mit dem Sand vermengt und geliert unter Luftabschluss. Das Trocknen der Mischung aus nassem Gel und Sand bei 20 bis 40 °C erzeugt die Aerogelsande.RF aerogelsands are made from foundry sands, resorcinol and formaldehyde. Resorcinol and formaldehyde are mixed as major constituents of the binder in a molar ratio of about 1.3: 1, and Na 2 Co 3 is added as a catalyst and deionized water. The sol is mixed with the sand and gelled under exclusion of air. Drying the mixture of wet gel and sand at 20-40 ° C produces the airgel sands.

Sande können mit Gehalten zwischen 50 und 90 Gew.-% in sogenannte Aerogelsande eingebracht werden. Ihre Form und Größe sowie deren chemische Zusammensetzung sind die Einflussfaktoren für die Eigenschaften eines Kernes. Zur Herstellung der Aerogelsande wurden Quarz-, Alodur®-(96 % Al2O3), und Siliziumcarbidsand (SiC) eingesetzt. Aerogelsande haben ausreichende Festigkeiten, die mit der Korngröße der Sande aber auch dem Binderanteil verändert werden kann. Die Wärmeleitfähigkeiten liegen im Bereich konventioneller Form- und Kernwerkstoffsysteme.Sande can be introduced at levels between 50 and 90 wt .-% in so-called Aerogelsande. Their shape and size as well as their chemical composition are the factors influencing the properties of a core. To prepare the Aerogelsande quartz, Alodur were ® - (96% Al 2 O 3), and Siliziumcarbidsand (SiC) are used. Aerogelsande have sufficient strengths that can be changed with the grain size of the sands but also the binder content. The thermal conductivities are in the range of conventional mold and core material systems.

Die RF-Aerogelsande sind die notwendige Voraussetzung, um Kohlenstoff-Aerogelsande herzustellen. Durch Pyrolyse lassen sich aus ihnen Kohlenstoff-Aerogelsande herstellen. Dabei werden Körper aus RF-Aerogel-gebundenen Sanden in einem Ofen eingesetzt; der Ofen evakuiert und mit Argon geflutet. Aufheizen des Ofens auf über 1.000 °C und Halten bei dieser Temperatur je nach Größe des Formkörpers für einige Stunden, wandelt die RF-Aerogele in Kohlenstoff-Aerogele um. Nach einem Abkühlungsprozess können die entstandenen C-Aerogele beziehungsweise Kohlenstoff-Aerogelsande entnommen werden. Die so erhaltenen Formkörper aus Sand und Kohlenstoff-Aerogel verlieren dabei nicht ihre Form und sind mechanisch stabil, vergleichbar mit dem Ausgangsprodukt - dem Kunststoff-Aerogelsand.The RF Aerogelsands are the necessary prerequisite to produce carbon aerogelsands. Pyrolysis can be used to produce carbon aerogelsands from them. In this case, bodies of RF airgel-bound sands are used in an oven; the furnace evacuated and flooded with argon. Heating the oven to above 1000 ° C and holding at this temperature for a few hours, depending on the size of the shaped body, converts the RF aerogels to carbon aerogels. After a cooling process, the C-aerogels or carbon-Aerogelsande be taken. The shaped bodies of sand and carbon airgel thus obtained do not lose their shape and are mechanically stable, comparable to the starting material - the plastic Aerogelsand.

DE 102 16 464 A1 beschreibt Kernwerkstoffe aus anorganischem Aerogel und anorganischen Füllstoffen, wie Gießereisanden, ein Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von Gussformen. Die beanspruchten Kernwerkstoffe bestehen neben den Füllstoffen aus Silicaaerogel. DE 102 16 464 A1 describes core materials of inorganic airgel and inorganic fillers, such as foundry sand, a process for their preparation and their use for the production of molds. The claimed core materials consist in addition to the fillers of Silicaaerogel.

DE 103 52 574 A1 betrifft ein Verfahren zur Herstellung eines Füllstoffenthaltenden Aerogels, das dadurch gekennzeichnet ist, dass es folgende Schritte umfasst:

  1. a) Alterung eines Sols im Verlauf von 1 bis 14 Tagen,
  2. b) Vermischung von 1 bis 6 Gewichtsanteilen des Sols mit 25 Gewichtsanteilen des Füllstoffs, der eine Temperatur im Bereich von 40 °C bis 80 °C aufweist und
  3. c) Gelierung und Trocknung der Mischung.
DE 103 52 574 A1 relates to a process for the preparation of a filler-containing airgel, which is characterized in that it comprises the following steps:
  1. a) Aging of a sol over 1 to 14 days,
  2. b) mixing 1 to 6 parts by weight of the sol with 25 parts by weight of the filler having a temperature in the range of 40 ° C to 80 ° C and
  3. c) gelation and drying of the mixture.

Anstelle der heute üblichen chemischen Bindemittel wurde dem Sand bisher Ton beigemischt oder es wurden natürliche Sandsorten gewählt, bei denen bereits Ton in hinreichender Menge enthalten war (Formsande). Die tongebundenen Sande werden im Allgemeinen mit Wasser gebunden. Dies hat jedoch den Nachteil, dass diese Formstoffe keine hohe Festigkeit aufweisen und daher für die Kernherstellung prinzipiell ungeeignet sind. Bis heute werden Kerne für den Formguss mit polymeren Bindern wie beispielsweise Phenol- oder Furanharzen hergestellt. Diese können jedoch nicht in Kombination mit Natursanden eingesetzt werden, da diese zur Quellung des Schichtmaterials notwendigerweise einen hohen Wasseranteil aufweisen müssen. Dieses Wasser würde zu einer Verdünnung der Harze führen und damit zu einer deutlichen Absenkung der Bindefähigkeit. Daher wurden mit Einführung der polymeren Binder im Formguss bislang nur reine spezielle und damit teure Gießereisande eingesetzt, die entweder zumindestens zu 99 Gew.-% aus SiO2 bestehen (Quarzsande) oder die zumindest zu 97 Gew.-% aus Al2O3 bestehen (ALODUR®). Auch bei den vor kurzer Zeit bekannt gewordenen Kernwerkstoffen aus Aerogelen und Formsanden werden ausschließlich spezielle Gießereisande eingesetzt. So wird beispielsweise in der EP 1 077 097 A1 ALODUR®-Sand eingesetzt.Instead of the chemical binders customary today, clay has hitherto been added to the sand or natural sand types have been selected in which clay has already been present in sufficient quantity (molding sand). The clay-bound sands are generally bound with water. However, this has the disadvantage that these molding materials have no high strength and are therefore unsuitable for core production in principle. To date, cores are being made for molding with polymeric binders such as phenolic or furan resins. However, these can not be used in combination with natural sands, since they must necessarily have a high water content for swelling the layer material. This water would lead to a dilution of the resins and thus to a significant reduction in the binding capacity. Therefore were with Introduction of polymeric binders in molding so far only pure special and therefore expensive foundry sands are used, which consist either at least 99 wt .-% of SiO 2 (quartz sands) or at least 97 wt .-% of Al 2 O 3 (ALODUR ® ). Even with the recently discovered core materials from aerogels and molding sands only special foundry sands are used. For example, in the EP 1 077 097 A1 ALODUR ® sand used.

Die Quellfähigkeit von Tonmaterialien hängt von äußeren Umständen ab, wie beispielsweise dem Wasserdampfdruck oder elektrolythaltigen Porenwässern. Ab 90 °C beginnt das Zwischenschichtwasser zu entweichen, ab ungefähr 250 °C ist es vollständig ausgetrieben. Beim Abkühlen erfolgt bereits wieder eine Rehydratisierung. Die Quellung hängt auch von dem Sitz der Ladungen ab. Bevorzugt werden Ladungen in den O-Schichten gegenüber den T-Schichten.The swelling ability of clay materials depends on external circumstances, such as the water vapor pressure or electrolyte-containing pore waters. From 90 ° C, the interlayer water begins to escape, from about 250 ° C it is completely expelled. Upon cooling, rehydration already takes place again. The swelling also depends on the location of the cargoes. Charges in the O-layers are preferred over the T-layers.

Daneben hängt die Quellung auch von der Hydratationsenergie der Z-Schicht-Kationen ab. Die Quellfähigkeit reicht von einer leichten Aufweitung bis hin zur völligen Auflösung. Es wird unterschieden in:

  • Vermiculite, Quellfähigkeit bis 15 Å, Ladung 0,6 bis 0,9
  • Smectite, Quellfähigkeit ab 15 Å, Ladung 0,2 bis 0,6.
In addition, the swelling also depends on the hydration energy of the Z-layer cations. The swellability ranges from a slight expansion to complete dissolution. It is distinguished in:
  • Vermiculite, swelling capacity up to 15 Å, charge 0.6 to 0.9
  • Smectite, swelling capacity from 15 Å, charge 0.2 to 0.6.

Die Quellung hängt von der Ladung der Elementarschichten und der Z-Kationen ab. K+ als Z-Kation können die Ladung auf 0,6 bis 0,7/O10(OH)2 absenken. Darunter gehen Glimmer in smectitische Strukturen über, mit anderen Kationen dann ab 0,9 weiter in Vermiculite.The swelling depends on the charge of the elemental layers and the Z cations. K + as Z-cation can lower the charge to 0.6 to 0.7 / O 10 (OH) 2 . Underneath, mica passes into smectitic structures, with other cations then from 0.9 onwards into vermiculite.

Zu den dioktaedrischen Dreischichtmineralen mit Quellfähigkeit der Zusammensetzung:

  • (K,Na,Ca,Mg)i+[Si4-xAlxO10][(Al,Fe3+)2-y(Mg,Fe2+)y+z(OH)2] mit i = z + y - 2z und 1 > i > 0,2 gehören:
  • dioktaedrischer Vermiculit mit i = 0,6 bis 0,9. Sie stellen den Übergang von degradierten Glimmern zu den Smectiten dar. Die Ladungen befinden sich hauptsächlich in den T-Schichten. Die Kationen der Z-Schichten sind nicht fixiert in ihren Positionen.
To the dioctahedral three-layer minerals with swelling capacity of the composition:
  • (K, Na, Ca, Mg) i + [Si 4-x Al x O 10 ] [(Al, Fe 3+ ) 2-y (Mg, Fe 2+ ) y + z (OH) 2 ] with i = z + y - 2z and 1>i> 0.2 include:
  • dioctahedral vermiculite with i = 0.6 to 0.9. They represent the transition from degraded mica to smectites. The charges are located mainly in the T-layers. The cations of the Z layers are not fixed in their positions.

Smectit mit i = 0,2 bis 0,7 wie Montmorillonit und Beidellit. Montmorillonit besitzt eine niedrige Gesamtladung, 0,25 bis 0,5/O10(OH)2. Die Ladung wird überwiegend durch die Mg2+ in den O-Schichten erzeugt. Beidellit hat die Ladung meist in den T-Schichten liegend. Er ist der Al-reichste Smectit.Smectite with i = 0.2 to 0.7, such as montmorillonite and beidellite. Montmorillonite has a low total charge, 0.25 to 0.5 / O 10 (OH) 2 . The charge is predominantly generated by the Mg 2+ in the O-layers. Beidellit has the charge lying mostly in the T-layers. He is the Al-richest smectite.

Trioktaedrische Dreischichtminerale mit Quellfähigkeit der Zusammensetzung: (K,Na,Ca,Mg)[Si4-xAlxO10][(Mg,Fe2+)3-y(Al,Fe3+)y-z(OH)2] mit i = x - y + 3z umfassen: trioktaedrischer Vermiculit i = 0,6 bis 0,9. Sie sind erheblich länger bekannt als die dioktaedrischen Vermiculite. Werden sie erhitzt, blättern sie auf bis zum 30-fachen ihres Volumens. Verwendung als Isolier- und Verpackungsmaterial.Tri-octahedral three-layer minerals with swelling capacity of the composition: (K, Na, Ca, Mg) [Si 4-x Al x O 10 ] [(Mg, Fe 2+ ) 3-y (Al, Fe 3+ ) yz (OH) 2 ] with i = x - y + 3z include: trioctahedral vermiculite i = 0.6 to 0.9. They are known much longer than the dioctahedral vermiculites. When heated, leaf up to 30 times their volume. Use as insulation and packaging material.

Trioktaedrischer Smectit i = 0,2 bis 0,7. Sie treten nur selten als Verwitterungsprodukte unter Oberflächenbedingungen auf. Hauptsächlich unter marinen Bedingungen, beispielsweise Saponit, ein trioktaedrischer Smectit mit hohem Mg-Gehalt.Trioctahedral smectite i = 0.2 to 0.7. They rarely occur as weathering products under surface conditions. Mainly under marine conditions, for example saponite, a trioctahedral smectite with a high Mg content.

Als Bentonit bezeichnet man tonhaltiges Gestein, das durch die Verwitterung vulkanischer Asche entstanden ist. Seinen Namen erhielt Bentonit nach der ersten Fundstätte des Forts Benton, Wyoming (USA). Seine ungewöhnlichen Eigenschaften werden durch das Tonmineral Montmorillonit bestimmt. Der Name Montmorillonit leitet sich von der südfranzösischen Stadt Montmorillon ab, wo ebenfalls Tone vorkommen.Bentonite is the term used to describe clayey rocks that have been formed by the weathering of volcanic ash. Bentonite was named after the first site of Fort Benton, Wyoming (USA). Its unusual properties are determined by the clay mineral montmorillonite. The name montmorillonite derives from the southern French town of Montmorillon, where clay also occurs.

Montmorillonit ist ein Aluminiumhydrosilikat, das zur Gruppe der Phyllosilikate (Blätterstruktur-Silikate) gehört. Montmorillonit ist der Hauptvertreter in der Gruppe der Dreischichtsilikate, die auch als Smectite bezeichnet werden. In der Praxis werden Bentonit, Smectit und Montmorillonit als Synonyme für quellfähige Mehrschichtsilikate gebraucht. Bentonit kann des weiteren Begleitmineralien wie Quarz, Feldspat, Glimmer enthalten. Bentonitlagerstätten findet man in der ganzen Welt. Allerdings sind aufgrund der unterschiedlichen Genesen die mineralogischen Zusammensetzungen und damit auch die technische Verwertbarkeit sehr unterschiedlich. Generell unterscheidet man zwischen primären und sekundären Lagerstätten. Primäre Lagerstätten sind durch die örtliche Verwitterung vulkanischer Gesteine entstanden (beispielsweise im Westerwald). Bei sekundären Lagerstätten (beispielsweise in Bayern) erfolgte zunächst ein Transport vulkanischer Aschen, beispielsweise durch Wind, Ablagerung und anschließender Verwitterung.Montmorillonite is an aluminum hydrosilicate belonging to the group of phyllosilicates (foliar structure silicates). Montmorillonite is the major representative in the group of three-layer silicates, also referred to as smectites. In practice, bentonite, smectite and montmorillonite are synonyms for Swellable multi-layer silicates used. Bentonite may also contain accompanying minerals such as quartz, feldspar, mica. Bentonite deposits are found throughout the world. However, due to the different genes, the mineralogical compositions and thus also the technical usability are very different. In general, a distinction is made between primary and secondary deposits. Primary deposits are the result of the local weathering of volcanic rocks (for example in the Westerwald). In secondary deposits (for example in Bavaria), volcanic ash was first transported, for example by wind, deposition and subsequent weathering.

Das bedeutenste Zweischichtmaterial stellt der Kaolinit dar. Seine Elementarschicht ist aus einer SiO2-Tetraederschicht und einer Al2O3-Oktaederschicht aufgebaut. Bei Dreischichtmineralen besteht die Elementarschicht aus zwei äußeren Tetraederschichten und einer inneren Oktaederschicht. Zu dieser Gruppe gehört der quellfähige Montmorillonit bzw. Bentonit.The most important two-layer material is the kaolinite. Its elemental layer is composed of an SiO 2 tetrahedral layer and an Al 2 O 3 octahedron layer. In three-layer minerals, the elemental layer consists of two outer tetrahedral layers and one inner octahedral layer. This group includes the swellable montmorillonite or bentonite.

Der Quellvorgang wird dadurch bewirkt, dass Wasser zwischen die Elementarschichten eindringt und ihren Abstand verändern kann. Man unterscheidet zwischen "innerkristalliner Quellung", das heißt der Weitung des Abstands der Elementarschichten durch Eintritt von überschüssigem Wasser, und der "osmotischen Quellung", die durch Konzentrationsunterschiede zwischen "Innenlösung" und "Außenlösung" zustande kommt. Erfolgt die Quellung eines Montmorillonits innerhalb eines begrenzten Volumens (beispielsweise in einer Dichtungsschicht), wird ein Quelldruck aufgebaut, der je nach Dichte mehrere bar erreichen kann. Der Quelldruck verhindert maßgelblich weiteres Durchdringen von Wasser.The swelling process is caused by the fact that water penetrates between the elemental layers and can change their distance. A distinction is made between "intracrystalline swelling", ie the widening of the distance of the elemental layers by the entry of excess water, and the "osmotic swelling", which results from concentration differences between "inner solution" and "external solution". If the swelling of a montmorillonite occurs within a limited volume (for example in a sealing layer), a swelling pressure is built up, which can reach several bar depending on the density. The swelling pressure prevents further penetration of water.

Ein Montmorillonitkristall ist aus etwa 15 bis 20 Elementarschichten aufgebaut. Zwischen diesen Schichten befinden sich neben dem Kristallwasser austauschfähige Kationen, die die negativen Überschussladungen des Gitters kompensieren. Diese sind nicht besonders fest gebunden und können durch andere Kationen oder aber auch durch positiv geladene organische Moleküle ersetzt werden. Bentonit bzw. Montmorillonit hat eine besondere Fähigkeit zum Ionenaustausch und zur Anlagerung von positiv geladenen Teilchen. Weil Adsorptionsvorgänge Oberflächenreaktionen sind, ist das geforderte Adsorptionsvermögen wesentlich von der spezifischen Oberfläche des Tonminerals abhängig. Die spezifische Oberfläche von Montmorillonit kann bis zu 800 qm/g betragen.A montmorillonite crystal is composed of about 15 to 20 elemental layers. Between these layers are next to the crystal water exchangeable cations that compensate for the negative excess charges of the grid. These are not particularly tightly bound and can be replaced by other cations or by positively charged organic molecules. Bentonite or montmorillonite has a special ability for ion exchange and for the addition of positively charged particles. Because adsorption processes are surface reactions, the required adsorption capacity is significantly dependent on the specific surface area of the clay mineral. The specific surface area of montmorillonite can be up to 800 sqm / g.

Aufgabe der vorliegenden Erfindung ist es also, einen Kernwerkstoff aus Aerogel und Sand bereitzustellen, der wesentlich einfacher und preisgünstiger herzustellen ist.Object of the present invention is therefore to provide a core material of airgel and sand, which is much easier and cheaper to manufacture.

Die der Erfindung zugrundeliegende Aufgabe wird gelöst in einer ersten Ausführungsform durch einen Kernwerkstoff für den Formguss aus Sand enthaltendem Aerogel, der dadurch gekennzeichnet ist, dass der Sand tonhaltige 3 bis 10 Gew%-Schichtsilikate enthält.The problem underlying the invention is achieved in a first embodiment by a core material for the casting of sand-containing airgel, which is characterized in that the sand contains clay-containing 3 to 10% by weight layer silicates.

Tonhaltiger Sand im Sinne der Erfindung ist ein Sand (Formsand), der zum einen feucht ist und zum anderen einen wesentlichen Anteil an Ton enthält. Übliche tonhaltige Sande enthalten beispielsweise zwischen 5 und 15 Gew.-% Ton. Tonhaltiger Sand im Sinne der Erfindung ist also ein Tonmineralsand. Dieser enthält sogenannte Tonmineralien, insbesondere Schichtsilikate in einer Menge von 3 bis 10 Gew.%, wie beispielsweise Illit, Kaolinit oder auch Montmorillonit.Clay sand in the sense of the invention is a sand (molding sand), which is moist on the one hand and on the other hand contains a substantial amount of clay. Typical clay-containing sands contain, for example, between 5 and 15% by weight of clay. Clay-containing sand in the sense of the invention is thus a clay mineral sand. This contains so-called clay minerals, in particular phyllosilicates in an amount of 3 to 10 wt.%, Such as illite, kaolinite or montmorillonite.

Gerade unter dem Gesichtspunkt, dass tonhaltige Formsande immer weniger in Gießereien eingesetzt werden, ist es nun um so überraschender, dass der erfindungsgemäße Kernwerkstoff aus Aerogel und tonhaltigem Sand im Vergleich zu herkömmlichen Kernwerkstoffen aus Aerogel und Gießereisand eine besonders hohe Festigkeit aufweist und schnell aushärtet. Dies lässt sich möglicherweise dadurch erklären, dass gerade Aerogele auf Polymerbasis von Hause aus einen hohen Wasseranteil mit sich bringen und so das hohe Bindungsvermögen des Tonminerals mit den guten Bindeeigenschaften des Aerogels verknüpft werden. Besonders vorteilhaft am Gegenstand der vorliegenden Erfindung ist auch der besondere niedrige Preis von tonhaltigem Sand, der in der Folge die besonders preisgünstige Fertigung von Kernen für den Formguss erlaubt. Durch die hohe Festigkeit des erfindungsgemäßen Kernwerkstoffes kann der Kernwerkstoff mit einem deutlich verringerten Binderanteil gefertigt werden.Especially from the viewpoint that clay-containing molding sands are less and less used in foundries, it is now all the more surprising that the core material of airgel and clay-containing sand compared to conventional core materials of airgel and foundry sand has a particularly high strength and cures quickly. This is possible This may be explained by the fact that polymer-based aerogels in particular naturally have a high water content and thus combine the high binding power of the clay mineral with the good binding properties of the airgel. Particularly advantageous in the subject matter of the present invention is also the special low price of clay-containing sand, which allows the production of cores for molding at a particularly low cost. Due to the high strength of the core material according to the invention, the core material can be manufactured with a significantly reduced binder content.

Wesentlich an den erfindungsgemäß eingesetzten Formsanden ist, dass sie quellfähige Schichtsilikate enthalten. Das verleiht den Kernen direkt eine Anfangsfestigkeit, die mit dem aerogelen Binder allein nicht realisierbar ist. Nicht alle Silikate und auch nicht alle Schichtsilikate sind quellfähig und schon gar nicht ist jeder Ton quellfähig (dazu muss der Ton die richtige Menge an quellfähigen Schichtsilikaten enthalten).It is essential to the molding sands used according to the invention that they contain swellable phyllosilicates. This directly gives the cores an initial strength that is not feasible with the aerogels binder alone. Not all silicates and not all phyllosilicates are swellable and certainly not every sound is swellable (the clay must contain the right amount of swellable phyllosilicates).

Formsande selbst werden nie als Kerne im Leichtmetallguss eingesetzt, weil sie eben Feuchtigkeit besitzen, die in Reaktion mit dem Aluminium zu Katastrophen führt. Formsande als Kernsande einzusetzen allein ist schon eine Innovation. Des weiteren würde kein Gießer versuchen, Formsande mit polymeren Bindern abzubinden (also mit Polyurethan, Furanharzen etc) und er würde ebenso wenig Phenolharze nehmen, da er ja aus Erfahrung weiß, dass Feuchtigkeit freigesetzt wird (Polykondensation unter Abspaltung von Wasser) und Feuchtigkeit und Aluminium vertragen sich nicht. Deshalb ist die der Erfindung zugrundeliegende Idee, aerogele Binder und Natursande mit hohem quellfähigem Schichtsilikatanteil zu verwenden gerade erfinderisch. Bei aerogelen Bindern ist Wasser ein wichtiger Bestandteil, da ansonsten Gelbildung auftritt. Die Wasserbildung bei der Polykondensationsreaktion stört hier nicht, sondern führt eher dazu, dass das Gel umso besser gebildet wird. Erfindungsgemäß kann man die Feuchtigkeit aus dem Kernkörper herausbekommen, denn das ist bei den aerogelen Bindern im Gegensatz zu den handelsüblichen Bindern Stand der Technik. Deswegen ist der Einsatz von Sanden mit hohem Anteil quellfähiger Schichtsilikate (Vermiculit, Montmorillonit etc.) eine wunderbare Möglichkeit, die dem Fachmann nicht nahe liegt und auch nicht, wenn er Kenntnisse über aerogele Binder hat.Form sands themselves are never used as cores in light metal casting because they just have moisture that leads to disasters in response to the aluminum. Using sands as a core sands alone is an innovation. Furthermore, no foundry would try to bind mold sand with polymeric binders (ie with polyurethane, furan resins etc) and he would take just as little phenolic resins, since he knows from experience that moisture is released (polycondensation with elimination of water) and moisture and aluminum do not agree. Therefore, the idea underlying the invention to use aerogels and natural sands with high swellable phyllosilicate content is just inventive. In aerogels, water is an important component, otherwise gelation occurs. The water formation in the polycondensation reaction does not disturb here, but rather causes the gel to be formed better. According to the invention can get the moisture out of the core body, because that is in the aerogels as opposed to the commercial binders prior art. Therefore, the use of sands with a high proportion of swellable phyllosilicates (vermiculite, montmorillonite, etc.) is a wonderful possibility that is not obvious to the skilled person and not even if he has knowledge about aerogels binder.

Das Aerogel ist vorteilhafterweise ein Resorcin-Formaldehyd-Aerogel. Diese Aerogele werden durch Trocknung eines Sols aus Resorcin und Formaldehyd gewonnen. Dieses Material ist deshalb besonders vorteilhaft, da es in der bisherigen Gießereitechnik bereits als nicht poröses und massives Polymerbasiertes Bindemittel Resorcin-Formaldehydharz eingesetzt wird.The airgel is advantageously a resorcinol-formaldehyde airgel. These aerogels are obtained by drying a sol of resorcinol and formaldehyde. This material is therefore particularly advantageous because it is already used in the previous foundry technology as a non-porous and solid polymer-based binder resorcinol-formaldehyde resin.

Vorteilhafterweise ist das Aerogel als Bindemittel in einem Mengenbereich von 6 bis 15 Gew.-% im Kernwerkstoff enthalten. Liegt die Menge des Aerogels deutlich unterhalb dieses Bereiches, so wird ein erhöhter Abrieb und eine geringe Festigkeit des Kernwerkstoffes beobachtet. Liegt der Anteil an Aerogel als Bindemittel deutlich über 15 Gew.-%, so verlängert sich die Gelierdauer bei der Herstellung des Kernwerkstoffs von einigen Minuten für den erfindungsgemäßen Kernwerkstoff auf bis zu mehrere Stunden für einen Kernwerkstoff enthaltend mehr Aerogel.Advantageously, the airgel is present as binder in a quantity range of 6 to 15 wt .-% in the core material. If the amount of the airgel is well below this range, increased abrasion and low strength of the core material are observed. If the proportion of airgel as a binder is well above 15% by weight, the gelling time in the production of the core material of a few minutes for the core material according to the invention is extended up to several hours for a core material containing more airgel.

Der tonhaltige Sand ist vorteilhafterweise in einem Mengenbereich von 85 bis 94 Gew.-% im Kernwerkstoff enthalten. Ein höherer Gehalt an tonhaltigem Sand führt zu geringerer Stabilität des Kernwerkstoffes. Ein niedrigerer Gehalt an tonhaltigem Sand führt zu einer deutlich verlängerten Gelierzeit.The clay-containing sand is advantageously contained in a quantity range of 85 to 94 wt .-% in the core material. A higher content of clay-containing sand leads to lower stability of the core material. A lower content of clay-containing sand leads to a significantly longer gel time.

Die Festigkeit des Kernwerkstoffes beträgt vorteilhafterweise mindestens 100 N/cm2 (1MPa).The strength of the core material is advantageously at least 100 N / cm 2 (1 MPa).

Der mittlere Korndurchmesser des tonhaltigen Sandes beträgt vorteilhafterweise mindestens 100 µm.The mean grain diameter of the clay-containing sand is advantageously at least 100 microns.

Der Tongehalt des tonhaltigen Sandes liegt vorteilhafterweise in einem Bereich von 3 bis 20 Gew.-%, insbesondere 8 bis 15 Gew.-%. Der Wassergehalt des eingesetzten Natursandes liegt vorteilhafterweise in einem Bereich von 3 bis 10 Gew.-%.The clay content of the clay-containing sand is advantageously in a range of 3 to 20 wt .-%, in particular 8 to 15 wt .-%. The water content of the natural sand used is advantageously in a range of 3 to 10 wt .-%.

Die Wärmeleitfähigkeit des erfindungsgemäßen Kernwerkstoffes liegt vorteilhafterweise in einem Bereich von 0,1 bis 0,5 W/mK. Hierdurch kann der erfindungsgemäße Kernwerkstoff für Anwendungen wie Aluminiumguss und Stahlguss eingesetzt werden.The thermal conductivity of the core material according to the invention is advantageously in a range of 0.1 to 0.5 W / mK. As a result, the core material according to the invention can be used for applications such as aluminum casting and cast steel.

In einer weiteren Ausführungsform wird die der Erfindung zugrundeliegende Aufgabe gelöst durch ein Verfahren zur Herstellung des erfindungsgemäßen Kernwerkstoffes, umfassend die folgenden Schritte:

  1. a. Herstellung eines Sols,
  2. b. Mischung des Sols mit tonhaltigen Sand,
  3. c. Gelierung des Sols zu einem Gel, und
  4. d. Trocknung des Gels.
In a further embodiment, the object underlying the invention is achieved by a method for producing the core material according to the invention, comprising the following steps:
  1. a. Producing a sol,
  2. b. Mixture of sol with clayey sand,
  3. c. Gelation of the sol to a gel, and
  4. d. Drying the gel.

Im Vergleich zu den bekannten Verfahren zur Herstellung von Kernwerkstoffen auf Basis von Aerogel unterscheidet sich das erfindungsgemäße Verfahren vor allem dadurch, dass mit diesem Verfahren eine erhebliche Verkürzung der Gelierdauer erzielt werden kann. Während bei den bekannten Verfahren die Gelierdauer oft mehrere Stunden betrug, kann mit dem erfindungsgemäßen Verfahren überraschenderweise eine Gelierdauer von nur wenigen Minuten erreicht werden. Durch die höhere resultierende Festigkeit des Kernwerkstoffes kann im Unterschied zu den bekannten Verfahren auch ein deutlich geringerer Bindeanteil eingesetzt werden.In comparison to the known processes for the production of core materials based on airgel, the process according to the invention differs above all in that a considerable shortening of the gelation time can be achieved with this process. While in the known method, the gelling was often several hours, can be achieved with the inventive method, surprisingly, a gelling time of only a few minutes. Due to the higher resulting strength of the core material, in contrast to the known methods, a significantly lower binding fraction can also be used.

Vorteilhafterweise setzt man im erfindungsgemäßen Verfahren tonhaltigen Sand mit einem Wassergehalt in einem Bereich von 3 bis 10 Gew.-% ein. Bei diesem Wassergehalt konnte beobachtet werden, dass eine besonders hohe Festigkeit des resultierenden Kernwerkstoffs erzielt werden konnte.Advantageously, clay-containing sand having a water content in a range from 3 to 10% by weight is used in the process according to the invention. At this water content it could be observed that a particularly high strength of the resulting core material could be achieved.

In einer weiteren Ausführungsform wird die der Erfindung zugrundeliegende Aufgabe gelöst durch die Verwendung des erfindungsgemäßen Kernwerkstoff als Kernwerkstoff für den Formguss.In a further embodiment, the object underlying the invention is achieved by the use of the core material according to the invention as a core material for molding.

Ausführungsbeispiel:

  • 1.Herstellung der Aerogellösung:
    • 22 g Resorcinol + 20 ml Formaldehydlösung (37 %ig) + 0,013 g Na2CO3 + 82 ml H2O und Rühren bei Raumtemperatur.
  • 2.Mischen der Aerogellösung mit tonhaltigem Sand:
    • Beispiel: 100 cm3 tonhaltiger Sand (Fa. Klophaus, Solingen, Sandklasse SGII) mit einer mittleren Korngröße 120 µm nahm 45 ml Lösung auf. Die Aerogellösung wurde unter Rühren in einem Hobart-Mischer dem Sand zugefügt.
  • 3.Befüllung der Kernform:
    • Befüllung der Kernform unter Rüttel- und Klopfverdichtung.
  • 4.Abbinden des Sandes zu ausreichender Nassfestigkeit innerhalb von 5 Minuten.
  • 5.Trocknen:
    • Trocknen der offenen Form in einer Stunde bei 120 °C im Trockenschrank.
  • 6.Einbau des aerogelgebundenen Sandkernes in eine Standardgussform
Embodiment:
  • 1.Manufacture of the aerosol solution:
    • 22 g of resorcinol + 20 ml of formaldehyde solution (37%) + 0.013 g of Na 2 CO 3 + 82 ml of H 2 O and stirring at room temperature.
  • 2. Mixing the aerogell solution with clay-containing sand:
    • Example: 100 cm 3 of clay-containing sand (from Klophaus, Solingen, SGII class) with a mean particle size of 120 μm took up 45 ml of solution. The aerosol solution was added to the sand while stirring in a Hobart mixer.
  • 3.filling the core form:
    • Filling of the core mold under vibration and knock compaction.
  • 4. Tie the sand to sufficient wet strength within 5 minutes.
  • 5.Trocknen:
    • Dry the open mold in one hour at 120 ° C in a drying oven.
  • 6.Installation of the airgel-bonded sand core into a standard casting mold

Nach dieser Vorschrift wurden verschiedene Probekörper hergestellt, die mit einem unterschiedlichen Anteil an Aerogellösung hergestellt wurden. Die Aushärtungsdaten sind in der Tabelle 1 wieder gegeben. Tabelle: Anteil Aerogellösung (Gew.%) Charakteristika 20 % Fest nach 2 bis 3 h 15 % Fest nach 1 h; höchste Festigkeit, hohe Nassfestigkeit 10 % Bei 80 °C nach 1 h fest; bei 120 °C nach 20 bis 30 min fest; 8 % Bei 80 °C fest nach 1,5 bis 2 h; bei 120 °C fest nach 20 bis 30 min 4 % Niedrige Festigkeit; keine Aushärtung bei RT 2 % Starker Abrieb, keine Aushärtung bei RT, sehr porös According to this regulation, different specimens were produced, which were produced with a different proportion of aerosol solution. The curing data are given in Table 1 again. <U> Table </ u> Proportion of aerosol solution (% by weight) characteristics 20% Hard after 2 to 3 h 15% Hard after 1 h; highest strength, high wet strength 10% At 80 ° C after 1 h solid; solid at 120 ° C after 20 to 30 minutes; 8th % At 80 ° C solid after 1.5 to 2 h; at 120 ° C solid after 20 to 30 min 4% Low strength; no curing at RT 2% Strong abrasion, no hardening at RT, very porous

Für ausgewählte Kombinationen aus tonhaltigem Sand und der Aerogellösung wurde die Endfestigkeit bestimmt Die Daten sind in der Tabelle 2 wiedergegeben. Tabelle 2: Anteil Aerogellösung Biegebruchfestigkeit [N/cm2] 6% 30 ± 5 10 % 100 ± 17 15 % 210 ± 30 The final strength was determined for selected combinations of clay-containing sand and the aerosol solution. The data are given in Table 2. <u> Table 2: </ u> Proportion of aerosol solution Bending strength [N / cm 2 ] 6% 30 ± 5 10% 100 ± 17 15% 210 ± 30

Claims (9)

Kernwerkstoff für den Formguss aus Sand enthaltendem Aerogelsand, dadurch gekennzeichnet, dass der Kernwerkstoff tonhaltigen Sand mit einem Gehalt an Schichtsilikaten von 3 bis 20 % aufweist.Core material for molding from sand-containing aerogelsand, characterized in that the core material clay-containing sand having a content of layered silicates of 3 to 20%. Kernwerkstoff gemäß Anspruch 1, dadurch gekennzeichnet, dass das Aerogel ein Resorcin-Formalehyd-Aerogel ist.Core material according to claim 1, characterized in that the airgel is a resorcinol-formaldehyde airgel. Kernwerkstoff gemäß Anspruch 1, dadurch gekennzeichnet, dass das Aerogel in einem Mengenbereich von 6 bis 15 Gew.% im Kernwerkstoff enthalten ist.Core material according to claim 1, characterized in that the airgel is contained in a quantity range of 6 to 15 wt.% In the core material. Kernwerkstoff gemäß Anspruch 1, dadurch gekennzeichnet, dass der tonhaltige Sand in einem Mengenbereich von 85 bis 94 Gew.% im Kernwerkstoff enthalten ist.Core material according to claim 1, characterized in that the clay-containing sand is contained in a quantity range of 85 to 94 wt.% In the core material. Kernwerkstoff gemäß Anspruch 1, dadurch gekennzeichnet, dass die Festigkeit mindestens 100 N/cm2 beträgt.Core material according to claim 1, characterized in that the strength is at least 100 N / cm 2 . Kernwerkstoff gemäß Anspruch 1, dadurch gekennzeichnet, dass der mittlere Korndurchmesser des tonhaltigem Sand mindestens 100 µm beträgt.Core material according to claim 1, characterized in that the average grain diameter of the clay-containing sand is at least 100 microns. Verfahren zur Herstellung des Kernwerkstoffes gemäß Anspruch 1, umfassend die folgenden Schritte: a. Herstellung eines Sols, b. Mischung des Sols mit tonhaltigen Sand, c. Gelierung des Sols zu einem Gel, und d. Trocknung des Gels. Process for producing the core material according to claim 1, comprising the following steps: a. Producing a sol, b. Mixture of sol with clayey sand, c. Gelation of the sol to a gel, and d. Drying the gel. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass man tonhaltigen Sand mit einem Wassergehalt in einem Bereich von 3 bis 10 Gew.% einsetzt.A method according to claim 7, characterized in that one uses clay-containing sand with a water content in a range of 3 to 10 wt.%. Verwendung des Kernwerkstoffes gemäß Anspruch 1 als Kernwerkstoff für den Formguss.Use of the core material according to claim 1 as a core material for molding.
EP07106978A 2006-05-06 2007-04-26 Material for foundry core with aerogel sand comprising water swellable clay Not-in-force EP1852197B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006021151A DE102006021151A1 (en) 2006-05-06 2006-05-06 Core material of clay-containing sand containing aerogelsand

Publications (2)

Publication Number Publication Date
EP1852197A1 true EP1852197A1 (en) 2007-11-07
EP1852197B1 EP1852197B1 (en) 2011-09-21

Family

ID=38230944

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07106978A Not-in-force EP1852197B1 (en) 2006-05-06 2007-04-26 Material for foundry core with aerogel sand comprising water swellable clay

Country Status (3)

Country Link
EP (1) EP1852197B1 (en)
AT (1) ATE525153T1 (en)
DE (1) DE102006021151A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2193858A1 (en) * 2008-11-12 2010-06-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Foundry core with improved gutting properties II
DE102009024013A1 (en) 2009-06-05 2010-12-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Green Fist Aerosande
EP2204246A3 (en) * 2008-11-12 2012-01-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Foundry core with improved gutting properties I
EP2497795A1 (en) * 2011-03-09 2012-09-12 Samsung Electronics Co., Ltd. Composition for clay-aerogel composite, clay-aerogel composite, and method of making the same
WO2012172062A1 (en) * 2011-06-17 2012-12-20 E.G.O. Elektro-Gerätebau GmbH Casting tool and method for producing a casting tool
WO2012172063A1 (en) * 2011-06-17 2012-12-20 E.G.O. Elektro-Gerätebau GmbH Casting core for a casting method, and method for removing a casting core
CN109575510A (en) * 2018-12-12 2019-04-05 河北工业大学 A kind of preparation method of nanofiber mineral enhancing phenolic resin three-dimensional aerogel material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077097A1 (en) * 1999-08-18 2001-02-21 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Use of plastic and/or carbon aerogels as core material
DE10216464A1 (en) * 2002-04-12 2003-10-30 Deutsch Zentr Luft & Raumfahrt Core material for precision casting and finished casting of metals and metal alloys contains open pore aerogels and inorganic fillers obtained by sol-gel polymerization of inorganic silica gel
US6719835B2 (en) * 2002-11-08 2004-04-13 Wyo-Ben, Inc. Sand casting foundry composition and method using shale as anti-veining agent
WO2005046909A1 (en) * 2003-11-11 2005-05-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Filler-containing aerogels
DE102004027382A1 (en) * 2004-06-04 2006-01-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Carbon aerogel sand used as a core material for dead-mold casting to produce cylinder heads and hydraulic lines contains foundry sand and has a specified temperature of thermal decomposition of in the presence of an oxidant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077097A1 (en) * 1999-08-18 2001-02-21 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Use of plastic and/or carbon aerogels as core material
DE10216464A1 (en) * 2002-04-12 2003-10-30 Deutsch Zentr Luft & Raumfahrt Core material for precision casting and finished casting of metals and metal alloys contains open pore aerogels and inorganic fillers obtained by sol-gel polymerization of inorganic silica gel
US6719835B2 (en) * 2002-11-08 2004-04-13 Wyo-Ben, Inc. Sand casting foundry composition and method using shale as anti-veining agent
WO2005046909A1 (en) * 2003-11-11 2005-05-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Filler-containing aerogels
DE102004027382A1 (en) * 2004-06-04 2006-01-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Carbon aerogel sand used as a core material for dead-mold casting to produce cylinder heads and hydraulic lines contains foundry sand and has a specified temperature of thermal decomposition of in the presence of an oxidant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRUCK S ET AL: "RF-aerogels: A new binding material for foundry application {DOI 10.1023/A:1020709129165 }", J SOL GEL SCI TECHNOL; JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY JANUARY/MARCH 2003, vol. 26, no. 1-3, January 2003 (2003-01-01), pages 663 - 666, XP002442391 *
BRÜCK, SABINE: "AeroSande : ein neuer Formstoff für Gießereianwendungen { http://darwin.bth.rwth-aachen.de/opus/volltexte/2003/708/ and 3 cover extra pages}", DOKTOR DES INGENIEURSWISSENSCHAFTTEN DISSERTATION, 14 November 2003 (2003-11-14), Rheinisch-Westfälischen Technischen Hochschule AACHEN, pages 1 - 149, XP002443154 *
LORENZ RATKE ET AL: "Mechanical properties of aerogel composites for casting purposes { doi:10.1007/s10853-005-3152-8 }", JOURNAL OF MATERIALS SCIENCE, KLUWER ACADEMIC PUBLISHERS, BO, vol. 41, no. 4, 1 February 2006 (2006-02-01), pages 1019 - 1024, XP019211565, ISSN: 1573-4803 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2193858A1 (en) * 2008-11-12 2010-06-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Foundry core with improved gutting properties II
EP2204246A3 (en) * 2008-11-12 2012-01-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Foundry core with improved gutting properties I
DE102009024013A1 (en) 2009-06-05 2010-12-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Green Fist Aerosande
EP2308614A1 (en) 2009-06-05 2011-04-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Green aerosand
EP2497795A1 (en) * 2011-03-09 2012-09-12 Samsung Electronics Co., Ltd. Composition for clay-aerogel composite, clay-aerogel composite, and method of making the same
US20120231251A1 (en) * 2011-03-09 2012-09-13 Samsung Electronics Co., Ltd. Composition for clay-aerogel composite, clay-aerogel composite, and method of making the same
CN102674803A (en) * 2011-03-09 2012-09-19 三星电子株式会社 Composition, clay-aerogel composite, and method of making same
WO2012172062A1 (en) * 2011-06-17 2012-12-20 E.G.O. Elektro-Gerätebau GmbH Casting tool and method for producing a casting tool
WO2012172063A1 (en) * 2011-06-17 2012-12-20 E.G.O. Elektro-Gerätebau GmbH Casting core for a casting method, and method for removing a casting core
CN109575510A (en) * 2018-12-12 2019-04-05 河北工业大学 A kind of preparation method of nanofiber mineral enhancing phenolic resin three-dimensional aerogel material
CN109575510B (en) * 2018-12-12 2021-04-20 河北工业大学 Preparation method of nanofiber mineral reinforced phenolic resin three-dimensional aerogel material

Also Published As

Publication number Publication date
DE102006021151A1 (en) 2007-11-08
EP1852197B1 (en) 2011-09-21
ATE525153T1 (en) 2011-10-15

Similar Documents

Publication Publication Date Title
EP1852197B1 (en) Material for foundry core with aerogel sand comprising water swellable clay
EP1486475A1 (en) Method for producing shaped article from a granulated light weight filler and a binder
DE202007018759U1 (en) building materials
DE102007012489A1 (en) Composition for the production of feeders
DE2740707A1 (en) HIGH DENSITY TOBERMORITE HEAT INSULATION WITH WOOL ASTONITE
EP1697273B1 (en) Production of aerogels containing fillers
DE102012200967A1 (en) Polyurethane cold box bonded feeder and polyurethane cold box bonded feeder component used in foundry industry, contain calcined kieselguhr, hardened polyurethane cold box resin and optionally fiber material and oxidizable metal
DE102006056093B4 (en) Aerogelsand core material containing additive sand and its use
DE19702254A1 (en) Highly porous moulding especially light construction block
EP2308614B1 (en) Green aerosand
EP2376400A1 (en) Open pore mold and method for producing the same
EP2902375B1 (en) Mineral formulation comprising sulfate aluminate cement and closed-pored perlite
DE102007062492B4 (en) Process for the production of a cementitious shaped block and manufactured molded block
WO1984004088A1 (en) Method for making non-combustible thermo-insulating moulding bodies in expanded perlite
EP1682291B1 (en) Filler-containing aerogels
DE2344773A1 (en) Low density shapes from beta-wollastonite - prepd. hydrothermally and formulated with fibres, clay and binder and fired at 1000 deg C
EP1464633A1 (en) Process for the production of silicate shaped bodies
DE102004027382B4 (en) Carbon aerogel sand used as a core material for dead-mold casting to produce cylinder heads and hydraulic lines contains foundry sand and has a specified temperature of thermal decomposition of in the presence of an oxidant
DE2053765A1 (en) Insulating material for lining chill tops
DE3049174C2 (en) Cold-curing molding compound to avoid the formation of veins
DE102004017199B4 (en) Calcium silicate hydrate bonded building block in the manner of a limestone and method for its preparation
DE102017131255A1 (en) A method of making a metallic casting or a cured molding using aliphatic polymers comprising hydroxy groups
DE29724777U1 (en) Highly porous moulding especially light construction block - consists of geopolymer=bonded expanded glass granule(s) in hardened mixture with binder, comprising alkali metal solution and oxide(s) mixture
DE2806068C3 (en) High-pressure-resistant, porous, heat-insulating building materials and aggregates and processes for their production
DE1908549A1 (en) Molded body and process for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080425

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008200

Country of ref document: DE

Effective date: 20111117

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111222

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007008200

Country of ref document: DE

Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V, DE

Free format text: FORMER OWNER: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V., 51147 KOELN, DE

Effective date: 20120217

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007008200

Country of ref document: DE

Owner name: METALLGUSS HERPERS GMBH, DE

Free format text: FORMER OWNER: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V., 51147 KOELN, DE

Effective date: 20120217

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007008200

Country of ref document: DE

Owner name: METALLGUSS HERPERS GMBH, DE

Free format text: FORMER OWNER: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V., 51147 KOELN, DE

Effective date: 20110928

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007008200

Country of ref document: DE

Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V, DE

Free format text: FORMER OWNER: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V., 51147 KOELN, DE

Effective date: 20110928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120121

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

26N No opposition filed

Effective date: 20120622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007008200

Country of ref document: DE

Effective date: 20120622

BERE Be: lapsed

Owner name: DEUTSCHES ZENTRUM FUR LUFT- UND RAUMFAHRT E.V.

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120426

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120426

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 525153

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120426

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170428

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007008200

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101