EP1846939B1 - Photomultiplier tube with least transit time variations - Google Patents

Photomultiplier tube with least transit time variations Download PDF

Info

Publication number
EP1846939B1
EP1846939B1 EP06709472A EP06709472A EP1846939B1 EP 1846939 B1 EP1846939 B1 EP 1846939B1 EP 06709472 A EP06709472 A EP 06709472A EP 06709472 A EP06709472 A EP 06709472A EP 1846939 B1 EP1846939 B1 EP 1846939B1
Authority
EP
European Patent Office
Prior art keywords
photocathode
dynodes
dynode
multiplier
symmetry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06709472A
Other languages
German (de)
French (fr)
Other versions
EP1846939A1 (en
Inventor
Philippe Bascle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Zhanchuang Information Technology Co Ltd
Original Assignee
Photonis SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonis SAS filed Critical Photonis SAS
Publication of EP1846939A1 publication Critical patent/EP1846939A1/en
Application granted granted Critical
Publication of EP1846939B1 publication Critical patent/EP1846939B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/28Vessels, e.g. wall of the tube; Windows; Screens; Suppressing undesired discharges or currents

Definitions

  • the present invention relates to a single electron multiplier tube.
  • a photomultiplier tube generally comprises, inside a gas-tight vacuum envelope, a light-sensitive electrode, called a photocathode, an electronic focusing optic, an electron multiplier for multiplying the electrons emitted by the photocathode and a photocathode. anode that collects the multiplied electrons.
  • the sealed envelope 10 comprises a transparent window 12 to photons.
  • the window 12 has an outer face and an inner face.
  • the inner face has a concavity having a central axis.
  • the concavity is turned towards the inside of the tube. It has a plane of symmetry containing the central axis.
  • the single-channel tube described in this application is used in applications where the homogeneity of transit time between the moment when an electron is emitted by the photocathode and a moment when a bundle of electrons resulting from the multiplication of this electron by the multiplier is an important factor.
  • a perfect tube would have transit times equal to each other regardless of the place of emission on the photocathode and the initial energy of the emitted electron.
  • the dispersion of the transit times between photocathode and The first dynode of the multiplier is reduced by the fact that the photocathode is mounted on a hemispherical surface. Because of this form the distance between the different points of the photocathode and a center is equal. This geometry contributes to reducing the dispersion of the transit times as a function of the emission site of an electron on the photocathode.
  • the subject of the invention is a single-channel photomultiplier tube having an improved temporal resolution compared to single-channel tubes known from the prior art. This object is attained by the fact that an electron multiplier is provided in the tube composed of several multiplying parts physically distinct from each other, and presenting between them a symmetry of revolution with respect to the central axis concavity. Each multiplier part is actually an autonomous multiplier.
  • the hemispherical photocathode is thus divided virtually into as many portions of cathodes as there are parts of multipliers.
  • the photocathode portions are angular sectors whose apex coincides with the axis of revolution.
  • Each photocathode sector corresponds to a dedicated multiplier. Due to the symmetry of revolution the sectors are equal to each other.
  • Each first dynode is a dynode of an autonomous multiplier multiplying the electrons from the photocathode sector corresponding to this dynode. Like the set of dynodes, these first dynodes of each of the multipliers are symmetrical with respect to the axis of the tube.
  • the trajectories of the electrons between the first dynode D1 and the second dynode D2 of each multiplier also have differences in their path lengths between them which are smaller than the differences in path lengths that one would have with a single large first. dynode returning the electrons to a single large second dynode.
  • the differences in electron travel time between the first and second dynodes of each multiplier are also reduced. The same is true, albeit to a lesser extent, of the travel times between consecutive stages of each of the multipliers.
  • the sealed envelope comprises a cylindrical insulating sleeve centered on the central axis of the concavity carrying the photocathode, the transparent window wall being connected to one end of said sleeve, and the focusing optics comprises an electrode.
  • accelerator and focusing device a focusing correction electrode formed by a conductive thin film in the form of a cylindrical surface portion deposited on the inner wall of the sleeve having an end close to the photocathode in a zone situated between the photocathode and the accelerating electrode, favoring the initial acceleration of the photo-electrons of the peripheral zone by increasing the electric field in their vicinity.
  • the tube comprises two multipliers, the concavity is hemispherical and the focusing optics and the two multipliers comprise a plane of symmetry which is a plane of symmetry of the concavity.
  • the angular sectors are 180 °.
  • the first dynodes of each multiplier have a portion that is closest to the tangent photocathode at the same point in said plane of symmetry and each have a concavity, the respective concavities of each of the first dynodes. not being turned towards each other.
  • the figure 1 represents a longitudinal section of a photomultiplier tube 1 with two multipliers according to the invention.
  • the photomultiplier tube 1 comprises a sealed envelope 4, formed by a set of walls assembled together.
  • a first wall 3 has a cylindrical sleeve shape, of axis AA '.
  • the cylindrical sleeve is made of preferably in an insulating material, for example glass.
  • the sleeve is completed at one end by a wall 5 forming a photon transparency window. It is completed at the other end by a bottom wall 8.
  • Pins 12 connecting the different electrodes located inside the sealed envelope 4 pass sealingly, and in a manner known per se through the bottom wall 8. When the tube is in operation, these pins 12 are respectively coupled to voltage sources, applying operating voltages to the different electrodes of the tube.
  • the wall 5 forming the window of transparency of the tube has a flat outer face 6 and an inner face 7 having a concavity turned towards the inside of the tube.
  • This concavity is in the example shown a spherical cap, whose center is located on the axis AA 'of the tube. It therefore presents a plan of symmetry materialized on the figure 1 by the axis AA '.
  • the figure 1 is an axial section along a plane containing this axis of symmetry.
  • a photocathode 2 is disposed on the inner face 7 of the wall 5 forming the window 5 of transparency, so as to receive light photons having passed through the transparency window 5.
  • the photocathode 2 is constituted by a layer of a light emitting material, for example a layer of multi-alkaline material or silver-oxygen-cesium, or cesium-antimony. It may also be another light emitting material. The material is chosen according to its spectral characteristics of photo emission and wavelengths of the photons to which the photomultiplier tube will be applied.
  • the photocathode 2 comprises two parts 21, 22 symmetrical to one another with respect to a plane of symmetry, whose intersection with the plane of the figure is materialized on the figure 1 by the axis of symmetry AA 'of the spherical cap.
  • the tube comprises, in order, a focussing optics 9 comprising an accelerating and focusing electrode 13.
  • the focusing optics 9 may also comprise, as in the example shown, a focusing correction electrode 15.
  • this focusing correction electrode 15 is formed by a conductive thin film in the form of a cylindrical surface portion deposited on the inner face of the sleeve 3.
  • the focusing correction electrode 15 has in the axial direction a close end of the photocathode 2 in an area between the photocathode 2 and a portion which is the most upstream of the accelerator and focusing electrode 13.
  • the upstream and downstream are in the direction of travel of the electron flow from the start, so upstream of the photocathode and directed downstream so the anode.
  • the focusing optics 9 is thus common to the two autonomous multipliers 24, 26 of the tube 1.
  • the tube 1 Downstream of the focusing optics 9, the tube 1 comprises an electron multiplier 11 formed by a set of two multiplying parts 24, 26 physically separate from each other and symmetrical to each other with respect to the plane of symmetry of the tube. These multiplying parts constitute autonomous multipliers 24, 26.
  • Each of the multipliers 24, 26 comprises dynodes in a Rajchman focusing linear structure.
  • the dynodes composing each of the multipliers are physically distinct from the dynodes composing the other multiplier.
  • This common connection part may be outside or inside the envelope 4.
  • this does not exclude that two dynodes of the same rank in each of the multipliers 24, 26 have a point or a contact zone with each other.
  • Each multiplier 24, 26 of electrons comprises a plurality of dynodes including a first dynode 31, 32, respectively, a second dynode 23, 25, respectively intermediate dynodes 33, 34 respectively, a second to last dynode 35, 36 respectively and a last dynode 37, 38 respectively located downstream of the optics 9 in the direction of travel of the electrons.
  • the tube Downstream of the last dynode 37, 38, in the direction of travel of the electrons, the tube comprises an anode 16 formed by two conductors 17, 18 respectively, electrically connected to each other to form a single anode of the multiplier 11 .
  • a first multiplication channel of the tube 1 is materialized by the first half 21 of the photocathode 2, the common optic 9, the first multiplier 24, and the portion 17 of the anode 16.
  • the second multiplication channel of the tube 1 is materialized by the second half 22 of the photocathode 2, the common optic 9, the second multiplier 26, and the portion 18 of the anode 16.
  • the dynodes, 32, 34, 36, 38 and 31, 33, 35, 37 of the same rank of the two multipliers 24, 26 with the exception of a gain tuning dynode 30, 39 in each multiplier are connected to a same connection pin respectively.
  • the dynodes 30, 39 for setting respectively each of the two multipliers 24, 26 have a connection allowing independent voltage adjustment for each of them.
  • the first dynodes 31, 32 of each multiplier 24, 26 respectively are symmetrical to each other with respect to the plane of symmetry of the concavity of the transparency window 5.
  • Each of these first dynodes 31, 32 has a part 27, 28 respectively which is closest to the photocathode 2.
  • the portions 27, 28 of each of the first dynodes 31, 32 are respectively tangent at one and the same point to each other and to said plane of symmetry.
  • the first dynodes 31, 32 have a concavity whose respective centers of curvature are symmetrical to each other with respect to the plane of symmetry.
  • each of the first dynodes 31, 32 respectively are located on the same side of the plane of symmetry as the corresponding dynode.
  • each of the first dynodes is constituted by a set of four planar portions, the overall curvature resulting from the fact that two consecutive planar portions form a dihedron.
  • a center of curvature of a dihedron is the center of the circle tangent to each of the two faces of the plane portions forming the dihedron.
  • the averages of the travel times of the different electrons between the photocathode 2 and the first dynode 31 of the first multiplier 24 appear opposite the starting points of the electrons on the photocathode 2. These averages of courses vary between 6.24 and 6.40 nanoseconds. The initial differences in travel time are therefore very small. These differences in travel time will be further reduced during the multiplication.
  • the improvement in the homogeneity of the travel times is due to the fact that there is a smaller distance of travel between the electrons from a sector such as 21 or 22 of the photocathode and the first dynode of each multiplier. It is the same between first and second dynode of each multiplier.
  • the electrons emitted by the second part 22 of the photocathode are directed mainly towards the first dynode 32 of the second multiplier 26.
  • the signal is collected on the part 18 of the single anode 16.
  • Gain tuning dynodes are dynodes which unlike other dynodes of the same rank of each multiplier are not connected to voltage sources of the same value. These dynodes 30, 39 thus each have a connection pin 12 of its own and can be connected to a source of voltage that is specific to each gain adjustment dynode.
  • the dynodes 30, 39 make it possible to balance the overall gain of each of the multipliers 24, 26 and an equalization of the transit times between the multiplication channels.

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Electron Tubes For Measurement (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Tires In General (AREA)
  • Image Input (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

A single-channel photomultiplier tube having a sealed envelope, of which one wall includes an internal face having a concavity with a central axis, turned toward the inside of the tube, having a plane of symmetry and containing a photocathode, inlet optics including electrodes, an electron multiplier including a plurality of dynodes, an anode, and a mechanism connecting the dynodes, the photocathode, electrodes of the optics, and the anode, at their respective operating voltages. The electron multiplier is composed of parts physically distinct from one another, and having between them a symmetry of revolution with respect to the central axis of the concavity.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention est relative à un tube multiplicateur d'électrons monovoie.The present invention relates to a single electron multiplier tube.

ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART

Un tube photomultiplicateur comporte en général à l'intérieur d'une enveloppe étanche vide de gaz, une électrode sensible à la lumière, appelée photocathode, une optique électronique de focalisation, un multiplicateur d'électrons pour multiplier les électrons émis par la photocathode et une anode qui collecte les électrons multipliés.A photomultiplier tube generally comprises, inside a gas-tight vacuum envelope, a light-sensitive electrode, called a photocathode, an electronic focusing optic, an electron multiplier for multiplying the electrons emitted by the photocathode and a photocathode. anode that collects the multiplied electrons.

La demande de brevet FR 1.288.477 correspondant au brevet US ayant le numéro de dépôt 27066 , attribué à Radio Corporation of America, décrit en liaison avec la figure unique de ce brevet, un tube photomultiplicateur monovoie, comportant une enveloppe étanche 10. L'enveloppe étanche 10 comporte, une paroi formant fenêtre de transparence 12 à des photons. La fenêtre 12 a une face externe et une face interne. La face interne présente une concavité ayant un axe central. La concavité est tournée vers l'intérieur du tube. Elle a un plan de symétrie contenant l'axe central.The patent application FR 1,288,477 corresponding to the US patent having the deposit number 27066 , assigned to Radio Corporation of America, describes in connection with the single figure of this patent, a single-channel photomultiplier tube, comprising a sealed envelope 10. The sealed envelope 10 comprises a transparent window 12 to photons. The window 12 has an outer face and an inner face. The inner face has a concavity having a central axis. The concavity is turned towards the inside of the tube. It has a plane of symmetry containing the central axis.

Une photocathode 14 est disposée sur la face interne de la paroi formant la fenêtre de transparence de façon à recevoir des photons lumineux ayant traversé la fenêtre de transparence,

  • une optique de focalisation comportant plusieurs électrodes focalise les électrons provenant de la photocathode sur une première dynode 31 d'un multiplicateurs d'électrons à structure linéaire focalisée située en aval de l'optique dans le sens de parcours des électrons. Le multiplicateur comporte une pluralité de dynodes 31-40 dont une première dynode 31, des dynodes intermédiaires, une avant dernière dynode et une dernière dynode. Le tube comporte également une anode 42. Des moyens 18 de raccordement traversent l'enveloppe étanche 10 et comportent des contacts 18 de raccordement extérieurs à l'enveloppe 10, eux même raccordés à des liaisons électriques internes de raccordement, et permettent de raccorder respectivement les dynodes, la photocathode 14, des électrodes 16, 20, 22, 24 formant ensemble l'optique de focalisation, et l'anode 42, à leur tension respective de fonctionnement,
A photocathode 14 is disposed on the inner face of the wall forming the transparency window to receive light photons having passed through the transparency window,
  • a focusing optics comprising a plurality of electrodes focuses the electrons from the photocathode on a first dynode 31 of a focused linear structure electron multipliers located downstream of the optics in the direction of travel of the electrons. The multiplier includes a plurality of dynodes 31-40 including a first dynode 31, intermediate dynodes, a penultimate dynode and a last dynode. The tube also comprises an anode 42. Connection means 18 pass through the sealed envelope 10 and have external connection contacts 18 to the envelope 10, themselves connected to internal connection electrical connections, and enable the respective connections to be connected. dynodes, the photocathode 14, electrodes 16, 20, 22, 24 together forming the focusing optics, and the anode 42, at their respective operating voltage,

Le tube monovoie décrit dans cette demande est employé dans des applications où l'homogénéité de temps de transit entre l'instant où un électron est émis par la photocathode et un instant où un paquet d'électrons résultant de la multiplication de cet électron par le multiplicateur est un facteur important. Un tube parfait aurait des temps de transit égaux entre eux quel que soit le lieux d'émission sur la photocathode et l'énergie initiale de l'électron émis. Dans le tubes monovoie décrit ci-dessus, la dispersion des temps de transit entre photocathode et première dynode du multiplicateur est réduite par le fait que la photocathode est montée sur une surface hémisphérique. Du fait de cette forme la distance entre les différents points de la photocathode et un centre est égale. Cette géométrie contribue à réduire la dispersion des temps de transit en fonction du lieu d'émission d'un électron sur la photocathode.The single-channel tube described in this application is used in applications where the homogeneity of transit time between the moment when an electron is emitted by the photocathode and a moment when a bundle of electrons resulting from the multiplication of this electron by the multiplier is an important factor. A perfect tube would have transit times equal to each other regardless of the place of emission on the photocathode and the initial energy of the emitted electron. In the single-channel tubes described above, the dispersion of the transit times between photocathode and The first dynode of the multiplier is reduced by the fact that the photocathode is mounted on a hemispherical surface. Because of this form the distance between the different points of the photocathode and a center is equal. This geometry contributes to reducing the dispersion of the transit times as a function of the emission site of an electron on the photocathode.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

L'invention a pour objet un tube photomultiplicateur monovoie présentant une résolution temporelle améliorée par rapport aux tubes monovoie connus de l'art antérieur. Ce but est atteint par le fait que l'on dispose dans le tube un multiplicateur d'électrons composé de plusieurs parties multiplicatrices physiquement distinctes l'une de l'autre, et présentant entre elles une symétrie de révolution par rapport à l'axe central de la concavité. Chaque partie de multiplicatrice constitue en fait un multiplicateur autonome.The subject of the invention is a single-channel photomultiplier tube having an improved temporal resolution compared to single-channel tubes known from the prior art. This object is attained by the fact that an electron multiplier is provided in the tube composed of several multiplying parts physically distinct from each other, and presenting between them a symmetry of revolution with respect to the central axis concavity. Each multiplier part is actually an autonomous multiplier.

La photocathode hémisphérique est ainsi divisée de façon virtuelle en autant de parties de cathodes qu'il y a de parties de multiplicateurs. Lorsque la photocathode a une forme de révolution autour d'un axe, les parties de photocathode sont des secteurs angulaires dont le sommet coïncide avec l'axe de révolution. Chaque secteur de photocathode correspond à un multiplicateur dédié. Du fait de la symétrie de révolution les secteurs sont égaux entre eux. Ainsi selon l'invention on dispose dans une zone où les électrons émis par chacun des secteurs de photocathode sont focalisés de façon commune par une optique de focalisation commune, autant de premières dynodes que de secteurs. Chaque première dynode est une dynode d'un multiplicateur autonome multipliant les électrons en provenance du secteur de photocathode correspondant à cette dynode. Comme l'ensemble des dynodes, ces premières dynodes de chacun des multiplicateurs sont symétriques de révolution par rapport à l'axe du tube.The hemispherical photocathode is thus divided virtually into as many portions of cathodes as there are parts of multipliers. When the photocathode has a shape of revolution about an axis, the photocathode portions are angular sectors whose apex coincides with the axis of revolution. Each photocathode sector corresponds to a dedicated multiplier. Due to the symmetry of revolution the sectors are equal to each other. Thus, according to the invention, there is a zone in which the electrons emitted by each of the photocathode sectors are focused in common by a common optical focus, as many first dynodes as sectors. Each first dynode is a dynode of an autonomous multiplier multiplying the electrons from the photocathode sector corresponding to this dynode. Like the set of dynodes, these first dynodes of each of the multipliers are symmetrical with respect to the axis of the tube.

Du fait que les électrons en provenance d'un secteur seulement de photocathode présentent des trajectoires ayant entre elles des angles de divergence moindre que les angles de divergence présentés entre elles par les trajectoires des électrons provenant de la cathode entière, et donc des différences de longueur de parcours moindres, les différences de temps de transit des électrons de la photocathode à la première dynode de chaque multiplicateur sont moindres.Since the electrons coming from a single photocathode sector have trajectories which have angles of divergence between them less than the angles of divergence presented to each other by the trajectories of the electrons coming from the entire cathode, and therefore differences in length. For shorter journeys, the transit time differences of electrons from the photocathode to the first dynode of each multiplier are smaller.

D'autre part les trajectoires des électrons entre première dynode D1 et seconde dynode D2 de chaque multiplicateur présentent aussi entre elles des différences de longueurs de parcours qui sont plus petites que les différences de longueurs de parcours que l'on aurait avec une seule grande première dynode renvoyant les électrons vers une seule grande seconde dynode. De ce fait les différences de temps de parcours des électrons entre les première et seconde dynodes de chaque multiplicateur sont réduites également. Il en va de même quoique dans une mesure moindre des temps de parcours entre étages consécutifs de chacun des multiplicateurs.On the other hand, the trajectories of the electrons between the first dynode D1 and the second dynode D2 of each multiplier also have differences in their path lengths between them which are smaller than the differences in path lengths that one would have with a single large first. dynode returning the electrons to a single large second dynode. As a result, the differences in electron travel time between the first and second dynodes of each multiplier are also reduced. The same is true, albeit to a lesser extent, of the travel times between consecutive stages of each of the multipliers.

On obtient ainsi un tube monovoie présentant une dispersion de temps de transit moins grande que celle des tubes de l'art antérieur.This produces a single-channel tube having a transit time dispersion smaller than that of the tubes of the prior art.

En résumé l'invention est relative à un tube photomultiplicateur monovoie à moindres écarts de temps de transit comportant

  • une enveloppe étanche, ayant une paroi formant une fenêtre de transparence à des photons et comportant une face externe et une face interne présentant une concavité ayant un axe central, tournée vers l'intérieur du tube, et ayant un plan de symétrie contenant l'axe central,
  • une photocathode disposée sur la face interne de la paroi formant la fenêtre de transparence de façon à recevoir des photons lumineux ayant traversé la fenêtre de transparence,
  • une optique de focalisation comportant une ou plusieurs électrodes,
  • un multiplicateur d'électrons à structure linéaire focalisé situé en aval de l'optique dans le sens de parcours des électrons, comportant une pluralité de dynodes dont une première dynode, des dynodes intermédiaires, une avant dernière dynode et une dernière dynode,
  • une anode,
  • des moyens de raccordement traversant l'enveloppe étanche et comportant des contacts de raccordement extérieurs à l'enveloppe, eux même raccordés à des liaisons électriques internes de raccordement, pour raccorder respectivement les dynodes, la photocathode, des électrodes formant
l'optique de focalisation, et l'anode, à leur tension respective de fonctionnement,
caractérisé en ce que
  • le multiplicateur d'électrons est composé de parties physiquement distinctes l'une de l'autre, chaque partie formant un multiplicateur autonome, les multiplicateurs autonomes présentant entre eux une symétrie de révolution par rapport à l'axe central de la concavité.
In summary, the invention relates to a single-channel photomultiplier tube with fewer differences in transit time comprising
  • a sealed envelope, having a wall forming a photon transparency window and having an outer face and an inner face having a concavity having a central axis, facing the inside of the tube, and having a plane of symmetry containing the axis central,
  • a photocathode disposed on the inner face of the wall forming the transparency window so as to receive light photons having passed through the transparency window,
  • focusing optics comprising one or more electrodes,
  • an electron multiplier with a focused linear structure located downstream of the optical in the direction of travel of the electrons, comprising a plurality of dynodes including a first dynode, intermediate dynodes, a penultimate dynode and a last dynode,
  • an anode,
  • connecting means passing through the sealed envelope and having connection contacts external to the envelope, themselves connected to internal electrical connection connections, for respectively connecting the dynodes, the photocathode, electrodes forming
the focusing optics, and the anode, at their respective operating voltage,
characterized in that
  • the electron multiplier is composed of physically distinct parts of each other, each part forming an autonomous multiplier, the autonomous multipliers having between them a symmetry of revolution with respect to the central axis of the concavity.

Dans un mode de réalisation l'enveloppe étanche comporte un manchon isolant cylindrique centré sur l'axe central de la concavité portant la photocathode, la paroi formant fenêtre de transparence étant raccordée à une extrémité dudit manchon, et l'optique de focalisation comporte une électrode accélératrice et focalisatrice, une électrode correctrice de focalisation formée par une couche mince conductrice en forme de portion de surface cylindrique déposée sur la paroi intérieure du manchon ayant une extrémité proche de la photocathode dans une zone située entre la photocathode et l'électrode accélératrice, favorisant l'accélération initiale des photo-électrons de la zone périphérique en accroissant le champ électrique à leur voisinage.In one embodiment the sealed envelope comprises a cylindrical insulating sleeve centered on the central axis of the concavity carrying the photocathode, the transparent window wall being connected to one end of said sleeve, and the focusing optics comprises an electrode. accelerator and focusing device, a focusing correction electrode formed by a conductive thin film in the form of a cylindrical surface portion deposited on the inner wall of the sleeve having an end close to the photocathode in a zone situated between the photocathode and the accelerating electrode, favoring the initial acceleration of the photo-electrons of the peripheral zone by increasing the electric field in their vicinity.

Dans le mode préféré de réalisation, le tube comporte deux multiplicateurs, la concavité est hémisphérique et l'optique de focalisation et les deux multiplicateurs comportent un plan de symétrie qui est un plan de symétrie de la concavité. Cette solution permet de mettre deux multiplicateurs en parallèle avec un axe commun sur le plan de symétrie.In the preferred embodiment, the tube comprises two multipliers, the concavity is hemispherical and the focusing optics and the two multipliers comprise a plane of symmetry which is a plane of symmetry of the concavity. This solution makes it possible to put two multipliers in parallel with a common axis on the plane of symmetry.

Dans ce mode de réalisation les secteurs angulaires sont de 180°.In this embodiment the angular sectors are 180 °.

Dans une variante du mode préféré de réalisation, les premières dynodes de chaque multiplicateur ont une partie qui est la plus proche de la photocathode tangente en un même point audit plan de symétrie et présentent chacune une concavité, les concavités respectives de chacune des premières dynodes n'étant pas tournées l'une vers l'autre. Cette solution permet de mettre deux multiplicateurs en parallèle avec un point commun sur le plan de symétrie.In a variant of the preferred embodiment, the first dynodes of each multiplier have a portion that is closest to the tangent photocathode at the same point in said plane of symmetry and each have a concavity, the respective concavities of each of the first dynodes. not being turned towards each other. This solution makes it possible to put two multipliers in parallel with a common point on the plane of symmetry.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

L'invention sera maintenant décrite à l'aide des dessins annexés dans lesquels :

  • La figure 1 représente une coupe longitudinale d'un tube photomultiplicateur selon l'invention effectuée selon un plan de symétrie du tube. Des trajectoires d'électrons dans ce plan de symétrie, entre une première moitié d'une photocathode et la première dynode d'un premier multiplicateur d'électrons sont également représentées.
The invention will now be described with the aid of the accompanying drawings in which:
  • The figure 1 represents a longitudinal section of a photomultiplier tube according to the invention carried out along a plane of symmetry of the tube. Electron trajectories in this plane of symmetry between a first half of a photocathode and the first dynode of a first electron multiplier are also shown.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

La figure 1 représente une coupe longitudinale d'un tube photomultiplicateur 1 à deux multiplicateurs selon l'invention.The figure 1 represents a longitudinal section of a photomultiplier tube 1 with two multipliers according to the invention.

Le tube photomultiplicateur 1 comporte une enveloppe étanche 4, formé par un ensemble de parois assemblées entre elles. Dans l'exemple représenté, une première paroi 3 a une forme de manchon cylindrique, d'axe AA'. Le manchon cylindrique est réalisé de préférence dans une matière isolante, par exemple du verre. Le manchon est complété à une extrémité par une paroi 5 formant une fenêtre de transparence à des photons. Il est complété à l'autre extrémité par une paroi 8 de fond. Des broches 12 de raccordement des différentes électrodes situées à l'intérieur de l'enveloppe étanche 4 passent de façon étanche, et de façon en elle-même connue au travers de cette paroi 8 de fond. Lorsque le tube est en fonctionnement, ces broches 12 sont respectivement couplées à des sources de tension, appliquant des tensions de fonctionnement aux différentes électrodes du tube.The photomultiplier tube 1 comprises a sealed envelope 4, formed by a set of walls assembled together. In the example shown, a first wall 3 has a cylindrical sleeve shape, of axis AA '. The cylindrical sleeve is made of preferably in an insulating material, for example glass. The sleeve is completed at one end by a wall 5 forming a photon transparency window. It is completed at the other end by a bottom wall 8. Pins 12 connecting the different electrodes located inside the sealed envelope 4 pass sealingly, and in a manner known per se through the bottom wall 8. When the tube is in operation, these pins 12 are respectively coupled to voltage sources, applying operating voltages to the different electrodes of the tube.

La paroi 5 formant la fenêtre de transparence du tube comporte une face 6 externe plane et une face 7 interne présentant une concavité tournée vers l'intérieur du tube. Cette concavité est dans l'exemple représenté une calotte sphérique, dont le centre est situé sur l'axe AA' du tube. Elle présente donc un plan de symétrie matérialisé sur la figure 1 par l'axe AA'. La figure 1 est une coupe axiale selon un plan contenant cet axe de symétrie. Une photocathode 2 est disposée sur la face interne 7 de la paroi 5 formant la fenêtre 5 de transparence, de façon à recevoir des photons lumineux ayant traversé la fenêtre de transparence 5. De façon en elle-même connue la photocathode 2 est constituée par une couche d'un matériau photoémetteur, par exemple une couche d'un matériau multialcalin ou de l'argent-oxygène-césium, ou du césium-antimoine. Il peut aussi s'agir d'un autre matériau photoémetteur. Le matériau est choisi en fonction de ses caractéristiques spectrales de photo émission et des longueurs d'onde des photons auxquels le tube photomultiplicateur va être appliqué. De façon fictive, la photocathode 2 comporte deux parties 21, 22 symétriques l'une de l'autre par rapport à un plan de symétrie, dont l'intersection avec le plan de la figure est matérialisée sur la figure 1 par l'axe de symétrie AA' de la calotte sphérique.The wall 5 forming the window of transparency of the tube has a flat outer face 6 and an inner face 7 having a concavity turned towards the inside of the tube. This concavity is in the example shown a spherical cap, whose center is located on the axis AA 'of the tube. It therefore presents a plan of symmetry materialized on the figure 1 by the axis AA '. The figure 1 is an axial section along a plane containing this axis of symmetry. A photocathode 2 is disposed on the inner face 7 of the wall 5 forming the window 5 of transparency, so as to receive light photons having passed through the transparency window 5. In itself known manner the photocathode 2 is constituted by a layer of a light emitting material, for example a layer of multi-alkaline material or silver-oxygen-cesium, or cesium-antimony. It may also be another light emitting material. The material is chosen according to its spectral characteristics of photo emission and wavelengths of the photons to which the photomultiplier tube will be applied. Fictitiously, the photocathode 2 comprises two parts 21, 22 symmetrical to one another with respect to a plane of symmetry, whose intersection with the plane of the figure is materialized on the figure 1 by the axis of symmetry AA 'of the spherical cap.

De la photocathode 2 vers la paroi de fond 8, le tube comporte dans l'ordre, une optique 9 de focalisation comportant une électrode 13 accélératrice et focalisatrice. L'optique 9 de focalisation peut aussi comporter comme dans l'exemple représenté une électrode 15 correctrice de focalisation. Dans l'exemple représenté, cette électrode 15 correctrice de focalisation est formée par une couche mince conductrice en forme de portion de surface cylindrique déposée sur la face intérieure du manchon 3. L'électrode 15 correctrice de focalisation a dans la direction axiale une extrémité proche de la photocathode 2 dans une zone située entre la photocathode 2 et une partie qui est la plus amont de l'électrode 13 accélératrice et focalisatrice. Dans ce qui est décrit ici, l'amont et l'aval s'entendent dans le sens de parcours du flux d'électrons provenant au départ, donc en amont, de la photocathode et dirigés vers l'aval donc l'anode. L'optique de focalisation 9 est ainsi commune aux deux multiplicateurs autonomes 24, 26 du tube 1.From the photocathode 2 to the bottom wall 8, the tube comprises, in order, a focussing optics 9 comprising an accelerating and focusing electrode 13. The focusing optics 9 may also comprise, as in the example shown, a focusing correction electrode 15. In the example shown, this focusing correction electrode 15 is formed by a conductive thin film in the form of a cylindrical surface portion deposited on the inner face of the sleeve 3. The focusing correction electrode 15 has in the axial direction a close end of the photocathode 2 in an area between the photocathode 2 and a portion which is the most upstream of the accelerator and focusing electrode 13. In what is described here, the upstream and downstream are in the direction of travel of the electron flow from the start, so upstream of the photocathode and directed downstream so the anode. The focusing optics 9 is thus common to the two autonomous multipliers 24, 26 of the tube 1.

En aval de l'optique 9 de focalisation, le tube 1 comporte un multiplicateur 11 d'électrons formé par un ensemble de deux parties multiplicatrices 24, 26 physiquement distinctes l'une de l'autre et symétriques l'une de l'autre par rapport au plan de symétrie du tube. Ces parties multiplicatrices constituent des multiplicateurs autonomes 24, 26. Chacun des multiplicateurs 24, 26 comporte des dynodes en structure linéaire focalisante dite de Rajchman. Par physiquement distincts, on veut dire que les dynodes composant chacun des multiplicateurs sont physiquement distinctes des dynodes composant l'autre multiplicateur. Cela n'exclut pas que des dynodes de même rang des deux multiplicateurs 24, 26 soient raccordées à une même source de tension, et donc qu'il y ait une partie commune de raccordement. Cette partie commune de raccordement peut être à l'extérieur ou à l'intérieur de l'enveloppe 4. De même cela n'exclut pas que deux dynodes de même rang dans chacun des multiplicateurs 24, 26 aient un point ou une zone de contact l'une avec l'autre.Downstream of the focusing optics 9, the tube 1 comprises an electron multiplier 11 formed by a set of two multiplying parts 24, 26 physically separate from each other and symmetrical to each other with respect to the plane of symmetry of the tube. These multiplying parts constitute autonomous multipliers 24, 26. Each of the multipliers 24, 26 comprises dynodes in a Rajchman focusing linear structure. By physically distinct, we mean that the dynodes composing each of the multipliers are physically distinct from the dynodes composing the other multiplier. This does not exclude that dynodes of the same rank of the two multipliers 24, 26 are connected to the same voltage source, and therefore there is a common connection part. This common connection part may be outside or inside the envelope 4. Similarly, this does not exclude that two dynodes of the same rank in each of the multipliers 24, 26 have a point or a contact zone with each other.

Chaque multiplicateur 24, 26 d'électrons comporte une pluralité de dynodes dont une première dynode 31, 32, respectivement, une seconde dynode 23, 25, respectivement des dynodes intermédiaires 33, 34 respectivement, une avant dernière dynode 35, 36 respectivement et une dernière dynode 37, 38 respectivement situées en aval de l'optique 9 dans le sens de parcours des électrons.Each multiplier 24, 26 of electrons comprises a plurality of dynodes including a first dynode 31, 32, respectively, a second dynode 23, 25, respectively intermediate dynodes 33, 34 respectively, a second to last dynode 35, 36 respectively and a last dynode 37, 38 respectively located downstream of the optics 9 in the direction of travel of the electrons.

En aval de la dernière dynode 37, 38, dans le sens de parcours des électrons, le tube comporte une anode 16 formée par deux conducteurs 17, 18 respectivement, électriquement raccordés l'un à l'autre pour former une anode unique du multiplicateur 11.Downstream of the last dynode 37, 38, in the direction of travel of the electrons, the tube comprises an anode 16 formed by two conductors 17, 18 respectively, electrically connected to each other to form a single anode of the multiplier 11 .

Ainsi une première voie de multiplication du tube 1 est matérialisée par la première moitié 21 de la photocathode 2, l'optique 9 commune, le premier multiplicateur 24, et la partie 17 de l'anode 16. La seconde voie de multiplication du tube 1 est matérialisée par la seconde moitié 22 de la photocathode 2, l'optique 9 commune, le second multiplicateur 26, et la partie 18 de l'anode 16.Thus, a first multiplication channel of the tube 1 is materialized by the first half 21 of the photocathode 2, the common optic 9, the first multiplier 24, and the portion 17 of the anode 16. The second multiplication channel of the tube 1 is materialized by the second half 22 of the photocathode 2, the common optic 9, the second multiplier 26, and the portion 18 of the anode 16.

Dans l'exemple représenté sur la figure 1, les dynodes, 32, 34, 36, 38 et 31, 33, 35, 37 de même rang des deux multiplicateurs 24, 26 à l'exception d'une dynode 30, 39 de réglage de gain dans chaque multiplicateur sont raccordées à une même broche de raccordement respectivement. les dynodes 30, 39 de réglage respectivement de chacun des deux multiplicateurs 24, 26 ont un raccordement permettant un réglage en tension indépendant pour chacune d'elles.In the example shown on the figure 1 , the dynodes, 32, 34, 36, 38 and 31, 33, 35, 37 of the same rank of the two multipliers 24, 26 with the exception of a gain tuning dynode 30, 39 in each multiplier are connected to a same connection pin respectively. the dynodes 30, 39 for setting respectively each of the two multipliers 24, 26 have a connection allowing independent voltage adjustment for each of them.

Dans l'exemple représenté figure 1, les premières dynodes 31, 32 de chaque multiplicateur 24, 26 respectivement sont symétriques l'une de l'autre par rapport au plan de symétrie de la concavité de la fenêtre de transparence 5. Chacune de ces premières dynodes 31, 32 a une partie 27, 28 respectivement qui est la plus proche de la photocathode 2. les parties 27, 28 de chacune des premières dynodes 31, 32 sont respectivement tangentes en un même point l'une à l'autre et audit plan de symétrie. Les premières dynodes 31, 32 présentent une concavité dont les centres respectifs de courbure sont symétriques les uns des autres par rapport au plan de symétrie. Les centres de courbure de chacune des premières dynodes 31, 32 respectivement sont situés du même côté du plan de symétrie que la dynode correspondante. On peut voir sur la figure 1, que chacune des premières dynodes est constituée par un ensemble de quatre parties planes, la courbure d'ensemble résultant du fait que deux parties planes consécutives forment un dièdre. Dans le plan de coupe représenté, il est considéré qu'un centre de courbure d'un dièdre est le centre du cercle tangent à chacune des deux faces des parties planes formant le dièdre.In the example shown figure 1 , the first dynodes 31, 32 of each multiplier 24, 26 respectively are symmetrical to each other with respect to the plane of symmetry of the concavity of the transparency window 5. Each of these first dynodes 31, 32 has a part 27, 28 respectively which is closest to the photocathode 2. The portions 27, 28 of each of the first dynodes 31, 32 are respectively tangent at one and the same point to each other and to said plane of symmetry. The first dynodes 31, 32 have a concavity whose respective centers of curvature are symmetrical to each other with respect to the plane of symmetry. The centers of curvature of each of the first dynodes 31, 32 respectively are located on the same side of the plane of symmetry as the corresponding dynode. We can see on the figure 1 that each of the first dynodes is constituted by a set of four planar portions, the overall curvature resulting from the fact that two consecutive planar portions form a dihedron. In the section plane shown, it is considered that a center of curvature of a dihedron is the center of the circle tangent to each of the two faces of the plane portions forming the dihedron.

Le fonctionnement est le suivant :

  • De façon en elle -même connue, lorsqu'un électron est émis par la photocathode 2, cet électron est accéléré et dirigé par l'optique 9 vers l'une ou l'autre des premières dynodes 31, 32. Des trajectoires temporisées d'électrons émis par la partie 21 de la photocathode 2 sont représentées sur la figure 1. Les électrons provenant de la partie 21 sont majoritairement dirigés vers la première dynode 31 appartenant au premier multiplicateur 24. Les électrons sont multipliés par la première dynode 31 du premier multiplicateur 24. Les électrons provenant de la première dynode 31 sont projetés sur la seconde dynode 23 du premier multiplicateur 24. Les électrons sont ensuite multipliés de dynode en dynode et le flux multiplié atteint la partie 17 de l'anode unique 16.
The operation is as follows:
  • In itself known way, when an electron is emitted by the photocathode 2, this electron is accelerated and directed by the optics 9 towards one or the other of the first dynodes 31, 32. Time trajectories of electrons emitted by the part 21 of the photocathode 2 are represented on the figure 1 . The electrons coming from the part 21 are mainly directed towards the first dynode 31 belonging to the first multiplier 24. The electrons are multiplied by the first dynode 31 of the first multiplier 24. The electrons coming from the first dynode 31 are projected onto the second dynode 23 of the first multiplier 24. The electrons are then multiplied from dynode to dynode and the multiplied flux reaches the portion 17 of the single anode 16.

Les moyennes des temps de parcours des différents électrons entre la photocathode 2 et la première dynode 31 du premier multiplicateur 24 figurent en regard des points de départ des électrons sur la photocathode 2. Ces moyennes de temps de parcours varient entre 6,24 et 6,40 nanosecondes. Les différences initiales de temps de parcours sont donc très faibles. Ces différences de temps de parcours seront encore atténuées au cours de la multiplication. L'amélioration de l'homogénéité des temps de parcours est due au fait qu'il y a un moindre écart de parcours entre les électrons provenant d'un secteur tel que 21 ou 22 de la photocathode et la première dynode de chaque multiplicateur. Il en va de même entre première et seconde dynode de chaque multiplicateur.The averages of the travel times of the different electrons between the photocathode 2 and the first dynode 31 of the first multiplier 24 appear opposite the starting points of the electrons on the photocathode 2. These averages of courses vary between 6.24 and 6.40 nanoseconds. The initial differences in travel time are therefore very small. These differences in travel time will be further reduced during the multiplication. The improvement in the homogeneity of the travel times is due to the fact that there is a smaller distance of travel between the electrons from a sector such as 21 or 22 of the photocathode and the first dynode of each multiplier. It is the same between first and second dynode of each multiplier.

Le tube présentant une symétrie, tout ce qui a été dit à propos de la première voie de multiplication s'applique mutatis mutandis à la seconde voie de multiplication. Les électrons émis par la seconde partie 22 de la photocathode sont dirigés majoritairement vers la première dynode 32 du second multiplicateur 26. Le signal est recueilli sur la partie 18 de l'anode unique 16.The tube having a symmetry, all that has been said about the first multiplication channel applies mutatis mutandis to the second way of multiplication. The electrons emitted by the second part 22 of the photocathode are directed mainly towards the first dynode 32 of the second multiplier 26. The signal is collected on the part 18 of the single anode 16.

Malgré les précautions prises pour avoir une symétrie aussi grande que possible entre les deux voies, les tolérances de fabrications font que les deux voies ne sont pas aussi symétriques l'une de l'autre qu'il serait souhaitable. De ce fait, il est avantageux de prévoir dans chacun des multiplicateurs 24, 26 une dynode de réglage de gain, 30, 39 respectivement. Les dynodes de réglage de gain sont des dynodes qui contrairement aux autres dynodes de même rang de chaque multiplicateur ne sont pas raccordées à des sources de tension de même valeur. Ces dynodes 30, 39 disposent donc chacune d'une broche 12 de raccordement qui lui est propre et peut être raccordée à une source de tension qui est propre à chaque dynode de réglage de gain. Les dynodes 30, 39 permettent de faire un équilibrage du gain global de chacun des multiplicateurs 24, 26 et une égalisation des temps de transit entre voies de multiplication.Despite the precautions taken to have as much symmetry as possible between the two channels, the manufacturing tolerances make the two paths are not as symmetrical to each other as would be desirable. Therefore, it is advantageous to provide in each of the multipliers 24, 26 a gain adjustment dynode, 30, 39 respectively. Gain tuning dynodes are dynodes which unlike other dynodes of the same rank of each multiplier are not connected to voltage sources of the same value. These dynodes 30, 39 thus each have a connection pin 12 of its own and can be connected to a source of voltage that is specific to each gain adjustment dynode. The dynodes 30, 39 make it possible to balance the overall gain of each of the multipliers 24, 26 and an equalization of the transit times between the multiplication channels.

Claims (6)

  1. Single-channel photomultiplier tube (1) with lower transit time variations, comprising:
    - a sealed envelope (4), having a wall (5) forming a photon-transparent window comprising an external face (6) and an internal face (7) which has an internal concavity with a central axis (AA'), turned toward the inside of the tube, and having a plane of symmetry containing the central axis (AA'),
    - a photocathode (2) arranged on the internal face (7) of the wall (5) forming the transparency window (5) so as to receive light photons having passed through the transparency window (5),
    - focusing optics (9) comprising one or more electrodes,
    - an electron multiplier (11) with a focused linear structure located downstream of the optics (9) in the direction of travel of the electrons, comprising a plurality of dynodes (23, 25, 30-39) including a first dynode (31), intermediate dynodes (33), a penultimate dynode (35) and a final dynode (37),
    - an anode (16),
    - connection means (12) passing through the sealed envelope and comprising contacts (12) for external connection to the envelope (4), themselves connected to internal electrical connections, for respectively connecting the photocathode (2), the dynodes (23, 25, 30-39), electrodes (13, 15) forming together the focusing optics (9), and the anode (16), at their respective operating voltages,
    characterised in that
    - the electron multiplier (11) is composed of parts (24, 26) physically distinct from one another, with each part forming an autonomous multiplier (24, 26), and the autonomous multipliers (24, 26) having between them a symmetry of revolution with respect to the central axis of concavity.
  2. Photomultiplier tube (1) according to claim 1, characterised in that one (30, 39) of the dynodes (23, 25, 30-39) of each multiplier part (24, 26) is a gain setting dynode (30, 39), with each of the gain setting dynodes (30, 39) having its own connection means (12).
  3. Photomultiplier tube (1) according to one of claims 1 or 2, characterised in that the sealed envelope (4) comprises a cylindrical insulating sleeve (3) centred on the central axis of the concavity holding the photocathode (2), with the wall (5) forming a transparency window being connected to an end of said sleeve (3),
    and in which the focusing optics (9) comprise an accelerating and focusing electrode (13), a corrective focusing electrode (15) formed by a conductive thin film in the form of a cylindrical surface part deposited on the internal wall of the sleeve (3) having an end close to the photocathode (2) in an area located between the photocathode and the accelerating and focusing electrode (13).
  4. Photomultiplier tube (1) according to one of claims 1 to 3, characterised in that the internal concavity of the transparency window (5) is hemispheric and the focusing optics (9) and the two multiplier parts (24, 26) comprise a plane of symmetry that is a plane of symmetry of said internal concavity.
  5. Photomultiplier tube (1) according to claim 4, characterised in that the first dynodes (31, 32) of each multiplier part (24, 26) have a part that is closest to the photocathode (2), which is tangential in the same point to said plane of symmetry and each having a concavity, wherein the respective concavities of each of the first dynodes (31, 32) are not turned toward one another.
  6. Photomultiplier tube (1) according to one of claims 1 to 5, characterised in that the external face (6) of the transparency window (5) is planar.
EP06709472A 2005-02-09 2006-02-02 Photomultiplier tube with least transit time variations Not-in-force EP1846939B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0550383A FR2881874B1 (en) 2005-02-09 2005-02-09 PHOTOMULTIPLIER TUBE WITH LONGER SHIFTS OF TRANSIT TIME
PCT/FR2006/050090 WO2006085018A1 (en) 2005-02-09 2006-02-02 Photomultiplier tube with least transit time variations

Publications (2)

Publication Number Publication Date
EP1846939A1 EP1846939A1 (en) 2007-10-24
EP1846939B1 true EP1846939B1 (en) 2010-10-13

Family

ID=35058166

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709472A Not-in-force EP1846939B1 (en) 2005-02-09 2006-02-02 Photomultiplier tube with least transit time variations

Country Status (10)

Country Link
US (1) US7786671B2 (en)
EP (1) EP1846939B1 (en)
JP (1) JP5345784B2 (en)
CN (1) CN101116168A (en)
AT (1) ATE484842T1 (en)
DE (1) DE602006017512D1 (en)
FR (1) FR2881874B1 (en)
IN (1) IN266735B (en)
RU (1) RU2389107C2 (en)
WO (1) WO2006085018A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449834B2 (en) 2006-10-16 2008-11-11 Hamamatsu Photonics K.K. Photomultiplier having multiple dynode arrays with corresponding insulating support member
US20130299713A1 (en) * 2010-11-15 2013-11-14 Schlumberger Technology Corporation Multiplier Tube Neutron Detector
WO2013043749A1 (en) * 2011-09-20 2013-03-28 Muons, Inc. Method and apparatus for high brightness superconducting radio frequency (rf) photoinjector gun cavity (srf gun)
RU2587469C2 (en) * 2013-11-29 2016-06-20 Федеральное государственное бюджетное учреждение "Государственный научный центр Российской Федерации-Институт физики высоких энергий" Национального исследовательского центра "Курчатовский институт" Photomultiplier
CN103915311B (en) * 2014-03-20 2017-01-18 中国科学院高能物理研究所 Photomultiplier of electrostatic focusing micro-channel plates
CN104465294B (en) * 2014-11-13 2017-02-01 西安交通大学 Dynamic multi-stage serial connection coaxial butterfly-type channel dynode electron multiplier
CN108444597A (en) * 2018-04-25 2018-08-24 深圳大学 A kind of streak camera and streak camera system of imaging performance stabilization
CN109454869B (en) * 2018-09-28 2020-07-24 长春理工大学 Pointolite multiplication scanning printing device for large-size photosensitive 3D printing
US10784095B2 (en) * 2018-12-18 2020-09-22 Thermo Finnigan Llc Multidimensional dynode detector
FI129757B (en) * 2020-10-22 2022-08-15 Fenno Aurum Oy An ultraviolet flame detector
CN113299536B (en) * 2021-04-16 2022-08-05 中国科学院西安光学精密机械研究所 Multiplication cluster type photomultiplier
WO2023076325A2 (en) * 2021-10-26 2023-05-04 Smiths Detection Inc. Systems and methods for suppressing x-ray interference in radiation portal monitors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183390A (en) * 1963-06-05 1965-05-11 Roderick J Grader Photomultiplier
FR1516923A (en) * 1967-01-13 1968-02-05 Hyperelec Electron multiplier structure with adapted output

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL264400A (en) 1960-05-05
FR1288477A (en) * 1960-05-05 1962-03-24 Rca Corp Photomultiplier tube
JPS6030064B2 (en) * 1980-09-27 1985-07-13 浜松ホトニクス株式会社 photoelectric conversion tube
JPH0795437B2 (en) * 1987-04-18 1995-10-11 浜松ホトニクス株式会社 Photomultiplier tube
US5077504A (en) * 1990-11-19 1991-12-31 Burle Technologies, Inc. Multiple section photomultiplier tube
JP3215486B2 (en) * 1992-04-09 2001-10-09 浜松ホトニクス株式会社 Photomultiplier tube
FR2693592B1 (en) * 1992-07-08 1994-09-23 Philips Photonique Photomultiplier tube segmented into N independent channels arranged around a central axis.
JPH06150876A (en) * 1992-11-09 1994-05-31 Hamamatsu Photonics Kk Photomultiplier and electron multiplier
US5823468A (en) 1995-10-24 1998-10-20 Bothe; Hans-Jurgen Hybrid aircraft
JP3739926B2 (en) * 1998-03-02 2006-01-25 浜松ホトニクス株式会社 Photomultiplier tube
GB2369720B (en) * 2000-12-01 2005-02-16 Electron Tubes Ltd Photomultiplier
US7285783B2 (en) * 2003-06-11 2007-10-23 Hamamatsu Photonics K.K. Multi-anode type photomultiplier tube and radiation detector
WO2005091332A1 (en) * 2004-03-22 2005-09-29 Hamamatsu Photonics K. K. Multianode electron multiplier
US7064485B2 (en) * 2004-03-24 2006-06-20 Hamamatsu Photonics K.K. Photomultiplier tube having focusing electrodes with apertures and screens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183390A (en) * 1963-06-05 1965-05-11 Roderick J Grader Photomultiplier
FR1516923A (en) * 1967-01-13 1968-02-05 Hyperelec Electron multiplier structure with adapted output

Also Published As

Publication number Publication date
FR2881874B1 (en) 2007-04-27
WO2006085018A1 (en) 2006-08-17
RU2007133510A (en) 2009-03-20
ATE484842T1 (en) 2010-10-15
FR2881874A1 (en) 2006-08-11
EP1846939A1 (en) 2007-10-24
DE602006017512D1 (en) 2010-11-25
IN266735B (en) 2015-05-28
US7786671B2 (en) 2010-08-31
JP5345784B2 (en) 2013-11-20
US20080258619A1 (en) 2008-10-23
JP2008530746A (en) 2008-08-07
RU2389107C2 (en) 2010-05-10
CN101116168A (en) 2008-01-30

Similar Documents

Publication Publication Date Title
EP1846939B1 (en) Photomultiplier tube with least transit time variations
FR2925218A1 (en) IMAGE INTENSIFIER TUBE WITH REDUCED SIZE AND NIGHT VISION SYSTEM EQUIPPED WITH SUCH A TUBE
US9064678B2 (en) Vacuum photosensor device with electron lensing
EP1495500A1 (en) Electroluminescent panel which is equipped with light extraction elements
EP0554145B1 (en) Image intensifier tube, particularly of the proximity focusing type
EP3654362B1 (en) Electron tube
JPWO2002067287A1 (en) Photomultiplier tube
JPH06310084A (en) Electron multiplier
US6674063B2 (en) Photosensor with a photocathode in reflective mode
WO2007003723A2 (en) Multi-channel electron multiplier tube
JP2003338260A (en) Semiconductor photoelectric surface and its manufacturing method, and photodetection tube using this semiconductor photoelectric face
FR2875331A1 (en) Multiple section photoelectric electron-multiplier tube, has transparent window with cavities provided as hollow parts with surfaces receiving photo-emissive layer to form photocathode, where each surface forms photocathode zone
JP6976122B2 (en) Electron tube
EP0044239B1 (en) Microchannels image intensifier tube and image pick-up assembly comprising such a tube
EP0155890B1 (en) Slit-scanning image converter tube
EP3863038B1 (en) Electron tube, imaging device and electromagnetic wave detection device
FR2875332A1 (en) Multi section photoelectric electron multiplier tube for processing radiations, has transparent window with slots delimiting photo-cathode zones corresponding to sections, and filled with material having photon absorbing/reflecting ability
EP0412887A1 (en) High efficiency cathodoluminescent screen for high luminance cathode ray tube
FR2955426A1 (en) Multi-channel photomultiplier tube i.e. four channel photomultiplier tube, for positron emission tomography application, has envelope comprising wall forming window, where surface of concavity of window is equal to surface of outer face
EP0110458B1 (en) Cathode ray tube with a luminescent screen, process for manufacturing a screen for such a tube and television picture projection tube with such a screen
US10515775B1 (en) Electron tube
FR2491677A1 (en) Electron multiplier for X=ray imaging tube - has multiplying elements which subtend angle w.r.t. axis of appts. which is proportional to element-axis spacing
FR2596200A1 (en) IMAGE GENERATION TUBE
FR2955427A1 (en) Multi-channel photomultiplier tube i.e. four channel photomultiplier tube, for positron emission tomography application, has window whose concavity has surface equal to outer face's surface, and stage provided with dynodes through concavity
WO2007000438A1 (en) Compact photomultiplier tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070726

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006017512

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101013

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110124

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

26N No opposition filed

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006017512

Country of ref document: DE

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006017512

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: PHOTONIS FRANCE

Free format text: PHOTONIS#AVENUE ROGER RONCIER#19100 BRIVE LA GAILLARDE (FR) -TRANSFER TO- PHOTONIS FRANCE#AVENUE ROGER RONCIER#19100 BRIVE LA GAILLARDE (FR)

BECH Be: change of holder

Owner name: HAINAN ZHANCHUANG INFORMATION TECHNOLOGYCY LTD

Effective date: 20130103

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: HAINAN ZHANCHUANG INFORMATION TECHNOLOGY COMPA, CN

Effective date: 20130326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20190116

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190218

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190228

Year of fee payment: 14

Ref country code: BE

Payment date: 20190222

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229