EP1840334A2 - Schicht - Google Patents

Schicht Download PDF

Info

Publication number
EP1840334A2
EP1840334A2 EP07008969A EP07008969A EP1840334A2 EP 1840334 A2 EP1840334 A2 EP 1840334A2 EP 07008969 A EP07008969 A EP 07008969A EP 07008969 A EP07008969 A EP 07008969A EP 1840334 A2 EP1840334 A2 EP 1840334A2
Authority
EP
European Patent Office
Prior art keywords
electrolyte
nickel
combustion chamber
powder
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07008969A
Other languages
English (en)
French (fr)
Other versions
EP1840334A3 (de
Inventor
Werner Dr. Stamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1840334A2 publication Critical patent/EP1840334A2/de
Publication of EP1840334A3 publication Critical patent/EP1840334A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium

Definitions

  • the invention relates to a layer according to claim 1.
  • Electrolytic coating processes use an electrolyte in which the elements to be deposited are either dissolved in a solution or dispersed as powder particles in a solution. However, alloys can be deposited poorly in this way.
  • the task is solved by a layer.
  • the electrolyte for the electrolytic deposition of an alloy is a solution of at least the element of the matrix material and furthermore contains dispersed powder.
  • Solved means that the component is present as an ion in a solution (water, alcohol, acid, lye, ).
  • the matrix material may be either cobalt or nickel.
  • at least one further element of the alloy may be dissolved in the electrolyte.
  • nickel and cobalt may be dissolved in the electrolyte.
  • the powder containing the further constituents of the alloy may have either chromium or aluminum or chromium and aluminum.
  • the powder may comprise the elements chromium, aluminum and yttrium.
  • the elements chromium, aluminum and yttrium, silicon and / or rhenium may also be present as dispersed powder in the electrolyte.
  • the matrix material consists of nickel or cobalt.
  • the alloy consists, for example, of at least three elements, in particular of at least five elements (for example NiCoCrAlX).
  • the electrolyte contains, for example, at least one of the elements chromium, aluminum as a dispersed powder.
  • melting point depressants such as B, Si, Hf, Zr may be dissolved in the electrolyte or may be present as a powder.
  • coatings based on superalloys can be deposited with the electrolyte according to the invention.
  • the powder still contains the elements titanium, tantalum, tungsten, molybdenum, niobium, boron, zirconium, or carbon.
  • layers can be deposited on a substrate by means of the electrolytes according to the invention.
  • a heat treatment can be carried out in order, for example, to achieve better bonding of the electrolytically produced layer to the substrate.
  • further metallic and / or ceramic layers can be applied to the electrolytically produced layer.
  • a drawback with a prior art electrolytic process is that it is very difficult for an alloy to dissolve all components in the solution.
  • the other possibility namely to disperse all constituents as powder in the solution, leads to the problem that the deposition process is very strongly determined by the powder particles of the matrix material, which occupy a large volume fraction. This often leads to an irregular or uncontrolled deposition of alloying elements with a smaller volume or weight fraction.
  • the electrolyte of the invention solves the problem in that the largest proportion (matrix material) of the alloy to be deposited is dissolved and the other elements are present as a powder.
  • the electrolyte according to the invention opens up the possibility of varying the stoichiometry of the alloy during the electrolytic deposition by varying the proportions of powder by constantly increasing, for example by adding powder, the proportion of an alloying element and thus achieving a gradation in the concentration of this alloying element in the layer to be produced.
  • FIG. 1 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406. As a guide blade 130, the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • blades 120, 130 for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • WO 99/67435 or WO 00/44949 known; these references are part of the disclosure regarding the superalloy chemical compositions.
  • the blade 120, 130 can in this case by a casting process, also by means of directional solidification, by a forging process, be made by a milling method or combinations thereof.
  • the blades 120, 130 may have coatings against corrosion or oxidation (MCrAlX; M is at least one element the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • M is at least one element the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 whose chemical compositions are intended to be part of this disclosure.
  • a thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 2 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber in which a plurality of circumferentially arranged about the rotation axis 102 around Burners 107 open into a common combustion chamber space.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. These may be solid ceramic stones or alloys with MCrA1X and / or ceramic coatings. The materials of the combustion chamber wall and its coatings may be similar to the turbine blades.
  • Due to the high temperatures inside the combustion chamber 110 may also be provided for the heat shield elements 155 and for their holding elements, a cooling system.
  • the combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155.
  • a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.
  • FIG. 3 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • a suction housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the ring combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths or hafnium).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 to be part of this revelation.
  • a thermal barrier coating On the MCrAlX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , that is, it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Abstract

Bisherige Elektrolyten sind nicht unbedingt dafür geeignet, eine Legierung abzuscheiden. Der erfindungsgemäße Elektrolyt weist zumindest ein Element auf, das in ihm gelöst ist und das das Matrixmaterial der abzuscheidenden Legierung darstellt. Weitere Legierungsbestandteile sind als Pulver dispergiert in dem Elektrolyt enthalten.

Description

  • Die Erfindung betrifft eine Schicht gemäß Anspruch 1.
  • Elektrolytische Beschichtungsverfahren verwenden einen Elektrolyt, in dem die abzuscheidenden Elemente entweder in einer Lösung gelöst oder als Pulverteilchen dispergiert in einer Lösung vorhanden sind.
    Jedoch lassen sich Legierungen auf diese Art und Weise schlecht abscheiden.
  • Es ist daher Aufgabe der Erfindung dieses Problem zu überwinden.
  • Die Aufgabe wird gelöst durch eine Schicht.
  • Es zeigen
  • Figur 1
    eine Turbinenschaufel,
    Figur 2
    eine Brennkammer
    Figur 3
    eine Gasturbine und
    Figur 4
    Zusammensetzung von Legierungen, die aus einem erfindungsgemäßen Elektrolyten abscheidbar sind.
  • Der Elektrolyt zur elektrolytischen Abscheidung einer Legierung ist erfindungsgemäß eine Lösung aus zumindest dem Element des Matrixmaterials und enthält weiterhin dispergiertes Pulver. Gelöst bedeutet, dass der Bestandteil als Ion in einer Lösung (Wasser, Alkohol, Säure, Lauge, ...) vorhanden ist.
  • Das Matrixmaterial kann entweder Kobalt oder Nickel sein. Neben dem Matrixmaterial kann noch zumindest ein weiteres Element der Legierung im Elektrolyt gelöst sein. So kann Nickel und Kobalt in dem Elektrolyt gelöst sein.
  • Das Pulver, das die weiteren Bestanteile der Legierung enthält, kann entweder Chrom oder Aluminium oder Chrom und Aluminium aufweisen.
    Ebenso kann das Pulver die Elemente Chrom, Aluminium und Yttrium aufweisen.
    Neben den Elementen Chrom, Aluminium und Yttrium kann auch noch Silizium und/oder Rhenium als dispergiertes Pulver in dem Elektrolyten vorhanden sein.
  • Im Falle von so genannten MCrAIX-Legierungen besteht das Matrixmaterial aus Nickel oder Kobalt.
    Die Legierung besteht beispielsweise aus zumindest drei Elementen, insbesondere aus zumindest fünf Elementen (bspw. NiCoCrAlX). Der Elektrolyt enthält beispielsweise noch zumindest eines der Elemente Chrom, Aluminium als dispergiertes Pulver.
  • Ebenso können Schmelzpunkterniedriger wie B, Si, Hf, Zr im Elektrolyt gelöst sein oder als Pulver vorhanden sein.
  • Ebenso können Beschichtungen auf Basis von Superlegierungen mit dem erfindungsgemäßen Elektrolyt abgeschieden werden.
    Für einen Elektrolyten, mit dem eine Schicht basierend auf einer Superlegierung abgeschieden oder ein Substrat aus einer Superlegierung repariert werden soll, enthält das Pulver beispielsweise noch die Elemente Titan, Tantal, Wolfram, Molybdän, Niob, Bor, Zirkonium oder Kohlenstoff.
  • Mit einer entsprechenden Elektrolyseapparatur können Schichten mittels der erfindungsgemäßen Elektrolyte auf einem Substrat abgeschieden werden. Nach der elektrolytischen Erzeugung der Schicht kann eine Wärmebehandlung durchgeführt werden, um beispielsweise eine bessere Anbindung der elektrolytisch erzeugten Schicht an das Substrat zu erreichen.
    In einem weiteren Schritt können noch weitere metallische und/oder keramische Schichten auf die elektrolytisch erzeugte Schicht aufgebracht werden.
  • Ein Nachteil bei einem elektrolytischen Verfahren nach dem Stand der Technik liegt darin, dass es bei einer Legierung sehr schwierig ist, alle Bestandteile in der Lösung aufzulösen.
    Die andere Möglichkeit, nämlich alle Bestandteile als Pulver in der Lösung zu dispergieren, führt zu dem Problem, dass der Abscheidungsprozess sehr stark bestimmt wird durch die Pulverteilchen des Matrixmaterials, das einen großen Volumenanteil einnimmt. Dabei kommt es oft zu einer unregelmäßigen oder unkontrollierten Abscheidung der Legierungselemente mit kleinerem Volumen oder Gewichtsanteil.
    Der erfindungsgemäße Elektrolyt löst das Problem dadurch, dass der größte Anteil (Matrixmaterial) der abzuscheidenden Legierung gelöst ist und die weiteren Elemente als Pulver vorhanden sind.
  • Ebenso eröffnet der erfindungsgemäße Elektrolyt die Möglichkeit durch Variation der Pulveranteile die Stöchiometrie der Legierung während der elektrolytischen Abscheidung zu verändern, indem man beispielsweise durch Zugabe von Pulver den Anteil eines Legierungselements ständig erhöht und so eine Gradierung in der Konzentration dieses Legierungselements in der herzustellenden Schicht erreicht.
  • Ausführungsbeispiele
    • I. Die gewünschte Zusammensetzung einer MCrAIX-Legierung besteht zumindest aus (in wt%):
      • 20-22% Chrom,
      • 10,5-11,5% Aluminium,
      • 0,3-0,5% Yttrium,
      • 1,5-2,5% Rhenium,
      • 11-13% Kobalt und
      • Rest Nickel.
      Dabei sind Kobalt und Nickel im Elektrolyten gelöst und das Pulver, das dem wässrigen Elektrolyten beigefügt ist, besteht beispielsweise aus (in wt%)
      61,8% Chrom,
      32,3% Aluminium,
      0,9% Yttrium und
      5% Rhenium.
    • II. Eine weitere MCrAlX-Legierung besteht zumindest aus (in wt%) :
      • 27-29% Chrom,
      • 7-8% Aluminium,
      • 0,5-0,7% Yttrium,
      • 0,3-0,7% Silizium,
      • 29-31% Nickel und
      • Rest Kobalt.
      Dabei sind in dem Elektrolyten wiederum die Elemente Kobalt und Nickel gelöst und das Pulver weist beispielsweise folgende Gewichtsverteilungen auf:
      • 76,5% Chrom,
      • 20,5% Aluminium,
      • 1,6% Yttrium und
      • 1,4% Silizium.
    • III. Weiteres Ausführungsbeispiel für eine MCrAIX-Legierung ist
      16-18% Chrom,
      12-13% Aluminium,
      0,5-0,7% Yttrium,
      0,3-0,5% Silizium,
      21-23% Kobalt und
      Rest Nickel.
      Dabei sind wiederum Kobalt und Nickel in dem Elektrolyten gelöst und das Pulver weist beispielsweise folgende Gewichtsbestandteile auf:
      • 56,7% Chrom,
      • 40% Aluminium,
      • 2% Yttrium,
      • 1,3% Silizium.
    • IV. Weiteres Ausführungsbeispiel für eine MCrAlX-Legierung:
      • 16-18% Chrom,
      • 9,5-11% Aluminium,
      • 0,3-0,5% Yttrium,
      • 1-1,8% Rhenium,
      • 24-26% Kobalt,
      • Rest Nickel.
      Dabei sind wiederum Kobalt und Nickel in dem Elektrolyten gelöst und das Pulver enthält
      58,8% Chrom,
      34,6% Aluminium,
      1,4% Yttrium und
      5,2% Rhenium.
  • Als Beispiel für die Zusammensetzung einer Superlegierung sei hier beispielhaft IN 738 aus der Figur 4 erwähnt mit den Anteilen:
    • 15 17% Chrom,
    • 3,2 3,7% Aluminium,
    • 3,2-3,7% Titan,
    • 1,5-2,0% Tantal,
    • 2,4-2,8% Wolfram,
    • 1,5-2,0% Molybdän,
    • 0,6-1,1% Niob,
    • 0,0007-0,012% Bor,
    • 0,015-0,06% Zirkonium,
    • 8-9% Kobalt,
    • Rest Nickel.
  • Hier sind Kobalt und Nickel bspw. ebenfalls wieder in dem Elektrolyten gelöst und das Pulver weist beispielsweise folgende Bestandteile in wt% auf:
    • 53,8% Chrom,
    • 11,4% Aluminium,
    • 11,4% Titan,
    • 5,9% Tantal,
    • 8,7% Wolfram,
    • 5,9% Molybdän,
    • 2,8% Niob,
    • 0,03% Bor,
    • 0,13% Zirkonium.
  • Andere Schichten aus Superlegierungen gemäß der Figur 4 werden ebenfalls so hergestellt.
  • Figur 1 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
  • Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.
  • Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 auf.
    Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).
  • Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).
    Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
    Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.
  • Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.
    Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bezüglich den chemischen Zusammensetzungen der Superlegierung Teil der Offenbarung.
    Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
  • Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
    Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
    Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
    Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).
    Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt; diese Schriften sind Teil der Offenbarung.
  • Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 , deren chemischen Zusammensetzungen Teil dieser Offenbarung sein sollen. Diese Schichten könne mit dem erfindungsgemäßen Verfahren elektrolytisch aufgebracht werden.
  • Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrO2, Y2O4-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
    Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
  • Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wiederbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.
  • Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.
  • Die Figur 2 zeigt eine Brennkammer 110 einer Gasturbine.
    Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.
    Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.
  • Jedes Hitzeschildelement 155 ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht ausgestattet oder aus hochtemperaturbeständigem Material gefertigt. Dies können massive keramische Steine oder Legierungen mit MCrA1X und/oder keramischen Beschichtungen sein.
    Die Materialien der Brennkammerwand und deren Beschichtungen können ähnlich der Turbinenschaufeln sein.
  • Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein.
  • Die Brennkammer 110 ist insbesondere für eine Detektion von Verlusten der Hitzeschildelemente 155 ausgelegt. Dazu sind zwischen der Brennkammerwand 153 und den Hitzeschildelementen 155 eine Anzahl von Temperatursensoren 158 positioniert.
  • Die Figur 3 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
    Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird.
  • Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
    Die Ringbrennkammer 106 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
    Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
  • Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
    An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
  • Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
  • Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet.
    Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
    Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
    Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
  • Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 , die Teil dieser Offenbarung sein sollen.
  • Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus ZrO2, Y2O4-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid. Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
  • Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.

Claims (1)

  1. Schicht
    zumindest bestehend aus (in wt%):
    27%-29% Chrom,
    7%-8% Aluminium,
    0,5%-0,7% Yttrium,
    0,3%-0,7% Silizium,
    29%-31% Nickel und
    Rest Kobalt.
EP07008969A 2004-12-23 2005-09-29 Schicht Withdrawn EP1840334A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04030732A EP1674662A1 (de) 2004-12-23 2004-12-23 Elektrolyt für die Abscheidung einer Legierung und Verfahren zur elektrolytischen Abscheidung
EP05801373A EP1807554A2 (de) 2004-12-23 2005-09-29 Elektrolyt f]r die abscheidung einer legierung und verfahren zur elektrolytischen abscheidung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP05801373A Division EP1807554A2 (de) 2004-12-23 2005-09-29 Elektrolyt f]r die abscheidung einer legierung und verfahren zur elektrolytischen abscheidung

Publications (2)

Publication Number Publication Date
EP1840334A2 true EP1840334A2 (de) 2007-10-03
EP1840334A3 EP1840334A3 (de) 2007-11-14

Family

ID=34927990

Family Applications (4)

Application Number Title Priority Date Filing Date
EP04030732A Withdrawn EP1674662A1 (de) 2004-12-23 2004-12-23 Elektrolyt für die Abscheidung einer Legierung und Verfahren zur elektrolytischen Abscheidung
EP05801373A Withdrawn EP1807554A2 (de) 2004-12-23 2005-09-29 Elektrolyt f]r die abscheidung einer legierung und verfahren zur elektrolytischen abscheidung
EP07008970A Not-in-force EP1840335B1 (de) 2004-12-23 2005-09-29 Schicht
EP07008969A Withdrawn EP1840334A3 (de) 2004-12-23 2005-09-29 Schicht

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP04030732A Withdrawn EP1674662A1 (de) 2004-12-23 2004-12-23 Elektrolyt für die Abscheidung einer Legierung und Verfahren zur elektrolytischen Abscheidung
EP05801373A Withdrawn EP1807554A2 (de) 2004-12-23 2005-09-29 Elektrolyt f]r die abscheidung einer legierung und verfahren zur elektrolytischen abscheidung
EP07008970A Not-in-force EP1840335B1 (de) 2004-12-23 2005-09-29 Schicht

Country Status (5)

Country Link
EP (4) EP1674662A1 (de)
AT (1) ATE426733T1 (de)
DE (1) DE502005006969D1 (de)
ES (1) ES2321236T3 (de)
WO (1) WO2006069816A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896817B2 (en) * 2005-08-05 2011-03-01 Devicor Medical Products, Inc. Biopsy device with manually rotated sample barrel
EP1793008A1 (de) * 2005-12-02 2007-06-06 Siemens Aktiengesellschaft Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen und Bauteil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273712A (en) * 1989-08-10 1993-12-28 Siemens Aktiengesellschaft Highly corrosion and/or oxidation-resistant protective coating containing rhenium
US5599385A (en) * 1990-08-10 1997-02-04 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating for a component, in particular a gas turbine component
WO2000036180A1 (fr) * 1998-12-16 2000-06-22 Onera (Office National D'etudes Et De Recherches Aerospatiales) PROCEDE POUR FORMER UN REVETEMENT D'ALLIAGE METALLIQUE DE TYPE MCrAlY
EP1295969A1 (de) * 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd Verfahren zur Züchtung einer MCrAlY-Beschichtung und damit beschichteter Gegenstand
EP1380672A1 (de) * 2002-07-09 2004-01-14 Siemens Aktiengesellschaft Hochoxidationsbeständige Komponente

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599352A5 (de) * 1976-10-15 1978-05-31 Bbc Brown Boveri & Cie
CA2048804A1 (en) * 1990-11-01 1992-05-02 Roger J. Perkins Long life abrasive turbine blade tips
US5316866A (en) * 1991-09-09 1994-05-31 General Electric Company Strengthened protective coatings for superalloys
GB9414858D0 (en) * 1994-07-22 1994-09-14 Baj Coatings Ltd Protective coating
US5939204A (en) * 1995-08-16 1999-08-17 Siemens Aktiengesellschaft Article for transporting a hot, oxidizing gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273712A (en) * 1989-08-10 1993-12-28 Siemens Aktiengesellschaft Highly corrosion and/or oxidation-resistant protective coating containing rhenium
US5599385A (en) * 1990-08-10 1997-02-04 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating for a component, in particular a gas turbine component
WO2000036180A1 (fr) * 1998-12-16 2000-06-22 Onera (Office National D'etudes Et De Recherches Aerospatiales) PROCEDE POUR FORMER UN REVETEMENT D'ALLIAGE METALLIQUE DE TYPE MCrAlY
EP1295969A1 (de) * 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd Verfahren zur Züchtung einer MCrAlY-Beschichtung und damit beschichteter Gegenstand
EP1380672A1 (de) * 2002-07-09 2004-01-14 Siemens Aktiengesellschaft Hochoxidationsbeständige Komponente

Also Published As

Publication number Publication date
EP1840335A3 (de) 2007-11-14
WO2006069816A3 (de) 2007-08-23
WO2006069816A2 (de) 2006-07-06
ES2321236T3 (es) 2009-06-03
EP1807554A2 (de) 2007-07-18
ATE426733T1 (de) 2009-04-15
EP1674662A1 (de) 2006-06-28
EP1840335B1 (de) 2009-03-25
EP1840335A2 (de) 2007-10-03
DE502005006969D1 (de) 2009-05-07
EP1840334A3 (de) 2007-11-14

Similar Documents

Publication Publication Date Title
EP1707653B1 (de) Schichtsystem
EP2465958B1 (de) Legierung, Schutzschicht und Bauteil
EP2612949B1 (de) Legierung, Schutzschicht und Bauteil
EP1783248A1 (de) Zweilagiges thermisches Schutzschichtsystem mit Pyrochlor-Phase
EP1716965A1 (de) Lot mit metallischem elementarem Zusatzpulver
EP1793008A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen und Bauteil
EP1798299B1 (de) Legierung, Schutzschicht und Bauteil
EP1806418A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen und Bauteil
EP1790743A1 (de) Legierung, Schutzschicht und Bauteil
DE202006009603U1 (de) Zweilagiges Schichtsystem mit Pyrochlor-Phase
EP1854898A1 (de) Legierung, Schutzschicht und Bauteil
EP2474413A1 (de) Legierung, Schutzschicht und Bauteil
EP2710167B1 (de) Legierung, schutzschicht und bauteil
EP1840335B1 (de) Schicht
DE202005020695U1 (de) Schichtsystem
EP1681374B1 (de) Schichtsystem mit Sperrschicht und Verfahren zur Herstellung
EP2611949B1 (de) Nickel basis legierung, schutzschicht und bauteil
EP2661370B1 (de) Legierung, schutzschicht und bauteil
EP1790746B1 (de) Legierung, Schutzschicht und Bauteil
EP1806419B1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen und Bauteil
EP2568054A1 (de) Legierung, Schutzschicht und Bauteil
EP1818419A1 (de) Legierung, Schutzschicht und Bauteil
EP2345748A1 (de) Legierung, Schutzschicht und Bauteil
EP2354260A1 (de) Legierung, Schutzschicht und Bauteil
EP1798300A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und/oder Oxidation bei hohen Temperaturen und Bauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070511

AC Divisional application: reference to earlier application

Ref document number: 1807554

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CZECH, NORBERT, DR.

Inventor name: SCHMITZ, FRIEDHEIM

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 15/02 20060101ALN20070816BHEP

Ipc: C25D 3/56 20060101ALN20070816BHEP

Ipc: C22C 19/05 20060101ALI20071011BHEP

Ipc: C22C 19/07 20060101ALI20071011BHEP

Ipc: F01D 5/28 20060101AFI20070816BHEP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080515