EP1837645B1 - Sensor für thermische Leitfähigkeit - Google Patents

Sensor für thermische Leitfähigkeit Download PDF

Info

Publication number
EP1837645B1
EP1837645B1 EP07251159.5A EP07251159A EP1837645B1 EP 1837645 B1 EP1837645 B1 EP 1837645B1 EP 07251159 A EP07251159 A EP 07251159A EP 1837645 B1 EP1837645 B1 EP 1837645B1
Authority
EP
European Patent Office
Prior art keywords
measure
base
sensor according
sections
sensing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07251159.5A
Other languages
English (en)
French (fr)
Other versions
EP1837645A3 (de
EP1837645A2 (de
Inventor
Martin Picton Lopez
James Hobby
Bahram Alizadeh
Richard P. Kovacich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Servomex Group Ltd
Original Assignee
Servomex Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servomex Group Ltd filed Critical Servomex Group Ltd
Publication of EP1837645A2 publication Critical patent/EP1837645A2/de
Publication of EP1837645A3 publication Critical patent/EP1837645A3/de
Application granted granted Critical
Publication of EP1837645B1 publication Critical patent/EP1837645B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Definitions

  • K P A dT dx
  • P the power dissipated through thermal conductivity
  • dT/dx the thermal gradient with distance between the two surfaces.
  • thermal conductivity of a fluid is to measure the power required to maintain a defined thermal gradient where A is known and the other loss mechanisms are defined. K can also be measured in the time domain where the thermal gradient is changing with time.
  • the change in the thermal conductivity with fluid composition for binary or pseudo-binary mixtures can also be used to determine the concentration of the components, provided that the components have different thermal conductivities and that the system has been calibrated or that the component thermal conductivities are known.
  • the present invention uses a sensor design whereby both measurement and reference sections of the element are held within substantially the same environment, such that all changes in the fluid are common to both measure and reference sections, except for the thermal conductivity properties of the fluid itself. This allows for common mode rejection of background noise, thus enhancing the performance of the sensor.
  • the preferred embodiment of sensor comprises an inverted cup-shaped housing 1 having an open end located on a base member 2.
  • a tubular shroud 3 is located within the housing 1 so as to form an annular space 4 between the outer walls of the shroud 3 and the inner wall of the housing.
  • the shroud 3 is shorter than the height of the housing 1 and is open topped.
  • Fluid to be monitored is introduced into the space 4 through an inlet port 5 in the housing and is exhausted through an outlet port 6 from the closed end of the housing 1.
  • the closed end is shaped so as to promote diffusion of some of the fluid flow into the interior of the tubular shroud through its open end 7 which is spaced from the end of the housing 1.
  • a diffusive element 8 may be present to more precisely control the diffusion rate of the fluid through the open end of the shroud 7 and hence minimise any residual flow effects.
  • a sensing module 9 is located within the tubular shroud and electrical connections 10 to the module 9 are achieved through an aperture in the base member 2.
  • the fluid in the space 4 has its temperature maintained stable by means of a heater 11 which is shown as being located in the exterior of the housing in the region of the space 4.
  • a temperature sensor 12 is provided for monitoring the temperature of the fluid into space 4.
  • the housing 1 is designed to pre-heat the fluid, if required, maintain a uniform temperature and to provide a flow environment which is substantially diffusion driven by the time the fluid reaches the sensing module 9.
  • the sensing module consists of a disc 13 mounted at a defined height from a base 14, which is also maintained at a stable temperature.
  • the disc 13 is held within a cylindrical oven, whose symmetry further enhances the common mode environment between the measure and reference sections of the disc.
  • the sensing element is shown as a thick film printed disc 13 containing measure and reference sections 15,16 (identical platinum resistors) mounted on a common planar platform in the form of a ceramic substrate 17, but could equally well be composed of multiple elements, a thin film structure, precision resistors, thermistors or other thermal elements.
  • Thermal breaks 18 are provided in the substrate between the measure and reference sections 15, 16.
  • P M is the power dissipated through thermal conductivity through the fluid for the measure section
  • P R is the power dissipated through thermal conductivity through the fluid for the reference section
  • A is the surface area for the measure and reference sections of the disc (half the area of the disc)
  • T D is the temperature of the disc (both measure and reference sections)
  • T B is the temperature of the base
  • x is the distance between the measuring element and the base
  • d is the step height in the base.
  • the distance x is kept small compared the disc radius to enhance the sensitivity by the thermal conductivity losses through the medium to the base and to maintain a small diffusion volume.
  • the step height d should be sufficient to provide the required sensitivity, whilst still maintaining a similar environment to that experienced by the measure section.
  • Fig.3 illustrates measurements taken using the above embodiment with platinum resistor tracks printed on an yttria stabilised zirconia disc with thermal slots present.
  • the graph shows that the signal (power difference) is proportional to the hydrogen concentration for a hydrogen/nitrogen gas mixture. Since the thermal conductivities of pure hydrogen and nitrogen gases differ substantially (hydrogen being larger), increasing levels of hydrogen increase the thermal conductivity of the fluid mixture and hence the concentration of hydrogen in the mix can be established if the sensor has been calibrated using known standards.
  • the open structure above the disc and small diffusion volume beneath the disc allow a quick inter-change time when the fluid composition changes and hence a fast flush time.
  • This principle could be used with multiple measuring and reference elements in order to obtain an averaged signal and the measurement itself could take place as a steady state measurement or with a changing temperature and/or distance of the disc from the base with time and could be used with heat being added, such as by a resistive element or with heat being taken away, such as with a Peltier cooler.
  • a similar result could be obtained if the measure and reference sections of the disc were held at the same temperature above a flat base, but with the two corresponding halves of the base held at different temperatures.
  • An alternative embodiment could also be made with the two sections of the disc held at different temperatures with a flat or stepped base maintained at a controlled temperature in order to create different thermal gradient between the measure and reference sections of the disc and the base. This could also be achieved using multiple elements and/or in the steady state or time domain.
  • the sensing element could also be run as a Wheatstone bridge.
  • the preferred embodiment could be used as before, but this time, two external resistors could be used to create a full bridge.
  • the measure and reference sections of the disc make up one arm of the bridge and the external reference resistors the other arm.
  • a full Wheatstone bridge could also be printed onto the disc with the measure and reference resistors arranged either on quadrants of the disc or on each half.
  • the current flowing in the bridge causes the disc to heat up above the ambient temperature.
  • the temperatures of the measure and reference sections of the disc are no longer identical and will be related to the thermal conductivity losses through the medium to the base.
  • the output voltage signal which is related to the difference in temperature between the measure and reference sections of the disc is also therefore related to the thermal conductivity of the medium.
  • Thermal leaks between the two half sections will reduce the sensitivity and can be minimised by selection of a thin substrate material with low thermal conductivity and the use of thermal breaks.
  • the Wheatstone bridge could be run in constant voltage, constant current or constant resistance mode. It could be also run in a modified Wheatstone bridge mode, where the extra power applied to the measure and/or reference elements to maintain a fixed voltage offset could be used to determine the thermal conductivity of the medium.
  • the Wheatstone bridge could be run in direct current mode or alternating current mode with or without synchronous detection.
  • the measure and reference sections could also be held at fixed temperatures or be allowed to vary their temperatures and/or distance from the base with time.
  • the equivalent measurement could be made using separate measure and reference elements rather than being on the same disc and using alternative thermal sources and/or detectors.
  • Another alternative arrangement would be to provide heating to the disc substrate via a thick film printed resistor or resistors and use a low power thick film printed Wheatstone bridge, electrically insulated from the heater resistor(s), to sense the localised thermal differences between the measure and reference sections due to the thermal conductivity losses through the medium.
  • a bridge could also be designed with a deliberate imbalance in resistances used for the measure and reference sections so as to create a temperature difference between the measure and reference sections and a flat or stepped base base.
  • the imbalance in resistances could also be used to minimise any temperature difference seen between the measure and reference sections where the distances to the base differs. This would help increase sensitivity and common mode rejection.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Claims (12)

  1. Sensor zum Bestimmen der thermischen Leitfähigkeit eines Fluids, umfassend ein Fühlermodul (9), angeordnet innerhalb eines Gehäuses (1) mit Einlass- (5) und Auslassanschlüssen (6) für ein im Test befindliches Fluid, das Fühlermodul (9) umfassend eine Bezugsbasis (14) und ein davon beabstandetes Fühlerelement (13) mit Mess- (15) und Bezugssektionen (16), wobei die Mess- und Bezugssektionen innerhalb im Wesentlichen der gleichen Umgebung gehalten werden, außer dass sich im Gebrauch ein thermischer Gradient zwischen der Messsektion (15) und der Basis (14) von einem thermischen Gradienten zwischen der Bezugssektion (16) und der Basis (14) unterscheidet, der Sensor aufweisend Mittel (10) zum Bereitstellen von elektrischer Leistung und zum Steuern jeweiliger Temperaturen der Mess- (15) und Bezugssektionen (16) relativ zu der Basis (14) und Überwachungsmittel zum Überwachen jeweiliger an die Mess- und Bezugssektionen angelegter Leistungen, um ein Signal zu erzeugen, das eine Differenz zwischen den Größen der an die Mess- (15) und Bezugssektionen (16) angelegten Leistungen anzeigt, die aus der thermischen Leitfähigkeit durch das Fluid resultiert.
  2. Sensor nach Anspruch 1, enthaltend Mittel zum Halten der Mess- (15) und Bezugssektionen (16) auf der gleichen Temperatur über der Temperatur der Basis (14), wobei die Mess- (15) und Bezugssektionen (16) in verschiedenen Distanzen von der Basis (14) unter den Sektionen angeordnet sind.
  3. Sensor nach Anspruch 2, wobei die Basis (14) eine gestufte Basisoberfläche ist.
  4. Sensor nach Anspruch 1, wobei die Basis (14) eine ebene Basisoberfläche ist und eine Temperaturdifferenz zwischen einen Bereich der Basis unter der Messsektion und einem Bereich der Basis unter der Bezugssektion beibehalten wird.
  5. Sensor nach Anspruch 1, wobei das Überwachungsmittel eine Wheatstone-Brücke enthält, dessen Ausgang das erzeugte Signal bildet.
  6. Sensor nach Anspruch 1, enthaltend ein Diffusionselement (8), das für Verwendung zur Steuerung der Fluid-Diffusionsrate auf das Fühlerelement (13) geeignet ist.
  7. Sensor nach Anspruch 1, wobei das Fühlerelement (13) eine gedruckte Dickfilmscheibe ist, auf der Mess-(15) und Bezugswiderstände (16) gedruckt sind.
  8. Sensor nach Anspruch 7, wobei das Fühlerelement (13) ein Substrat mit einem Substratmaterial niedriger thermischer Leitfähigkeit enthält.
  9. Sensor nach Anspruch 8, wobei das Fühlerelement (13) mit thermischen Trennungen (18) zwischen den Mess-(15) und Bezugssektionen (16) versehen ist.
  10. Sensor nach Anspruch 1, wobei das Fühlerelement (13) ein Dünnfilmelement ist.
  11. Sensor nach Anspruch 1, wobei ein Thermistor oder Peltier-Kühler für die Mess- (15) und Bezugssektionen (16) des Fühlerelements (13) verwendet wird.
  12. Sensor nach Anspruch 1, wobei mehrere Mess- und Bezugssektionen in dem Fühlerelement (13) bereitgestellt sind.
EP07251159.5A 2006-03-21 2007-03-20 Sensor für thermische Leitfähigkeit Active EP1837645B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0605683.2A GB0605683D0 (en) 2006-03-21 2006-03-21 Thermal conductivity sensor

Publications (3)

Publication Number Publication Date
EP1837645A2 EP1837645A2 (de) 2007-09-26
EP1837645A3 EP1837645A3 (de) 2009-07-22
EP1837645B1 true EP1837645B1 (de) 2013-04-24

Family

ID=36383908

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07251159.5A Active EP1837645B1 (de) 2006-03-21 2007-03-20 Sensor für thermische Leitfähigkeit

Country Status (4)

Country Link
US (1) US7753582B2 (de)
EP (1) EP1837645B1 (de)
CN (1) CN101042359B (de)
GB (1) GB0605683D0 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948957A (zh) * 2005-10-13 2007-04-18 鸿富锦精密工业(深圳)有限公司 流质材料热传导性能量测装置
GB0605683D0 (en) 2006-03-21 2006-05-03 Servomex Group Ltd Thermal conductivity sensor
US7670046B2 (en) * 2007-06-18 2010-03-02 Iliya Mitov Filled hotwire elements and sensors for thermal conductivity detectors
US8313236B2 (en) * 2009-11-06 2012-11-20 Agilent Technologies, Inc. Thermal conductivity detector
EP2325628B1 (de) * 2009-11-23 2013-06-26 Mettler-Toledo AG Thermoanalysevorrichtung
RU2671985C2 (ru) * 2013-05-17 2018-11-08 Шлюмбергер Текнолоджи Б.В. Способ и устройство для определения характеристик потока текучей среды
TWI510778B (zh) 2014-09-18 2015-12-01 Ind Tech Res Inst 液體濃度檢測裝置
CN107421981B (zh) * 2017-02-04 2019-11-05 青岛大学 一种小温差测量装置
DE102018006868B4 (de) * 2018-08-30 2020-03-19 Diehl Metering Gmbh Messeinrichtung zur Ermittlung der Wärmeleitfähigkeit eines Fluids
GB2583897A (en) * 2019-04-05 2020-11-18 Servomex Group Ltd Glow plasma stabilisation
USD926056S1 (en) 2019-06-28 2021-07-27 Weber-Stephen Products Llc Temperature probe hub
US11231330B2 (en) 2019-06-28 2022-01-25 Weber-Stephen Products Llc Temperature probe hubs
EP4198504A1 (de) * 2021-12-17 2023-06-21 Sensirion AG Thermische sensorvorrichtung und verfahren zur bestimmung der konzentration eines zielgases in einer gasprobe
WO2023175417A1 (en) * 2022-03-18 2023-09-21 Abb Schweiz Ag A device for detecting thermal conductivity of a fluid

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3097518A (en) 1963-07-16 Column
US3084536A (en) 1960-10-06 1963-04-09 Foxboro Co Split flow gas analysis detector
GB1024869A (en) 1963-10-01 1966-04-06 Distillers Co Yeast Ltd Improvements in or relating to apparatus for the determination of the thermal conductivity of gases
GB1143002A (en) 1965-09-08 1969-02-19 Servomex Controls Ltd Improvements in or relating to wheatstone bridge circuit arrangements
US3474660A (en) 1966-02-17 1969-10-28 Hewlett Packard Co Thermal conductivity detector
US3777366A (en) 1971-05-17 1973-12-11 Triangle Environment Corp Chamber and filament method for flow through thermal conductivity micro size measuring chambers
DE2618349A1 (de) 1976-04-27 1977-11-10 Weber Guenther Waermeuebergangsmessgeraet
US4215564A (en) 1979-02-06 1980-08-05 Gow-Mac Instrument Co. Miniaturized thermal conductivity detector
DE3502440A1 (de) * 1985-01-25 1986-07-31 Leybold-Heraeus GmbH, 5000 Köln Anordnung zur messung der waermeleitfaehigkeit von gasen
US4735082A (en) * 1986-07-14 1988-04-05 Hewlett-Packard Company Pulse modulated thermal conductivity detector
JPH0394150A (ja) 1988-06-24 1991-04-18 Honeywell Inc 流体の熱伝導率及び比熱測定装置の較正方法
US5038304A (en) * 1988-06-24 1991-08-06 Honeywell Inc. Calibration of thermal conductivity and specific heat devices
US4944035A (en) * 1988-06-24 1990-07-24 Honeywell Inc. Measurement of thermal conductivity and specific heat
US5177696A (en) * 1989-12-28 1993-01-05 Honeywell Inc. Method of determination of gas properties at reference conditions
EP0515695B1 (de) * 1990-12-14 1998-03-18 Anritsu Corporation Fühlvorrichtung zur messung des charakteristischen wertes eines zu messenden elementes unter verwendung der veränderungen des thermischen widerstands
EP0612405B1 (de) * 1991-10-23 2001-08-01 Honeywell Inc. Vorrichtung zur verbrennungslosen messung der qualität von gasförmigem brennstoff
US5335993A (en) * 1992-03-02 1994-08-09 Ta Instruments, Inc. Method and apparatus for thermal conductivity measurements
US5535614A (en) * 1993-11-11 1996-07-16 Nok Corporation Thermal conductivity gas sensor for measuring fuel vapor content
FI113405B (fi) * 1994-11-02 2004-04-15 Jarmo Juhani Enala Reaaliaikainen mittausmenetelmä
JP3114139B2 (ja) * 1995-01-24 2000-12-04 株式会社山武 熱伝導率計
US5772321A (en) * 1995-10-25 1998-06-30 Hewlett-Packard Company Compensation for spacial and temporal temperature variations in a thermal conductivity detector
US5965606A (en) * 1995-12-29 1999-10-12 Allergan Sales, Inc. Methods of treatment with compounds having RAR.sub.α receptor specific or selective activity
EP0883801B1 (de) 1996-11-01 2004-09-15 TA Instruments, Inc. Differentialabtastkalorimeter
US6223593B1 (en) * 1997-12-31 2001-05-01 Honeywell International Inc. Self-oscillating fluid sensor
US6169965B1 (en) * 1997-12-31 2001-01-02 Honeywell International Inc. Fluid property and flow sensing via a common frequency generator and FFT
US6019505A (en) * 1997-12-31 2000-02-01 Honeywell Inc. Time lag approach for measuring thermal conductivity and specific heat
US6361206B1 (en) * 1999-01-28 2002-03-26 Honeywell International Inc. Microsensor housing
US6238085B1 (en) 1998-12-31 2001-05-29 Honeywell International Inc. Differential thermal analysis sensor
DE19913968B4 (de) * 1999-03-18 2004-02-12 Fafnir Gmbh Thermischer Durchflußsensor und Verfahren zum Bestimmen des Durchflusses eines Fluids
US6428203B1 (en) * 2000-03-23 2002-08-06 Ta Instruments, Inc. Power compensation differential scanning calorimeter
US6497509B2 (en) * 2000-06-08 2002-12-24 Perkinelmer Instruments Llc Method for measuring absolute value of thermal conductivity
US6701774B2 (en) * 2000-08-02 2004-03-09 Symyx Technologies, Inc. Parallel gas chromatograph with microdetector array
DE10146321B4 (de) * 2001-09-20 2008-08-14 Robert Bosch Gmbh Sensorbaustein mit einem Sensorelement, das von einem Heizelement umgeben ist
EP1426740B1 (de) 2002-11-27 2014-11-19 Sensirion Holding AG Vorrichtung zur Messung des Flusses und mindestens eines Materialparameters eines Fluids
CH696042A5 (fr) * 2002-11-28 2006-11-30 Ecole D Ingenieurs Du Canton D Procédé et dispositif de mesure de la conductivité thermique d'un fluide multifonctionnel.
WO2004068134A1 (en) 2003-01-29 2004-08-12 Agilent Technologies, Inc. Apparatus and method for thermal conductivity detection in gas chromatography equipment
GB2401183B (en) * 2003-04-29 2006-10-18 Terence Mcburney Probe
US7003418B2 (en) * 2003-08-28 2006-02-21 Honeywell International Inc. Methods and systems for temperature compensation of physical property sensors
GB0605683D0 (en) 2006-03-21 2006-05-03 Servomex Group Ltd Thermal conductivity sensor
US20080291966A1 (en) * 2007-05-24 2008-11-27 Engel Steven J Thermal conductivity detector (TCD) having compensated constant temperature element
US7780343B2 (en) * 2007-07-09 2010-08-24 Siargo Ltd. Micromachined gas and liquid concentration sensor and method of making the same
CA2725861C (en) * 2008-06-06 2018-07-10 Perkinelmer Health Sciences, Inc. Calorimeter and methods of using it and control systems therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R A PERKINS ET AL: "a high-temperature transient hot wire thermal conductivity apparatus for fluids", JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1 January 1991 (1991-01-01), XP055045657, Retrieved from the Internet <URL:http://ia600706.us.archive.org/33/items/jresv96n3p247/jresv96n3p247_A1b.pdf> [retrieved on 20121127] *

Also Published As

Publication number Publication date
GB0605683D0 (en) 2006-05-03
US20070223558A1 (en) 2007-09-27
CN101042359A (zh) 2007-09-26
CN101042359B (zh) 2012-05-23
EP1837645A3 (de) 2009-07-22
EP1837645A2 (de) 2007-09-26
US7753582B2 (en) 2010-07-13

Similar Documents

Publication Publication Date Title
EP1837645B1 (de) Sensor für thermische Leitfähigkeit
JP3114139B2 (ja) 熱伝導率計
JP6731936B2 (ja) Mems熱式流量センサ、及び流体の流量を測定する方法
US6945106B2 (en) Mass flowmeter
EP2392901B1 (de) Wärmeflüssigkeitsströmungsvorrichtung
EP1947450A1 (de) Verfahren und vorrichtung zur messung thermischer leitfähigkeit und vorrichtung zum messen von gaskomponentenverhältnissen
Sosna et al. A temperature compensation circuit for thermal flow sensors operated in constant-temperature-difference mode
US6125695A (en) Method and apparatus for measuring a fluid
EP3540382B1 (de) Luftstromsensor mit korrektur der gaszusammensetzung
US20230258506A1 (en) Thermometer having a diagnostic function
Xu et al. A MEMS multi-sensor chip for gas flow sensing
JPH07151572A (ja) 計測装置および計測方法
Grau et al. Method for measuring thermal accommodation coefficients of gases on thin film surfaces using a MEMS sensor structure
US7613586B2 (en) Thermal vacuum gauge
GB2395561A (en) Fluid temperature measurement
US20220397438A1 (en) Non-invasive thermometer
Lee et al. Improvements in the performance of a microthermal flow sensor using asymmetrically located temperature sensors
JP3502085B2 (ja) 計測装置
EP1223411A1 (de) Universeller Messaufnehmer zur Messung der Scherspannung, des Massendurchflusses oder der Geschwindigkeit eines Fluids oder Gases, zur Bestimmung der Tropfenzahl sowie zur Tropf- oder Leckdetektion
SU911275A1 (ru) Устройство дл определени теплофизических характеристик материалов
JPS5923369B2 (ja) 零位法熱流計
SU922602A1 (ru) Устройство дл определени теплопроводности твердых материалов
Adamek et al. Sensor for lowest flows measurement
RU2250440C2 (ru) Способ определения положения границ раздела сред
RU2282836C2 (ru) Способ поверки датчика температуры теплоносителя в трубе

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20100120

17Q First examination report despatched

Effective date: 20100217

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007029963

Country of ref document: DE

Effective date: 20130620

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007029963

Country of ref document: DE

Effective date: 20140127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007029963

Country of ref document: DE

Representative=s name: PATENTANWAELTE LIPPERT, STACHOW & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007029963

Country of ref document: DE

Representative=s name: LIPPERT STACHOW PATENTANWAELTE RECHTSANWAELTE , DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230208

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 18

Ref country code: GB

Payment date: 20240108

Year of fee payment: 18