EP1828679B1 - Combustion method with cyclic supply of oxidant - Google Patents

Combustion method with cyclic supply of oxidant Download PDF

Info

Publication number
EP1828679B1
EP1828679B1 EP05824047A EP05824047A EP1828679B1 EP 1828679 B1 EP1828679 B1 EP 1828679B1 EP 05824047 A EP05824047 A EP 05824047A EP 05824047 A EP05824047 A EP 05824047A EP 1828679 B1 EP1828679 B1 EP 1828679B1
Authority
EP
European Patent Office
Prior art keywords
oxidant
injectors
sub
fuel
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05824047A
Other languages
German (de)
French (fr)
Other versions
EP1828679A1 (en
Inventor
Rémi Tsiava
Benoit Grand
Patrick Recourt
Bertrand Leroux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1828679A1 publication Critical patent/EP1828679A1/en
Application granted granted Critical
Publication of EP1828679B1 publication Critical patent/EP1828679B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant

Definitions

  • the present invention relates to a combustion process for an industrial furnace.
  • the distribution of the heating power over a given furnace surface, the reduction of the quantity of nitrogen oxides produced and the stability of the combustion flame (s) generated in the furnace are among the principal stakes in the technology of combustion furnaces.
  • the surface to be heated can be large. This is usually the top surface of a feed of raw materials or melt contained in a tank. It is then difficult to distribute the heating power delivered by the flame (s) of combustion in a substantially uniform manner over the entire surface, so as to avoid the formation of colder zones which would be harmful vis-à- screw of the melt or the subsequent process of treating it.
  • the amount of nitrogen oxides (NO x) produced in a combustion flame depends on the local concentrations of oxygen and nitrogen, denoted [O 2] and [N 2].
  • an evaluation of the quantity of thermally produced nitric oxide (denoted [NO] th ) is given by the following formula: where k is a numerical constant, exp is the exponential function, E a is a positive activation energy, R is the ideal gas constant and T is the local temperature.
  • Another way to achieve further reduction in the amount of nitrogen oxides produced is to inject a major portion of the oxidant and the fuel at two locations in the furnace separated from each other by a relatively large distance. A combustion performed under these conditions is called “staged” (see for example EP 0 748 981 or WO 02/081967 ). A small portion of the oxidant is further injected near the fuel outlet to stabilize the combustion regime. The main part of the oxidant and the fuel are then gradually mixed in a spread volume where the jets overlap. In this way, a gap effect is still obtained between the ratio of the local concentrations of fuel and oxidizer on the one hand, and the stoichiometry of the combustion reaction on the other hand.
  • An object of the present invention is therefore to provide a combustion process which does not have the disadvantages mentioned above, or for which these disadvantages are reduced.
  • An oxidizer feed system cyclically distributes a determined flow rate of oxidizing between at least the second and third injectors of the two burner units.
  • the burner assemblies are substantially horizontal, the flame produced in the furnace is itself contained in a horizontal plane. In this way, the heat generated by the flame is efficiently transferred to the furnace charge without excessively heating a vault structure disposed above the furnace at a particular location thereof. Premature wear of the arch structure is thus avoided.
  • the oxidant is thus introduced into the oven at three points for each of the two burner units.
  • the first point of introduction of the oxidant is constituted by the first injector, which is the closest to the corresponding fuel injector. It allows to generate a first incomplete combustion of the fuel, which is then completed by the oxidant introduced by the second and third injectors.
  • the first injector also generally stabilizes the combustion regime at its output.
  • the third point of introduction of the oxidant is the farthest from the fuel injector, and the second oxidizer injector is located at a distance from the intermediate fuel injector between the distances of the first and third injectors .
  • the oxidant preferably has an oxygen content greater than 30% by volume, and even greater than 70% by volume.
  • the total flow rate of oxidant introduced into the furnace is distributed between the first, second and third injectors of the two burner units. A determined part of this total flow is injected by the second and third oxidizer injectors, with a distribution between at least some of these which is variable cyclically.
  • the determined part of the total flow rate of oxidant which is injected by the two second and the two third oxidizer injectors is substantially constant. It may possibly vary, but much more slowly than those of the individual flows of the second and / or third oxidizer injectors which are variable.
  • a specific fraction of the oxidant is injected into the furnace by some of the second and / or third injectors at a given instant, then is injected by the other second and / or third injectors at a later time.
  • the oxidant injection obtained by a device according to the invention is therefore alternated between some of said second and / or third injectors.
  • the cyclic distribution of the oxidant flow rate between some of the second and third injectors of the two burner units is preferably carried out at a frequency of less than 1 hertz.
  • the oscillation period of the flame in the oven is then greater than 1 second. The inventors have observed that such conditions provide a particularly stable combustion.
  • the fuel and the oxidant that are introduced into the furnace are diluted by recirculation of the exhaust gas in the combustion zone.
  • a main part of the oxidant is introduced into the furnace at a great distance from the fuel introduction locations.
  • the oxidant is strongly diluted with ambient gases present in the furnace before entering the main combustion zone.
  • the part of oxidant that is introduced near the fuel is called primary flow, and that which is introduced at a distance from the fuel is called secondary flow.
  • the oxidizer supply system feeds the first injectors respectively of each burner assembly with respective primary oxidant flow rates at each instant.
  • Each burner assembly generates a flame in the furnace, but when the two burner units are not too far apart, their respective flames are united and form a single combustion volume.
  • a single flame is obtained, in particular, when the distance between the respective fuel injectors of the two burner units is less than 30 times the diameter of each fuel injector.
  • flame generally denote by flame the total volume in which combustion occurs, it being understood that this volume can be divided into two parts for a significant separation distance between the two burner units.
  • the cyclic variations in the distribution of the oxidant flow between at least some of the second and third injectors cause a horizontal displacement of the flame in the furnace.
  • the displacement of the flame consists of a flapping thereof between two positions or in an oscillation of the flame between two configurations.
  • the cyclic variations of the distribution of the gases in the furnace improve the stability of the flame, especially in the vertical direction, by moving the flame alternately in a substantially horizontal direction.
  • the displacement of the flame contributes to further improving the distribution of the heating power throughout the volume of the furnace: a heat transfer to the load of the furnace is obtained, which is more uniform thanks to an effect of average in the time of the thermal contributions taking place at each point of the furnace.
  • the invention also provides an oven adapted to implement a method as described above.
  • the figure 1 represents a vertical wall 101 of a furnace 100, for example a melting furnace of raw materials.
  • the furnace 100 may be batch-operated, with separate stages of loading, heating and discharging of the furnace, or continuous operation, with permanent flows of raw material loading and melt output.
  • F denotes the trace of the free surface of material charged to the wall 101 of the oven.
  • the fuel and oxidizer injectors are disposed on the wall 101, with respective directions of fluid outlet substantially horizontal. They are aligned on a horizontal line located at a height h above the trace F. h is preferably between 250 mm (millimeters) and 550 mm.
  • the injectors 10 G , 1 G , 2 G and 3 G form a first burner assembly, associated with the left part of the wall 101.
  • this burner assembly is designated G in the following.
  • the injectors 10D , 1D , 2D and 3D form a second burner assembly, designated D and associated with the right portion of the wall 101.
  • the fuel introduced into the furnace 100 by the injectors 10G and 10D can be gaseous or liquid.
  • the injectors 10 and G 10 D each incorporate a spray nozzle so as to produce jets of fuel droplets.
  • the distance d 10 between the fuel injector of each burner assembly, 10 G or 10 D, and the median plane P is less than 15 times the diameter of each injector 10 or G 10 D, denoted ⁇ 10. Under these conditions, a single flame common to the two burner units G and D is generated in the oven 100.
  • the oxidant introduced by the injectors 1G , 2G , 3G , 1D , 2D and 3D is a gas usually having an oxygen content greater than 70% by volume.
  • the third oxidizer injector of each burner assembly is located at a distance from the fuel injector of said assembly at least ten times greater than the output diameter of the third injector.
  • d 3 -d 10 > 10. ⁇ 3 , where ⁇ 3 denotes the exit diameter of injectors 3 G and 3 D.
  • ⁇ 3 denotes the exit diameter of injectors 3 G and 3 D.
  • All the injectors of each burner assembly are directed substantially horizontally, so that the flame produced is parallel to the surface of the melt bath contained in the furnace 100.
  • the oxidizer supply system supplies each of the first injectors respectively of each burner assembly, that is to say the injectors 1G and 1D , with a respective primary flow of constant oxidant.
  • the oxidizer feed system is then simplified, as regards the feeding of injectors 1G and 1D .
  • x G and x D each correspond to 10% of the total flow rate of oxidant injected into each burner assembly.
  • the oxidant flow rates of two injectors arranged symmetrically with respect to the median plane P are equal at each instant.
  • the oxidizer supply system feeds the second injectors respectively of each burner assembly with respective secondary flows of oxidant substantially equal at each instant, and feeds the third injectors respectively of each burner assembly with respective tertiary flows of oxidant substantially equal every moment.
  • the supply system of injectors 2G , 2D , 3G and 3D may comprise two identical distribution boxes respectively assigned to each burner assembly G and D. These distribution boxes are coupled to a common control member variable, and each box has a movable partition wall of oxidant flows directed respectively to the second or the third injector.
  • the flame obtained is then centered on the median plane P and is symmetrical with respect thereto at each instant.
  • the figure 2a illustrates an example of variation of the rates y G and y D on the one hand, and rates z G and z D on the other hand.
  • the abscissa axis represents the time, indicated in seconds, and the ordinate axis represents the fraction of the oxidizer flow rate of each burner assembly that is introduced by each injector thereof. It is assumed that the total oxidant flow rate of each burner assembly G or D is constant, and that x G and x D are also constant and are each equal to 10% of the flow rate of the corresponding burner assembly.
  • the mixing volume is greater in state 1 than in state 2.
  • state 1 corresponds to an extended flame, both in width and in length
  • state 2 corresponds to a narrower and shorter flame .
  • the flow introduced into the furnace by each oxidizer injector is indicated on the figure 2b .
  • state 1 the fuel and the oxidant are more diluted within the flame.
  • the temperature is then lower, but a better coverage of the entire surface of the material is obtained.
  • the heat transfer of the flame to the furnace charge is then particularly homogeneous. Conversely, the flame is more concentrated and intense in state 2.
  • This second mode corresponds to an alternating oxidant feed between the two burner units. More particularly, the oxidizer feed system cyclically distributes a determined tertiary total flow of oxidant between said third injectors of the two burner units.
  • the oxidizer supply system can further supply each of the second injectors respectively of each burner assembly with a respective secondary flow of constant oxidant.
  • a particularly simple implementation of the alternate supply of oxidant is thus obtained.
  • the secondary flows of oxidant may be substantially equal.
  • x and y are respectively called primary and secondary total flows of the oxidant.
  • the tertiary total oxidant flow rate that is to say the oxidant flow rate introduced by the injectors 3 G and 3 D , is noted.
  • x and y are substantially constant or vary much more slowly than the individual cyclically varying flow rates of injectors.
  • the oxidizer feed system may be a distribution box connected to the injectors 3 G and 3 D , which has a movable partition wall disposed between the oxidant flows directed respectively to the injectors 3 G and 3 D.
  • the y-axis of the figure 3b is expressed as a percentage of the total flow rate of oxidant introduced into the furnace, that is to say x + y + z.
  • z G and z D each vary between 10% and 65%. The period of flow variations is still 2 seconds.
  • the mixing volume and the flame have symmetrical configurations between the preceding states 1 and 2 ( figure 3b ).
  • the flame is moved to the side of the 3 G or 3 D injector having the largest oxidant flow rate.
  • the flame is moved to the left side in state 1, and to the right side in state 2.
  • This lateral reciprocation of the flame stabilizes the height thereof, so that the flame remains at a substantially constant distance from the free surface of material charged on the one hand, and at a substantially constant distance from the vault of the oven on the other hand.
  • the lateral back and forth of the flame provides a sufficient heat transfer uniformly between the flame and the furnace charge in a horizontal direction parallel to the wall 101.
  • the flame is longer on the side of the injector 3 G or 3 D having the instantaneous flow rate of the highest oxidant.
  • a good average coverage of the furnace surface by the flame results.
  • the oxidant is expelled by injectors 3 G and 3 D with a speed of between 20 ms -1 (meter per second) and 160 ms -1 , for example 90 ms -1 .
  • the average fuel and oxidant mixing distance, as well as the average distance at which the combustion occurs, located from the wall 101 of the furnace are all the greater the greater the speed of expulsion of the furnace.
  • oxidizer by injectors 3 G and 3 D is high.
  • the high flow rate of the oxidant introduced by one of the two injectors 3 G or 3 D causes a significant dilution of the fuel on the side of the median plane P which corresponds to this injector.
  • the fuel is more concentrated in a zone of the flame offset from the median plane P on the side of the injector 3 G or 3 D which has the instantaneous flow rate of the weakest oxidant.
  • This area is marked A on the figure 3b , for the flame edges 200 corresponding to each of the two states 1 and 2.
  • the zone A moves at each alternation between two symmetrical positions located on either side of the median plane P.
  • zone A corresponds to the part of the flame that contributes the most to the heat transfer to the load at every moment.
  • a zone A inside the flame may be favorable or harmful to the material that is being melted, in particular as a function of the chemical behavior of this material when the temperature is not uniform.
  • a fuel supply system can cyclically distribute a determined total flow of fuel between the fuel injectors of the two burner units.
  • the fuel supply system is coupled to the oxidizer supply system so that the total fuel flow is cyclically distributed between the fuel injectors of the two burner assemblies in phase or in phase opposition with respect to the distribution. cyclic tertiary total flow of oxidizer between the third injectors of the two burner units.
  • another distribution box may be disposed at the inlet of injectors 10G and 10D .
  • This other distribution box has a movable separation wall arranged between the fuel flows directed respectively to the injectors 10G and 10D .
  • the two distribution boxes, connected to the injectors 3 G and 3 D for the first, and the injectors 10 G and 10 D for the second, can then be controlled synchronously in opposition of phase: the fuel flow rate sent into the one of the two injectors 10 G or 10 D is maximum or minimum at the same time that the flow of oxidizer sent into the injector 3 D or 3 G on the opposite side is also maximum or minimum.
  • a reinforcement of the zone A is thus obtained, which causes an increase in the brightness of the flame near the exit of the fuel injector 10G or 10D when the fuel flow therein is maximum.
  • the fuel concentration is depleted on the side of the 3 G or 3 D injector for which the oxidizer flow rate is maximum. This increased depletion causes a shortening of the flame to its furthest point of the injectors.
  • the two distribution boxes can be controlled synchronously in phase.
  • the flow rate of fuel sent into one of the two injectors 10 G or 10 D is then maximum or minimum at the same time as the oxidizer flow rate sent into the injector 3 G or 3 D of the same side is also maximum or minimum.
  • Zone A is then blurred and can be confused with the entire extent of the flame. It then oscillates between the two left and right sides with a greater amplitude of transverse displacement. At the same time, the flame is lengthened so that the two effects are combined to obtain an optimal scanning of the entire furnace surface by the flame. This results in an average heat transfer area with a particularly large load.
  • FIG. 1 Flame boundaries obtained when the distribution of fuel flows varies with the distribution of oxidizer flows are shown in Table 1. figure 4 .
  • the traces 200a and 200b respectively correspond to variations in phase opposition and in phase.
  • the trace 200 corresponds to a constant distribution of the fuel flow, and balanced between the two injectors 10 G and 10 D. It is represented in dotted lines for comparison.
  • the traces 200, 200a and 200b all correspond to the total flows of fuel and oxidant identical. For the sake of clarity of figure 4 only the contour of the flame in state 1 defined above is represented for each case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

The invention concerns a combustion method for industrial furnace comprising an arrangement of two substantially parallel and symmetrical burner assemblies (G, D). Each burner assembly comprises a fuel injector (10<SUB>G</SUB>, 10<SUB>D</SUB>) and three oxidant injectors (1<SUB>G</SUB>, 2<SUB>G</SUB>, 3<SUB>G</SUB>, 1<SUB>D</SUB>, 2<SUB>D</SUB>, 3<SUB>D</SUB>) arranged at increasing distances from the fuel injector. An oxidant supply system cyclically distributes a specific flow of oxidant among some at least of the second and third injectors of the burner assemblies (2<SUB>G</SUB>, 3<SUB>G</SUB>, 2<SUB>D</SUB>, 3<SUB>D</SUB>). The amount of nitrogen monoxide produced upon combustion is thus reduced, while ensuring a good distribution of the heating power in the furnace.

Description

La présente invention concerne un procédé de combustion pour four industriel.The present invention relates to a combustion process for an industrial furnace.

La répartition de la puissance de chauffe sur une surface de four donnée, la réduction de la quantité d'oxydes d'azote produite et la stabilité de la ou des flamme(s) de combustion générée(s) dans le four figurent parmi les principaux enjeux de la technologie des fours à combustion.The distribution of the heating power over a given furnace surface, the reduction of the quantity of nitrogen oxides produced and the stability of the combustion flame (s) generated in the furnace are among the principal stakes in the technology of combustion furnaces.

En effet, le rendement énergétique et la rentabilité d'un four industriel à combustion sont supérieurs pour des fours de grande capacité. C'est pourquoi la surface destinée à être chauffée peut être grande. C'est en général la surface supérieure d'une charge de matières premières ou de matière fondue contenue dans une cuve. II est alors difficile de répartir la puissance de chauffe délivrée par la (les) flamme(s) de combustion d'une façon sensiblement uniforme sur toute cette surface, de façon à éviter la formation de zones plus froides qui seraient néfastes vis-à-vis de la matière fondue ou du procédé ultérieur de traitement de celle-ci. Pour cela, il est connu de disposer plusieurs brûleurs dans un four, à des emplacements déterminés au dessus de la cuve. On peut notamment disposer deux brûleurs parallèlement l'un à l'autre, avec des flammes respectives horizontales et dirigées dans un même sens. Une autre possibilité est de disposer des brûleurs en vis-à-vis par paires, avec des flammes respectives dirigées l'une vers l'autre à l'intérieur de chaque paire.Indeed, the energy efficiency and the profitability of an industrial combustion furnace are higher for furnaces of great capacity. This is why the surface to be heated can be large. This is usually the top surface of a feed of raw materials or melt contained in a tank. It is then difficult to distribute the heating power delivered by the flame (s) of combustion in a substantially uniform manner over the entire surface, so as to avoid the formation of colder zones which would be harmful vis-à- screw of the melt or the subsequent process of treating it. For this, it is known to have several burners in an oven at specific locations above the tank. In particular, two burners can be arranged parallel to one another, with respective horizontal flames and directed in the same direction. Another possibility is to have the burners facing each other in pairs, with respective flames directed toward each other within each pair.

Par ailleurs, la quantité d'oxydes d'azote (NOx) produite dans une flamme de combustion dépend des concentrations locales d'oxygène et d'azote, notées [O2] et [N2]. En particulier, une évaluation de la quantité de monoxyde d'azote produit thermiquement (noté [NO]th) est donnée par la formule suivante :

Figure imgb0001
dans laquelle k est une constante numérique, exp désigne la fonction exponentielle, Ea est une énergie d'activation positive, R désigne la constante des gaz parfaits et T est la température locale.Furthermore, the amount of nitrogen oxides (NO x) produced in a combustion flame depends on the local concentrations of oxygen and nitrogen, denoted [O 2] and [N 2]. In particular, an evaluation of the quantity of thermally produced nitric oxide (denoted [NO] th ) is given by the following formula:
Figure imgb0001
where k is a numerical constant, exp is the exponential function, E a is a positive activation energy, R is the ideal gas constant and T is the local temperature.

Afin de réduire la quantité de monoxyde d'azote d'origine thermique, il est connu d'utiliser un comburant sensiblement dépourvu d'azote. Ainsi, un comburant enrichi en oxygène est utilisé à la place de l'air. Néanmoins, la réduction d'oxydes d'azote qui en résulte est insuffisante par rapport aux réglementations en vigueur.In order to reduce the amount of thermal nitric oxide, it is known to use an oxidizer substantially free of nitrogen. Thus, an oxygen-enriched oxidant is used instead of air. Nevertheless, the resulting reduction of nitrogen oxides is insufficient compared to the regulations in force.

Pour réduire encore plus la quantité d'oxydes d'azote produite, il est aussi connu, notamment d'après US 5,522,721 et EP 0 524 880 , de faire varier cycliquement le débit de comburant et/ou le débit de combustible qui alimentent la flamme. Le rapport entre les concentrations locales instantanées d'oxygène et de combustible dans la flamme est alors différent de la stoechiométrie de la réaction de combustion. La température locale est par conséquent moins élevée, et, d'après la relation (1), une réduction supplémentaire de la quantité de monoxyde d'azote produit thermiquement en résulte. Mais les paramètres de variation des débits, tels que l'amplitude, la fréquence et la phase des variations de chaque débit, sont difficiles à ajuster pour obtenir un rendement de chauffe satisfaisant et un faible dégagement de monoxyde de carbone (CO). En effet, le monoxyde de carbone est toxique et polluant, et provient d'une combustion incomplète lorsque la concentration locale instantanée d'oxygène dans le mélange est trop faible par rapport à la concentration locale instantanée de combustible.To further reduce the amount of nitrogen oxides produced, it is also known, especially after US5,522,721 and EP 0 524 880 cyclically vary the oxidant flow rate and / or the fuel flow rate that feed the flame. The ratio between the instantaneous local concentrations of oxygen and fuel in the flame is then different from the stoichiometry of the combustion reaction. The local temperature is therefore lower, and, according to relation (1), a further reduction in the amount of thermally produced nitric oxide results therefrom. But the flow rate variation parameters, such as the amplitude, the frequency and the phase of the variations of each flow, are difficult to adjust to obtain a satisfactory heating efficiency and a low release of carbon monoxide (CO). Indeed, carbon monoxide is toxic and polluting, and comes from incomplete combustion when the instantaneous local concentration of oxygen in the mixture is too low compared to the instantaneous local concentration of fuel.

Une autre façon d'obtenir une réduction supplémentaire de la quantité d'oxydes d'azote produite consiste à injecter une partie principale du comburant et le combustible à deux endroits du four séparés l'un de l'autre par une distance relativement importante. Une combustion réalisée dans ces conditions est dite «étagée» (voir par exemple EP 0 748 981 ou bien WO 02/081967 ). Une faible partie du comburant est en outre injectée à proximité de la sortie du combustible pour stabiliser le régime de combustion. La partie principale du comburant et le combustible se mélangent alors progressivement dans un volume étalé où les jets se recouvrent. De cette façon, un effet d'écart est encore obtenu, entre le rapport des concentrations locales de combustible et de comburant d'une part, et la stoechiométrie de la réaction de combustion d'autre part. De plus, cet effet d'écart stoechiométrique est superposé à un effet de dilution. La température locale, et par conséquent la quantité de monoxyde d'azote, sont donc ainsi aussi réduites. Mais, dans cette configuration de combustion étagée, la position de la flamme selon la direction verticale est particulièrement instable. L'efficacité de chauffage de la matière enfournée est alors réduite et des réfractaires de voûte peuvent être endommagés.Another way to achieve further reduction in the amount of nitrogen oxides produced is to inject a major portion of the oxidant and the fuel at two locations in the furnace separated from each other by a relatively large distance. A combustion performed under these conditions is called "staged" (see for example EP 0 748 981 or WO 02/081967 ). A small portion of the oxidant is further injected near the fuel outlet to stabilize the combustion regime. The main part of the oxidant and the fuel are then gradually mixed in a spread volume where the jets overlap. In this way, a gap effect is still obtained between the ratio of the local concentrations of fuel and oxidizer on the one hand, and the stoichiometry of the combustion reaction on the other hand. In addition, this stoichiometric difference effect is superimposed on a dilution effect. The local temperature, and therefore the amount of nitric oxide, are thus also reduced. But in this staged combustion configuration, the position of the flame in the vertical direction is particularly unstable. The heating efficiency of the fired material is then reduced and vault refractories can be damaged.

Un but de la présente invention consiste donc à proposer un procédé de combustion qui ne présente pas les inconvénients cités ci-dessus, ou pour lequel ces inconvénients sont réduits.An object of the present invention is therefore to provide a combustion process which does not have the disadvantages mentioned above, or for which these disadvantages are reduced.

Ainsi, l'invention propose un procédé de combustion pour four industriel suivant lequel deux ensembles brûleurs sont disposés sensiblement horizontalement, parallèlement l'un à l'autre et symétriquement par rapport à un plan médian passant entre les deux ensembles. Chaque ensemble brûleur comprend :

  • un injecteur de combustible ;
  • des premier, deuxième et troisième injecteurs de comburant respectivement disposés à des distances croissantes de l'injecteur de combustible.
Thus, the invention proposes a combustion process for an industrial furnace according to which two burner assemblies are arranged substantially horizontally, parallel to one another and symmetrically with respect to a median plane passing between the two assemblies. Each burner assembly includes:
  • a fuel injector;
  • first, second and third oxidizer injectors respectively disposed at increasing distances from the fuel injector.

Un système d'alimentation en comburant répartit cycliquement un débit déterminé de comburant entre certains au moins des deuxièmes et troisièmes injecteurs des deux ensembles brûleurs.An oxidizer feed system cyclically distributes a determined flow rate of oxidizing between at least the second and third injectors of the two burner units.

Etant donné que les ensembles brûleurs sont sensiblement horizontaux, la flamme produite dans le four est elle-même contenue dans un plan horizontal. De cette façon, la chaleur produite par la flamme est transférée de façon efficace à la charge du four, sans chauffer excessivement une structure de voûte disposée au-dessus du four à un endroit particulier de celle-ci. Une usure prématurée de la structure de voûte est ainsi évitée.Since the burner assemblies are substantially horizontal, the flame produced in the furnace is itself contained in a horizontal plane. In this way, the heat generated by the flame is efficiently transferred to the furnace charge without excessively heating a vault structure disposed above the furnace at a particular location thereof. Premature wear of the arch structure is thus avoided.

Le comburant est donc introduit dans le four en trois points pour chacun des deux ensembles brûleurs. Le premier point d'introduction du comburant est constitué par le premier injecteur, qui est le plus proche de l'injecteur de combustible correspondant. Il permet d'engendrer une première combustion incomplète du combustible, qui est ensuite achevée par le comburant introduit par les deuxièmes et troisièmes injecteurs. Le premier injecteur permet aussi généralement de stabiliser le régime de combustion à sa sortie. Pour chaque ensemble brûleur, le troisième point d'introduction du comburant est le plus éloigné de l'injecteur de combustible, et le deuxième injecteur de comburant est situé à une distance de l'injecteur de combustible intermédiaire entre les distances des premier et troisième injecteurs.The oxidant is thus introduced into the oven at three points for each of the two burner units. The first point of introduction of the oxidant is constituted by the first injector, which is the closest to the corresponding fuel injector. It allows to generate a first incomplete combustion of the fuel, which is then completed by the oxidant introduced by the second and third injectors. The first injector also generally stabilizes the combustion regime at its output. For each burner assembly, the third point of introduction of the oxidant is the farthest from the fuel injector, and the second oxidizer injector is located at a distance from the intermediate fuel injector between the distances of the first and third injectors .

Le comburant a préférentiellement une teneur d'oxygène supérieure à 30 % en volume, et même supérieure à 70 % en volume.The oxidant preferably has an oxygen content greater than 30% by volume, and even greater than 70% by volume.

Le débit total de comburant introduit dans le four est réparti entre les premiers, deuxièmes et troisièmes injecteurs des deux ensembles brûleurs. Une partie déterminée de ce débit total est injectée par les deuxièmes et troisièmes injecteurs de comburant, avec une répartition entre certains au moins de ceux-ci qui est variable de façon cyclique. La partie déterminée du débit total de comburant qui est injectée par les deux deuxièmes et par les deux troisièmes injecteurs de comburant est sensiblement constante. Elle peut éventuellement varier, mais beaucoup plus lentement que ceux des débits individuels des deuxièmes et/ou troisièmes injecteurs de comburant qui sont variables. Ainsi, une fraction déterminée du comburant est injectée dans le four par certains des deuxièmes et/ou troisièmes injecteurs à un instant donné, puis est injectée par les autres des deuxièmes et/ou troisièmes injecteurs à un instant ultérieur. L'injection de comburant obtenue par un dispositif selon l'invention est donc alternée entre certains desdits deuxièmes et/ou troisièmes injecteurs.The total flow rate of oxidant introduced into the furnace is distributed between the first, second and third injectors of the two burner units. A determined part of this total flow is injected by the second and third oxidizer injectors, with a distribution between at least some of these which is variable cyclically. The determined part of the total flow rate of oxidant which is injected by the two second and the two third oxidizer injectors is substantially constant. It may possibly vary, but much more slowly than those of the individual flows of the second and / or third oxidizer injectors which are variable. Thus, a specific fraction of the oxidant is injected into the furnace by some of the second and / or third injectors at a given instant, then is injected by the other second and / or third injectors at a later time. The oxidant injection obtained by a device according to the invention is therefore alternated between some of said second and / or third injectors.

La répartition cyclique du débit de comburant entre certains des deuxièmes et troisièmes injecteurs des deux ensembles brûleurs est préférentiellement effectuée selon une fréquence inférieure à 1 hertz. La période d'oscillation de la flamme dans le four est alors supérieure à 1 seconde. Les inventeurs ont observé que de telles conditions procurent une combustion particulièrement stable.The cyclic distribution of the oxidant flow rate between some of the second and third injectors of the two burner units is preferably carried out at a frequency of less than 1 hertz. The oscillation period of the flame in the oven is then greater than 1 second. The inventors have observed that such conditions provide a particularly stable combustion.

Dans la combustion étagée qui est obtenue, le combustible et le comburant qui sont introduits dans le four sont dilués grâce à une recirculation des gaz d'échappement dans la zone de combustion. Pour cela, une partie principale du comburant est introduite dans le four à grande distance des endroits d'introduction du combustible. En retardant ainsi le mélange entre le combustible et le comburant, le comburant est fortement dilué avec des gaz ambiants présents dans le four avant d'entrer dans la zone principale de combustion. Cependant, pour stabiliser la flamme, il est nécessaire d'introduire aussi du comburant dans le four à proximité de chaque endroit d'introduction du combustible. La partie de comburant qui est introduite à proximité du combustible est appelée écoulement primaire, et celle qui est introduite à distance du combustible est appelée écoulement secondaire.In the staged combustion that is obtained, the fuel and the oxidant that are introduced into the furnace are diluted by recirculation of the exhaust gas in the combustion zone. For this, a main part of the oxidant is introduced into the furnace at a great distance from the fuel introduction locations. By thus delaying the mixing between the fuel and the oxidant, the oxidant is strongly diluted with ambient gases present in the furnace before entering the main combustion zone. However, to stabilize the flame, it is necessary to also introduce oxidant into the furnace near each fuel introduction location. The part of oxidant that is introduced near the fuel is called primary flow, and that which is introduced at a distance from the fuel is called secondary flow.

Avantageusement, le système d'alimentation en comburant alimente les premiers injecteurs respectivement de chaque ensemble brûleur avec des débits primaires respectifs de comburant sensiblement égaux à chaque instant.Advantageously, the oxidizer supply system feeds the first injectors respectively of each burner assembly with respective primary oxidant flow rates at each instant.

Chaque ensemble brûleur génère une flamme dans le four, mais, lorsque les deux ensembles brûleurs ne sont pas trop éloignés l'un de l'autre, leurs flammes respectives sont réunies et forment un volume de combustion unique. Une telle flamme unique est obtenue, notamment, lorsque la distance entre les injecteurs de combustible respectifs des deux ensembles brûleurs est inférieure à 30 fois le diamètre de chaque injecteur de combustible. Dans la suite, on désignera globalement par flamme le volume total dans lequel se produit la combustion, étant entendu que ce volume peut être divisé en deux parties pour une distance importante de séparation entre les deux ensembles brûleurs.Each burner assembly generates a flame in the furnace, but when the two burner units are not too far apart, their respective flames are united and form a single combustion volume. Such a single flame is obtained, in particular, when the distance between the respective fuel injectors of the two burner units is less than 30 times the diameter of each fuel injector. In the following, generally denote by flame the total volume in which combustion occurs, it being understood that this volume can be divided into two parts for a significant separation distance between the two burner units.

Les variations cycliques de répartition du débit de comburant entre certains au moins des deuxièmes et troisièmes injecteurs provoquent un déplacement horizontal de la flamme dans le four. En fonction de la distance de séparation entre les deux ensembles brûleurs et de la forme des courbes de variations des débits de comburant des deuxièmes et troisièmes injecteurs, le déplacement de la flamme consiste en un battement de celle-ci entre deux positions ou en une oscillation de la flamme entre deux configurations. De manière générale, les variations cycliques de la répartition des gaz dans le four améliorent la stabilité de la flamme, notamment selon la direction verticale, en déplaçant la flamme de façon alternée selon une direction sensiblement horizontale.The cyclic variations in the distribution of the oxidant flow between at least some of the second and third injectors cause a horizontal displacement of the flame in the furnace. Depending on the separation distance between the two burner units and on the shape of the variation curves of the oxidant flow rates of the second and third injectors, the displacement of the flame consists of a flapping thereof between two positions or in an oscillation of the flame between two configurations. In general, the cyclic variations of the distribution of the gases in the furnace improve the stability of the flame, especially in the vertical direction, by moving the flame alternately in a substantially horizontal direction.

Enfin, le déplacement de la flamme contribue à améliorer encore plus la répartition de la puissance de chauffe dans tout le volume du four : un transfert de chaleur à la charge du four est obtenu, qui est plus uniforme grâce à un effet de moyenne dans le temps des apports thermiques ayant lieu à chaque point du four.Finally, the displacement of the flame contributes to further improving the distribution of the heating power throughout the volume of the furnace: a heat transfer to the load of the furnace is obtained, which is more uniform thanks to an effect of average in the time of the thermal contributions taking place at each point of the furnace.

L'invention propose aussi un four adapté pour mettre en oeuvre un procédé tel que décrit précédemment.The invention also provides an oven adapted to implement a method as described above.

D'autres particularités et avantages de la présente invention apparaîtront dans la description ci-après de deux exemples de mise en oeuvre non limitatifs, en référence aux dessins annexés, dans lesquels :

  • la figure 1 illustre la configuration d'un four adapté pour mettre en oeuvre l'invention ;
  • la figure 2a est un diagramme de variation des débits de comburant des premiers, deuxièmes et troisièmes injecteurs d'un four selon la figure 1, conformément à un premier mode de mise en oeuvre de l'invention ;
  • la figure 2b illustre deux configurations de la flamme obtenues à des instants différents pour les variations de débits représentées à la figure 2a ;
  • les figures 3a et 3b correspondent respectivement aux figures 2a et 2b pour un second mode de mise en oeuvre de l'invention ; et
  • la figure 4 illustre différentes configurations de flamme correspondant à des perfectionnements du deuxième mode de mise en oeuvre de l'invention.
Other features and advantages of the present invention will emerge in the following description of two nonlimiting exemplary embodiments, with reference to the appended drawings, in which:
  • the figure 1 illustrates the configuration of an oven adapted to implement the invention;
  • the figure 2a is a diagram of variation of the combustive flow rates of the first, second and third injectors of an oven according to the figure 1 according to a first embodiment of the invention;
  • the figure 2b illustrates two configurations of the flame obtained at different times for the flow rate variations represented at figure 2a ;
  • the Figures 3a and 3b correspond to the Figures 2a and 2b for a second embodiment of the invention; and
  • the figure 4 illustrates different flame configurations corresponding to improvements of the second embodiment of the invention.

Pour raison de clarté des figures, les dimensions des dispositifs représentés ne sont pas en proportion avec des dimensions réelles. En particulier, des dimensions mesurées sur ces figures qui sont associées à des directions réelles distinctes ne sont pas transposées selon le même rapport d'échelle.For the sake of clarity of the figures, the dimensions of the devices shown are not in proportion with real dimensions. In particular, dimensions measured in these figures which are associated with distinct real directions are not transposed according to the same scale ratio.

La figure 1 représente une paroi verticale 101 d'un four 100, par exemple d'un four de fusion de matières premières. Le four 100 peut être à fonctionnement discontinu, avec des étapes distinctes de chargement, de chauffage et de déchargement du four, ou à fonctionnement continu, avec des flux permanents de chargement de matières premières et de sortie de matière fondue. F désigne la trace de la surface libre de matière enfournée sur la paroi 101 du four.The figure 1 represents a vertical wall 101 of a furnace 100, for example a melting furnace of raw materials. The furnace 100 may be batch-operated, with separate stages of loading, heating and discharging of the furnace, or continuous operation, with permanent flows of raw material loading and melt output. F denotes the trace of the free surface of material charged to the wall 101 of the oven.

Les injecteurs de combustible et de comburant sont disposés sur la paroi 101, avec des directions respectives de sortie de fluides sensiblement horizontales. Ils sont alignés sur une ligne horizontale située à une hauteur h au dessus de la trace F. h est préférentiellement comprise entre 250 mm (millimètres) et 550 mm.The fuel and oxidizer injectors are disposed on the wall 101, with respective directions of fluid outlet substantially horizontal. They are aligned on a horizontal line located at a height h above the trace F. h is preferably between 250 mm (millimeters) and 550 mm.

La paroi 101 est divisée par un plan vertical médian P en deux parties, respectivement gauche, notée G, et droite, notée D. Des injecteurs sont situés symétriquement sur les deux parties de paroi, de la façon suivante :

  • deux injecteurs de combustible, référencés 10G et 10D, sont disposés respectivement sur les parties de paroi G et D, à une même distance d10 du plan médian P, mesurée horizontalement ;
  • trois injecteurs de comburant, référencés 1G, 2G et 3G, sont alignés dans la partie de paroi G, respectivement à des distances d1, d2 et d3 du plan médian P. Les distances des injecteurs de la partie de paroi G au plan médian P satisfont par exemple la relation suivante : d1 < d10 < d2 < d3. Les injecteurs 10G, 1G, 2G et 3G sont généralement situés sur une même ligne horizontale ; et
  • trois injecteurs de comburant 1D, 2D et 3D, respectivement identiques aux injecteurs 1G, 2G et 3G et disposés symétriquement à ces derniers sur la partie de paroi D.
The wall 101 is divided by a median vertical plane P in two parts, respectively left, denoted G, and right, denoted D. Injectors are located symmetrically on the two wall portions, as follows:
  • two fuel injectors, referenced 10 G and 10 D are arranged respectively on the wall portions G and D, at the same distance d 10 from the median plane P horizontally;
  • three oxidizer injectors, referenced 1 G , 2 G and 3 G , are aligned in the wall portion G, respectively at distances d 1 , d 2 and d 3 of the median plane P. The distances of the injectors of the wall portion G at the median plane P satisfy, for example, the following relation: d 1 <d 10 <d 2 <d 3 . Injectors 10 G, 1 G , 2 G and 3 G are generally located on the same horizontal line; and
  • three oxidizer injectors 1 D, 2 D and 3 D, respectively identical to the injectors 1 G 2 G 3 and G and arranged symmetrically to the latter on the wall portion D.

Les injecteurs 10G, 1G, 2G et 3G forment un premier ensemble brûleur, associé à la partie gauche de la paroi 101. Par simplification, cet ensemble brûleur est désigné par G dans la suite. De même, les injecteurs 10D, 1D, 2D et 3D forment un second ensemble brûleur, désigné par D et associé à la partie droite de la paroi 101.The injectors 10 G , 1 G , 2 G and 3 G form a first burner assembly, associated with the left part of the wall 101. For simplicity, this burner assembly is designated G in the following. Similarly, the injectors 10D , 1D , 2D and 3D form a second burner assembly, designated D and associated with the right portion of the wall 101.

Le combustible introduit dans le four 100 par les injecteurs 10G et 10D peut être gazeux ou liquide. Dans le cas d'un combustible liquide, les injecteurs 10G et 10D incorporent chacun une buse de pulvérisation de façon à produire des jets de gouttelettes de combustible.The fuel introduced into the furnace 100 by the injectors 10G and 10D can be gaseous or liquid. In the case of a liquid fuel, the injectors 10 and G 10 D each incorporate a spray nozzle so as to produce jets of fuel droplets.

De préférence, la distance d10 entre l'injecteur de combustible de chaque ensemble brûleur, 10G ou 10D, et le plan médian P est inférieure à 15 fois le diamètre de chaque injecteur 10G ou 10D, noté Φ10. Dans ces conditions, une flamme unique commune aux deux ensembles brûleurs G et D est générée dans le four 100.Preferably, the distance d 10 between the fuel injector of each burner assembly, 10 G or 10 D, and the median plane P is less than 15 times the diameter of each injector 10 or G 10 D, denoted Φ 10. Under these conditions, a single flame common to the two burner units G and D is generated in the oven 100.

Le comburant introduit par les injecteurs 1G, 2G, 3G, 1D, 2D et 3D est un gaz ayant habituellement une teneur d'oxygène supérieure à 70 % en volume.The oxidant introduced by the injectors 1G , 2G , 3G , 1D , 2D and 3D is a gas usually having an oxygen content greater than 70% by volume.

De préférence, le troisième injecteur de comburant de chaque ensemble brûleur est situé à une distance de l'injecteur de combustible dudit ensemble au moins dix fois supérieure au diamètre de sortie du troisième injecteur. Autrement dit : d3-d10 > 10.Φ3, où Φ3 désigne le diamètre de sortie des injecteurs 3G et 3D. Ainsi, le jet de comburant de l'injecteur 3G, respectivement 3D, est suffisamment écarté du jet de combustible de l'injecteur 10G, respectivement 10D, pour obtenir une combustion étagée.Preferably, the third oxidizer injector of each burner assembly is located at a distance from the fuel injector of said assembly at least ten times greater than the output diameter of the third injector. In other words: d 3 -d 10 > 10.Φ 3 , where Φ 3 denotes the exit diameter of injectors 3 G and 3 D. Thus, the oxidant jet of the injector 3 G , respectively 3 D , is sufficiently spaced from the fuel jet of the injector 10 G , respectively 10 D , to obtain a staged combustion.

Tous les injecteurs de chaque ensemble brûleur sont dirigés sensiblement horizontalement, de sorte que la flamme produite est parallèle à la surface du bain de matière fondue contenue dans le four 100.All the injectors of each burner assembly are directed substantially horizontally, so that the flame produced is parallel to the surface of the melt bath contained in the furnace 100.

Avantageusement, le système d'alimentation en comburant alimente chacun des premiers injecteurs respectivement de chaque ensemble brûleur, c'est-à-dire les injecteurs 1G et 1D, avec un débit primaire respectif de comburant constant. Le système d'alimentation en comburant est alors simplifié, en ce qui concerne l'alimentation des injecteurs 1G et 1D. De préférence, les débits respectifs des deux injecteurs 1G et 1D sont sensiblement égaux: xG = xD, en désignant par xG et xD les débits respectifs des injecteurs 1G et 1D. A titre d'exemple, xG et xD correspondent chacun à 10% du débit total de comburant injecté dans chaque ensemble brûleur.Advantageously, the oxidizer supply system supplies each of the first injectors respectively of each burner assembly, that is to say the injectors 1G and 1D , with a respective primary flow of constant oxidant. The oxidizer feed system is then simplified, as regards the feeding of injectors 1G and 1D . Preferably, the respective flow rates of the two injectors 1G and 1D are substantially equal: x G = x D , denoting by x G and x D the respective flow rates of the injectors 1G and 1D . By way of example, x G and x D each correspond to 10% of the total flow rate of oxidant injected into each burner assembly.

Selon un premier mode de mise en oeuvre de l'invention, décrit en référence aux figures 2a et 2b, les débits de comburant de deux injecteurs disposés symétriquement par rapport au plan médian P sont égaux à chaque instant. En désignant par yG, yD, zG et zD les débits instantanés respectifs des injecteurs 2G, 2D, 3G et 3D, les relations suivantes sont satisfaites : yG = yD et zG = zD. Autrement dit, le système d'alimentation en comburant alimente les deuxièmes injecteurs respectivement de chaque ensemble brûleur avec des débits secondaires respectifs de comburant sensiblement égaux à chaque instant, et alimente les troisièmes injecteurs respectivement de chaque ensemble brûleur avec des débits tertiaires respectifs de comburant sensiblement égaux à chaque instant. Par exemple, le système d'alimentation des injecteurs 2G, 2D, 3G et 3D peut comporter deux boîtes de distribution identiques affectées respectivement à chaque ensemble brûleur G et D. Ces boîtes de distribution sont couplées à un organe commun de commande variable, et chaque boîte comporte une paroi mobile de séparation des écoulements de comburant dirigés respectivement vers le deuxième ou le troisième injecteur.According to a first embodiment of the invention, described with reference to Figures 2a and 2b the oxidant flow rates of two injectors arranged symmetrically with respect to the median plane P are equal at each instant. Denoting by y G, y D, z D z G and the respective instantaneous flow rates of the injectors 2 G, 2 D, 3 G and 3 D, the following relationships are satisfied: y G = y D and z G = z D. In other words, the oxidizer supply system feeds the second injectors respectively of each burner assembly with respective secondary flows of oxidant substantially equal at each instant, and feeds the third injectors respectively of each burner assembly with respective tertiary flows of oxidant substantially equal every moment. For example, the supply system of injectors 2G , 2D , 3G and 3D may comprise two identical distribution boxes respectively assigned to each burner assembly G and D. These distribution boxes are coupled to a common control member variable, and each box has a movable partition wall of oxidant flows directed respectively to the second or the third injector.

La flamme obtenue est alors centrée sur le plan médian P et est symétrique par rapport à celui-ci à chaque instant.The flame obtained is then centered on the median plane P and is symmetrical with respect thereto at each instant.

La figure 2a illustre un exemple de variation des débits yG et yD d'une part, et des débits zG et zD d'autre part. L'axe des abscisses représente le temps, indiqué en secondes, et l'axe des ordonnées représente la fraction du débit de comburant de chaque ensemble brûleur qui est introduite par chaque injecteur de celui-ci. On suppose que le débit total de comburant de chaque ensemble brûleur G ou D est constant, et que xG et xD sont aussi constants et égaux chacun à 10% du débit de l'ensemble brûleur correspondant.The figure 2a illustrates an example of variation of the rates y G and y D on the one hand, and rates z G and z D on the other hand. The abscissa axis represents the time, indicated in seconds, and the ordinate axis represents the fraction of the oxidizer flow rate of each burner assembly that is introduced by each injector thereof. It is assumed that the total oxidant flow rate of each burner assembly G or D is constant, and that x G and x D are also constant and are each equal to 10% of the flow rate of the corresponding burner assembly.

A titre d'exemple, yG et yD varient de façon sensiblement sinusoïdale entre 10% et 50%, et zG et zD varient entre 40% et 80%. La période de ces variations est de 2 secondes. Les configurations extrêmes de la flamme correspondent alors aux états suivants :

  • état 1, dans lequel yG = yD = 10% et zG =zD = 80%,
  • état 2, dans lequel yG = yD = 50% et zG =zD = 40%.
For example, y G and y D vary substantially sinusoidally between 10% and 50%, and z G and z D vary between 40% and 80%. The period of these variations is 2 seconds. The extreme configurations of the flame then correspond to the following states:
  • state 1, where y G = y D = 10% and z G = z D = 80%,
  • state 2, wherein y G = y D = 50% and z G = z D = 40%.

Le volume de mélange est plus important à l'état 1 qu'à l'état 2. Conformément à la figure 2b qui représente le pourtour 200 de la flamme dans un plan horizontal passant par les injecteurs, l'état 1 correspond à une flamme étendue, à la fois en largeur et en longueur, et l'état 2 correspond à une flamme plus étroite et plus courte. Pour raison de clarté, le débit introduit dans le four par chaque injecteur de comburant est indiqué sur la figure 2b. A l'état 1, le combustible et le comburant sont plus dilués au sein de la flamme. La température est alors moins élevée, mais une meilleure couverture de toute la surface de matière enfournée est obtenue. Le transfert thermique de la flamme à la charge du four est alors particulièrement homogène. A l'inverse, la flamme est plus concentrée et intense à l'état 2.The mixing volume is greater in state 1 than in state 2. In accordance with figure 2b which represents the periphery 200 of the flame in a horizontal plane passing through the injectors, the state 1 corresponds to an extended flame, both in width and in length, and the state 2 corresponds to a narrower and shorter flame . For the sake of clarity, the flow introduced into the furnace by each oxidizer injector is indicated on the figure 2b . In state 1, the fuel and the oxidant are more diluted within the flame. The temperature is then lower, but a better coverage of the entire surface of the material is obtained. The heat transfer of the flame to the furnace charge is then particularly homogeneous. Conversely, the flame is more concentrated and intense in state 2.

Un second mode de mise en oeuvre est maintenant décrit en relation avec les figures 3a et 3b. Ce second mode correspond à une alimentation en comburant alternée entre les deux ensembles brûleurs. Plus particulièrement, le système d'alimentation en comburant répartit cycliquement un débit total tertiaire déterminé de comburant entre lesdits troisièmes injecteurs des deux ensembles brûleurs.A second mode of implementation is now described in relation to the Figures 3a and 3b . This second mode corresponds to an alternating oxidant feed between the two burner units. More particularly, the oxidizer feed system cyclically distributes a determined tertiary total flow of oxidant between said third injectors of the two burner units.

Le système d'alimentation en comburant peut en outre alimenter chacun des deuxièmes injecteurs respectivement de chaque ensemble brûleur avec un débit secondaire respectif de comburant constant. Une mise en oeuvre particulièrement simple de l'alimentation alternée en comburant est ainsi obtenue. En outre, les débits secondaires de comburant peuvent être sensiblement égaux.The oxidizer supply system can further supply each of the second injectors respectively of each burner assembly with a respective secondary flow of constant oxidant. A particularly simple implementation of the alternate supply of oxidant is thus obtained. In addition, the secondary flows of oxidant may be substantially equal.

Le four et les ensembles brûleurs utilisés plus haut pour le premier mode de mise en oeuvre de l'invention peuvent être repris sans modification pour un fonctionnement avec alimentation alternée en comburant. Avec les mêmes notations et références, on a maintenant : xG = xD = x/2 et yG = yD = y/2, où x désigne le débit total de comburant introduit dans le four 100 par les injecteurs 1G et 1D, et y désigne le débit total de comburant introduit par les injecteurs 2G et 2D. x et y sont respectivement appelés débits totaux primaire et secondaire du comburant. De même, on note z le débit total tertiaire de comburant, c'est-à-dire le débit de comburant introduit par les injecteurs 3G et 3D. A titre d'exemple, x = 10%, y = 15% et z = 75%, exprimés en pourcentages du débit total de comburant introduit dans le four. De façon générale, x et y sont sensiblement constants ou varient beaucoup plus lentement que les débits individuels d'injecteurs qui varient cycliquement.The furnace and the burner units used above for the first embodiment of the invention can be taken over without modification for operation with alternating supply of oxidant. With the same notations and references, we now have: x G = x D = x / 2 and y G = y D = y / 2, where x denotes the total flow rate of oxidant introduced into the furnace 100 by the injectors 1G and 1 D , and y denotes the total oxidant flow introduced by injectors 2G and 2D . x and y are respectively called primary and secondary total flows of the oxidant. Similarly, the tertiary total oxidant flow rate, that is to say the oxidant flow rate introduced by the injectors 3 G and 3 D , is noted. By way of example, x = 10%, y = 15% and z = 75%, expressed in percentages of the total flow rate of oxidant introduced into the oven. In general, x and y are substantially constant or vary much more slowly than the individual cyclically varying flow rates of injectors.

Le système d'alimentation en comburant peut être une boîte de distribution reliée aux injecteurs 3G et 3D, qui possède une paroi de séparation mobile disposée entre les écoulements de comburant dirigés respectivement vers les injecteurs 3G et 3D. La figure 3a illustre un tel fonctionnement, suivant lequel la relation zG + zD = z est satisfaite à chaque instant. L'axe des ordonnées de la figure 3b est exprimé en pourcentage du débit total de comburant introduit dans le four, c'est-à-dire x + y + z. zG et zD varient chacun entre 10% et 65%. La période des variations des débits est encore de 2 secondes.The oxidizer feed system may be a distribution box connected to the injectors 3 G and 3 D , which has a movable partition wall disposed between the oxidant flows directed respectively to the injectors 3 G and 3 D. The figure 3a illustrates such an operation, according to which the relation z G + z D = z is satisfied at every moment. The y-axis of the figure 3b is expressed as a percentage of the total flow rate of oxidant introduced into the furnace, that is to say x + y + z. z G and z D each vary between 10% and 65%. The period of flow variations is still 2 seconds.

Les configurations extrêmes de la flamme correspondent maintenant aux états suivants :

  • état 1, dans lequel zG = 65% et zD = 10%,
  • état 2, dans lequel zD = 10% et zG = 65%.
The extreme configurations of the flame now correspond to the following states:
  • state 1, in which z G = 65% and z D = 10%,
  • state 2, wherein z D = 10% and z G = 65%.

Le volume de mélange et la flamme ont des configurations symétriques entre les états 1 et 2 précédents (figure 3b). Dans chacun de ces états, la flamme est déplacée vers le côté de l'injecteur 3G ou 3D ayant le débit de comburant le plus important. Ainsi, la flamme est déplacée vers le côté gauche à l'état 1, et vers le côté droit à l'état 2. Ce va-et-vient latéral de la flamme stabilise la hauteur de celle-ci, de sorte que la flamme reste à une distance sensiblement constante de la surface libre de matière enfournée d'une part, et à une distance sensiblement constante de la voûte du four d'autre part. Ces deux distances peuvent alors être bien contrôlées, ce qui permet d'obtenir un procédé de fusion régulier et un ralentissement de la dégradation des réfractaires de la voûte.The mixing volume and the flame have symmetrical configurations between the preceding states 1 and 2 ( figure 3b ). In each of these states, the flame is moved to the side of the 3 G or 3 D injector having the largest oxidant flow rate. Thus, the flame is moved to the left side in state 1, and to the right side in state 2. This lateral reciprocation of the flame stabilizes the height thereof, so that the flame remains at a substantially constant distance from the free surface of material charged on the one hand, and at a substantially constant distance from the vault of the oven on the other hand. These two distances can then be well controlled, which makes it possible to obtain a regular melting process and a slowing down of the refractory degradation of the vault.

En outre, le va-et-vient latéral de la flamme procure un transfert thermique assez uniforme entre la flamme et la charge du four, selon une direction horizontale parallèle à la paroi 101.In addition, the lateral back and forth of the flame provides a sufficient heat transfer uniformly between the flame and the furnace charge in a horizontal direction parallel to the wall 101.

Du fait de la vitesse du comburant à la sortie des injecteurs 3G et 3D, la flamme est plus longue du côté de l'injecteur 3G ou 3D ayant le débit instantané de comburant le plus élevé. Une bonne couverture moyenne de la surface du four par la flamme en résulte. A titre d'exemple, le comburant est expulsé par les injecteurs 3G et 3D avec une vitesse comprise entre 20 m.s-1 (mètre par seconde) et 160 m.s-1, par exemple de 90 m.s-1. De façon générale, la distance moyenne de mélange du combustible et du comburant, ainsi que la distance moyenne à laquelle se produit la combustion, repérées à partir de la paroi 101 du four, sont d'autant plus grandes que la vitesse d'expulsion du comburant par les injecteurs 3G et 3D est élevée.Because of the velocity of the oxidant at the outlet of the injectors 3 G and 3 D , the flame is longer on the side of the injector 3 G or 3 D having the instantaneous flow rate of the highest oxidant. A good average coverage of the furnace surface by the flame results. For example, the oxidant is expelled by injectors 3 G and 3 D with a speed of between 20 ms -1 (meter per second) and 160 ms -1 , for example 90 ms -1 . In general, the average fuel and oxidant mixing distance, as well as the average distance at which the combustion occurs, located from the wall 101 of the furnace, are all the greater the greater the speed of expulsion of the furnace. oxidizer by injectors 3 G and 3 D is high.

En outre, à chaque alternance, le débit élevé de comburant introduit par l'un des deux injecteurs 3G ou 3D provoque une dilution importante du combustible du côté du plan médian P qui correspond à cet injecteur. A l'inverse, le combustible est plus concentré dans une zone de la flamme décalée par rapport au plan médian P du côté de l'injecteur 3G ou 3D qui présente le débit instantané de comburant le plus faible. Cette zone est notée A sur la figure 3b, pour les pourtours de flamme 200 correspondant à chacun des deux états 1 et 2. La zone A se déplace donc à chaque alternance entre deux positions symétriques situées de part et d'autre du plan médian P.In addition, at each alternation, the high flow rate of the oxidant introduced by one of the two injectors 3 G or 3 D causes a significant dilution of the fuel on the side of the median plane P which corresponds to this injector. Conversely, the fuel is more concentrated in a zone of the flame offset from the median plane P on the side of the injector 3 G or 3 D which has the instantaneous flow rate of the weakest oxidant. This area is marked A on the figure 3b , for the flame edges 200 corresponding to each of the two states 1 and 2. The zone A moves at each alternation between two symmetrical positions located on either side of the median plane P.

Etant donné que la flamme est plus riche en combustible dans la zone A, une quantité plus importante de suie est produite à cet endroit. Simultanément, la zone A correspond à la partie de la flamme qui contribue le plus au transfert thermique à la charge à chaque instant.Since the flame is richer in Zone A, more soot is produced there. At the same time, zone A corresponds to the part of the flame that contributes the most to the heat transfer to the load at every moment.

L'existence d'une telle zone A à l'intérieur de la flamme peut être favorable ou néfaste vis-à-vis de la matière qui est en train d'être fondue, notamment en fonction du comportement chimique de cette matière lorsque la température n'est pas uniforme. Selon une amélioration du second mode de mise en oeuvre de l'invention, il est possible d'atténuer ou d'exacerber la présence d'une telle zone A en variant le débit de combustible des injecteurs 10G et 10D à chaque alternance. Pour cela, un système d'alimentation en combustible peut répartir cycliquement un débit total déterminé de combustible entre les injecteurs de combustible des deux ensembles brûleurs.The existence of such a zone A inside the flame may be favorable or harmful to the material that is being melted, in particular as a function of the chemical behavior of this material when the temperature is not uniform. According to an improvement of the second mode of implementation of the invention, it is possible to reduce or exacerbate the presence of such a zone A by varying the fuel flow of the injectors 10G and 10D at each alternation. For this, a fuel supply system can cyclically distribute a determined total flow of fuel between the fuel injectors of the two burner units.

Avantageusement, le système d'alimentation en combustible est couplé au système d'alimentation en comburant de sorte que le débit total de combustible est réparti cycliquement entre les injecteurs de combustible des deux ensembles brûleurs en phase ou en opposition de phase par rapport à la répartition cyclique du débit total tertiaire de comburant entre les troisièmes injecteurs des deux ensembles brûleurs.Advantageously, the fuel supply system is coupled to the oxidizer supply system so that the total fuel flow is cyclically distributed between the fuel injectors of the two burner assemblies in phase or in phase opposition with respect to the distribution. cyclic tertiary total flow of oxidizer between the third injectors of the two burner units.

Par exemple, une autre boîte de répartition peut être disposée à l'entrée des injecteurs 10G et 10D. Cette autre boîte de répartition possède une paroi de séparation mobile disposée entre les écoulements de combustible dirigés respectivement vers les injecteurs 10G et 10D.For example, another distribution box may be disposed at the inlet of injectors 10G and 10D . This other distribution box has a movable separation wall arranged between the fuel flows directed respectively to the injectors 10G and 10D .

Les deux boîtes de répartition, reliées aux injecteurs 3G et 3D pour la première, et aux injecteurs 10G et 10D pour la seconde, peuvent alors être commandées de façon synchrone en opposition de phase : le débit de combustible envoyé dans l'un des deux injecteurs 10G ou 10D est maximal ou minimal en même temps que le débit de comburant envoyé dans l'injecteur 3D ou 3G du côté opposé est également maximal ou minimal. Un renforcement de la zone A est ainsi obtenu, qui provoque une augmentation de la luminosité de la flamme à proximité de la sortie de l'injecteur de combustible 10G ou 10D lorsque le débit de combustible dans celui-ci est maximal. La concentration en combustible est appauvrie du côté de l'injecteur 3G ou 3D pour lequel le débit de comburant est maximal. Cet appauvrissement accru provoque un raccourcissement de la flamme à son point le plus éloigné des injecteurs.The two distribution boxes, connected to the injectors 3 G and 3 D for the first, and the injectors 10 G and 10 D for the second, can then be controlled synchronously in opposition of phase: the fuel flow rate sent into the one of the two injectors 10 G or 10 D is maximum or minimum at the same time that the flow of oxidizer sent into the injector 3 D or 3 G on the opposite side is also maximum or minimum. A reinforcement of the zone A is thus obtained, which causes an increase in the brightness of the flame near the exit of the fuel injector 10G or 10D when the fuel flow therein is maximum. The fuel concentration is depleted on the side of the 3 G or 3 D injector for which the oxidizer flow rate is maximum. This increased depletion causes a shortening of the flame to its furthest point of the injectors.

Inversement, les deux boîtes de répartition peuvent être commandées de façon synchrone en phase. Le débit de combustible envoyé dans l'un des deux injecteurs 10G ou 10D est alors maximal ou minimal en même temps que le débit de comburant envoyé dans l'injecteur 3G ou 3D du même côté est également maximal ou minimal. La zone A est alors estompée et peut se confondre avec l'ensemble de l'étendue de la flamme. Celle-ci oscille alors entre les deux côtés gauche et droit avec une amplitude supérieure de déplacement transversal. Simultanément la flamme est allongée, de sorte que les deux effets sont combinés pour obtenir un balayage optimal de toute la surface du four par la flamme. II en résulte une surface moyenne de transfert thermique à la charge particulièrement grande.Conversely, the two distribution boxes can be controlled synchronously in phase. The flow rate of fuel sent into one of the two injectors 10 G or 10 D is then maximum or minimum at the same time as the oxidizer flow rate sent into the injector 3 G or 3 D of the same side is also maximum or minimum. Zone A is then blurred and can be confused with the entire extent of the flame. It then oscillates between the two left and right sides with a greater amplitude of transverse displacement. At the same time, the flame is lengthened so that the two effects are combined to obtain an optimal scanning of the entire furnace surface by the flame. This results in an average heat transfer area with a particularly large load.

Les pourtours de flamme obtenus lorsque la répartition des débits de combustible varie en même temps que la répartition des débits de comburant sont représentés à la figure 4. Les traces 200a et 200b correspondent respectivement à des variations en opposition de phase et en phase. La trace 200 correspond à une répartition constante du débit de combustible, et équilibrée entre les deux injecteurs 10G et 10D. Elle est représentée en pointillés à titre de comparaison. Les traces 200, 200a et 200b correspondent toutes à des débits totaux de combustible et de comburant identiques. Pour raison de clarté de la figure 4, seul le contour de la flamme dans l'état 1 défini plus haut est représenté pour chaque cas.Flame boundaries obtained when the distribution of fuel flows varies with the distribution of oxidizer flows are shown in Table 1. figure 4 . The traces 200a and 200b respectively correspond to variations in phase opposition and in phase. The trace 200 corresponds to a constant distribution of the fuel flow, and balanced between the two injectors 10 G and 10 D. It is represented in dotted lines for comparison. The traces 200, 200a and 200b all correspond to the total flows of fuel and oxidant identical. For the sake of clarity of figure 4 only the contour of the flame in state 1 defined above is represented for each case.

II est entendu que de nombreuses modifications et adaptations de l'invention peuvent être introduites par rapport aux modes de mise en oeuvre qui ont été décrits en détail. De telles modifications ou adaptations peuvent notamment tenir compte de caractéristiques particulières, notamment géométriques, du four dans lequel l'invention est mise en oeuvre. En outre, la fréquence de variation des débits de comburant peut être ajustée d'une façon connue de l'Homme du métier, notamment pour obtenir un taux de combustion maximal et pour diminuer la quantité de monoxyde de carbone produite.It is understood that many modifications and adaptations of the invention can be introduced with respect to the modes of implementation which have been described in detail. Such modifications or adaptations may in particular take account of particular characteristics, in particular geometrical characteristics, of the furnace in which the invention is implemented. In addition, the rate of variation of the oxidizer flow rates can be adjusted in a manner known to those skilled in the art, in particular to obtain a maximum burn rate and to reduce the amount of carbon monoxide produced.

Claims (12)

  1. Combustion method in which two burner assemblies (G, D) are placed substantially horizontally, parallel to one another and symmetrically about a median plane (P) passing between the two assemblies, each burner assembly comprising:
    - a fuel injector (10G, 10D) ;
    - first (1G, 1D), second (2G, 2D) and third (3G, 3D) oxidant injectors placed respectively at increasing distances from the fuel injector (10G, 10D),
    and in which an oxidant feed system cyclically distributes a predefined flow of oxidant among at least some of the second and third injectors (2G, 2D, 3G, 3D) of the two burner assemblies.
  2. Method according to Claim 1, in which the cyclic distribution of the oxidant flow among some of the second and third injectors of the two burner assemblies (2G, 2D, 3G, 3D) is carried out at a frequency below 1 hertz.
  3. Method according to either of Claims 1 and 2, in which a distance between the respective fuel injectors (10G, 10D) of the two burner assemblies is shorter than 30 times the diameter of each fuel injector (Φ10).
  4. Method according to any one of Claims 1 to 3, in which the oxidant has an oxygen content above 30% by volume.
  5. Method according to any one of Claims 1 to 4, in which the third oxidant injector (3G, 3D) of each burner assembly is located at a distance from the fuel injector (10G, 10D) of said burner assembly at least 10 times longer than the outlet diameter of said third injector (Φ3).
  6. Method according to any one of Claims 1 to 5, in which the oxidant feed system supplies each of the first injectors (1G, 1D)of each burner assembly with oxidant at a constant respective primary flow rate (xG, xD).
  7. Method according to any one of Claims 1 to 6, in which the oxidant feed system supplies the first injectors (1G, 1D) respectively of each burner assembly with oxidant at respective primary flow rates (xG, xD) that are substantially equal at any time.
  8. Method according to any one of Claims 1 to 7, in which the oxidant feed system supplies the second injectors (2G, 2D) respectively of each burner assembly with oxidant at respective secondary flow rates (yG, yD) that are substantially equal at any time, and supplies the third injectors (3G, 3D) respectively of each burner assembly with oxidant at respective tertiary flow rates (zG, zD) that are substantially equal at any time.
  9. Method according to any one of Claims 1 to 7, in which the oxidant feed system cyclically distributes a predefined total tertiary oxidant flow among the third injectors (3G, 3D) of the two burner assemblies.
  10. Method according to Claim 9, in which the oxidant feed system supplies each of the second injectors (2G, 2D) respectively of each burner assembly with oxidant at a constant respective secondary flow rate (yG, yD).
  11. Method according to either of Claims 9 and 10, in which a fuel feed system cyclically distributes a predefined total fuel flow among the fuel injectors (10G, 10D) of the two burner assemblies.
  12. Method according to Claim 11, in which the fuel feed system is coupled with the oxidant feed system so that the total fuel flow is cyclically distributed among the fuel injectors (10G, 10D) of the two burner assemblies in phase with or in phase opposition to the cyclic distribution of the total tertiary oxidant flow among the third injectors (3G, 3D) of the two burner assemblies.
EP05824047A 2004-12-13 2005-12-05 Combustion method with cyclic supply of oxidant Not-in-force EP1828679B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452949A FR2879283B1 (en) 2004-12-13 2004-12-13 COMBUSTION PROCESS WITH CYCLIC FUEL FEED
PCT/FR2005/051033 WO2006064144A1 (en) 2004-12-13 2005-12-05 Combustion method with cyclic supply of oxidant

Publications (2)

Publication Number Publication Date
EP1828679A1 EP1828679A1 (en) 2007-09-05
EP1828679B1 true EP1828679B1 (en) 2008-04-23

Family

ID=34951847

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05824047A Not-in-force EP1828679B1 (en) 2004-12-13 2005-12-05 Combustion method with cyclic supply of oxidant

Country Status (7)

Country Link
US (1) US8231380B2 (en)
EP (1) EP1828679B1 (en)
JP (1) JP4913747B2 (en)
AT (1) ATE393359T1 (en)
DE (1) DE602005006321T2 (en)
FR (1) FR2879283B1 (en)
WO (1) WO2006064144A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863692B1 (en) * 2003-12-16 2009-07-10 Air Liquide TIRED COMBUSTION PROCESS WITH OPTIMIZED INJECTION OF PRIMARY OXIDANT
KR101642162B1 (en) * 2008-07-02 2016-07-22 에이쥐씨 글래스 유럽 Power supply for hot oxygen burner
JP5451455B2 (en) 2010-03-01 2014-03-26 大陽日酸株式会社 Burner burning method
DE102010053068A1 (en) * 2010-12-01 2012-06-06 Linde Ag Method and apparatus for diluted combustion
CN104532063B (en) * 2014-12-09 2016-09-14 抚顺特殊钢股份有限公司 The method that material is raw material smelting low carbon super clean nickel-base alloy is returned with high Al, Ti

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2711769A (en) 1952-12-12 1955-06-28 Harry B Katcher Cover for air conditioning units
JPS6158513A (en) * 1984-08-31 1986-03-25 井関農機株式会社 Riding type agricultural machine for rice field
FR2679626B1 (en) * 1991-07-23 1993-10-15 Air Liquide PULSED COMBUSTION PROCESS AND INSTALLATION.
FR2711769B1 (en) * 1993-10-29 1995-12-08 Air Liquide Combustion process in an industrial oven.
US5441000A (en) * 1994-04-28 1995-08-15 Vatsky; Joel Secondary air distribution system for a furnace
KR970002091A (en) 1995-06-13 1997-01-24 조안 엠. 젤사 Staged combustion method with reduced generation of nitrogen oxides and carbon monoxide
FR2823290B1 (en) * 2001-04-06 2006-08-18 Air Liquide COMBUSTION PROCESS INCLUDING SEPARATE INJECTIONS OF FUEL AND OXIDIZING AND BURNER ASSEMBLY FOR IMPLEMENTATION OF THIS PROCESS
US6659762B2 (en) * 2001-09-17 2003-12-09 L'air Liquide - Societe Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Oxygen-fuel burner with adjustable flame characteristics
FR2853953B1 (en) * 2003-04-18 2007-02-09 Air Liquide METHOD FOR TOTALLY COMBUSTING A LIQUID FUEL AND AN OXIDANT IN AN OVEN
US7624707B2 (en) * 2004-01-29 2009-12-01 Babcock & Wilcox Power Generation Group, Inc. Re-oriented over fire air ports for reduction of NOx production from pulverized coal-fired burners

Also Published As

Publication number Publication date
DE602005006321D1 (en) 2008-06-05
ATE393359T1 (en) 2008-05-15
JP2008523346A (en) 2008-07-03
EP1828679A1 (en) 2007-09-05
WO2006064144A1 (en) 2006-06-22
DE602005006321T2 (en) 2009-07-09
FR2879283B1 (en) 2007-01-19
US8231380B2 (en) 2012-07-31
JP4913747B2 (en) 2012-04-11
US20090239182A1 (en) 2009-09-24
FR2879283A1 (en) 2006-06-16

Similar Documents

Publication Publication Date Title
EP0782973B1 (en) Process for heating the charge of a glass melting furnace
EP2091872B1 (en) Combustion method for glass melting
EP1828679B1 (en) Combustion method with cyclic supply of oxidant
EP1379810B1 (en) Combustion method comprising separate injections of fuel and oxidant and burner assembly therefor
EP2240417B1 (en) Method for heating a low-nox glass furnace having high heat transfer
EP2041492B1 (en) Burner the direction and/or size of the flame of which can be varied, and method of implementing it
CA2575390A1 (en) Method and device for treating fibrous wastes for recycling
EP0984223B1 (en) Combustion process for burning a fuel
EP1913321B1 (en) Method for calcination of a material with low nox emissions
WO1998002386A1 (en) METHOD AND DEVICE FOR REDUCING NOx EMISSION IN A GLASS FURNACE
EP1065461B1 (en) Combustion process, applicable in cement production
EP0481835B1 (en) Method for heating a thermal enclosure and burner
FR2757845A1 (en) PROCESS FOR IMPROVING THE THERMAL PROFILE OF GLASS FURNACES AND GLASS FUSION OVEN FOR ITS IMPLEMENTATION
EP1618334B1 (en) Staged combustion method for a liquid fuel and an oxidant in a furnace
EP0807608B1 (en) Process for repairing a furnace using an oxygen-fired auxiliary burner
EP3715717B1 (en) Combustion method and burner for implementing the same
EP2242975A2 (en) Method of heating a mineral feedstock in a firing furnace of the tunnel furnace type
EP1834131A1 (en) Method for burning a liquid fuel by variable speed spraying
EP0834049A1 (en) Method for melting a batch in an electric arc furnace
EP3303232A1 (en) Sonic injection furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RECOURT, PATRICK

Inventor name: TSIAVA, REMI

Inventor name: LEROUX, BERTRAND

Inventor name: GRAND, BENOIT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RECOURT, PATRICK

Inventor name: GRAND, BENOIT

Inventor name: TSIAVA, REMI

Inventor name: LEROUX, BERTRAND

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602005006321

Country of ref document: DE

Date of ref document: 20080605

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080923

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

BERE Be: lapsed

Owner name: L'AIR LIQUIDE, S.A. POUR L'ETUDE ET L'EXPLOITATIO

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081205

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080724

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131220

Year of fee payment: 9

Ref country code: GB

Payment date: 20131219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005006321

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150701

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141205

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231