EP1828524B1 - Sensor using the capacitive measuring principle - Google Patents
Sensor using the capacitive measuring principle Download PDFInfo
- Publication number
- EP1828524B1 EP1828524B1 EP05806946A EP05806946A EP1828524B1 EP 1828524 B1 EP1828524 B1 EP 1828524B1 EP 05806946 A EP05806946 A EP 05806946A EP 05806946 A EP05806946 A EP 05806946A EP 1828524 B1 EP1828524 B1 EP 1828524B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- capacitor
- measurements
- sensor
- sensor according
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000005259 measurement Methods 0.000 claims description 27
- 239000003990 capacitor Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 4
- 238000011156 evaluation Methods 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 3
- 230000001012 protector Effects 0.000 claims 2
- 230000005684 electric field Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/40—Safety devices, e.g. detection of obstructions or end positions
- E05F15/42—Detection using safety edges
- E05F15/46—Detection using safety edges responsive to changes in electrical capacitance
Definitions
- the invention relates to a sensor with capacitive measuring principle and a method for detecting an approaching dielectric medium, preferably for detecting a human body part for use in a anti-trap, with a capacitor and an evaluation, wherein the caused by the medium change in the capacitance of the capacitor can be measured is.
- Capacitive proximity sensors have long been known in practice. They consist of specially designed capacitors whose stray electric field is affected by approaching objects. Non-conductive objects lead to an increase in the capacitance of the sensor due to their relative to the ambient air increased dielectric constant. The capacitance change depends on the distance of the object from the sensor, its position relative to the sensor, its dimension and its dielectric constant. To detect an approaching object, the capacitance of the sensor must be determined, for which purpose all capacitance measuring methods known to the person skilled in the art can be used. In most cases, the sensor is part of a resonant circuit which is detuned by objects approaching or, given suitable dimensioning of the resonant circuit, becomes capable of oscillation only when an object is present in the stray field of the sensor. Specially designed proximity sensors can be used in a particularly advantageous manner in a trapping protection. Examples show the DE 102 48 761 A1 and the EP 1 154 110 B1 ,
- a human body part in the stray field of a proximity sensor leads to a particularly high measuring effect. However, this not only detects the presence of a human body part, but also water and / or moisture that is in the field of the sensor. This leads to incorrect measurements, especially in rain or fog.
- the present invention is therefore based on the object, a sensor and a method of the type mentioned for detecting an approaching dielectric medium, preferably for the detection of a human body part, such and further, that a secure measurement regardless of environmental influences, especially moisture and / or water, with a simple design is guaranteed.
- the inventive sensor for detecting an approaching dielectric medium solves the above object by the features of claim 1. Thereafter, such a sensor is characterized in that the capacitor with at least two different frequencies and / or at least two different duty cycles can be operated in sequence.
- a method for detecting an approaching dielectric medium is characterized in that the capacitor is operated with at least two different frequencies and / or at least two different duty cycles in sequence.
- the senor is connected to a periodic, temporally variable voltage source and, during the times in which the output voltage supplied by the voltage source is substantially equal to zero, the charge is measured on the sensor. From this charge can be closed on the capacity of the sensor and occurring changes in this capacity can be detected. This clearly detectable entering into the stray field of the sensor dielectric media.
- a duty cycle is understood to mean the quotient of the period duration and the pulse duration of a periodic, time-variable voltage.
- the duration of a pulse refers to that period of time in which a voltage surge with arbitrary time course assumes more than 50% of its amplitude.
- a classification of the dielectric media passing into the stray field of the sensor can be made.
- a group of measurements is carried out, which consists of at least two measurements with at least two mutually different frequencies and / or at least two mutually different duty cycles.
- the period of time for carrying out the measurements is advantageously chosen such that any parameter changes which occur are negligible, for example due to changes in the distribution of moisture or temperature.
- a group of measurements is repeated periodically.
- Fig. 1 and Fig. 2 show a schematic representation of a preferred embodiment of the present invention from various views.
- the capacitor 1 forming the sensor is formed by two spaced-apart wires 2, 3, which are preferably arranged substantially in parallel.
- Wires can be used all comparable conductive structures known to the person skilled in the art, such as, for example, vapor-deposited or glued-on conductor tracks, conductive polymer layers or the like.
- the wires 2, 3 in the seal of a window, a tailgate, a sliding door or similar, motorized moving parts of a motor vehicle are integrated.
- the device according to the invention can be used to protect all electrically, pneumatically, hydraulically or in a comparable manner moving components in which the risk of pinching exists.
- the device according to the invention it would be conceivable to equip a department store revolving door with the device according to the invention and to stop the rotational movement of the door in a pinching situation and if necessary to change the direction of rotation for a short time.
- the wires forming the capacitor 2, 3 are preferably applied by a not shown voltage source with a square wave voltage whose frequency is preferably adjustable between 100 kHz and 10 MHz. In principle, even higher frequencies would be conceivable.
- the voltage in their duty cycle is adjustable, wherein the frequency and the duty cycle are preferably independently adjustable.
- a time-varying electrical stray field 4 is generated in the capacitor 1 and in its edge region, whose field lines in the Fig. 1 and 2 are drawn.
- this stray field 4 is a schematically illustrated dielectric medium 5, which increases the capacitance of the sensor. This may be, for example, water, moisture, a human body part, a solid such as wood or polyethylene.
- the senor is charged with this square-wave voltage and then, at a certain time interval, the charge on the capacitor is measured.
- the measurements are performed with at least two different frequencies and / or duty cycles of the charging voltage and preferably repeated periodically.
- the capacitance of the sensor is determined and changes in capacitance with respect to values from previous groups of measurements. Are these changes in all measurements within the current Group substantially the same, it is concluded that there is a human body part and / or a solid in the immediate vicinity of the sensor. If the changes in all measurements within the current group are different, then it is concluded that there is water and / or moisture in the area of the sensor, for example due to rain and / or wet seals.
Landscapes
- Geophysics And Detection Of Objects (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
Die Erfindung betrifft einen Sensor mit kapazitivem Messprinzip und ein Verfahren zur Detektion eines sich nähernden dielektrischen Mediums, vorzugsweise zur Detektion eines menschlichen Körperteils zur Anwendung in einem Einklemmschutz, mit einem Kondensator und einer Auswerteelektronik, wobei die durch das Medium hervorgerufene Änderung der Kapazität des Kondensators messbar ist.The invention relates to a sensor with capacitive measuring principle and a method for detecting an approaching dielectric medium, preferably for detecting a human body part for use in a anti-trap, with a capacitor and an evaluation, wherein the caused by the medium change in the capacitance of the capacitor can be measured is.
Kapazitive Nährungssensoren sind aus der Praxis seit langem bekannt. Sie bestehen aus speziell ausgestalteten Kondensatoren, deren elektrisches Streufeld durch sich annähernde Gegenstände beeinflusst wird. Nichtleitende Gegenstände führen aufgrund ihrer gegenüber der Umgebungsluft erhöhten Dielektrizitätszahl zu einer Erhöhung der Kapazität des Sensors. Dabei ist die Kapazitätsänderung abhängig vom Abstand des Gegenstands vom Sensor, seiner Lage gegenüber dem Sensor, seiner Abmessung und seiner Dielektrizitätszahl. Zur Detektion eines sich nähernden Gegenstands muss die Kapazität des Sensors bestimmt werden, wozu alle dem Fachmann aus der Praxis bekannten Kapazitätsmessverfahren eingesetzt werden können. Meist ist der Sensor Teil eines Schwingkreises, der durch sich annähernde Gegenstände verstimmt wird oder bei geeigneter Dimensionierung des Schwingkreises erst durch Anwesenheit eines Gegenstands im Streufeld des Sensors schwingungsfähig wird. Speziell ausgestaltete Näherungssensoren sind in besonders vorteilhafter Weise in einem Einklemmschutz einsetzbar. Beispiele hierzu zeigen die
Aufgrund des hohen Wassergehalts des menschlichen Körpers und der sehr hohen Dielektrizitätszahl von Wasser führt ein menschliches Körperteil im Streufeld eines Näherungssensors zu einem besonders hohen Messeffekt. Allerdings wird dadurch nicht nur die Anwesenheit eines menschlichen Körperteils detektiert, sondern auch Wasser und/oder Feuchtigkeit, das/die sich im Feld des Sensors befindet. Dies führt insbesondere bei Regen oder Nebel zu Fehlmessungen.Due to the high water content of the human body and the very high dielectric constant of water, a human body part in the stray field of a proximity sensor leads to a particularly high measuring effect. However, this not only detects the presence of a human body part, but also water and / or moisture that is in the field of the sensor. This leads to incorrect measurements, especially in rain or fog.
In der erwähnten
Andere aus der Praxis bekannte Ansätze sehen den Einsatz von zusätzlichen Kompensationselektroden vor, die bei geeigneter Beschaltung und Dimensionierung die Einflüsse von Wasser und/oder Feuchtigkeit im Streufeld des Sensors abschwächen können. Allerdings sind auch hierbei wieder aufwendige Abgleichmaßnahmen notwendig.Other approaches known from practice provide for the use of additional compensation electrodes which, with suitable wiring and dimensioning, can attenuate the influences of water and / or moisture in the stray field of the sensor. However, again complex adjustment measures are necessary.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Sensor und ein Verfahren der eingangs genannten Art zur Detektion eines sich nähernden dielektrischen Mediums, vorzugsweise zur Detektion eines menschlichen Körperteils, derart auszugestalten und weiterzubilden, dass eine sichere Messung unabhängig von Umwelteinflüssen, insbesondere Feuchtigkeit und/oder Wasser, bei einfacher Konstruktion gewährleistet ist.The present invention is therefore based on the object, a sensor and a method of the type mentioned for detecting an approaching dielectric medium, preferably for the detection of a human body part, such and further, that a secure measurement regardless of environmental influences, especially moisture and / or water, with a simple design is guaranteed.
Der erfindungsgemäße Sensor zur Detektion eines sich nähernden dielektrischen Mediums löst die voranstehende Aufgabe durch die Merkmale des Patentanspruchs 1. Danach ist ein solcher Sensor dadurch gekennzeichnet, dass der Kondensator mit mindestens zwei unterschiedlichen Frequenzen und/oder mindestens zwei unterschiedlichen Tastverhältnissen in Folge betreibbar ist.The inventive sensor for detecting an approaching dielectric medium solves the above object by the features of
Hinsichtlich eines Verfahrens wird die eingangs genannte Aufgabe durch die Merkmale des Patentanspruchs 10 gelöst. Hiernach ist ein Verfahren zur Detektion eines sich nähernden dielektrischen Mediums dadurch gekennzeichnet, dass der Kondensator mit mindestens zwei unterschiedlichen Frequenzen und/oder mindestens zwei unterschiedlichen Tastverhältnisse in Folge betrieben wird.With regard to a method, the object mentioned is achieved by the features of claim 10. Hereinafter, a method for detecting an approaching dielectric medium is characterized in that the capacitor is operated with at least two different frequencies and / or at least two different duty cycles in sequence.
Erfindungsgemäß ist erkannt worden, dass unter Verwendung eines Entladungsverfahrens zur Kapazitätsmessung bestimmte Verhaltensweisen einzelner dielektrischer Medien gegenüber veränderlichen elektrischen Feldern ausgenutzt werden können. Erfindungsgemäß ist ferner erkannt worden, dass auf diese Weise menschliche Körperteile und verschiedene Feststoffe wie Holz und Polyäthylen gegenüber Wasser und/oder Feuchtigkeit unterscheidbar sind.According to the invention it has been recognized that using a discharge method for capacitance measurement specific behaviors of individual dielectric Media against variable electric fields can be exploited. According to the invention it has also been recognized that in this way human body parts and various solids such as wood and polyethylene are distinguishable from water and / or moisture.
Bei dem erfindungsgemäß eingesetzten Entladungsverfahren zur Kapazitätsmessung wird der Sensor an eine periodische, zeitliche veränderliche Spannungsquelle angeschlossen und während der Zeiten, in denen die von der Spannungsquelle gelieferte Ausgangsspannung im Wesentlichen gleich Null ist, die Ladung auf den Sensor gemessen. Aus dieser Ladung kann auf die Kapazität des Sensors geschlossen und auftretende Änderungen dieser Kapazität erkannt werden. Damit sind eindeutig in das Streufeld des Sensors eintretende dielektrische Medien detektierbar.In the discharge method for capacitance measurement used according to the invention, the sensor is connected to a periodic, temporally variable voltage source and, during the times in which the output voltage supplied by the voltage source is substantially equal to zero, the charge is measured on the sensor. From this charge can be closed on the capacity of the sensor and occurring changes in this capacity can be detected. This clearly detectable entering into the stray field of the sensor dielectric media.
Durch Veränderung der Frequenz und des Tastverhältnisses der Ladespannung verändert sich der zeitliche Verlauf des durch den Sensor abgestrahlten elektrischen Streufelds. Unter einem Tastverhältnis versteht man den Quotienten aus der Periodendauer und der Impulsdauer einer periodischen, zeitlich veränderlichen Spannung. Die Dauer eines Impulses bezeichnet diejenige Zeitspanne, in der ein Spannungsstoß mit beliebigem zeitlichem Verlauf mehr als 50 % seiner Amplitude annimmt.By changing the frequency and the duty cycle of the charging voltage, the time course of the electrical stray field emitted by the sensor changes. A duty cycle is understood to mean the quotient of the period duration and the pulse duration of a periodic, time-variable voltage. The duration of a pulse refers to that period of time in which a voltage surge with arbitrary time course assumes more than 50% of its amplitude.
In einem durch Spannungen mit verschiedenen Frequenzen und/oder Tastverhältnissen erzeugten Streufeld zeigen verschiedene dielektrische Medien unterschiedliches Verhalten. So ist die durch ein menschliches Körperteil hervorgerufene Erhöhung der Kapazität des Sensors in einem weiten Frequenzbereich im Wesentlichen konstant. Entsprechendes gilt bei verschiedenen Tastverhältnissen. Viele Feststoffe wie Holz und Polyäthylen zeigen einen ähnlichen Effekt wie ein menschliches Körperteil. Demgegenüber erzeugt Wasser und/oder Feuchtigkeit im Streufeld des Sensors eine Erhöhung der Kapazität des Sensors, die von der verwendeten Frequenz und/oder dem verwendeten Tastverhältnis abhängig ist.In a stray field generated by voltages having different frequencies and / or duty cycles, different dielectric media exhibit different behaviors. Thus, the increase in capacitance of the sensor caused by a human body part is substantially constant over a wide frequency range. The same applies to different duty cycles. Many solids, such as wood and polyethylene, have a similar effect to a human body part. In contrast, water and / or moisture in the stray field of the sensor causes an increase in the capacitance of the sensor, which depends on the frequency used and / or the duty cycle used.
Eine Ursache hierfür liegt in den Dipoleigenschaften des Wassers. Da Wasser permanente Dipole ausbildet, kann in einem elektrischen Feld Orientierungspolarisation beobachtet werden. Bedingt durch ein anliegendes elektrisches Feld werden die einzelnen Dipole unter Überwindung ihrer Trägheit ausgerichtet. Dabei hängt der Grad der Ausrichtung von der Frequenz und der Dauer des anliegenden Feldes ab. Je höher die Frequenz gewählt wird, desto geringer ist die Reaktion (Ausrichtung) der Dipole bzw. desto höher ist die Wärmeentwicklung. Je kürzer die Dauer eines Impulses ist, desto höher ist die Wahrscheinlichkeit, dass ein Dipol nicht komplett ausgerichtet werden kann.One reason for this is the dipole properties of the water. Since water forms permanent dipoles, orientation polarization can be observed in an electric field. Caused by an applied electric field the individual dipoles aligned by overcoming their inertia. The degree of alignment depends on the frequency and duration of the applied field. The higher the frequency chosen, the lower the reaction (orientation) of the dipoles or the higher the heat development. The shorter the duration of a pulse, the higher the likelihood that a dipole can not be completely aligned.
Unter Ausnutzung dieses Effektes kann eine Klassifizierung der in das Streufeld des Sensors tretenden dielektrischen Medien getroffen werden. Dazu wird eine Gruppe von Messungen durchgeführt, die aus mindestens zwei Messungen mit mindestens zwei voneinander verschiedenen Frequenzen und/oder mindestens zwei voneinander verschiedenen Tastverhältnissen besteht. Dabei wird in vorteilhafter Weise die Zeitspanne zur Durchführung der Messungen so gewählt, dass eventuell auftretende Parameteränderungen beispielsweise durch geänderte Feuchtigkeitsverteilung oder Temperatureinflüsse vernachlässigbar sind. Vorzugsweise wird eine Gruppe von Messungen periodisch wiederholt.Utilizing this effect, a classification of the dielectric media passing into the stray field of the sensor can be made. For this purpose, a group of measurements is carried out, which consists of at least two measurements with at least two mutually different frequencies and / or at least two mutually different duty cycles. In this case, the period of time for carrying out the measurements is advantageously chosen such that any parameter changes which occur are negligible, for example due to changes in the distribution of moisture or temperature. Preferably, a group of measurements is repeated periodically.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die den Patentansprüchen 1 und 11 nachgeordneten Ansprüche andererseits auf die nachfolgenden Erläuterungen eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnungen zu verweisen. In der Zeichnung zeigt
- Fig. 1
- in einer schematischen Darstellung den prinzipiellen Aufbau eines Sensors zur Detektion eines sich nähernden dielektrischen Mediums in einer Frontansicht und
- Fig. 2
- in einer schematischen Darstellung den Schnitt A-A aus
Fig. 1
- Fig. 1
- in a schematic representation of the basic structure of a sensor for detecting an approaching dielectric medium in a front view and
- Fig. 2
- in a schematic representation of the section AA
Fig. 1
Die den Kondensator bildenden Drähte 2, 3 werden durch eine nicht eingezeichnete Spannungsquelle bevorzugt mit einer Rechteckspannung beaufschlagt, deren Frequenz vorzugsweise zwischen 100 kHz und 10 MHz einstellbar ist. Prinzipiell wären noch höhere Frequenzen denkbar. Daneben ist die Spannung in ihrem Tastverhältnis einstellbar, wobei die Frequenz und das Tastverhältnis vorzugsweise unabhängig voneinander einstellbar sind. Dadurch wird in dem Kondensator 1 und in dessen Randbereich ein zeitlich veränderliches, elektrisches Streufeld 4 erzeugt, dessen Feldlinien in den
Während einer Messung wird der Sensor mit dieser Rechteckspannung aufgeladen und danach, in gewissem zeitlichem Abstand dazu, die Ladung auf dem Kondensator gemessen. Die Messungen werden mit mindestens zwei verschiedenen Frequenzen und/oder Tastverhältnissen der Ladespannung durchgeführt und vorzugsweise periodisch wiederholt.During a measurement, the sensor is charged with this square-wave voltage and then, at a certain time interval, the charge on the capacitor is measured. The measurements are performed with at least two different frequencies and / or duty cycles of the charging voltage and preferably repeated periodically.
Aus der gemessenen Ladung wird auf die Kapazität des Sensors geschlossen und Änderungen der Kapazitäten in Bezug auf Werte aus früheren Gruppen von Messungen bestimmt. Sind diese Änderungen bei allen Messungen innerhalb der aktuellen Gruppe im Wesentlichen gleich, so wird daraus geschlossen, dass sich ein menschliches Körperteil und/oder ein Feststoff in der unmittelbaren Nähe des Sensors befindet. Sind die Änderungen bei allen Messungen innerhalb der aktuellen Gruppe voneinander verschieden, so wird darauf geschlossen, dass sich im Bereich des Sensors Wasser und/oder Feuchtigkeit befindet, zum Beispiel durch Regen und/oder nasse Dichtungen.From the measured charge it is concluded that the capacitance of the sensor is determined and changes in capacitance with respect to values from previous groups of measurements. Are these changes in all measurements within the current Group substantially the same, it is concluded that there is a human body part and / or a solid in the immediate vicinity of the sensor. If the changes in all measurements within the current group are different, then it is concluded that there is water and / or moisture in the area of the sensor, for example due to rain and / or wet seals.
Schließlich sei angemerkt, dass das voranstehend erörterte Ausführungsbeispiel die beanspruchte Lehre lediglich erläutert, diese jedoch nicht auf das Ausführungsbeispiel einschränkt.Finally, it should be noted that the above-discussed embodiment merely explains the claimed teaching, but does not restrict it to the exemplary embodiment.
Claims (15)
- Sensor using the capacitive measuring principle, for detecting an approaching dielectric medium (5), preferably for detecting a human body part, for use in a trapping protector, having a capacitor (1) and an electronic evaluation system, the change in the capacitance of the capacitor (1) brought about by the medium (5) being measurable,
characterised in that the sensor carries out a group of measurements with at least two measurements in succession,
the capacitor (1) being operated with at least two different frequencies and/or at least two different mark-to-space ratios during those at least two measurements. - Sensor according to claim 1, characterised in that the capacitor (1) is formed by two wires (2, 3) or comparable conductive structures arranged spaced apart from each other,
the wires (2, 3) being arranged substantially in parallel. - Sensor according to claim 2, characterised in that the wires (2, 3) are fitted at the edge regions of a region of parts driven electrically, pneumatically, hydraulically or in a comparable manner, which region is critical in respect of a trapping situation, and/or
in that the wires (2, 3) are integrated in the seal of a window, tailgate, sliding door or similar motor-driven parts of a motor vehicle. - Sensor according to any one of claims 1 to 3, characterised in that the capacitor (1) can be acted upon by a periodic voltage which is variable with time.
- Sensor according to claim 4, characterised in that the voltage is a square wave voltage.
- Sensor according to claim 4 or 5, characterised in that the voltage is adjustable in respect of its frequency, preferably between 100 kHz and 10 MHz.
- Sensor according to claim 5 or 6, characterised in that the voltage is adjustable in respect of its mark-to-space ratio.
- Sensor according to claims 6 and 7, characterised in that the frequency and the mark-to-space ratio may be adjustable independently of each other.
- Sensor according to any one of claims 1 to 8, characterised in that the charge of the capacitor (1) is measurable.
- Method for detecting an approaching dielectric medium (5), preferably for detecting a human body part, for use in a trapping protector, using a sensor according to any one of claims 1 to 9, having a capacitor (1) and an electronic evaluation system, the change in the capacitance of the capacitor (1) brought about by the medium (5) being measured,
characterised in that the sensor carries out a group of measurements with at least two measurements in succession, the capacitor (1) being operated with at least two different
frequencies and/or at least two different mark-to-space ratios during those at least two measurements. - Method according to claim 10, characterised in that the capacitor (1) is charged with a square wave voltage.
- Method according to claim 10 or 11, characterised in that the change on the capacitor (1) is measured and/or
in that the changing of the capacitor (1) and the measurement of the charge are carried out with a time interval with respect to each other. - Method according to any one of claims 10 to 12, characterised in that the group of measurements with at least two measurements is carried out with in each case mutually differing frequencies and/or mark-to-space ratios of the charge voltage,
it being possible to effect all of the measurements of a group within such a short time frame that fluctuations of individual parameters are negligible. - Method according to any one of claims 10 to 13, characterised in that the group of measurements is repeated periodically and/or
in that the capacitance of the capacitor (1) is inferred from the measured charge. - Method according to any one of claims 10 to 14, characterised in that it is inferred that water has been introduced into the field of the capacitor when the change in the capacitance brought about by the dielectric (5) assumes different values for all of the measurements within a group and/or
in that it is inferred that a human body part has been introduced into the field of the capacitor when the change in the capacitance brought about by the dielectric (5) is substantially the same for all of the measurements within a group.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004063108 | 2004-12-22 | ||
DE102005013441A DE102005013441A1 (en) | 2004-12-22 | 2005-03-21 | Sensor with capacitive measuring principle |
PCT/DE2005/002105 WO2006066524A1 (en) | 2004-12-22 | 2005-11-24 | Sensor using the capacitive measuring principle |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1828524A1 EP1828524A1 (en) | 2007-09-05 |
EP1828524B1 true EP1828524B1 (en) | 2010-11-10 |
Family
ID=35809814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05806946A Not-in-force EP1828524B1 (en) | 2004-12-22 | 2005-11-24 | Sensor using the capacitive measuring principle |
Country Status (7)
Country | Link |
---|---|
US (1) | US7545154B2 (en) |
EP (1) | EP1828524B1 (en) |
JP (1) | JP4901755B2 (en) |
CN (1) | CN101137814B (en) |
DE (2) | DE102005013441A1 (en) |
HK (1) | HK1112681A1 (en) |
WO (1) | WO2006066524A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013174513A2 (en) | 2012-05-24 | 2013-11-28 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft Hallstadt | Capacitive sensor for an anti-collision apparatus |
DE102013001066A1 (en) | 2013-01-23 | 2014-07-24 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Capacitive proximity sensor |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005043534B4 (en) * | 2005-09-12 | 2013-07-04 | Webasto Ag | Anti-trap device in the automotive field |
FR2904353B1 (en) * | 2006-07-31 | 2008-10-03 | Peugeot Citroen Automobiles Sa | ANTI-PINCHING DEVICE FOR A GLASS OR SLIDING ROOF OF A MOTOR VEHICLE |
US9234979B2 (en) | 2009-12-08 | 2016-01-12 | Magna Closures Inc. | Wide activation angle pinch sensor section |
US8493081B2 (en) | 2009-12-08 | 2013-07-23 | Magna Closures Inc. | Wide activation angle pinch sensor section and sensor hook-on attachment principle |
RU2474830C1 (en) * | 2011-08-12 | 2013-02-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный педагогический университет" (ОмГПУ) | Method to measure comprehensive dielectric permeability of liquid and loose substances in wide range of frequencies |
DE102011121372A1 (en) * | 2011-12-19 | 2013-06-20 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Capacitive sensor for use in collision protecting device of vehicle for detecting object, particularly for detecting snagging or collision at mobile vehicle part, has capacitance measuring unit interconnected with electrode |
CN202417144U (en) * | 2011-12-21 | 2012-09-05 | 北京奥特易电子科技有限责任公司 | Clamp-proof sensor of electric vehicle window |
EP2757354B1 (en) * | 2013-01-22 | 2015-09-30 | Mettler-Toledo AG | Detection of electrostatic forces |
CN104268967A (en) * | 2014-09-29 | 2015-01-07 | 深圳市爱普特微电子有限公司 | Safety entrance guard method and device based on capacitance-type sensor |
CN117388331A (en) * | 2023-10-27 | 2024-01-12 | 福建天成宝得智能科技有限公司 | Capacitive soil humidity detection device and system |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5398547A (en) * | 1989-01-10 | 1995-03-21 | Innovative Dynamics, Inc. | Apparatus for measuring ice distribution profiles |
GB9400407D0 (en) * | 1993-10-18 | 1994-03-09 | Draftex Ind Ltd | Movable-window safety device |
JPH0984778A (en) * | 1995-09-26 | 1997-03-31 | Terumo Corp | Human body volume meter and diagnosis support system |
DE19610626C2 (en) * | 1996-03-19 | 2003-01-23 | Bosch Gmbh Robert | Follow-up detection of electric actuators |
EP0924513B1 (en) * | 1997-12-18 | 2009-11-25 | Uster Technologies AG | Method and device for measuring the proportions of solid materials in a sample |
JPH11334359A (en) * | 1998-05-26 | 1999-12-07 | Oki Electric Ind Co Ltd | Safety device for electric power window |
DE19836056A1 (en) * | 1998-08-10 | 2000-02-17 | Bosch Gmbh Robert | Device to detect obstacles to closing of motor-activated roof of open top motor car; has strip-type capacitor sensor placed along top of any windscreen or side window upper members |
DE19854038C2 (en) * | 1998-11-13 | 2003-09-04 | Brose Fahrzeugteile | Device for detecting the adjustment of translationally moved adjustment devices in vehicles |
JP2000329506A (en) * | 1999-05-24 | 2000-11-30 | Yazaki Corp | Capacitance-type nipping detecting sensor structure to be used for closing/opening drive control device |
US6377009B1 (en) * | 1999-09-08 | 2002-04-23 | Harald Philipp | Capacitive closure obstruction sensor |
US6337549B1 (en) * | 2000-05-12 | 2002-01-08 | Anthony Gerald Bledin | Capacitive anti finger trap proximity sensor |
JP2002057564A (en) * | 2000-08-11 | 2002-02-22 | Aisin Seiki Co Ltd | Human body detector |
DE10048146A1 (en) * | 2000-09-28 | 2002-04-11 | Philips Corp Intellectual Pty | Power supply for X-ray generator |
US6864692B1 (en) * | 2002-06-20 | 2005-03-08 | Xsilogy, Inc. | Sensor having improved selectivity |
DE10248761B4 (en) * | 2002-10-18 | 2013-10-02 | Wilhelm Karmann Gmbh | Capacitive measuring sensor and detection device with a capacitive sensor for detecting a pinching situation |
JP2004212344A (en) * | 2003-01-08 | 2004-07-29 | Mitsuba Corp | Object distinguishing device and object distinguishing method |
JP2004219311A (en) * | 2003-01-16 | 2004-08-05 | Omron Corp | Electrostatic capacity sensor, and opening/closing body clipping-in sensing device |
DE10362057B4 (en) * | 2003-02-10 | 2007-09-06 | Ident Technology Ag | Method and device for safeguarding hazardous areas |
DE10324731A1 (en) * | 2003-05-31 | 2004-12-16 | Braun Gmbh | Method and circuit arrangement for the detection of a filling level of a liquid |
-
2005
- 2005-03-21 DE DE102005013441A patent/DE102005013441A1/en not_active Withdrawn
- 2005-11-24 CN CN200580048230.4A patent/CN101137814B/en not_active Expired - Fee Related
- 2005-11-24 EP EP05806946A patent/EP1828524B1/en not_active Not-in-force
- 2005-11-24 JP JP2007547155A patent/JP4901755B2/en not_active Expired - Fee Related
- 2005-11-24 DE DE502005010530T patent/DE502005010530D1/en active Active
- 2005-11-24 WO PCT/DE2005/002105 patent/WO2006066524A1/en active Application Filing
-
2007
- 2007-06-20 US US11/765,612 patent/US7545154B2/en not_active Expired - Fee Related
-
2008
- 2008-07-24 HK HK08108214.5A patent/HK1112681A1/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013174513A2 (en) | 2012-05-24 | 2013-11-28 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft Hallstadt | Capacitive sensor for an anti-collision apparatus |
DE102012010228A1 (en) | 2012-05-24 | 2013-11-28 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Capacitive sensor for a collision protection device |
DE102013001066A1 (en) | 2013-01-23 | 2014-07-24 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Capacitive proximity sensor |
WO2014114669A2 (en) | 2013-01-23 | 2014-07-31 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Capacitive proximity sensor |
US10197377B2 (en) | 2013-01-23 | 2019-02-05 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Method of operating a capacitive proximity sensor and capacitive proximity sensor |
DE102013001066B4 (en) | 2013-01-23 | 2022-01-20 | Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg | Capacitive proximity sensor |
Also Published As
Publication number | Publication date |
---|---|
DE502005010530D1 (en) | 2010-12-23 |
US7545154B2 (en) | 2009-06-09 |
DE102005013441A1 (en) | 2006-07-06 |
CN101137814A (en) | 2008-03-05 |
WO2006066524A1 (en) | 2006-06-29 |
US20080007274A1 (en) | 2008-01-10 |
CN101137814B (en) | 2012-02-01 |
JP4901755B2 (en) | 2012-03-21 |
HK1112681A1 (en) | 2008-09-12 |
JP2008524608A (en) | 2008-07-10 |
EP1828524A1 (en) | 2007-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1828524B1 (en) | Sensor using the capacitive measuring principle | |
EP2062359B1 (en) | Anti-pinching device | |
EP2527795B1 (en) | Position sensor, actuator-sensor device and method for inductive detection of a position | |
AT393040B (en) | CAPACITIVE CLOSER | |
EP2184435B1 (en) | Passage barrier with capacity sensor | |
DE102013001066B4 (en) | Capacitive proximity sensor | |
EP2371062B1 (en) | Capacitive proximity sensor having a shielding electrode and a diagnostic electrode | |
EP2828973B1 (en) | Capacitive sensor arrangement for switching a door opening in a motor vehicle and associated method | |
DE102011053314A1 (en) | Capacitive sensor arrangement | |
DE102010002559A1 (en) | Capacitive sensor arrangement for detection of e.g. door opening of motor car, has sensing electrode arrangements formed of elongated segments which are arranged in longitudinal direction to enable different capacitive detections | |
DE202006010813U1 (en) | Pinch sensor and evaluation circuit | |
DE102014117820A1 (en) | Sensor system for a steering wheel of a motor vehicle, steering wheel with such a sensor system and method for operating such a sensor system | |
DE102009031824A1 (en) | Capacitive sensor arrangement with a sensor electrode, a shield electrode and a background electrode | |
DE202006009188U1 (en) | anti-pinch | |
DE102014117821A1 (en) | Sensor system for a steering wheel of a motor vehicle, steering wheel with such a sensor system and method for operating such a sensor system | |
DE102007001712A1 (en) | Arrangement for detecting presence of object in observation area, comprises transmitting electrode device for emitting alternating field into emission area, where receiving electrode device is provided for detecting alternating field | |
WO2018050363A1 (en) | Contactless capacitive sensor, method for detecting the approach of a human or animal body part, and assembly having a sensor | |
DE102013221346B4 (en) | Front circuit for a capacitive sensor | |
EP3829065A1 (en) | Capacitive sensor device and method for detecting an object getting closer | |
DE102008041632A1 (en) | Measurement electrode arrangement for use in distance measurement device, has measurement capacitors whose capacitance depends on distance of object from electrodes, which correspond to dimension of object | |
DE102004026637A1 (en) | Device for determining the road condition | |
DE102009030775B4 (en) | Capacitive sensor array | |
DE102014216247B4 (en) | Sensor system and method for the capacitive detection of obstacles | |
EP3457569B1 (en) | Evaluation arrangement for a capacitive sensor device | |
WO2024160439A1 (en) | Sensor device for a functional device of a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070710 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WAGNER, MANFRED Inventor name: REINDL, NORBERT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502005010530 Country of ref document: DE Date of ref document: 20101223 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110811 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005010530 Country of ref document: DE Effective date: 20110811 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20141127 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20141127 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150130 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005010530 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151124 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160601 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |