EP1828524B1 - Sensor using the capacitive measuring principle - Google Patents

Sensor using the capacitive measuring principle Download PDF

Info

Publication number
EP1828524B1
EP1828524B1 EP05806946A EP05806946A EP1828524B1 EP 1828524 B1 EP1828524 B1 EP 1828524B1 EP 05806946 A EP05806946 A EP 05806946A EP 05806946 A EP05806946 A EP 05806946A EP 1828524 B1 EP1828524 B1 EP 1828524B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
measurements
sensor
sensor according
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05806946A
Other languages
German (de)
French (fr)
Other versions
EP1828524A1 (en
Inventor
Manfred Wagner
Norbert Reindl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Epsilon Messtechnik GmbH and Co KG
Original Assignee
Micro Epsilon Messtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Epsilon Messtechnik GmbH and Co KG filed Critical Micro Epsilon Messtechnik GmbH and Co KG
Publication of EP1828524A1 publication Critical patent/EP1828524A1/en
Application granted granted Critical
Publication of EP1828524B1 publication Critical patent/EP1828524B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/42Detection using safety edges
    • E05F15/46Detection using safety edges responsive to changes in electrical capacitance

Definitions

  • the invention relates to a sensor with capacitive measuring principle and a method for detecting an approaching dielectric medium, preferably for detecting a human body part for use in a anti-trap, with a capacitor and an evaluation, wherein the caused by the medium change in the capacitance of the capacitor can be measured is.
  • Capacitive proximity sensors have long been known in practice. They consist of specially designed capacitors whose stray electric field is affected by approaching objects. Non-conductive objects lead to an increase in the capacitance of the sensor due to their relative to the ambient air increased dielectric constant. The capacitance change depends on the distance of the object from the sensor, its position relative to the sensor, its dimension and its dielectric constant. To detect an approaching object, the capacitance of the sensor must be determined, for which purpose all capacitance measuring methods known to the person skilled in the art can be used. In most cases, the sensor is part of a resonant circuit which is detuned by objects approaching or, given suitable dimensioning of the resonant circuit, becomes capable of oscillation only when an object is present in the stray field of the sensor. Specially designed proximity sensors can be used in a particularly advantageous manner in a trapping protection. Examples show the DE 102 48 761 A1 and the EP 1 154 110 B1 ,
  • a human body part in the stray field of a proximity sensor leads to a particularly high measuring effect. However, this not only detects the presence of a human body part, but also water and / or moisture that is in the field of the sensor. This leads to incorrect measurements, especially in rain or fog.
  • the present invention is therefore based on the object, a sensor and a method of the type mentioned for detecting an approaching dielectric medium, preferably for the detection of a human body part, such and further, that a secure measurement regardless of environmental influences, especially moisture and / or water, with a simple design is guaranteed.
  • the inventive sensor for detecting an approaching dielectric medium solves the above object by the features of claim 1. Thereafter, such a sensor is characterized in that the capacitor with at least two different frequencies and / or at least two different duty cycles can be operated in sequence.
  • a method for detecting an approaching dielectric medium is characterized in that the capacitor is operated with at least two different frequencies and / or at least two different duty cycles in sequence.
  • the senor is connected to a periodic, temporally variable voltage source and, during the times in which the output voltage supplied by the voltage source is substantially equal to zero, the charge is measured on the sensor. From this charge can be closed on the capacity of the sensor and occurring changes in this capacity can be detected. This clearly detectable entering into the stray field of the sensor dielectric media.
  • a duty cycle is understood to mean the quotient of the period duration and the pulse duration of a periodic, time-variable voltage.
  • the duration of a pulse refers to that period of time in which a voltage surge with arbitrary time course assumes more than 50% of its amplitude.
  • a classification of the dielectric media passing into the stray field of the sensor can be made.
  • a group of measurements is carried out, which consists of at least two measurements with at least two mutually different frequencies and / or at least two mutually different duty cycles.
  • the period of time for carrying out the measurements is advantageously chosen such that any parameter changes which occur are negligible, for example due to changes in the distribution of moisture or temperature.
  • a group of measurements is repeated periodically.
  • Fig. 1 and Fig. 2 show a schematic representation of a preferred embodiment of the present invention from various views.
  • the capacitor 1 forming the sensor is formed by two spaced-apart wires 2, 3, which are preferably arranged substantially in parallel.
  • Wires can be used all comparable conductive structures known to the person skilled in the art, such as, for example, vapor-deposited or glued-on conductor tracks, conductive polymer layers or the like.
  • the wires 2, 3 in the seal of a window, a tailgate, a sliding door or similar, motorized moving parts of a motor vehicle are integrated.
  • the device according to the invention can be used to protect all electrically, pneumatically, hydraulically or in a comparable manner moving components in which the risk of pinching exists.
  • the device according to the invention it would be conceivable to equip a department store revolving door with the device according to the invention and to stop the rotational movement of the door in a pinching situation and if necessary to change the direction of rotation for a short time.
  • the wires forming the capacitor 2, 3 are preferably applied by a not shown voltage source with a square wave voltage whose frequency is preferably adjustable between 100 kHz and 10 MHz. In principle, even higher frequencies would be conceivable.
  • the voltage in their duty cycle is adjustable, wherein the frequency and the duty cycle are preferably independently adjustable.
  • a time-varying electrical stray field 4 is generated in the capacitor 1 and in its edge region, whose field lines in the Fig. 1 and 2 are drawn.
  • this stray field 4 is a schematically illustrated dielectric medium 5, which increases the capacitance of the sensor. This may be, for example, water, moisture, a human body part, a solid such as wood or polyethylene.
  • the senor is charged with this square-wave voltage and then, at a certain time interval, the charge on the capacitor is measured.
  • the measurements are performed with at least two different frequencies and / or duty cycles of the charging voltage and preferably repeated periodically.
  • the capacitance of the sensor is determined and changes in capacitance with respect to values from previous groups of measurements. Are these changes in all measurements within the current Group substantially the same, it is concluded that there is a human body part and / or a solid in the immediate vicinity of the sensor. If the changes in all measurements within the current group are different, then it is concluded that there is water and / or moisture in the area of the sensor, for example due to rain and / or wet seals.

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

Die Erfindung betrifft einen Sensor mit kapazitivem Messprinzip und ein Verfahren zur Detektion eines sich nähernden dielektrischen Mediums, vorzugsweise zur Detektion eines menschlichen Körperteils zur Anwendung in einem Einklemmschutz, mit einem Kondensator und einer Auswerteelektronik, wobei die durch das Medium hervorgerufene Änderung der Kapazität des Kondensators messbar ist.The invention relates to a sensor with capacitive measuring principle and a method for detecting an approaching dielectric medium, preferably for detecting a human body part for use in a anti-trap, with a capacitor and an evaluation, wherein the caused by the medium change in the capacitance of the capacitor can be measured is.

Kapazitive Nährungssensoren sind aus der Praxis seit langem bekannt. Sie bestehen aus speziell ausgestalteten Kondensatoren, deren elektrisches Streufeld durch sich annähernde Gegenstände beeinflusst wird. Nichtleitende Gegenstände führen aufgrund ihrer gegenüber der Umgebungsluft erhöhten Dielektrizitätszahl zu einer Erhöhung der Kapazität des Sensors. Dabei ist die Kapazitätsänderung abhängig vom Abstand des Gegenstands vom Sensor, seiner Lage gegenüber dem Sensor, seiner Abmessung und seiner Dielektrizitätszahl. Zur Detektion eines sich nähernden Gegenstands muss die Kapazität des Sensors bestimmt werden, wozu alle dem Fachmann aus der Praxis bekannten Kapazitätsmessverfahren eingesetzt werden können. Meist ist der Sensor Teil eines Schwingkreises, der durch sich annähernde Gegenstände verstimmt wird oder bei geeigneter Dimensionierung des Schwingkreises erst durch Anwesenheit eines Gegenstands im Streufeld des Sensors schwingungsfähig wird. Speziell ausgestaltete Näherungssensoren sind in besonders vorteilhafter Weise in einem Einklemmschutz einsetzbar. Beispiele hierzu zeigen die DE 102 48 761 A1 und die EP 1 154 110 B1 .Capacitive proximity sensors have long been known in practice. They consist of specially designed capacitors whose stray electric field is affected by approaching objects. Non-conductive objects lead to an increase in the capacitance of the sensor due to their relative to the ambient air increased dielectric constant. The capacitance change depends on the distance of the object from the sensor, its position relative to the sensor, its dimension and its dielectric constant. To detect an approaching object, the capacitance of the sensor must be determined, for which purpose all capacitance measuring methods known to the person skilled in the art can be used. In most cases, the sensor is part of a resonant circuit which is detuned by objects approaching or, given suitable dimensioning of the resonant circuit, becomes capable of oscillation only when an object is present in the stray field of the sensor. Specially designed proximity sensors can be used in a particularly advantageous manner in a trapping protection. Examples show the DE 102 48 761 A1 and the EP 1 154 110 B1 ,

Aufgrund des hohen Wassergehalts des menschlichen Körpers und der sehr hohen Dielektrizitätszahl von Wasser führt ein menschliches Körperteil im Streufeld eines Näherungssensors zu einem besonders hohen Messeffekt. Allerdings wird dadurch nicht nur die Anwesenheit eines menschlichen Körperteils detektiert, sondern auch Wasser und/oder Feuchtigkeit, das/die sich im Feld des Sensors befindet. Dies führt insbesondere bei Regen oder Nebel zu Fehlmessungen.Due to the high water content of the human body and the very high dielectric constant of water, a human body part in the stray field of a proximity sensor leads to a particularly high measuring effect. However, this not only detects the presence of a human body part, but also water and / or moisture that is in the field of the sensor. This leads to incorrect measurements, especially in rain or fog.

In der erwähnten DE 102 48 761 A1 wird dieses Problem dadurch gelöst, dass die Messergebnisse mehrerer derartiger Sensoren miteinander verglichen werden und unter der Annahme einer gleichmäßigen Wasser-/Feuchtigkeitsverteilung im Bereich der zusammengefassten Sensoren und der damit verbundenen gleichen Erhöhung der Kapazität aller Sensoren der Schwellwert der einzelnen Sensoren angepasst wird. Die Richtigkeit dieser Annahme kann jedoch nicht immer gewährleistet werden. Außerdem führt der Einsatz mehrerer Sensoren mit zugeordneter Auswerteelektronik zu hohen Kosten und der Notwenigkeit des gegenseitigen Abgleichs der Sensoren.In the mentioned DE 102 48 761 A1 This problem is solved in that the measurement results of several such sensors are compared with each other and assuming a uniform water / moisture distribution in the area of the combined sensors and the associated increase in the same capacity of all sensors, the threshold value of the individual sensors is adjusted. However, the correctness of this assumption can not always be guaranteed. In addition, the use of multiple sensors with associated evaluation leads to high costs and the need for mutual adjustment of the sensors.

Andere aus der Praxis bekannte Ansätze sehen den Einsatz von zusätzlichen Kompensationselektroden vor, die bei geeigneter Beschaltung und Dimensionierung die Einflüsse von Wasser und/oder Feuchtigkeit im Streufeld des Sensors abschwächen können. Allerdings sind auch hierbei wieder aufwendige Abgleichmaßnahmen notwendig.Other approaches known from practice provide for the use of additional compensation electrodes which, with suitable wiring and dimensioning, can attenuate the influences of water and / or moisture in the stray field of the sensor. However, again complex adjustment measures are necessary.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Sensor und ein Verfahren der eingangs genannten Art zur Detektion eines sich nähernden dielektrischen Mediums, vorzugsweise zur Detektion eines menschlichen Körperteils, derart auszugestalten und weiterzubilden, dass eine sichere Messung unabhängig von Umwelteinflüssen, insbesondere Feuchtigkeit und/oder Wasser, bei einfacher Konstruktion gewährleistet ist.The present invention is therefore based on the object, a sensor and a method of the type mentioned for detecting an approaching dielectric medium, preferably for the detection of a human body part, such and further, that a secure measurement regardless of environmental influences, especially moisture and / or water, with a simple design is guaranteed.

Der erfindungsgemäße Sensor zur Detektion eines sich nähernden dielektrischen Mediums löst die voranstehende Aufgabe durch die Merkmale des Patentanspruchs 1. Danach ist ein solcher Sensor dadurch gekennzeichnet, dass der Kondensator mit mindestens zwei unterschiedlichen Frequenzen und/oder mindestens zwei unterschiedlichen Tastverhältnissen in Folge betreibbar ist.The inventive sensor for detecting an approaching dielectric medium solves the above object by the features of claim 1. Thereafter, such a sensor is characterized in that the capacitor with at least two different frequencies and / or at least two different duty cycles can be operated in sequence.

Hinsichtlich eines Verfahrens wird die eingangs genannte Aufgabe durch die Merkmale des Patentanspruchs 10 gelöst. Hiernach ist ein Verfahren zur Detektion eines sich nähernden dielektrischen Mediums dadurch gekennzeichnet, dass der Kondensator mit mindestens zwei unterschiedlichen Frequenzen und/oder mindestens zwei unterschiedlichen Tastverhältnisse in Folge betrieben wird.With regard to a method, the object mentioned is achieved by the features of claim 10. Hereinafter, a method for detecting an approaching dielectric medium is characterized in that the capacitor is operated with at least two different frequencies and / or at least two different duty cycles in sequence.

Erfindungsgemäß ist erkannt worden, dass unter Verwendung eines Entladungsverfahrens zur Kapazitätsmessung bestimmte Verhaltensweisen einzelner dielektrischer Medien gegenüber veränderlichen elektrischen Feldern ausgenutzt werden können. Erfindungsgemäß ist ferner erkannt worden, dass auf diese Weise menschliche Körperteile und verschiedene Feststoffe wie Holz und Polyäthylen gegenüber Wasser und/oder Feuchtigkeit unterscheidbar sind.According to the invention it has been recognized that using a discharge method for capacitance measurement specific behaviors of individual dielectric Media against variable electric fields can be exploited. According to the invention it has also been recognized that in this way human body parts and various solids such as wood and polyethylene are distinguishable from water and / or moisture.

Bei dem erfindungsgemäß eingesetzten Entladungsverfahren zur Kapazitätsmessung wird der Sensor an eine periodische, zeitliche veränderliche Spannungsquelle angeschlossen und während der Zeiten, in denen die von der Spannungsquelle gelieferte Ausgangsspannung im Wesentlichen gleich Null ist, die Ladung auf den Sensor gemessen. Aus dieser Ladung kann auf die Kapazität des Sensors geschlossen und auftretende Änderungen dieser Kapazität erkannt werden. Damit sind eindeutig in das Streufeld des Sensors eintretende dielektrische Medien detektierbar.In the discharge method for capacitance measurement used according to the invention, the sensor is connected to a periodic, temporally variable voltage source and, during the times in which the output voltage supplied by the voltage source is substantially equal to zero, the charge is measured on the sensor. From this charge can be closed on the capacity of the sensor and occurring changes in this capacity can be detected. This clearly detectable entering into the stray field of the sensor dielectric media.

Durch Veränderung der Frequenz und des Tastverhältnisses der Ladespannung verändert sich der zeitliche Verlauf des durch den Sensor abgestrahlten elektrischen Streufelds. Unter einem Tastverhältnis versteht man den Quotienten aus der Periodendauer und der Impulsdauer einer periodischen, zeitlich veränderlichen Spannung. Die Dauer eines Impulses bezeichnet diejenige Zeitspanne, in der ein Spannungsstoß mit beliebigem zeitlichem Verlauf mehr als 50 % seiner Amplitude annimmt.By changing the frequency and the duty cycle of the charging voltage, the time course of the electrical stray field emitted by the sensor changes. A duty cycle is understood to mean the quotient of the period duration and the pulse duration of a periodic, time-variable voltage. The duration of a pulse refers to that period of time in which a voltage surge with arbitrary time course assumes more than 50% of its amplitude.

In einem durch Spannungen mit verschiedenen Frequenzen und/oder Tastverhältnissen erzeugten Streufeld zeigen verschiedene dielektrische Medien unterschiedliches Verhalten. So ist die durch ein menschliches Körperteil hervorgerufene Erhöhung der Kapazität des Sensors in einem weiten Frequenzbereich im Wesentlichen konstant. Entsprechendes gilt bei verschiedenen Tastverhältnissen. Viele Feststoffe wie Holz und Polyäthylen zeigen einen ähnlichen Effekt wie ein menschliches Körperteil. Demgegenüber erzeugt Wasser und/oder Feuchtigkeit im Streufeld des Sensors eine Erhöhung der Kapazität des Sensors, die von der verwendeten Frequenz und/oder dem verwendeten Tastverhältnis abhängig ist.In a stray field generated by voltages having different frequencies and / or duty cycles, different dielectric media exhibit different behaviors. Thus, the increase in capacitance of the sensor caused by a human body part is substantially constant over a wide frequency range. The same applies to different duty cycles. Many solids, such as wood and polyethylene, have a similar effect to a human body part. In contrast, water and / or moisture in the stray field of the sensor causes an increase in the capacitance of the sensor, which depends on the frequency used and / or the duty cycle used.

Eine Ursache hierfür liegt in den Dipoleigenschaften des Wassers. Da Wasser permanente Dipole ausbildet, kann in einem elektrischen Feld Orientierungspolarisation beobachtet werden. Bedingt durch ein anliegendes elektrisches Feld werden die einzelnen Dipole unter Überwindung ihrer Trägheit ausgerichtet. Dabei hängt der Grad der Ausrichtung von der Frequenz und der Dauer des anliegenden Feldes ab. Je höher die Frequenz gewählt wird, desto geringer ist die Reaktion (Ausrichtung) der Dipole bzw. desto höher ist die Wärmeentwicklung. Je kürzer die Dauer eines Impulses ist, desto höher ist die Wahrscheinlichkeit, dass ein Dipol nicht komplett ausgerichtet werden kann.One reason for this is the dipole properties of the water. Since water forms permanent dipoles, orientation polarization can be observed in an electric field. Caused by an applied electric field the individual dipoles aligned by overcoming their inertia. The degree of alignment depends on the frequency and duration of the applied field. The higher the frequency chosen, the lower the reaction (orientation) of the dipoles or the higher the heat development. The shorter the duration of a pulse, the higher the likelihood that a dipole can not be completely aligned.

Unter Ausnutzung dieses Effektes kann eine Klassifizierung der in das Streufeld des Sensors tretenden dielektrischen Medien getroffen werden. Dazu wird eine Gruppe von Messungen durchgeführt, die aus mindestens zwei Messungen mit mindestens zwei voneinander verschiedenen Frequenzen und/oder mindestens zwei voneinander verschiedenen Tastverhältnissen besteht. Dabei wird in vorteilhafter Weise die Zeitspanne zur Durchführung der Messungen so gewählt, dass eventuell auftretende Parameteränderungen beispielsweise durch geänderte Feuchtigkeitsverteilung oder Temperatureinflüsse vernachlässigbar sind. Vorzugsweise wird eine Gruppe von Messungen periodisch wiederholt.Utilizing this effect, a classification of the dielectric media passing into the stray field of the sensor can be made. For this purpose, a group of measurements is carried out, which consists of at least two measurements with at least two mutually different frequencies and / or at least two mutually different duty cycles. In this case, the period of time for carrying out the measurements is advantageously chosen such that any parameter changes which occur are negligible, for example due to changes in the distribution of moisture or temperature. Preferably, a group of measurements is repeated periodically.

Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die den Patentansprüchen 1 und 11 nachgeordneten Ansprüche andererseits auf die nachfolgenden Erläuterungen eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnungen zu verweisen. In der Zeichnung zeigt

Fig. 1
in einer schematischen Darstellung den prinzipiellen Aufbau eines Sensors zur Detektion eines sich nähernden dielektrischen Mediums in einer Frontansicht und
Fig. 2
in einer schematischen Darstellung den Schnitt A-A aus Fig. 1
There are now various possibilities for designing and developing the teaching of the present invention in an advantageous manner. For this purpose, on the one hand to the claims 1 and 11 subordinate claims on the other hand, to refer to the following explanations of a preferred embodiment of the invention with reference to the drawings. In the drawing shows
Fig. 1
in a schematic representation of the basic structure of a sensor for detecting an approaching dielectric medium in a front view and
Fig. 2
in a schematic representation of the section AA Fig. 1

Fig. 1 und Fig. 2 zeigen in schematischer Darstellung eine bevorzugte Ausgestaltung der vorliegenden Erfindung aus verschiedenen Ansichten. Dabei ist der den Sensor bildende Kondensator 1 durch zwei voneinander beabstandet angeordnete Drähte 2, 3 gebildet, die vorzugsweise im Wesentlichen parallel angeordnet sind. Anstelle von Drähten können sämtliche vergleichbare dem Fachmann aus der Praxis bekannten leitfähige Strukturen eingesetzt werden, wie zum Beispiel aufgedampfte oder aufgeklebte Leiterbahnen, leitfähige Polymerschichten oder Ähnlichem. Vorzugsweise sind die Drähte 2, 3 in der Dichtung eines Fensters, einer Heckklappe, einer Schiebetüre oder ähnlichen, motorisch bewegten Teilen eines Kraftfahrzeugs integriert. Generell kann die erfindungsgemäße Vorrichtung aber zur Absicherung aller elektrisch, pneumatisch, hydraulisch oder auf vergleichbare Weise bewegten Komponenten eingesetzt werden, bei denen die Gefahr des Einklemmens besteht. So wäre es denkbar, eine Kaufhaus-Drehtüre mit der erfindungsgemäßen Vorrichtung auszustatten und die Drehbewegung der Türe bei einer Einklemmsituation zu stoppen und gegebenenfalls die Drehrichtung kurzzeitig zu ändern. Fig. 1 and Fig. 2 show a schematic representation of a preferred embodiment of the present invention from various views. In this case, the capacitor 1 forming the sensor is formed by two spaced-apart wires 2, 3, which are preferably arranged substantially in parallel. Instead of Wires can be used all comparable conductive structures known to the person skilled in the art, such as, for example, vapor-deposited or glued-on conductor tracks, conductive polymer layers or the like. Preferably, the wires 2, 3 in the seal of a window, a tailgate, a sliding door or similar, motorized moving parts of a motor vehicle are integrated. In general, however, the device according to the invention can be used to protect all electrically, pneumatically, hydraulically or in a comparable manner moving components in which the risk of pinching exists. Thus, it would be conceivable to equip a department store revolving door with the device according to the invention and to stop the rotational movement of the door in a pinching situation and if necessary to change the direction of rotation for a short time.

Die den Kondensator bildenden Drähte 2, 3 werden durch eine nicht eingezeichnete Spannungsquelle bevorzugt mit einer Rechteckspannung beaufschlagt, deren Frequenz vorzugsweise zwischen 100 kHz und 10 MHz einstellbar ist. Prinzipiell wären noch höhere Frequenzen denkbar. Daneben ist die Spannung in ihrem Tastverhältnis einstellbar, wobei die Frequenz und das Tastverhältnis vorzugsweise unabhängig voneinander einstellbar sind. Dadurch wird in dem Kondensator 1 und in dessen Randbereich ein zeitlich veränderliches, elektrisches Streufeld 4 erzeugt, dessen Feldlinien in den Fig. 1 und 2 eingezeichnet sind. In diesem Streufeld 4 befindet sich ein schematisch dargestelltes dielektrisches Medium 5, das die Kapazität des Sensors erhöht. Hierbei kann es sich zum Beispiel um Wasser, Feuchtigkeit, ein menschliches Körperteil, ein Festkörper wie Holz oder Polyäthylen handeln.The wires forming the capacitor 2, 3 are preferably applied by a not shown voltage source with a square wave voltage whose frequency is preferably adjustable between 100 kHz and 10 MHz. In principle, even higher frequencies would be conceivable. In addition, the voltage in their duty cycle is adjustable, wherein the frequency and the duty cycle are preferably independently adjustable. As a result, a time-varying electrical stray field 4 is generated in the capacitor 1 and in its edge region, whose field lines in the Fig. 1 and 2 are drawn. In this stray field 4 is a schematically illustrated dielectric medium 5, which increases the capacitance of the sensor. This may be, for example, water, moisture, a human body part, a solid such as wood or polyethylene.

Während einer Messung wird der Sensor mit dieser Rechteckspannung aufgeladen und danach, in gewissem zeitlichem Abstand dazu, die Ladung auf dem Kondensator gemessen. Die Messungen werden mit mindestens zwei verschiedenen Frequenzen und/oder Tastverhältnissen der Ladespannung durchgeführt und vorzugsweise periodisch wiederholt.During a measurement, the sensor is charged with this square-wave voltage and then, at a certain time interval, the charge on the capacitor is measured. The measurements are performed with at least two different frequencies and / or duty cycles of the charging voltage and preferably repeated periodically.

Aus der gemessenen Ladung wird auf die Kapazität des Sensors geschlossen und Änderungen der Kapazitäten in Bezug auf Werte aus früheren Gruppen von Messungen bestimmt. Sind diese Änderungen bei allen Messungen innerhalb der aktuellen Gruppe im Wesentlichen gleich, so wird daraus geschlossen, dass sich ein menschliches Körperteil und/oder ein Feststoff in der unmittelbaren Nähe des Sensors befindet. Sind die Änderungen bei allen Messungen innerhalb der aktuellen Gruppe voneinander verschieden, so wird darauf geschlossen, dass sich im Bereich des Sensors Wasser und/oder Feuchtigkeit befindet, zum Beispiel durch Regen und/oder nasse Dichtungen.From the measured charge it is concluded that the capacitance of the sensor is determined and changes in capacitance with respect to values from previous groups of measurements. Are these changes in all measurements within the current Group substantially the same, it is concluded that there is a human body part and / or a solid in the immediate vicinity of the sensor. If the changes in all measurements within the current group are different, then it is concluded that there is water and / or moisture in the area of the sensor, for example due to rain and / or wet seals.

Schließlich sei angemerkt, dass das voranstehend erörterte Ausführungsbeispiel die beanspruchte Lehre lediglich erläutert, diese jedoch nicht auf das Ausführungsbeispiel einschränkt.Finally, it should be noted that the above-discussed embodiment merely explains the claimed teaching, but does not restrict it to the exemplary embodiment.

Claims (15)

  1. Sensor using the capacitive measuring principle, for detecting an approaching dielectric medium (5), preferably for detecting a human body part, for use in a trapping protector, having a capacitor (1) and an electronic evaluation system, the change in the capacitance of the capacitor (1) brought about by the medium (5) being measurable,
    characterised in that the sensor carries out a group of measurements with at least two measurements in succession,
    the capacitor (1) being operated with at least two different frequencies and/or at least two different mark-to-space ratios during those at least two measurements.
  2. Sensor according to claim 1, characterised in that the capacitor (1) is formed by two wires (2, 3) or comparable conductive structures arranged spaced apart from each other,
    the wires (2, 3) being arranged substantially in parallel.
  3. Sensor according to claim 2, characterised in that the wires (2, 3) are fitted at the edge regions of a region of parts driven electrically, pneumatically, hydraulically or in a comparable manner, which region is critical in respect of a trapping situation, and/or
    in that the wires (2, 3) are integrated in the seal of a window, tailgate, sliding door or similar motor-driven parts of a motor vehicle.
  4. Sensor according to any one of claims 1 to 3, characterised in that the capacitor (1) can be acted upon by a periodic voltage which is variable with time.
  5. Sensor according to claim 4, characterised in that the voltage is a square wave voltage.
  6. Sensor according to claim 4 or 5, characterised in that the voltage is adjustable in respect of its frequency, preferably between 100 kHz and 10 MHz.
  7. Sensor according to claim 5 or 6, characterised in that the voltage is adjustable in respect of its mark-to-space ratio.
  8. Sensor according to claims 6 and 7, characterised in that the frequency and the mark-to-space ratio may be adjustable independently of each other.
  9. Sensor according to any one of claims 1 to 8, characterised in that the charge of the capacitor (1) is measurable.
  10. Method for detecting an approaching dielectric medium (5), preferably for detecting a human body part, for use in a trapping protector, using a sensor according to any one of claims 1 to 9, having a capacitor (1) and an electronic evaluation system, the change in the capacitance of the capacitor (1) brought about by the medium (5) being measured,
    characterised in that the sensor carries out a group of measurements with at least two measurements in succession, the capacitor (1) being operated with at least two different
    frequencies and/or at least two different mark-to-space ratios during those at least two measurements.
  11. Method according to claim 10, characterised in that the capacitor (1) is charged with a square wave voltage.
  12. Method according to claim 10 or 11, characterised in that the change on the capacitor (1) is measured and/or
    in that the changing of the capacitor (1) and the measurement of the charge are carried out with a time interval with respect to each other.
  13. Method according to any one of claims 10 to 12, characterised in that the group of measurements with at least two measurements is carried out with in each case mutually differing frequencies and/or mark-to-space ratios of the charge voltage,
    it being possible to effect all of the measurements of a group within such a short time frame that fluctuations of individual parameters are negligible.
  14. Method according to any one of claims 10 to 13, characterised in that the group of measurements is repeated periodically and/or
    in that the capacitance of the capacitor (1) is inferred from the measured charge.
  15. Method according to any one of claims 10 to 14, characterised in that it is inferred that water has been introduced into the field of the capacitor when the change in the capacitance brought about by the dielectric (5) assumes different values for all of the measurements within a group and/or
    in that it is inferred that a human body part has been introduced into the field of the capacitor when the change in the capacitance brought about by the dielectric (5) is substantially the same for all of the measurements within a group.
EP05806946A 2004-12-22 2005-11-24 Sensor using the capacitive measuring principle Not-in-force EP1828524B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004063108 2004-12-22
DE102005013441A DE102005013441A1 (en) 2004-12-22 2005-03-21 Sensor with capacitive measuring principle
PCT/DE2005/002105 WO2006066524A1 (en) 2004-12-22 2005-11-24 Sensor using the capacitive measuring principle

Publications (2)

Publication Number Publication Date
EP1828524A1 EP1828524A1 (en) 2007-09-05
EP1828524B1 true EP1828524B1 (en) 2010-11-10

Family

ID=35809814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05806946A Not-in-force EP1828524B1 (en) 2004-12-22 2005-11-24 Sensor using the capacitive measuring principle

Country Status (7)

Country Link
US (1) US7545154B2 (en)
EP (1) EP1828524B1 (en)
JP (1) JP4901755B2 (en)
CN (1) CN101137814B (en)
DE (2) DE102005013441A1 (en)
HK (1) HK1112681A1 (en)
WO (1) WO2006066524A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174513A2 (en) 2012-05-24 2013-11-28 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft Hallstadt Capacitive sensor for an anti-collision apparatus
DE102013001066A1 (en) 2013-01-23 2014-07-24 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Capacitive proximity sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005043534B4 (en) * 2005-09-12 2013-07-04 Webasto Ag Anti-trap device in the automotive field
FR2904353B1 (en) * 2006-07-31 2008-10-03 Peugeot Citroen Automobiles Sa ANTI-PINCHING DEVICE FOR A GLASS OR SLIDING ROOF OF A MOTOR VEHICLE
US9234979B2 (en) 2009-12-08 2016-01-12 Magna Closures Inc. Wide activation angle pinch sensor section
US8493081B2 (en) 2009-12-08 2013-07-23 Magna Closures Inc. Wide activation angle pinch sensor section and sensor hook-on attachment principle
RU2474830C1 (en) * 2011-08-12 2013-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный педагогический университет" (ОмГПУ) Method to measure comprehensive dielectric permeability of liquid and loose substances in wide range of frequencies
DE102011121372A1 (en) * 2011-12-19 2013-06-20 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Capacitive sensor for use in collision protecting device of vehicle for detecting object, particularly for detecting snagging or collision at mobile vehicle part, has capacitance measuring unit interconnected with electrode
CN202417144U (en) * 2011-12-21 2012-09-05 北京奥特易电子科技有限责任公司 Clamp-proof sensor of electric vehicle window
EP2757354B1 (en) * 2013-01-22 2015-09-30 Mettler-Toledo AG Detection of electrostatic forces
CN104268967A (en) * 2014-09-29 2015-01-07 深圳市爱普特微电子有限公司 Safety entrance guard method and device based on capacitance-type sensor
CN117388331A (en) * 2023-10-27 2024-01-12 福建天成宝得智能科技有限公司 Capacitive soil humidity detection device and system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398547A (en) * 1989-01-10 1995-03-21 Innovative Dynamics, Inc. Apparatus for measuring ice distribution profiles
GB9400407D0 (en) * 1993-10-18 1994-03-09 Draftex Ind Ltd Movable-window safety device
JPH0984778A (en) * 1995-09-26 1997-03-31 Terumo Corp Human body volume meter and diagnosis support system
DE19610626C2 (en) * 1996-03-19 2003-01-23 Bosch Gmbh Robert Follow-up detection of electric actuators
EP0924513B1 (en) * 1997-12-18 2009-11-25 Uster Technologies AG Method and device for measuring the proportions of solid materials in a sample
JPH11334359A (en) * 1998-05-26 1999-12-07 Oki Electric Ind Co Ltd Safety device for electric power window
DE19836056A1 (en) * 1998-08-10 2000-02-17 Bosch Gmbh Robert Device to detect obstacles to closing of motor-activated roof of open top motor car; has strip-type capacitor sensor placed along top of any windscreen or side window upper members
DE19854038C2 (en) * 1998-11-13 2003-09-04 Brose Fahrzeugteile Device for detecting the adjustment of translationally moved adjustment devices in vehicles
JP2000329506A (en) * 1999-05-24 2000-11-30 Yazaki Corp Capacitance-type nipping detecting sensor structure to be used for closing/opening drive control device
US6377009B1 (en) * 1999-09-08 2002-04-23 Harald Philipp Capacitive closure obstruction sensor
US6337549B1 (en) * 2000-05-12 2002-01-08 Anthony Gerald Bledin Capacitive anti finger trap proximity sensor
JP2002057564A (en) * 2000-08-11 2002-02-22 Aisin Seiki Co Ltd Human body detector
DE10048146A1 (en) * 2000-09-28 2002-04-11 Philips Corp Intellectual Pty Power supply for X-ray generator
US6864692B1 (en) * 2002-06-20 2005-03-08 Xsilogy, Inc. Sensor having improved selectivity
DE10248761B4 (en) * 2002-10-18 2013-10-02 Wilhelm Karmann Gmbh Capacitive measuring sensor and detection device with a capacitive sensor for detecting a pinching situation
JP2004212344A (en) * 2003-01-08 2004-07-29 Mitsuba Corp Object distinguishing device and object distinguishing method
JP2004219311A (en) * 2003-01-16 2004-08-05 Omron Corp Electrostatic capacity sensor, and opening/closing body clipping-in sensing device
DE10362057B4 (en) * 2003-02-10 2007-09-06 Ident Technology Ag Method and device for safeguarding hazardous areas
DE10324731A1 (en) * 2003-05-31 2004-12-16 Braun Gmbh Method and circuit arrangement for the detection of a filling level of a liquid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174513A2 (en) 2012-05-24 2013-11-28 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft Hallstadt Capacitive sensor for an anti-collision apparatus
DE102012010228A1 (en) 2012-05-24 2013-11-28 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Capacitive sensor for a collision protection device
DE102013001066A1 (en) 2013-01-23 2014-07-24 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Capacitive proximity sensor
WO2014114669A2 (en) 2013-01-23 2014-07-31 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Capacitive proximity sensor
US10197377B2 (en) 2013-01-23 2019-02-05 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Method of operating a capacitive proximity sensor and capacitive proximity sensor
DE102013001066B4 (en) 2013-01-23 2022-01-20 Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg Capacitive proximity sensor

Also Published As

Publication number Publication date
DE502005010530D1 (en) 2010-12-23
US7545154B2 (en) 2009-06-09
DE102005013441A1 (en) 2006-07-06
CN101137814A (en) 2008-03-05
WO2006066524A1 (en) 2006-06-29
US20080007274A1 (en) 2008-01-10
CN101137814B (en) 2012-02-01
JP4901755B2 (en) 2012-03-21
HK1112681A1 (en) 2008-09-12
JP2008524608A (en) 2008-07-10
EP1828524A1 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
EP1828524B1 (en) Sensor using the capacitive measuring principle
EP2062359B1 (en) Anti-pinching device
EP2527795B1 (en) Position sensor, actuator-sensor device and method for inductive detection of a position
AT393040B (en) CAPACITIVE CLOSER
EP2184435B1 (en) Passage barrier with capacity sensor
DE102013001066B4 (en) Capacitive proximity sensor
EP2371062B1 (en) Capacitive proximity sensor having a shielding electrode and a diagnostic electrode
EP2828973B1 (en) Capacitive sensor arrangement for switching a door opening in a motor vehicle and associated method
DE102011053314A1 (en) Capacitive sensor arrangement
DE102010002559A1 (en) Capacitive sensor arrangement for detection of e.g. door opening of motor car, has sensing electrode arrangements formed of elongated segments which are arranged in longitudinal direction to enable different capacitive detections
DE202006010813U1 (en) Pinch sensor and evaluation circuit
DE102014117820A1 (en) Sensor system for a steering wheel of a motor vehicle, steering wheel with such a sensor system and method for operating such a sensor system
DE102009031824A1 (en) Capacitive sensor arrangement with a sensor electrode, a shield electrode and a background electrode
DE202006009188U1 (en) anti-pinch
DE102014117821A1 (en) Sensor system for a steering wheel of a motor vehicle, steering wheel with such a sensor system and method for operating such a sensor system
DE102007001712A1 (en) Arrangement for detecting presence of object in observation area, comprises transmitting electrode device for emitting alternating field into emission area, where receiving electrode device is provided for detecting alternating field
WO2018050363A1 (en) Contactless capacitive sensor, method for detecting the approach of a human or animal body part, and assembly having a sensor
DE102013221346B4 (en) Front circuit for a capacitive sensor
EP3829065A1 (en) Capacitive sensor device and method for detecting an object getting closer
DE102008041632A1 (en) Measurement electrode arrangement for use in distance measurement device, has measurement capacitors whose capacitance depends on distance of object from electrodes, which correspond to dimension of object
DE102004026637A1 (en) Device for determining the road condition
DE102009030775B4 (en) Capacitive sensor array
DE102014216247B4 (en) Sensor system and method for the capacitive detection of obstacles
EP3457569B1 (en) Evaluation arrangement for a capacitive sensor device
WO2024160439A1 (en) Sensor device for a functional device of a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WAGNER, MANFRED

Inventor name: REINDL, NORBERT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005010530

Country of ref document: DE

Date of ref document: 20101223

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010530

Country of ref document: DE

Effective date: 20110811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141127

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141127

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150130

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010530

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151124

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130