EP1827670A1 - Ceramic-metal or metal alloy junction assembly - Google Patents

Ceramic-metal or metal alloy junction assembly

Info

Publication number
EP1827670A1
EP1827670A1 EP05825170A EP05825170A EP1827670A1 EP 1827670 A1 EP1827670 A1 EP 1827670A1 EP 05825170 A EP05825170 A EP 05825170A EP 05825170 A EP05825170 A EP 05825170A EP 1827670 A1 EP1827670 A1 EP 1827670A1
Authority
EP
European Patent Office
Prior art keywords
junction
metal
zone
ceramic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05825170A
Other languages
German (de)
French (fr)
Inventor
Pascal Del Gallo
Nicolas Richet
Christophe Chaput
Laetitia Trebuchaire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1827670A1 publication Critical patent/EP1827670A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/0438Physical processing only by making use of membranes
    • C01B21/0444Physical processing only by making use of membranes characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni

Definitions

  • the invention relates to a ceramic-metal junction assembly comprising a ceramic part, a piece of metal or metal alloy and a ceramic - metal or metal alloy junction element which provides a junction between the two parts, as well as a reactor having such a junction assembly.
  • ceramic membrane metal reactors such as a CMR (membrane catalytic reactor), for example for the production or separation of gases
  • CMR membrane catalytic reactor
  • Such reactors generally comprise within them a ceramic part or membrane, which is usually in the form of a substantially hollow tube closed at one of its ends and open at the other end, which partially envelops an inner zone.
  • the two atmospheres are thus present in said reactor, do not communicate directly with each other and are separated by the ceramic part.
  • At least one exchange which is often gaseous, selective, takes place between the two atmospheres via and through the ceramic part, and may give rise to at least one reaction on one side or the other of said ceramic piece.
  • the tube is most often held in place in the reactor via a piece of metal or metal alloy, generally of the same metal or metal alloy as said wall of the reactor. said piece may belong to said wall or may simply be attached to said wall.
  • the most critical parameters are the coefficient of thermal expansion (CET) and the chemical and physical stability of the material. Indeed, in a temperature range from room temperature to a high temperature, it is essential to take into account factors such as the possible evaporation of component (s) of said material, the evolution of the TEC and / or the eventual crystallization of component ( s) of said material. In this respect, partially or fully crystallized materials offer more extensive possibilities, especially in terms of the evolution of the thermal expansion coefficient as a function of the temperature, and of the high temperature stability time.
  • a first approach consisted in crystallizing glass to better adapt its properties, which led to the development of specific glasses of the Lithium AluminoSilicate or LAS type (US4921738), Barium AluminoSilicate or BAS (US6430966) or Barium calcium AluminoSilicate or BCAS . These compositions have a good refractoriness and a CET greater than those of conventional uncrystallized compositions. Unfortunately, they have too much chemical reactivity with ceramics.
  • a second approach has been to add a crystallized phase in a glass in order to increase the CET or to use a crystallizable glass, for example in the form of powder or preform (US5725218, US6402156).
  • a crystallizable glass for example in the form of powder or preform (US5725218, US6402156).
  • US5725218, US6402156 the multiplication of the interfaces created by the presence of several phases in the joining material increases the possibilities of leaks and therefore loss of sealing of the junction assembly.
  • a first approach consisted in compressing a joining element consisting of a deformable junction material, said element being pressed against the metal or metal alloy part and on the ceramic piece.
  • the junction material is generally a fluid phase such as for example glass. It then adapts to the shape of said parts. It can then undergo compression forces that allow it to ensure good contact with said parts at its interfaces with them.
  • EP-A-1 067 320 discloses a junction element formed of at least one metal toroidal ring, said ring being able to deform. Such a joining element therefore makes it possible to maintain a pressure at the interfaces between the connecting element and the metal or alloy part. metal and the aforementioned ceramic part. Such a joining element makes it possible above all to limit the radial stresses which are exerted on the ceramic part during thermal cycles, since the ring is formed by a metal sheet whose thickness is much smaller than the width of the ring. .
  • a fluid phase in particular glass
  • This fluid phase poses a problem of stiffening the junction at temperatures where said phase is not fluid, in particular at temperatures ranging from room temperature (approximately 20 ° C.) to the softening temperature of said phase.
  • the junction assembly according to the invention overcomes the problems described above, and to provide other advantages.
  • One of the objects of the invention is to propose a junction assembly which makes it possible to limit the stresses exerted on the ceramic part, in particular during thermal cycles varying between the ambient temperature and a high temperature.
  • the invention relates to a ceramic-metal junction assembly, said assembly comprising: 1) at least one ceramic piece in the form of a hollow tube and substantially cylindrical axis (X'X), closed to one of its ends and open at the other end, defining an inner zone called ceramic zone and an outer zone called metal zone, said ceramic and metallic zones not communicating with each other and being separated at least partially by the ceramic part, at least partially sheathed by
  • junction zone substantially cylindrical and hollow axis (X'X) at least partially enveloping said tube, a substantially annular axis space ( X'X) being provided between said tube and said junction zone,
  • the seal between said tube and said sleeve being provided by at least one ceramic-metal junction element which is in contact with the tube and with said junction zone of the socket, the junction element being at least partially present in said annular space occupying a subspace (4a) and preferably in the form of a substantially annular piece,
  • said ceramic having a coefficient of thermal expansion (CET) greater than or equal to the coefficient of thermal expansion (TEC) of the metal or metal alloy, said metal alloy comprising at least 10% by weight of nickel and at least 15% by weight of chromium,
  • Said connecting element comprising at least one joining material, preferably consisting of said joining material, ensuring gas tightness of 20-900 0 C, preferably being solid at a temperature of 650 to 900 0 C, and having a coefficient of thermal expansion (CET) of the ambient temperature at 900 ° C. greater than or equal to 9.times.10.sup.- 6 / ° C., preferably from 9 to 15.times.10.sup.- 6 / 0.degree. C., said joining assembly being such that said zone junction has a small dimension, along any axis (Y'Y) passing through said junction area and perpendicular to the axis (X'X).
  • the dimension ratio along the axis (X'X) of the junction zone to the subspace is at least equal to 2/1, and is preferably in the range of 2/1 to 100/1.
  • the ratio of dimensions along the axis (X'X) of the junction zone to the subspace is the ratio of the mean dimension along the axis (X'X) of the junction zone to the average dimension according to the axis (X'X) of the subspace.
  • said dimension is the height of the ring.
  • the combination of the properties of the joining material and the possibilities of deformation of the socket makes it possible to have a junction assembly which provides improvements over the junction assemblies of the prior art.
  • improvements are mainly expressed in terms of the chemical and physical stability of the junction assembly, the limitation of the stresses exerted on the ceramic tube, the achievement of a gaseous seal from ambient temperature to high temperature, and improvement of the resistance of the junction assembly to thermal cycles ranging from ambient temperature to high temperature.
  • the presence of a junction zone of small size of the sleeve advantageously provides according to the invention possibilities of deformation of said sleeve.
  • Such deformations limit the stresses exerted on the ceramic tube, in particular in the temperature range from ambient temperature (about 20 ° C.) to high temperature.
  • gas-tightness of 20 to 900 ° C.” is meant according to the invention that no leakage (s) of gas from 20 to 900 ° C. occurs.
  • solid at a temperature of 600 to 900 ° C.” is meant according to the invention that the viscosity is greater than 12 mPa.s for a glass and that said temperature is below the melting temperature for a crystal.
  • said joining material is solid at the temperature (s) of use of said assembly.
  • the "coefficient of thermal expansion (CET)" is a standard data for the skilled person.
  • small dimension is meant according to the invention that the dimension is small and is in a range of size that can be easily found by the skilled person, depending on the given parameters such as the CET of the material of junction, and the shape of the socket.
  • the minimum dimension is given by the machinability of the metal or metal alloy.
  • An example of a small dimension will be given below in the examples.
  • said small dimension is about 20 to 500 ⁇ m, preferably about 50 to 400 ⁇ m, more preferably about 200 to 300 ⁇ m.
  • the ceramic tube is generally a ceramic membrane present inside a reactor.
  • the bushing is generally such that it can be mechanically and tightly bonded, typically by screwing, welding or any other method of tight assembly known to those skilled in the art, generally in a manner, fixed or removable, to a such reactor, preferably a wall of a reactor.
  • the ceramic is generally an ionic conductor, preferably an ionic and electronic conductor, said ceramic more preferably comprising at least one crystalline lattice comprising at least one oxygen deficiency, said ceramic being, even more preferably chosen from ceramics of perovskite crystal structure and cerium oxides.
  • the ceramic is composed of a porous layer (located on the ZM side) and a dense layer (located on the ZC side) of respective Lao compositions, 5 Sr 0 ⁇ Fe O , 9 Ti 0 , i ⁇ 3 - ⁇ . Lao ⁇ Sro, 4Feo, GGAO, i ⁇ 3- ⁇ .
  • the coefficient of thermal expansion (TEC) of the ceramic generally depends on its formulation. In general, it is from 9 to 20.10 "6/0 C.
  • said metal or metal alloy comprises on one part of, preferably on all, the surface of said junction zone, at least one layer of at least one oxide typically of thickness greater than or equal to approximately 1 ⁇ m and preferably thickness less than or equal to about 10 ⁇ m.
  • at least one layer of at least one oxide typically of thickness greater than or equal to approximately 1 ⁇ m and preferably thickness less than or equal to about 10 ⁇ m.
  • the presence of such an oxide layer makes it possible to protect the metal or metal alloy during the manufacture of the junction assembly and, above all, ensures an adhesion function between the joining material and the metal or metal alloy. If this layer is too thin (typically less than or equal to about 1 micron), the adhesion of the junction between the joining material and the metal or metal alloy is difficult to achieve.
  • this layer is too thick (typically greater than or equal to about 10 microns), it may flake during said manufacture, and therefore not to ensure adhesion role.
  • the skilled person is able to establish a range of thicknesses and / or an optimum thickness of the layer according to the data available.
  • the metal may be, for example, nickel or platinum.
  • the metal alloy generally has the following properties: resistance to oxidation under an oxidizing atmosphere up to 1200 ° C., resistance to reduction under a reducing atmosphere up to 1200 ° C., resistance to creep up to 1200 ° C., a melting point greater than or equal to 1200 ° C., and a thermal expansion coefficient (TEC) of 20 ° C. at 900 ° C. of 8 ° to
  • the alloy is generally selected from stainless steels which are for example commercial alloys such as Haynes 230® alloy, the alloy 800HT ® and Inconel 686®.
  • said joining material is glass, which has a coefficient of thermal expansion (TEC) greater than the coefficient of thermal expansion (TEC) of the metal or metal alloy and lower than the coefficient of thermal expansion (CET ) ceramic, resistance to a pressure difference between the ceramic zone and the metal zone of between 0 and 3 MPa, chemical stability with respect to the ceramic, chemical stability with respect to the metal or of the metal alloy, resistance to reduction under a reducing atmosphere up to 1200 ° C., resistance to oxidation under an oxidizing atmosphere up to 1200 ° C., adhesion to the metal or metal alloy and adhesion to the metal. ceramic.
  • TEC coefficient of thermal expansion
  • CET coefficient of thermal expansion
  • the ceramic tube is generally closed at one end by any shape such as square or hemispherical or any intermediate shape.
  • the open end of the ceramic tube may be of a shape facilitating anchoring on / in the socket.
  • the invention also relates to a method of manufacturing an assembly as described above, said method comprising the following successive steps: 1. At least partial preoxidation of a surface of a junction zone of a metal sleeve or metal alloy or a precursor thereof, so as to form at least partially at least one layer of at least one metal oxide on said surface;
  • heat treatment of the assembly of step 2 under an inert gas such as nitrogen, under partial pressure of oxygen of between 0 and 22%, and at a temperature of 650 to 1200 ° C. for a period of 5 minutes. mn to 10 hours, comprising a rise in temperature from room temperature to a treatment temperature, at least one temperature step at the treatment temperature, at least one temperature decrease to a stabilization temperature, at least a stabilization plateau at the stabilization temperature, and at least one final descent to a treatment end temperature which is most often ambient temperature, said heat treatment leading to the formation of the connecting element within the junction assembly.
  • an inert gas such as nitrogen
  • temperature plateau is meant according to the invention that said temperature is generally maintained for a period of a few minutes to a few hours depending on the materials used.
  • the treatment temperature can be fixed or vary within the indicated range.
  • Said method may further comprise an additional step, which is performed between the preceding steps 1 and 2 or preceding the preceding step 1, said additional step being the following step: Manufacturing a junction material preform, in the form of a substantially cylindrical and hollow tube open at at least one of its ends, said manufacture comprising at least one pressing and a densification, or at least one sintering, or at least one minus a melting and pouring in a mold, at a temperature of 600 to
  • the invention relates to a reactor, said reactor comprising at least a majority of said junction assembly according to the invention or manufactured according to a process according to the invention, said reactor surrounding the ZM zone, the metal sleeve or metal alloy of the junction assembly being mechanically connected to said reactor, and the axis (X'X) being disposed substantially vertically, said reactor comprising at least one fluid inlet in the zone ZM and at least one fluid outlet of the zone ZM, said reactor further comprising at least one fluid inlet in the zone ZC and at least one fluid outlet of the zone ZC.
  • the reactor generally must withstand a pressure of from 1 to 30 bars (0.1 to 3 M.Pa), and at a temperature from room temperature to at least 900 0 C or even to 1200 0 C. In addition, it must consist of at least one metal or metal alloy that is resistant to a generally reducing atmosphere.
  • a selective passage of fluid within said reactor is possible between the zone ZC and the zone ZM through the ceramic tube, preferably from the zone ZC to the zone ZM.
  • the junction assembly is linked mechanically to a wall of said reactor.
  • said fluid is gaseous and comprises at least one gaseous component.
  • Such a reactor is generally such that at least one of its walls is metallic, most often of the same metal or metal alloy as said sleeve, or of a metal or metal alloy that is chemically compatible with the metal or metal alloy. of the socket.
  • the invention finally relates to a method of using said reactor for the production of gas and / or the separation of gas, at a use temperature of 400 ° C. to 900 ° C., said joining assembly being such that the junction is solid at the temperature to which it is subjected during said use.
  • the use temperature is less than or equal to the softening temperature of the glass when the joining material is glass.
  • said reactor can be used for the production of synthesis gas from methane and oxygen.
  • the operating temperature may vary or be fixed in the range indicated above. Inside the reactor, the temperature can be distributed unevenly.
  • FIG. 1 schematically represents a partial view of a reactor comprising, for the most part, within it a junction assembly according to the invention.
  • FIG. 2 schematically represents a partial view of the junction assembly according to the invention of FIG. 1.
  • FIG. 3 represents, in a particular example, the thermal cycle to which a junction assembly according to the invention is subjected during its manufacture.
  • FIG. 1 schematically represents a partial view of a reactor 6 comprising, for the most part, a junction assembly 5 according to the invention.
  • Said junction assembly 5 has been welded to the rim of an orifice 10 of a wall of said reactor 6.
  • Said reactor 6 comprises a piece or socket made of metal or metal alloy 2, a ceramic part or tube 3, and a junction element 1 of substantially annular shape and installed in a substantially annular space 4 occupying a substantially annular subspace (4a) formed between the parts 2 and 3.
  • Said junction assembly 5 and each of the parts 2, 3 and 1 which compose it are all substantially coaxial axis (X'X) substantially vertical.
  • the inside of the reactor 6 is divided by the device into two zones ZM and ZC, which are physically separated mainly by the ceramic tube 3.
  • the junction assembly delineates the zone ZC.
  • the reactor 6 and the junction assembly delimit the zone ZM.
  • the reactor 6 comprises a fluid inlet 7 in the zone ZM and a fluid outlet 8 of the zone ZM
  • the reactor 6 also comprises a fluid inlet 9 in the zone ZC, which serves both at the inlet and at the fluid outlet 9 of the zone ZC.
  • the arrows indicate the flow direction of the fluids, which are usually gases.
  • synthesis gas mixture of hydrogen gas H 2 and carbon monoxide CO
  • the air enters the zone ZC through the inlet 9, while methane gas supplies the zone ZM through the inlet 7.
  • the zone ZM is under a pressure of 30 bar (3 MPa).
  • O 2 oxygen passes through the junction assembly 5 through the wall of the ceramic tube 3.
  • This passage is in the form of O 2 " ions, which pass through the ceramic by the O 2 vacancies present in its crystal lattice.
  • the reaction CH4 + O 2 -> H 2 + CO can then take place, which leads to the production of a synthesis gas mixture which is discharged through the outlet 8.
  • the hydrogen gas H 2 and carbon monoxide CO can be easily separated from each other by If necessary, the nitrogen gas N 2 remaining in zone ZC emerges via inlet 9.
  • FIG. 2 schematically represents a partial view of the junction assembly according to the invention as represented in FIG. 1.
  • the ceramic piece 3 is a cylindrical tube plugged at one end. It also delimits a ceramic zone ZC inside said tube 3 and an outer zone called metal zone ZM.
  • the closed end 3b of the tube 3 has a hemispherical shape and is opposite the sleeve 2. This side is defined as the high side in the following description.
  • the other end 3a of the tube 3 is open and is located inside the socket 2. This side is defined as the low side in the following description.
  • the metal zone ZM and the ceramic zone ZC do not communicate directly with each other, but only through the wall of the ceramic tube 3.
  • the sleeve 2 is substantially hollow.
  • the outer diameter of the sleeve 2 is on this constant embodiment for the lower 2d and median 2f.
  • junction zone 2b The thickness 1 of the junction zone 2b is the small dimension 1 according to the invention.
  • the ceramic tube 3 is adjusted to the first recess and its lower portion 3a rests on the shoulder 2c.
  • the wedging of the tube 3 on the sleeve 2 is performed through the shoulder 2a.
  • junction zone 2b is of small dimension 1 along the axis (Y'Y).
  • the joining element 1 is annular. On this realization, it occupies only a subspace 4a annular of the annular space 4.
  • the height of the joining element 1 is less than the height L of the junction zone 2b.
  • the insertion depth of the joining element 1 in the sleeve 2 is such that its upper part is substantially at the same level as the upper end of the sleeve 2.
  • junction assembly 5 of the example is as shown in Figure 2.
  • the dimensions of the different parts are as follows:
  • Width 1 of the junction area 2b 0.25 mm
  • the sleeve 2 thus defined is a part (or ring) made of an alloy which is Haynes 230®.
  • Haynes 230® alloy is a good refractory material, which has been chosen for its refractoriness, resistance to high temperature oxidation and its TEC of 15.2.10 ⁇ 6 / ° C between room temperature and 800 0 C. Its composition is as follows (% by weight): Ni 57%, Cr 22%, Mo 2%, W 14%, Fe 3%, C 0.1%, Al 0.3%.
  • the ceramic piece 3 is a ceramic tube 3 which is closed at one end 3b and which is composed on its entire wall with a porous layer (located on the
  • the porous layer is thick
  • the dimensions of the tube are:
  • the joining material is glass and forms a joining element 1 in the form of a substantially annular piece or cord 1.
  • This cord 1 is completely inserted in the space 4, occupying a subspace (4a) , the top of the cord (1) being located at the height of the junction zone 2b.
  • Two different glasses were tested as a joining material.
  • the dimensions of the joining element 1 are:
  • the dimension ratio along the axis (X'X) of the junction zone 2b to the annular subspace 4a is equal to 5 / 2.5 or 2.
  • the junction assembly 5 as defined above is produced according to the invention to ensure a gas-tight connection between the ceramic tube 3, and the sleeve 2 of metal or metal alloy, of cylindrical axis symmetry (X'X), and having a particular shape (a "design"), using a glass which is the joining material.
  • a pressure differential between 0 and 30 bar is applied between the inside and the outside of the ceramic tube 3 and therefore between the two zones ZM and ZC on each side of the junction, the pressure being higher on the ZM side.
  • the two atmospheres present respectively in the zones ZC and ZM thus separated are respectively one oxidizing and the other reducing.
  • the maximum working temperature is here between 700 and 900 ° C., but the tightness must be ensured between the ambient temperature (approximately 20 ° C.) and the said maximum temperature of use.
  • the first PVl tested glass is as described in US6430966; it crystallizes easily to form a phase of thermal expansion coefficient close to
  • the second PV2 tested glass is a commercial glass
  • Table 1 composition of PV1 and PV2 glasses (% by weight)
  • the sleeve 2 Haynes 230® alloy is machined from a cylinder to obtain the sleeve 2 as shown in Figure 2 and as described above.
  • This cylinder is characterized by a chamber constituting a junction zone (thickness), at and inside which is installed the glass bead 1 which is the connecting element 1.
  • the deformation of the metal or of the metal alloy in this part advantageously makes it possible to limit the thermal stresses likely to be exerted on the ceramic, mainly because of the differences in coefficients of thermal expansion between the materials.
  • the free space between the shoulder 2a and the glass bead 1 is preferably substantially completely filled with a filler material (not shown here) to hold the glass preform in position during the junction heat treatment.
  • the machined bushing 2 first undergoes a cleaning and degreasing step to eliminate machining residues.
  • the piece is immersed in a saponifying solution, the preparation protocol is as explained in Table 3, for 1 hour, with action of ultra sounds.
  • the junction zone 2b of said sleeve 2 is sandblasted with corundum (Al2O 3 ) to develop the surface roughness promoting mechanical adhesion by penetration of the glass in the asperities.
  • the measured roughness has an Ra of the order of 2.5 ⁇ m.
  • Preoxidation The adhesion is further improved by the formation of an oxide layer on the surface of the alloy, in this case by exposure to air at 900 ° C. for 30 min. By partial dissolution of these oxides in the glass, a chemical continuity will be ensured at the glass / alloy interface.
  • the thickness of the oxide layer must be large enough not to attack the socket 2 during the manufacturing process of the junction assembly, but not too important not to lead to its peeling.
  • Thermogravimetric analysis made it possible to determine the optimal thermal cycle for the formation of such an oxide layer.
  • the objective is to obtain a cord 1 of dense glass between the tube 3 and the sleeve 2.
  • PVl glass PVl glass is in the form of crushed pieces which are pressed by uniaxial pressing and baking under air at 700 ° C. for 30 min and then densified in air at 0 ° C. for 15 minutes The compactness obtained is approximately 98% of the theoretical density.
  • PV2 glass PV2 glass is in the form of powder
  • Direct use in this form poses the following difficulties: volume decrease between packed powder and molten glass, fast flow of molten glass
  • the shaping is carried out by uniaxial pressing of said powder and cooking in air at 700 0 C for 30 min.
  • the preform corresponds to a section of inner diameter tube close to the outside diameter of the tube 3 and outside diameter close to the inside diameter of the sleeve 2.
  • the compactness obtained after densification is about 98% of the theoretical density.
  • the glass preform when present must particularly remain at the junction zone 2b of the sleeve 2.
  • This filling makes it possible subsequently to maintain a glass preform in the junction zone 2b of the sleeve 2.
  • a Nextel® type fiber (alumina) wrapped around the tube 3 to wedge it in the socket 2.
  • the materials used for filling are typically MgO which is perfectly chemically inert and / or corundum and / or ceramic powder of the same ceramic as that constituting the tube 3, and / or Nextel® fiber.
  • the objective of this heat treatment is to create the ceramic / glass and alloy / glass interfaces.
  • This step must be carried out under an inert atmosphere such as a nitrogen (N 2 ) atmosphere, or under partial pressure of oxygen, in order not to modify the composition of the ceramic.
  • N 2 nitrogen
  • the temperature and the dwell time must be perfectly controlled to prevent collapse of the glass.
  • the solidification of the glass can exert constraints. It is necessary to carry out a very slow descent, above the stabilization temperature (or temperature of tension). Below, the glass being solid and the constraints related to phase change and solidification being completely relaxed, the cooling rate can be faster.
  • PVl glass PVl glass crystallizes easily in a CET structure close to 13.10 "6 / C
  • the aim is to take advantage of its fluidity to set it up and create the interfaces, before crystallizing it to increase its CET (limitation of thermal stresses) and improve its stability at high temperature
  • the study of the crystallization of PVl has shown that after 4 hours at 85O 0 C, the CET reaches a value of 12.8 ⁇ 10 -6 / ° C.
  • An ATD analysis carried out under air and under N 2 shows the presence of two crystallization peaks, the first being at 875 ° C. and the second being at 1000 ° C.
  • the heat treatment cycle therefore consists of a plateau at 115 ° C. for 15 minutes and then a plateau at 85O 0 C for 4 hours to crystallize the glass, followed by a descent to room temperature, at 2 ° C / min between 85O 0 C and 700 0 C, 1 ° C / min between 700 ° C and 45O 0 C then 20 ° C / min to 20 ° C. • PV2 glass
  • the approach is slightly different from that of PVl glass.
  • the goal is to get the glass spread to create the ceramic / glass and alloy / glass interfaces.
  • the viscosity curve of PV2 glass is known. Its softening temperature is at 715 0 C and its stabilization temperature (or annealing) is at 53O 0 C.
  • the thermal cycle is as shown in Figure 3 which is a curve giving the temperature T ( 0 C) as a function of time t (hours).
  • This cycle is therefore composed of a rise in temperature at 2 ° / min, a spreading step of 10 min at 75 ° C., a rapid descent of approximately up to a stabilization temperature (53 ° C.), d a stabilizing bearing, and a slow cooling then a faster cooling to room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ceramic Products (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention concerns a junction assembly (5) comprising: a ceramic tube (3) with axis (X'X), defining an inner zone (ZC) and an outer zone (ZM); a metal socket (2) with cylindrical junction zone (2b) of axis (X'X) enclosing said tube (3) through a gap (4); the sealing between said tube (3) and the socket (2) is provided by a junction element (1), made of a gas-tight material, and having a thermal expansion coefficient higher than 9. 10-6/ °C; said ceramic having a thermal expansion coefficient higher than that of the metal; said zone (2b) having, perpendicular to (X'X) a small dimension (1). The invention also concerns a reactor (6) comprising such an assembly (5), in particular for gas production and/or for gas separation.

Description

ENSEMBLE DE JONCTION CERAMIQUE - METAL OU ALLIAGE METALLIQUE CERAMIC JUNCTION ASSEMBLY - METAL OR METAL ALLOY
L'invention concerne un ensemble de jonction céramique - métal, comportant une pièce en céramique, une pièce en métal ou alliage métallique et un élément de jonction céramique - métal ou alliage métallique qui assure une jonction entre les deux pièces, ainsi qu'un réacteur comportant un tel ensemble de jonction.The invention relates to a ceramic-metal junction assembly comprising a ceramic part, a piece of metal or metal alloy and a ceramic - metal or metal alloy junction element which provides a junction between the two parts, as well as a reactor having such a junction assembly.
Dans le cadre de l'utilisation de réacteurs métalliques à membrane en céramique, tel qu'un CMR (réacteur catalytique membranaire) , par exemple pour la production ou la séparation de gaz, il est indispensable de réaliser une jonction entre la céramique et le métal ou alliage métallique qui constitue une paroi dudit réacteur. En effet, de tels réacteurs comportent généralement en leur sein une pièce ou membrane en céramique, qui se présente habituellement sous forme d'un tube sensiblement creux fermé à une de ses extrémités et ouvert à l'autre extrémité, qui enveloppe partiellement une zone intérieure qui comporte une atmosphère le plus souvent gazeuse, et qui définit une zone extérieure à elle-même, à l'intérieur dudit réacteur, qui comporte une autre atmosphère le plus souvent gazeuse. Les deux atmosphères sont ainsi présentes au sein dudit réacteur, ne communiquent pas directement entre elles et sont séparées par la pièce en céramique. Au moins un échange le plus souvent gazeux, sélectif, a lieu entre les deux atmosphères par l'intermédiaire et au travers de la pièce en céramique, et peut donner lieu à au moins une réaction d'un côté ou de l'autre de ladite pièce en céramique. Le tube est le plus souvent maintenu en place dans le réacteur par l'intermédiaire d'une pièce en métal ou en alliage métallique, généralement du même métal ou alliage métallique que ladite paroi du réacteur. Ladite pièce peut appartenir à ladite paroi ou peut être simplement fixée sur ladite paroi.In the context of the use of ceramic membrane metal reactors, such as a CMR (membrane catalytic reactor), for example for the production or separation of gases, it is essential to form a junction between the ceramic and the metal. or metal alloy which constitutes a wall of said reactor. Indeed, such reactors generally comprise within them a ceramic part or membrane, which is usually in the form of a substantially hollow tube closed at one of its ends and open at the other end, which partially envelops an inner zone. which has an atmosphere that is usually gaseous, and which defines an area outside itself, inside said reactor, which comprises another atmosphere that is often gaseous. The two atmospheres are thus present in said reactor, do not communicate directly with each other and are separated by the ceramic part. At least one exchange, which is often gaseous, selective, takes place between the two atmospheres via and through the ceramic part, and may give rise to at least one reaction on one side or the other of said ceramic piece. The tube is most often held in place in the reactor via a piece of metal or metal alloy, generally of the same metal or metal alloy as said wall of the reactor. said piece may belong to said wall or may simply be attached to said wall.
Or il est techniquement difficile de concevoir et de réaliser un ensemble de jonction entre une céramique et un métal ou un alliage métallique qui soit étanche aux gaz, dans des conditions d'atmosphère oxydante d'un côté de la jonction et d'atmosphère réductrice de l'autre côté de la jonction, et de différence de pression entre lesdites deux atmosphères comprise entre 0 et 30 bars (0 et 0,3 MPa) . De plus, dans le cas de l'utilisation d'un CMR, les conditions de mise en œuvre d'une telle jonction sont encore plus sévères, car lesdites atmosphères sont susceptibles de contenir de la vapeur d'eau et l'ensemble de jonction doit travailler dans une gamme de température d'environ 2O0C (température ambiante) à 9000C ou plus. L'ensemble de ces contraintes impose donc la mise en œuvre de matériaux, que ce soit une céramique, un métal ou alliage métallique ou un matériau de jonction, inertes chimiquement les uns par rapport aux autres, et possédant des propriétés physiques adaptées, en particulier un CET (coefficient d'expansion thermique) adapté.However, it is technically difficult to design and produce a junction assembly between a ceramic and a metal or a metal alloy that is gas-tight under oxidizing atmosphere conditions on one side of the junction and reducing atmosphere of the other side of the junction, and pressure difference between said two atmospheres between 0 and 30 bar (0 and 0.3 MPa). In addition, in the case of the use of a CMR, the conditions of implementation of such a junction are even more severe, because said atmospheres are likely to contain water vapor and the junction assembly must work in a temperature range of about 20 ° C. (room temperature) to 900 ° C. or more. All these constraints therefore require the use of materials, whether it is a ceramic, a metal or metal alloy or a joining material, chemically inert with respect to each other, and having suitable physical properties, in particular a CET (coefficient of thermal expansion) adapted.
Les recherches en vue de la réalisation d'un ensemble de jonction approprié ont jusqu'à présent porté sur deux points différents, à savoir la formulation du matériau de l'élément de jonction et la forme (le « design ») de l'élément de jonction.Research into a suitable junction assembly has so far focused on two different points, namely the formulation of the junction material and the shape (the "design") of the element. junction.
En ce qui concerne la formulation du matériau de jonction, de nombreux problèmes se posent à cause de l'évolution, au cours du temps et à haute température (600 à 9000C), des paramètres de ce matériau.As regards the formulation of the joining material, many problems arise because of the evolution, over time and at high temperature (600 to 900 ° C.), of the parameters of this material.
Parmi ces paramètres, les paramètres les plus critiques sont le coefficient d'expansion thermique (CET) et la stabilité chimique et physique du matériau. En effet, dans une gamme de température allant de la température ambiante à une haute température, il est essentiel de tenir compte de facteurs tels que l'évaporation éventuelle de composant (s) dudit matériau, l'évolution du CET et/ou la cristallisation éventuelle de composant (s) dudit matériau. A cet égard, les matériaux partiellement ou totalement cristallisés offrent des possibilités plus étendues, surtout en termes d'évolution du coefficient d'expansion thermique en fonction de la température, et de la durée de stabilité à haute température.Among these parameters, the most critical parameters are the coefficient of thermal expansion (CET) and the chemical and physical stability of the material. Indeed, in a temperature range from room temperature to a high temperature, it is essential to take into account factors such as the possible evaporation of component (s) of said material, the evolution of the TEC and / or the eventual crystallization of component ( s) of said material. In this respect, partially or fully crystallized materials offer more extensive possibilities, especially in terms of the evolution of the thermal expansion coefficient as a function of the temperature, and of the high temperature stability time.
Une première approche a consisté à cristalliser du verre pour adapter au mieux ses propriétés, ce qui a conduit au développement de compositions de verres spécifiques de type Lithium AluminoSilicate ou LAS (US4921738), Baryum AluminoSilicate ou BAS (US6430966) ou Baryum Calcium AluminoSilicate ou BCAS. Ces compositions ont une bonne réfractarité et un CET plus important par rapport aux verres de compositions classiques non cristallisés. Malheureusement, elles présentent une trop grande réactivité chimique avec la céramique.A first approach consisted in crystallizing glass to better adapt its properties, which led to the development of specific glasses of the Lithium AluminoSilicate or LAS type (US4921738), Barium AluminoSilicate or BAS (US6430966) or Barium calcium AluminoSilicate or BCAS . These compositions have a good refractoriness and a CET greater than those of conventional uncrystallized compositions. Unfortunately, they have too much chemical reactivity with ceramics.
Une seconde approche a consisté à ajouter une phase cristallisée dans un verre afin d'en augmenter le CET ou d'utiliser un verre cristallisable, par exemple sous forme de poudre ou de préforme (US5725218, US6402156) . Cependant, la multiplication des interfaces créées par la présence de plusieurs phases dans le matériau de jonction accroît les possibilités de fuites et donc de perte d'étanchéité de l'ensemble de jonction.A second approach has been to add a crystallized phase in a glass in order to increase the CET or to use a crystallizable glass, for example in the form of powder or preform (US5725218, US6402156). However, the multiplication of the interfaces created by the presence of several phases in the joining material increases the possibilities of leaks and therefore loss of sealing of the junction assembly.
En ce qui concerne la forme de l'élément de jonction, une première approche a consisté à comprimer un élément de jonction constitué d'un matériau de jonction déformable, ledit élément venant se plaquer sur la pièce en métal ou en alliage métallique et sur la pièce en céramique. Le matériau de jonction est généralement une phase fluide tel que par exemple du verre. Il s'adapte alors à la forme desdites pièces. Il peut subir alors des efforts de compression qui lui permettent d'assurer un bon contact avec lesdites pièces au niveau de ses interfaces avec celles-ci.With regard to the shape of the joining element, a first approach consisted in compressing a joining element consisting of a deformable junction material, said element being pressed against the metal or metal alloy part and on the ceramic piece. The junction material is generally a fluid phase such as for example glass. It then adapts to the shape of said parts. It can then undergo compression forces that allow it to ensure good contact with said parts at its interfaces with them.
Cependant, les contraintes exercées sur la pièce en céramique posent alors un problème non négligeable. En effet, de telles contraintes peuvent amener la pièce en céramique à se fissurer, et au pire à se fendre. De plus, dans la plupart des cas, la présence dans l'élément de jonction d'un composant supplémentaire est nécessaire pour parfaire l'étanchéité aux gaz, en particulier si les états de surface des interfaces de l'élément de jonction avec les pièces précitées sont très irréguliers . Ce type de réalisation nécessite d'avoir pour la pièce en métal ou alliage métallique et la pièce en céramique des coefficients d'expansion thermique les plus proches possibles, à cause du contact intime entre chacune des deux pièces et l'élément de jonction. Les éventuelles déformations de la pièce en métal ou alliage métallique exercent forcément des contraintes sur la pièce en céramique. Dans la majeure partie des cas, des cycles thermiques répétés et/ou des chocs thermiques conduisent à la fissuration de la pièce en céramique.However, the stresses exerted on the ceramic part then pose a significant problem. Indeed, such stresses can cause the ceramic piece to crack, and at worst to split. Moreover, in most cases, the presence in the joining element of an additional component is necessary to complete the gastightness, especially if the surface conditions of the interfaces of the connecting element with the parts mentioned above are very irregular. This type of embodiment requires having the closest possible thermal expansion coefficients for the metal or metal alloy part and the ceramic part, because of the intimate contact between each of the two parts and the joining element. The possible deformations of the metal part or metal alloy necessarily exert constraints on the ceramic part. In most cases, repeated thermal cycles and / or thermal shocks lead to cracking of the ceramic part.
Une seconde approche a consisté à modifier la forme de l'élément de jonction, pour limiter l'effet des contraintes pouvant s'exercer sur la pièce en céramique. Ainsi EP-A2- 1 067 320 décrit un élément de jonction formé d'au moins un anneau toroïdal métallique, ledit anneau pouvant subir une déformation. Un tel élément de jonction permet donc de maintenir une pression au niveau des interfaces entre l'élément de jonction et la pièce en métal ou en alliage métallique et la pièce en céramique précitées . Un tel élément de jonction permet surtout de limiter les contraintes radiales qui s'exercent sur la pièce en céramique lors des cycles thermiques, car l'anneau est formé par une feuille métallique dont l'épaisseur est très inférieure à la largeur de l'anneau. Par contre, comme ledit anneau est en métal, des problèmes de rugosité des surfaces peuvent se poser très rapidement pour les surfaces formant les interfaces, qui peuvent conduire à des fuites. C'est pourquoi, dans un mode de réalisation à au moins deux anneaux, une phase fluide (en particulier du verre) est généralement emprisonnée entre deux anneaux voisins. Cette phase fluide pose un problème de rigidification de la jonction aux températures où ladite phase n'est pas fluide, en particulier aux températures allant de la température ambiante (environ 2O0C) à la température de ramollissement de ladite phase.A second approach has been to modify the shape of the joining element, to limit the effect of stresses that may be exerted on the ceramic part. Thus, EP-A-1 067 320 discloses a junction element formed of at least one metal toroidal ring, said ring being able to deform. Such a joining element therefore makes it possible to maintain a pressure at the interfaces between the connecting element and the metal or alloy part. metal and the aforementioned ceramic part. Such a joining element makes it possible above all to limit the radial stresses which are exerted on the ceramic part during thermal cycles, since the ring is formed by a metal sheet whose thickness is much smaller than the width of the ring. . By cons, as said ring is metal, surface roughness problems can arise very quickly for the surfaces forming the interfaces, which can lead to leakage. This is why, in an embodiment with at least two rings, a fluid phase (in particular glass) is generally trapped between two neighboring rings. This fluid phase poses a problem of stiffening the junction at temperatures where said phase is not fluid, in particular at temperatures ranging from room temperature (approximately 20 ° C.) to the softening temperature of said phase.
L'ensemble de jonction selon l'invention permet de pallier les problèmes décrits précédemment, et d'apporter d'autres avantages. Un des objets de l'invention est de proposer un ensemble de jonction qui permette de limiter les contraintes exercées sur la pièce en céramique, en particulier lors des cycles thermiques variant entre la température ambiante et une haute température. Ainsi, l'invention concerne un ensemble de jonction céramique - métal, ledit ensemble comportant : 1) au moins une pièce en céramique se présentant sous la forme d'un tube creux et sensiblement cylindrique d'axe (X'X), fermé à une de ses extrémités et ouvert à l'autre extrémité, définissant une zone intérieure appelée zone céramique et une zone extérieure appelée zone métallique, lesdites zones céramique et métallique ne communiquant pas entre elles et étant séparées au moins partiellement par la pièce en céramique, au moins partiellement gainée parThe junction assembly according to the invention overcomes the problems described above, and to provide other advantages. One of the objects of the invention is to propose a junction assembly which makes it possible to limit the stresses exerted on the ceramic part, in particular during thermal cycles varying between the ambient temperature and a high temperature. Thus, the invention relates to a ceramic-metal junction assembly, said assembly comprising: 1) at least one ceramic piece in the form of a hollow tube and substantially cylindrical axis (X'X), closed to one of its ends and open at the other end, defining an inner zone called ceramic zone and an outer zone called metal zone, said ceramic and metallic zones not communicating with each other and being separated at least partially by the ceramic part, at least partially sheathed by
2) au moins une douille en métal ou alliage métallique comportant une partie ci-après nommée « zone de jonction » sensiblement cylindrique et creuse d'axe (X'X) enveloppant au moins partiellement ledit tube, un espace sensiblement annulaire d'axe (X'X) étant ménagé entre ledit tube et ladite zone de jonction,2) at least one sleeve of metal or metal alloy having a part hereinafter called "junction zone" substantially cylindrical and hollow axis (X'X) at least partially enveloping said tube, a substantially annular axis space ( X'X) being provided between said tube and said junction zone,
3) l'étanchéité entre ledit tube et ladite douille étant assurée par au moins un élément de jonction céramique - métal qui est en contact avec le tube et avec ladite zone de jonction de la douille, l'élément de jonction étant au moins partiellement présent dans ledit espace annulaire en en occupant un sous-espace (4a) et se présentant de préférence sous la forme d'une pièce sensiblement annulaire,3) the seal between said tube and said sleeve being provided by at least one ceramic-metal junction element which is in contact with the tube and with said junction zone of the socket, the junction element being at least partially present in said annular space occupying a subspace (4a) and preferably in the form of a substantially annular piece,
* ladite céramique présentant un coefficient d'expansion thermique (CET) supérieur ou égal au coefficient d'expansion thermique (CET) du métal ou de l'alliage métallique, * ledit alliage métallique comprenant au moins 10% en poids de nickel et au moins 15% en poids de chrome,said ceramic having a coefficient of thermal expansion (CET) greater than or equal to the coefficient of thermal expansion (TEC) of the metal or metal alloy, said metal alloy comprising at least 10% by weight of nickel and at least 15% by weight of chromium,
* ledit élément de jonction comprenant au moins un matériau de jonction, de préférence constitué dudit matériau de jonction, assurant une étanchéité aux gaz de 20 à 9000C, étant de préférence solide à une température de 650 à 9000C, et ayant un coefficient d'expansion thermique (CET) de la température ambiante à 9000C supérieur ou égal à 9. 10"6/°C, de préférence de 9 à 15.10"6 / 0C, ledit ensemble de jonction étant tel que ladite zone de jonction a une faible dimension, selon tout axe (Y'Y) traversant ladite zone de jonction et perpendiculaire à l'axe (X'X) . Dans un mode de réalisation préféré de l'invention, le rapport de dimensions selon l'axe (X'X) de la zone de jonction au sous-espace est au moins égal à 2/1, et est de préférence dans la fourchette de 2/1 à 100/1. Le rapport de dimensions selon l'axe (X'X) de la zone de jonction au sous-espace est le rapport de la dimension moyenne selon l'axe (X'X) de la zone de jonction à la dimension moyenne selon l'axe (X'X) du sous-espace. Dans le cas qui sera illustré ci-après où les formes du sous-espace et de la zone de jonction sont toutes deux annulaires d'axe (X'X), ladite dimension est la hauteur de l'anneau.* Said connecting element comprising at least one joining material, preferably consisting of said joining material, ensuring gas tightness of 20-900 0 C, preferably being solid at a temperature of 650 to 900 0 C, and having a coefficient of thermal expansion (CET) of the ambient temperature at 900 ° C. greater than or equal to 9.times.10.sup.- 6 / ° C., preferably from 9 to 15.times.10.sup.- 6 / 0.degree. C., said joining assembly being such that said zone junction has a small dimension, along any axis (Y'Y) passing through said junction area and perpendicular to the axis (X'X). In a preferred embodiment of the invention, the dimension ratio along the axis (X'X) of the junction zone to the subspace is at least equal to 2/1, and is preferably in the range of 2/1 to 100/1. The ratio of dimensions along the axis (X'X) of the junction zone to the subspace is the ratio of the mean dimension along the axis (X'X) of the junction zone to the average dimension according to the axis (X'X) of the subspace. In the case that will be illustrated below where the shapes of the subspace and the junction zone are both annular axis (X'X), said dimension is the height of the ring.
Avantageusement selon l'invention, la combinaison des propriétés du matériau de jonction et des possibilités de déformation de la douille permet de disposer d'un ensemble de jonction qui apporte des améliorations par rapport aux ensembles de jonction de l'art antérieur. Ces améliorations s'expriment principalement en termes de stabilité chimique et physique de l'ensemble de jonction, de limitation des contraintes exercées sur le tube en céramique, d'obtention d'une étanchéité aux gaz de la température ambiante à haute température, et d'amélioration de la résistance de l'ensemble de jonction à des cycles thermiques variant de la température ambiante à une haute température. En effet, la présence d'une zone de jonction de faible dimension de la douille procure avantageusement selon l'invention des possibilités de déformations de ladite douille. De telles déformations limitent les contraintes exercées sur le tube en céramique, en particulier dans la gamme de température allant de la température ambiante (2O0C environ) à haute température.Advantageously according to the invention, the combination of the properties of the joining material and the possibilities of deformation of the socket makes it possible to have a junction assembly which provides improvements over the junction assemblies of the prior art. These improvements are mainly expressed in terms of the chemical and physical stability of the junction assembly, the limitation of the stresses exerted on the ceramic tube, the achievement of a gaseous seal from ambient temperature to high temperature, and improvement of the resistance of the junction assembly to thermal cycles ranging from ambient temperature to high temperature. Indeed, the presence of a junction zone of small size of the sleeve advantageously provides according to the invention possibilities of deformation of said sleeve. Such deformations limit the stresses exerted on the ceramic tube, in particular in the temperature range from ambient temperature (about 20 ° C.) to high temperature.
Par « étanchéité aux gaz de 20 à 9000C », on entend selon l'invention qu'il ne se produit pas de fuite (s) de gaz de 20 à 900°C . Par « solide à une température de 600 à 9000C », on entend selon l'invention que la viscosité est supérieure 10 12 mPa.s pour un verre et que ladite température est inférieure à la température de fusion pour un cristal. En général et de préférence, ledit matériau de jonction est solide à la (aux) température (s) d'utilisation dudit ensemble.By "gas-tightness of 20 to 900 ° C." is meant according to the invention that no leakage (s) of gas from 20 to 900 ° C. occurs. By "solid at a temperature of 600 to 900 ° C." is meant according to the invention that the viscosity is greater than 12 mPa.s for a glass and that said temperature is below the melting temperature for a crystal. In general and preferably, said joining material is solid at the temperature (s) of use of said assembly.
Le « coefficient d'expansion thermique (CET) » est une donnée classique pour l'homme du métier. Par « faible dimension», on entend selon l'invention que la dimension est de petite taille et est dans une gamme de dimension qui peut être facilement trouvée par l'homme du métier, en fonction des paramètres donnés tel que le CET du matériau de jonction, et la forme de la douille. La dimension minimale est donnée par l'usinabilité du métal ou de l'alliage métallique. Un exemple de faible dimension sera donné ci-après dans les exemples. Typiquement, ladite faible dimension est d'environ 20 à 500 μm, de préférence d'environ 50 à 400 μm, de façon encore plus préférée d'environ 200 à 300μm.The "coefficient of thermal expansion (CET)" is a standard data for the skilled person. By "small dimension" is meant according to the invention that the dimension is small and is in a range of size that can be easily found by the skilled person, depending on the given parameters such as the CET of the material of junction, and the shape of the socket. The minimum dimension is given by the machinability of the metal or metal alloy. An example of a small dimension will be given below in the examples. Typically, said small dimension is about 20 to 500 μm, preferably about 50 to 400 μm, more preferably about 200 to 300 μm.
Le tube en céramique est généralement une membrane en céramique présente à l'intérieur d'un réacteur. La douille est en général telle qu'elle peut être liée mécaniquement et de façon étanche, typiquement par vissage, soudure ou tout autre mode d'assemblage étanche connu de l'homme du métier, généralement de façon solidaire, amovible ou non, à un tel réacteur, de préférence à une paroi d'un réacteur.The ceramic tube is generally a ceramic membrane present inside a reactor. The bushing is generally such that it can be mechanically and tightly bonded, typically by screwing, welding or any other method of tight assembly known to those skilled in the art, generally in a manner, fixed or removable, to a such reactor, preferably a wall of a reactor.
Selon l'invention, la céramique est généralement un conducteur ionique, de préférence un conducteur ionique et électronique, ladite céramique comprenant de façon plus préférée au moins un réseau cristallin comportant au moins une lacune en oxygène, ladite céramique étant, de façon encore plus préférée, choisie parmi les céramiques de structure cristalline perovskite et les oxydes de cérium. Par exemple, la céramique est composée d'une couche poreuse (située côté ZM) et d'une couche dense (située côté ZC) de compositions respectives Lao,5Sr0^FeO,9Ti0,iθ3-δ.et Lao,βSro,4Feo,gGao,iθ3-δ.According to the invention, the ceramic is generally an ionic conductor, preferably an ionic and electronic conductor, said ceramic more preferably comprising at least one crystalline lattice comprising at least one oxygen deficiency, said ceramic being, even more preferably chosen from ceramics of perovskite crystal structure and cerium oxides. For example, the ceramic is composed of a porous layer (located on the ZM side) and a dense layer (located on the ZC side) of respective Lao compositions, 5 Sr 0 ^ Fe O , 9 Ti 0 , iθ 3 - δ. Lao βSro, 4Feo, GGAO, iθ3-δ.
Le coefficient d'expansion thermique (CET) de la céramique dépend généralement de sa formulation. En général, il est de 9 à 20.10"6 / 0C.The coefficient of thermal expansion (TEC) of the ceramic generally depends on its formulation. In general, it is from 9 to 20.10 "6/0 C.
De préférence, ledit métal ou alliage métallique comprend sur une part de, de préférence sur toute, la surface de ladite zone de jonction, au moins une couche d'au moins un oxyde typiquement d'épaisseur supérieure ou égale à environ lμm et de préférence d'épaisseur inférieure ou égale à environ lOμm. Avantageusement la présence d'une telle couche d'oxydes permet de protéger le métal ou alliage métallique lors de la fabrication de l'ensemble de jonction et surtout assure une fonction d'adhésion entre le matériau de jonction et le métal ou alliage métallique. Si cette couche est trop peu épaisse (typiquement inférieure ou égale à environ 1 μm) , l'adhésion de la jonction entre le matériau de jonction et le métal ou alliage métallique est difficile à réaliser. Si cette couche est trop épaisse (typiquement supérieure ou égale à environ 10 μm) , elle risque de s'écailler lors de ladite fabrication, et par conséquent de ne pas assurer de rôle d'adhésion. Pour chaque cas, l'homme du métier est à même d'établir une gamme d'épaisseurs et/ou une épaisseur optimale de la couche en fonction des données dont il dispose.Preferably, said metal or metal alloy comprises on one part of, preferably on all, the surface of said junction zone, at least one layer of at least one oxide typically of thickness greater than or equal to approximately 1 μm and preferably thickness less than or equal to about 10 μm. Advantageously, the presence of such an oxide layer makes it possible to protect the metal or metal alloy during the manufacture of the junction assembly and, above all, ensures an adhesion function between the joining material and the metal or metal alloy. If this layer is too thin (typically less than or equal to about 1 micron), the adhesion of the junction between the joining material and the metal or metal alloy is difficult to achieve. If this layer is too thick (typically greater than or equal to about 10 microns), it may flake during said manufacture, and therefore not to ensure adhesion role. For each case, the skilled person is able to establish a range of thicknesses and / or an optimum thickness of the layer according to the data available.
Le métal peut être par exemple le nickel ou le platine. L'alliage métallique présente généralement les propriétés suivantes : une résistance à l'oxydation sous atmosphère oxydante jusqu'à 12000C, une résistance à la réduction sous atmosphère réductrice jusqu'à 12000C, une résistance au fluage jusqu'à 12000C, une température de fusion supérieure ou égale à 12000C, et un coefficient d'expansion thermique (CET) de 2O0C à 9000C de 8 àThe metal may be, for example, nickel or platinum. The metal alloy generally has the following properties: resistance to oxidation under an oxidizing atmosphere up to 1200 ° C., resistance to reduction under a reducing atmosphere up to 1200 ° C., resistance to creep up to 1200 ° C., a melting point greater than or equal to 1200 ° C., and a thermal expansion coefficient (TEC) of 20 ° C. at 900 ° C. of 8 ° to
25. 10"6 / 0C, de préférence de 10 à 18.10"6 / 0C. Ledit alliage est généralement choisi parmi les aciers spéciaux qui sont par exemple des alliages commerciaux tel que l'alliage Haynes 230®, l'alliage 800HT® et l'Inconel 686®.25. 10 "6/0 C, preferably from 10 to 18.10" 6/0 C. The alloy is generally selected from stainless steels which are for example commercial alloys such as Haynes 230® alloy, the alloy 800HT ® and Inconel 686®.
De préférence, ledit matériau de jonction est du verre, qui possède un coefficient d'expansion thermique (CET) supérieur au coefficient d'expansion thermique (CET) du métal ou de l'alliage métallique et inférieur au coefficient d'expansion thermique (CET) de la céramique, une résistance à une différence de pression entre la zone céramique et la zone métallique comprise entre 0 et 3 MPa, une stabilité chimique vis-à-vis de la céramique, une stabilité chimique vis-à-vis du métal ou de l'alliage métallique, une résistance à la réduction sous atmosphère réductrice jusqu'à 12000C, une résistance à l'oxydation sous atmosphère oxydante jusqu'à 12000C, une adhésion sur le métal ou alliage métallique et une adhésion sur la céramique.Preferably, said joining material is glass, which has a coefficient of thermal expansion (TEC) greater than the coefficient of thermal expansion (TEC) of the metal or metal alloy and lower than the coefficient of thermal expansion (CET ) ceramic, resistance to a pressure difference between the ceramic zone and the metal zone of between 0 and 3 MPa, chemical stability with respect to the ceramic, chemical stability with respect to the metal or of the metal alloy, resistance to reduction under a reducing atmosphere up to 1200 ° C., resistance to oxidation under an oxidizing atmosphere up to 1200 ° C., adhesion to the metal or metal alloy and adhesion to the metal. ceramic.
Le tube en céramique est généralement fermé à une extrémité par toute forme telle que carrée ou hémisphérique ou toute forme intermédiaire. De plus, l'extrémité ouverte du tube en céramique peut être d'une forme facilitant un ancrage sur/dans la douille.The ceramic tube is generally closed at one end by any shape such as square or hemispherical or any intermediate shape. In addition, the open end of the ceramic tube may be of a shape facilitating anchoring on / in the socket.
L'invention concerne encore un procédé de fabrication d'un ensemble tel que décrit précédemment, ledit procédé comprenant les étapes successives suivantes: 1. pré oxydation au moins partielle d'une surface d'une zone de jonction d'une douille en métal ou alliage métallique ou un précurseur de celui-ci, de façon à former au moins partiellement au moins une couche d'au moins un oxyde métallique sur ladite surface;The invention also relates to a method of manufacturing an assembly as described above, said method comprising the following successive steps: 1. At least partial preoxidation of a surface of a junction zone of a metal sleeve or metal alloy or a precursor thereof, so as to form at least partially at least one layer of at least one metal oxide on said surface;
2. assemblage d'un matériau de jonction ou d'un précurseur de celui-ci, de la douille de l'étape 1, et d'une pièce en céramique ou en précurseur de celle-ci, ledit assemblage comportant généralement un calage par maintien de l'élément de jonction au niveau de la zone de jonction de la douille, puis2. assembly of a junction material or a precursor thereof, the sleeve of step 1, and a ceramic piece or precursor thereof, said assembly generally comprising a wedging by maintaining the connecting element at the junction area of the socket, then
3. traitement thermique de l'assemblage de l'étape 2, sous gaz inerte tel que l'azote, sous pression partielle d'oxygène comprise entre 0 et 22%, et à température de 650 à 12000C pendant une durée de 5 mn à 10 heures, comportant une montée en température de la température ambiante jusqu'à une température de traitement, au moins un palier de température à la température de traitement, au moins une descente en température jusqu'à une température de stabilisation, au moins un palier de stabilisation à la température de stabilisation, et au moins une descente finale jusqu'à une température de fin de traitement qui est le plus souvent la température ambiante, ledit traitement thermique conduisant à la formation de l'élément de jonction au sein de l'ensemble de jonction.3. heat treatment of the assembly of step 2, under an inert gas such as nitrogen, under partial pressure of oxygen of between 0 and 22%, and at a temperature of 650 to 1200 ° C. for a period of 5 minutes. mn to 10 hours, comprising a rise in temperature from room temperature to a treatment temperature, at least one temperature step at the treatment temperature, at least one temperature decrease to a stabilization temperature, at least a stabilization plateau at the stabilization temperature, and at least one final descent to a treatment end temperature which is most often ambient temperature, said heat treatment leading to the formation of the connecting element within the junction assembly.
Par « palier de température », on entend selon l'invention que ladite température est généralement maintenue pendant une durée de quelques minutes à quelques heures selon les matériaux utilisés.By "temperature plateau" is meant according to the invention that said temperature is generally maintained for a period of a few minutes to a few hours depending on the materials used.
La température de traitement peut être fixe ou varier dans la plage indiquée. Ledit procédé peut comprendre en outre une étape supplémentaire, qui est réalisée entre les étapes 1 et 2 précédentes ou qui précède l'étape 1 précédente, ladite étape supplémentaire étant l'étape suivante : • fabrication d'une préforme en matériau de jonction, sous la forme d'un tube sensiblement cylindrique et creux ouvert à au moins une de ses extrémités, ladite fabrication comprenant au moins un pressage et une densification, ou au moins un frittage, ou au moins une fusion et un coulage dans un moule, à température de 600 àThe treatment temperature can be fixed or vary within the indicated range. Said method may further comprise an additional step, which is performed between the preceding steps 1 and 2 or preceding the preceding step 1, said additional step being the following step: Manufacturing a junction material preform, in the form of a substantially cylindrical and hollow tube open at at least one of its ends, said manufacture comprising at least one pressing and a densification, or at least one sintering, or at least one minus a melting and pouring in a mold, at a temperature of 600 to
12000C pendant 10 à 40 mn, ladite préforme servant de forme au matériau de jonction assemblé à l'étape 2.1200 ° C. for 10 to 40 minutes, said preform serving to form the joining material assembled in step 2.
L'invention concerne enfin un réacteur, ledit réacteur comportant en son sein au moins en majeure partie ledit ensemble de jonction selon l'invention ou fabriqué selon un procédé selon l'invention, ledit réacteur enveloppant la zone ZM, la douille en métal ou en alliage métallique de l'ensemble de jonction étant liée mécaniquement audit réacteur, et l'axe (X'X) étant disposé sensiblement verticalement, ledit réacteur comprenant au moins une arrivée de fluide dans la zone ZM et au moins une sortie de fluide de la zone ZM, ledit réacteur comprenant en outre au moins une arrivée de fluide dans la zone ZC et au moins une sortie de fluide de la zone ZC.Finally, the invention relates to a reactor, said reactor comprising at least a majority of said junction assembly according to the invention or manufactured according to a process according to the invention, said reactor surrounding the ZM zone, the metal sleeve or metal alloy of the junction assembly being mechanically connected to said reactor, and the axis (X'X) being disposed substantially vertically, said reactor comprising at least one fluid inlet in the zone ZM and at least one fluid outlet of the zone ZM, said reactor further comprising at least one fluid inlet in the zone ZC and at least one fluid outlet of the zone ZC.
Le réacteur doit généralement résister à une pression comprise de 1 à 30 bars (0,1 à 3 M.Pa), et à une température comprise de la température ambiante à au moins 9000C voire à 12000C. De plus, il doit être constitué d'au moins un métal ou alliage métallique qui résiste à une atmosphère généralement réductrice.The reactor generally must withstand a pressure of from 1 to 30 bars (0.1 to 3 M.Pa), and at a temperature from room temperature to at least 900 0 C or even to 1200 0 C. In addition, it must consist of at least one metal or metal alloy that is resistant to a generally reducing atmosphere.
Le plus souvent, un passage sélectif de fluide au sein dudit réacteur est possible entre la zone ZC et la zone ZM au travers du tube en céramique, de préférence de la zone ZC à la zone ZM.Most often, a selective passage of fluid within said reactor is possible between the zone ZC and the zone ZM through the ceramic tube, preferably from the zone ZC to the zone ZM.
De préférence, l'ensemble de jonction est lié mécaniquement à une paroi dudit réacteur.Preferably, the junction assembly is linked mechanically to a wall of said reactor.
Généralement, ledit fluide est gazeux et comporte au moins un composant gazeux.Generally, said fluid is gaseous and comprises at least one gaseous component.
Un tel réacteur est généralement tel qu'au moins une de ses parois est métallique, le plus souvent du même métal ou alliage métallique que ladite douille, ou bien d'un métal ou alliage métallique compatible chimiquement, avec le métal ou l'alliage métallique de la douille.Such a reactor is generally such that at least one of its walls is metallic, most often of the same metal or metal alloy as said sleeve, or of a metal or metal alloy that is chemically compatible with the metal or metal alloy. of the socket.
L'invention concerne enfin un procédé d'utilisation dudit réacteur pour la production de gaz et/ou la séparation de gaz, à une température d'utilisation de 4000C à 9000C, ledit ensemble de jonction étant tel que le matériau de jonction est solide à la température à laquelle il est soumis lors de ladite utilisation. Typiquement, la température d'utilisation est inférieure ou égale à la température de ramollissement du verre lorsque le matériau de jonction est du verre. Par exemple ledit réacteur peut être utilisé pour la production de gaz de synthèse à partir de méthane et d'oxygène. La température d'utilisation peut varier ou être fixe dans la gamme indiquée ci-dessus. A l'intérieur du réacteur, la température peut être répartie de façon non homogène.The invention finally relates to a method of using said reactor for the production of gas and / or the separation of gas, at a use temperature of 400 ° C. to 900 ° C., said joining assembly being such that the junction is solid at the temperature to which it is subjected during said use. Typically, the use temperature is less than or equal to the softening temperature of the glass when the joining material is glass. For example, said reactor can be used for the production of synthesis gas from methane and oxygen. The operating temperature may vary or be fixed in the range indicated above. Inside the reactor, the temperature can be distributed unevenly.
L'invention sera mieux comprise et d'autres caractéristiques et avantages apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, par référence aux figures 1 à 3.The invention will be better understood and other features and advantages will appear on reading the following description, given by way of non-limiting example, with reference to FIGS. 1 to 3.
La figure 1 représente de façon schématique une vue partielle d'un réacteur comprenant en majeure partie en son sein un ensemble de jonction selon l'invention. La figure 2 représente de façon schématique une vue partielle de l'ensemble de jonction selon l'invention de la figure 1.FIG. 1 schematically represents a partial view of a reactor comprising, for the most part, within it a junction assembly according to the invention. FIG. 2 schematically represents a partial view of the junction assembly according to the invention of FIG. 1.
La figure 3 représente, dans un exemple particulier, le cycle thermique auquel est soumis un ensemble de jonction selon l'invention lors de sa fabrication.FIG. 3 represents, in a particular example, the thermal cycle to which a junction assembly according to the invention is subjected during its manufacture.
La figure 1 représente de façon schématique une vue partielle d'un réacteur 6 comprenant en majeure partie en son sein un ensemble 5 de jonction selon l'invention. Ledit ensemble 5 de jonction a été soudé sur le rebord d'un orifice 10 d'une paroi dudit réacteur 6. Ledit réacteur 6 comprend une pièce ou douille en métal ou en alliage métallique 2, une pièce ou tube en céramique 3, et un élément de jonction 1 de forme sensiblement annulaire et installé dans un espace sensiblement annulaire 4 en occupant un sous-espace (4a) , de forme sensiblement annulaire, formé entre les pièces 2 et 3. Ledit ensemble de jonction 5 et chacune des pièces 2, 3 et 1 qui le composent sont tous sensiblement coaxiaux d'axe (X'X) sensiblement vertical. L'intérieur du réacteur 6 est divisé par le dispositif en deux zones ZM et ZC, qui sont physiquement séparées principalement par le tube 3 en céramique. L'ensemble 5 de jonction délimite la zone ZC. Le réacteur 6 et l'ensemble 5 de jonction délimitent la zone ZM. Le réacteur 6 comprend une arrivée 7 de fluide dans la zone ZM et une sortie 8 de fluide de la zone ZM.FIG. 1 schematically represents a partial view of a reactor 6 comprising, for the most part, a junction assembly 5 according to the invention. Said junction assembly 5 has been welded to the rim of an orifice 10 of a wall of said reactor 6. Said reactor 6 comprises a piece or socket made of metal or metal alloy 2, a ceramic part or tube 3, and a junction element 1 of substantially annular shape and installed in a substantially annular space 4 occupying a substantially annular subspace (4a) formed between the parts 2 and 3. Said junction assembly 5 and each of the parts 2, 3 and 1 which compose it are all substantially coaxial axis (X'X) substantially vertical. The inside of the reactor 6 is divided by the device into two zones ZM and ZC, which are physically separated mainly by the ceramic tube 3. The junction assembly delineates the zone ZC. The reactor 6 and the junction assembly delimit the zone ZM. The reactor 6 comprises a fluid inlet 7 in the zone ZM and a fluid outlet 8 of the zone ZM.
Le réacteur 6 comporte aussi une arrivée de fluide 9 dans la zone ZC, qui sert à la fois à l'arrivée et à la sortie de fluide 9 de la zone ZC. Les flèches indiquent le sens de circulation des fluides, qui sont en général des gaz . Dans un exemple d'utilisation du réacteur 6 pour la production de gaz de synthèse (mélange d'hydrogène gazeux H2 et de monoxyde de carbone CO) à haute température, typiquement à une température d'utilisation de 700 à 9000C, de l'air entre dans la zone ZC par l'entrée 9, tandis que du méthane gazeux alimente la zone ZM par l'entrée 7. La zone ZM est sous une pression de 30 bars (3 MPa) . Au cours de l'utilisation, l'élément 1 de jonction étant étanche, de l'oxygène O2 traverse l'ensemble 5 de jonction à travers la paroi du tube 3 en céramique. Ce passage se fait sous la forme d'ions O2 ", qui traversent la céramique par les lacunes en O2 présentes dans son réseau cristallin. Au sein de la zone ZM, la réaction CH4 + O2 -> H2 + CO peut alors avoir lieu, ce qui conduit à la production d'un mélange de gaz de synthèse qui est évacué par la sortie 8. L'hydrogène gazeux H2 et le monoxyde de carbone CO peuvent être aisément séparés l'un de l'autre par la suite, si besoin. L'azote gazeux N2 restant dans la zone ZC ressort par l'entrée 9. Ainsi, il a été possible de séparer sélectivement de l'air en oxygène gazeux O2 et en azote N2, et de conduire dans la zone ZM du réacteur 6 une réaction gazeuse avec l'oxygène en tant que réactif.The reactor 6 also comprises a fluid inlet 9 in the zone ZC, which serves both at the inlet and at the fluid outlet 9 of the zone ZC. The arrows indicate the flow direction of the fluids, which are usually gases. In an example of use of the reactor 6 for the production of synthesis gas (mixture of hydrogen gas H 2 and carbon monoxide CO) at high temperature, typically at an operating temperature of 700 to 900 ° C., the air enters the zone ZC through the inlet 9, while methane gas supplies the zone ZM through the inlet 7. The zone ZM is under a pressure of 30 bar (3 MPa). In use, the joining member 1 being sealed, O 2 oxygen passes through the junction assembly 5 through the wall of the ceramic tube 3. This passage is in the form of O 2 " ions, which pass through the ceramic by the O 2 vacancies present in its crystal lattice.In the ZM zone, the reaction CH4 + O 2 -> H 2 + CO can then take place, which leads to the production of a synthesis gas mixture which is discharged through the outlet 8. The hydrogen gas H 2 and carbon monoxide CO can be easily separated from each other by If necessary, the nitrogen gas N 2 remaining in zone ZC emerges via inlet 9. Thus, it has been possible to selectively separate air in oxygen gas O 2 and nitrogen N 2 , and conducting in the ZM zone of reactor 6 a gaseous reaction with oxygen as a reagent.
La figure 2 représente de façon schématique une vue partielle de l'ensemble 5 de jonction selon l'invention tel que représenté sur la figure 1.FIG. 2 schematically represents a partial view of the junction assembly according to the invention as represented in FIG. 1.
La pièce 3 en céramique est un tube cylindrique bouché à une extrémité. Il délimite aussi une zone céramique ZC à l'intérieur dudit tube 3 et une zone extérieure appelée zone métallique ZM. L'extrémité fermée 3b du tube 3 a une forme hémisphérique et se trouve à l'opposé de la douille 2. Ce côté est défini comme le côté haut dans la suite de la description. L'autre extrémité 3a du tube 3 est ouverte et est située à l'intérieur de la douille 2. Ce côté est défini comme le côté bas dans la suite de la description. La zone métallique ZM et la zone céramique ZC ne communiquent pas directement entre elles, mais uniquement par la paroi du tube 3 en céramique.The ceramic piece 3 is a cylindrical tube plugged at one end. It also delimits a ceramic zone ZC inside said tube 3 and an outer zone called metal zone ZM. The closed end 3b of the tube 3 has a hemispherical shape and is opposite the sleeve 2. This side is defined as the high side in the following description. The other end 3a of the tube 3 is open and is located inside the socket 2. This side is defined as the low side in the following description. The metal zone ZM and the ceramic zone ZC do not communicate directly with each other, but only through the wall of the ceramic tube 3.
La douille 2 est sensiblement creuse. On peut distinguer, en coupe radiale, trois parties principales sur la douille 2, en allant du bas vers le haut : une partie inférieure 2d munie d'un alésage, puis à partir d'un épaulement 2c, une partie médiane 2f correspondant à un premier chambrage, puis enfin à partir d'un second épaulement 2a, une partie haute correspondant à un second chambrage, plus large que le premier. Le diamètre extérieur de la douille 2 est sur cette réalisation constant pour les parties inférieure 2d et médiane 2f.The sleeve 2 is substantially hollow. One can distinguish, in radial section, three main parts on the sleeve 2, from bottom to top: a lower part 2d provided with a bore, then from a shoulder 2c, a middle part 2f corresponding to a first chambering, then finally from a second shoulder 2a, an upper part corresponding to a second chamber, wider than the first. The outer diameter of the sleeve 2 is on this constant embodiment for the lower 2d and median 2f.
Par contre, on peut distinguer deux configurations différentes sur la partie supérieure. Toujours en coupe, on observe que le diamètre extérieur s'amenuise en biseau droit d'angle 45°, 2e, puis sur une longueur L, le diamètre extérieur est à nouveau constant. Cette dernière partie est la zone de jonction, 2b. L'épaisseur 1 de la zone de jonction 2b est la faible dimension 1 selon l'invention.On the other hand, we can distinguish two different configurations on the upper part. Still in section, it is observed that the outside diameter tapers in right bevel angle 45 °, 2e, then on a length L, the outside diameter is again constant. This last part is the junction zone, 2b. The thickness 1 of the junction zone 2b is the small dimension 1 according to the invention.
Ainsi qu'il est représenté sur la figure 2, le tube 3 en céramique est ajusté au premier chambrage et sa partie 3a inférieure s'appuie sur l'épaulement 2c. Le calage du tube 3 sur la douille 2 est effectué grâce à l'épaulement 2a.As shown in Figure 2, the ceramic tube 3 is adjusted to the first recess and its lower portion 3a rests on the shoulder 2c. The wedging of the tube 3 on the sleeve 2 is performed through the shoulder 2a.
Pour tout axe (Y'Y) perpendiculaire à l'axe (X'X) qui traverse la zone de jonction 2b de la douille 2, ladite zone de jonction 2b est de faible dimension 1 selon l'axe (Y'Y) .For any axis (Y'Y) perpendicular to the axis (X'X) which passes through the junction zone 2b of the sleeve 2, said junction zone 2b is of small dimension 1 along the axis (Y'Y).
L'élément de jonction 1 est annulaire. Sur cette réalisation, il occupe seulement un sous-espace 4a annulaire de l'espace 4 annulaire. La hauteur de l'élément de jonction 1 est inférieure à la hauteur L de la zone de jonction 2b. La profondeur d'insertion de l'élément de jonction 1 dans la douille 2 est telle que sa partie supérieure se trouve sensiblement au même niveau que l'extrémité supérieure de la douille 2.The joining element 1 is annular. On this realization, it occupies only a subspace 4a annular of the annular space 4. The height of the joining element 1 is less than the height L of the junction zone 2b. The insertion depth of the joining element 1 in the sleeve 2 is such that its upper part is substantially at the same level as the upper end of the sleeve 2.
La figure 3 est explicitée ci-après dans l'exemple 1.Figure 3 is explained below in Example 1.
EXEMPLESEXAMPLES
Les exemples qui suivent illustrent l'invention sans pour autant en limiter la portée. Exemple 1The examples which follow illustrate the invention without limiting its scope. Example 1
L'ensemble de jonction 5 de l'exemple est tel que représenté à la figure 2. Les dimensions des différentes pièces sont les suivantes :The junction assembly 5 of the example is as shown in Figure 2. The dimensions of the different parts are as follows:
• Largeur 1 de la zone de jonction 2b : 0,25 mm• Width 1 of the junction area 2b: 0.25 mm
• Longueur L de la zone de jonction 2b : 5 mm• Length L of the junction area 2b: 5 mm
• Diamètre intérieur de la zone de jonction 2b : 12 mm• Internal diameter of the junction area 2b: 12 mm
• Diamètre extérieur de la partie 2e : de 12,25 à 16 mm• Outside diameter of the 2nd part: from 12.25 to 16 mm
• Diamètre intérieur de la partie 2e : 12 mm• Inside diameter of the 2nd part: 12 mm
• Hauteur de la partie 2e (selon (X'X)) : 5 mm • Diamètre extérieur des parties 2f et 2d : 16 mm• Height of the 2nd part (according to (X'X)): 5 mm • Outside diameter of parts 2f and 2d: 16 mm
• Diamètre intérieur de la partie 2f : 10 mm• Inside diameter of part 2f: 10 mm
• Hauteur de la partie 2f : 10 mm• Height of part 2f: 10 mm
• Diamètre intérieur de la partie inférieure 2d : 7 mm • Hauteur totale de la douille 2 (selon l'axe (X'X) ) : 50 mm La douille 2 ainsi définie est une pièce (ou bague) constituée d'un alliage qui est du Haynes 230®. L'alliage Haynes 230® est un bon matériau réfractaire, qui a été choisi pour sa réfractarité, sa résistance à l'oxydation à haute température et son CET de 15,2.10~6/°C entre la température ambiante et 8000C. Sa composition est la suivante (% poids) : Ni 57%, Cr 22%, Mo 2%, W 14%, Fe 3%, C 0,1%, Al 0,3%.• Inner diameter of the lower part 2d: 7 mm • Total height of the sleeve 2 (depending on the axis (X'X)): 50 mm The sleeve 2 thus defined is a part (or ring) made of an alloy which is Haynes 230®. Haynes 230® alloy is a good refractory material, which has been chosen for its refractoriness, resistance to high temperature oxidation and its TEC of 15.2.10 ~ 6 / ° C between room temperature and 800 0 C. Its composition is as follows (% by weight): Ni 57%, Cr 22%, Mo 2%, W 14%, Fe 3%, C 0.1%, Al 0.3%.
La pièce 3 en céramique est un tube 3 en céramique qui est fermé à une extrémité 3b et qui est composé sur l'ensemble de sa paroi d'une couche poreuse (située côtéThe ceramic piece 3 is a ceramic tube 3 which is closed at one end 3b and which is composed on its entire wall with a porous layer (located on the
ZM) et d'une couche dense (située côté ZC) de compositions respectives Lao,5Sro,5Feo,9Tio,i03-s et La0,6Sr0^Fe0,9Ga0,iO3-δ.ZM) and a dense layer (located on the ZC side) of respective compositions Lao, 5So, 5Feo, 9TiO, i0 3 -s and La 0 , 6Sr O ^ Fe 0 , 9Ga 0 , iO 3 - δ .
Leurs CET, mesurés entre 25 et 10000C, sont identiques et égaux à 14, 8.10~6/°C, leurs densités sont respectivementTheir CET, measured between 25 and 1000 0 C, are identical and equal to 14, 8.10 ~ 6 / ° C, their densities are respectively
6 g/cm3 et 6,2 g/cm3. La couche poreuse est d'épaisseur6 g / cm 3 and 6.2 g / cm 3 . The porous layer is thick
0,9 mm et la couche dense est d'épaisseur 0,1 mm. Les dimensions du tube sont :0.9 mm and the dense layer is 0.1 mm thick. The dimensions of the tube are:
1 Longueur : 252 mm " Rayon intérieur : 0,8 mm, et : 1 Epaisseur : 1 mm. 1 Length: 252 mm "Inner radius: 0.8 mm, and: 1 Thickness: 1 mm.
Le matériau de jonction est du verre et forme un élément de jonction 1 sous forme d'une pièce de forme sensiblement annulaire ou cordon 1. Ce cordon 1 est totalement inséré dans l'espace 4, en en occupant un sous- espace (4a) , le haut du cordon (1) étant situé à hauteur du haut de la zone de jonction 2b. Deux verres différents ont été testés en tant que matériau de jonction. Les dimensions de l'élément de jonction 1 sont :The joining material is glass and forms a joining element 1 in the form of a substantially annular piece or cord 1. This cord 1 is completely inserted in the space 4, occupying a subspace (4a) , the top of the cord (1) being located at the height of the junction zone 2b. Two different glasses were tested as a joining material. The dimensions of the joining element 1 are:
• Hauteur : 2,5 mm• Height: 2.5 mm
• Rayon intérieur : 0,9 mm, et :• Inner radius: 0.9 mm, and:
• Epaisseur : 1,4 mm. Le rapport de dimensions selon l'axe (X'X) de la zone de jonction 2b au sous-espace annulaire 4a est égal à 5/2,5 soit 2.• Thickness: 1.4 mm. The dimension ratio along the axis (X'X) of the junction zone 2b to the annular subspace 4a is equal to 5 / 2.5 or 2.
L'ensemble de jonction 5 tel que défini ci-dessus est élaboré selon l'invention pour assurer une jonction étanche aux gaz entre le tube 3 en céramique, et la douille 2 de métal ou d'alliage métallique, de symétrie cylindrique d'axe (X'X), et présentant une forme (un « design ») particulier, à l'aide d'un verre qui est le matériau de jonction. Un différentiel de pression compris entre 0 et 30 bars est appliqué entre l'intérieur et l'extérieur du tube 3 en céramique et donc entre les deux zones ZM et ZC de chaque côté de la jonction, la pression étant plus élevée du côté ZM. Les deux atmosphères présentes respectivement dans les zones ZC et ZM ainsi séparées sont respectivement l'une oxydante et l'autre réductrice. La température maximale de travail se situe ici entre 700 et 9000C, mais l'étanchéité doit être assurée entre la température ambiante (environ 2O0C) et ladite température maximale d'utilisation.The junction assembly 5 as defined above is produced according to the invention to ensure a gas-tight connection between the ceramic tube 3, and the sleeve 2 of metal or metal alloy, of cylindrical axis symmetry (X'X), and having a particular shape (a "design"), using a glass which is the joining material. A pressure differential between 0 and 30 bar is applied between the inside and the outside of the ceramic tube 3 and therefore between the two zones ZM and ZC on each side of the junction, the pressure being higher on the ZM side. The two atmospheres present respectively in the zones ZC and ZM thus separated are respectively one oxidizing and the other reducing. The maximum working temperature is here between 700 and 900 ° C., but the tightness must be ensured between the ambient temperature (approximately 20 ° C.) and the said maximum temperature of use.
Le premier verre testé PVl est tel que décrit dans le brevet US6430966 ; il cristallise facilement pour former une phase de coefficient de dilatation thermique proche deThe first PVl tested glass is as described in US6430966; it crystallizes easily to form a phase of thermal expansion coefficient close to
13.10~6/°C et une température de transition vitreuse de13.10 ~ 6 / ° C and a glass transition temperature of
7020C. Le second verre testé PV2 est un verre commercial702 0 C. The second PV2 tested glass is a commercial glass
(Schott 8350) qui présente un coefficient de dilatation thermique de ll,7.10~6/°C et une température de transition vitreuse de 5210C. La composition de ces deux verres est présentée dans le tableau 1 ci-dessous, et leurs propriétés physiques particulièrement intéressantes pour une utilisation dans un ensemble de jonction 5 selon l'invention sont présentées dans le tableau 2 ci-après.(Schott 8350) which has a coefficient of thermal expansion of 11.7 × 10 -6 / ° C. and a glass transition temperature of 52 ° C. The composition of these two glasses is shown in Table 1 below, and their properties particularly interesting for a use in a junction assembly 5 according to the invention are shown in Table 2 below.
Tableau 1 : composition des verres PVl et PV2 (% poids)Table 1: composition of PV1 and PV2 glasses (% by weight)
Tableau 2 : propriétés des verres PVl et PV2Table 2: properties of PVl and PV2 glasses
Dans le cadre de cet exemple, il est décrit ci-après la réalisation de la jonction (ou scellement) .In the context of this example, it is described below the realization of the junction (or sealing).
Préparation d'une douille 2 en alliage Haynes 230®Preparation of a Haynes 230® alloy socket 2
La douille 2 en alliage Haynes 230® est usinée à partir d'un cylindre pour obtenir la douille 2 telle que représentée sur la figure 2 et telle que décrite ci-dessus. Ce cylindre se caractérise par un chambrage constituant une zone de jonction (épaisseur), au niveau et à l'intérieur de laquelle est installé le cordon de verre 1 qui est l'élément de jonction 1. La déformation du métal ou de l'alliage métallique dans cette partie permet avantageusement de limiter les contraintes thermiques susceptibles d'être exercées sur la céramique, à cause principalement des différences de coefficients de dilatation thermique entre les matériaux. L'espace libre entre l'épaulement 2a et le cordon 1 de verre est de préférence pratiquement totalement comblé par un matériau de comblement (non représenté ici) pour maintenir la préforme de verre en position lors du traitement thermique de jonction.The sleeve 2 Haynes 230® alloy is machined from a cylinder to obtain the sleeve 2 as shown in Figure 2 and as described above. This cylinder is characterized by a chamber constituting a junction zone (thickness), at and inside which is installed the glass bead 1 which is the connecting element 1. The deformation of the metal or of the metal alloy in this part advantageously makes it possible to limit the thermal stresses likely to be exerted on the ceramic, mainly because of the differences in coefficients of thermal expansion between the materials. The free space between the shoulder 2a and the glass bead 1 is preferably substantially completely filled with a filler material (not shown here) to hold the glass preform in position during the junction heat treatment.
• Dégraissage• Degreasing
La douille 2 usinée subit d'abord une étape de nettoyage et de dégraissage pour éliminer les résidus d'usinage. Pour cela, la pièce est plongée dans une solution saponifiante, dont le protocole de préparation est tel qu'explicité dans le tableau 3, pendant 1 heure, avec action d'ultra sons.The machined bushing 2 first undergoes a cleaning and degreasing step to eliminate machining residues. For this, the piece is immersed in a saponifying solution, the preparation protocol is as explained in Table 3, for 1 hour, with action of ultra sounds.
Tableau 3 : protocole de préparation de la solution saponifianteTable 3: protocol for the preparation of the saponifying solution
• Sablage Ensuite, la zone de jonction 2b de ladite douille 2 est sablée à l'aide de corindon (AI2O3) pour développer la rugosité de surface favorisant l'adhésion mécanique par pénétration du verre dans les aspérités. La rugosité mesurée présente un Ra de l'ordre de 2,5μm. • Préoxydation L'adhésion est encore améliorée par la formation d'une couche d'oxydes à la surface de l'alliage, dans ce cas par exposition à l'air à 9000C pendant 30 min. Par dissolution partielle de ces oxydes dans le verre, une continuité chimique sera assurée à l'interface verre / alliage.Sandblasting Then, the junction zone 2b of said sleeve 2 is sandblasted with corundum (Al2O 3 ) to develop the surface roughness promoting mechanical adhesion by penetration of the glass in the asperities. The measured roughness has an Ra of the order of 2.5 μm. Preoxidation The adhesion is further improved by the formation of an oxide layer on the surface of the alloy, in this case by exposure to air at 900 ° C. for 30 min. By partial dissolution of these oxides in the glass, a chemical continuity will be ensured at the glass / alloy interface.
L'épaisseur de la couche d'oxyde doit être suffisamment importante pour ne pas attaquer la douille 2 lors du traitement de fabrication de l'ensemble 5 de jonction, mais pas trop importante pour ne pas conduire à son écaillage.The thickness of the oxide layer must be large enough not to attack the socket 2 during the manufacturing process of the junction assembly, but not too important not to lead to its peeling.
Une analyse thermogravimétrique a permis de déterminer le cycle thermique optimal pour la formation d'une telle couche d'oxydes.Thermogravimetric analysis made it possible to determine the optimal thermal cycle for the formation of such an oxide layer.
Cordon 1 de verre1 glass cord
L'objectif est d'obtenir un cordon 1 de verre dense entre le tube 3 et la douille 2.The objective is to obtain a cord 1 of dense glass between the tube 3 and the sleeve 2.
" Verre PVl Le verre PVl est sous forme de morceaux broyés qui sont pressés par pressage uniaxial et cuisson sous air à 7000C pendant 30 min puis densifiés sous air à HOO0C pendant 15 minutes. La compacité obtenue est d'environ 98% de la densité théorique.PVl glass PVl glass is in the form of crushed pieces which are pressed by uniaxial pressing and baking under air at 700 ° C. for 30 min and then densified in air at 0 ° C. for 15 minutes The compactness obtained is approximately 98% of the theoretical density.
" Verre PV2 Le verre PV2 est sous forme de poudre. L'utilisation directe sous cette forme pose les difficultés suivantes : diminution de volume entre la poudre tassée et le verre fondu, écoulement rapide du verre fondu. Ces deux problèmes peuvent être résolus en utilisant une préforme de verre densifiée. La mise en forme est réalisée par pressage uniaxial de ladite poudre et cuisson sous air à 7000C pendant 30 min. La préforme correspond à une section de tube de diamètre intérieur proche du diamètre extérieur du tube 3 et de diamètre extérieur proche du diamètre interne de la douille 2. La compacité obtenue après densification est environ de 98% de la densité théorique.PV2 glass PV2 glass is in the form of powder Direct use in this form poses the following difficulties: volume decrease between packed powder and molten glass, fast flow of molten glass These two problems can be solved by using a densified glass preform The shaping is carried out by uniaxial pressing of said powder and cooking in air at 700 0 C for 30 min. The preform corresponds to a section of inner diameter tube close to the outside diameter of the tube 3 and outside diameter close to the inside diameter of the sleeve 2. The compactness obtained after densification is about 98% of the theoretical density.
Assemblage des élémentsAssembly of elements
Après l'élaboration des différents éléments de la jonction, ces éléments sont assemblés et maintenus en place lors du traitement thermique de jonction. La préforme de verre lorsqu'elle est présente doit particulièrement rester au niveau de la zone de jonction 2b de la douille 2.After the development of the various elements of the junction, these elements are assembled and held in place during the junction heat treatment. The glass preform when present must particularly remain at the junction zone 2b of the sleeve 2.
L'espace 4 resté libre, entre le tube 3 et la douille 2, est tout d'abord comblé avec une poudre chimiquement inerte vis-à-vis de la céramique et de l'alliage. Ce comblement permet par la suite de maintenir une préforme de verre dans la zone de jonction 2b de la douille 2. On utilise également à cette fin une fibre de type Nextel® (alumine) , enroulée autour du tube 3 pour le caler dans la douille 2. Les matériaux utilisés pour le comblement sont typiquement MgO qui est parfaitement inerte chimiquement et/ou du corindon et/ou de la poudre céramique de la même céramique que celle constituant le tube 3, et/ou de la fibre de Nextel®. Traitement thermique de jonctionThe space 4 remained free, between the tube 3 and the sleeve 2, is first filled with a chemically inert powder vis-à-vis the ceramic and the alloy. This filling makes it possible subsequently to maintain a glass preform in the junction zone 2b of the sleeve 2. It is also used for this purpose a Nextel® type fiber (alumina), wrapped around the tube 3 to wedge it in the socket 2. The materials used for filling are typically MgO which is perfectly chemically inert and / or corundum and / or ceramic powder of the same ceramic as that constituting the tube 3, and / or Nextel® fiber. Junction heat treatment
L'objectif de ce traitement thermique est de créer les interfaces céramique/verre et alliage/verre. Cette étape doit être réalisée sous atmosphère inerte telle qu'une atmosphère d'azote (N2), ou sous pression partielle d'oxygène, afin de ne pas modifier la composition de la céramique. La température et le temps de palier doivent être parfaitement contrôlés afin d'éviter l'effondrement du verre. Au refroidissement, la solidification du verre peut exercer des contraintes. Il est nécessaire d'effectuer une descente en température très lente, au-dessus de la température de stabilisation (ou température de tension) . En deçà, le verre étant solide et les contraintes liées au changement de phase et à la solidification étant totalement relaxées, la vitesse de refroidissement peut être plus rapide.The objective of this heat treatment is to create the ceramic / glass and alloy / glass interfaces. This step must be carried out under an inert atmosphere such as a nitrogen (N 2 ) atmosphere, or under partial pressure of oxygen, in order not to modify the composition of the ceramic. The temperature and the dwell time must be perfectly controlled to prevent collapse of the glass. On cooling, the solidification of the glass can exert constraints. It is necessary to carry out a very slow descent, above the stabilization temperature (or temperature of tension). Below, the glass being solid and the constraints related to phase change and solidification being completely relaxed, the cooling rate can be faster.
• Verre PVl Le verre PVl cristallise facilement dans une structure de CET proche de 13.10"6/C L'objectif est de profiter de sa fluidité pour le mettre en place et créer les interfaces, avant de le cristalliser pour augmenter son CET (limitation des contraintes thermiques) et améliorer sa stabilité à haute température. L'étude de la cristallisation du PVl a montré qu'après 4 heures à 85O0C, le CET atteint une valeur de 12, 8.10"6/°C. Une analyse ATD effectuée sous air et sous N2 montre la présence de deux pics de cristallisation, le premier étant à 8750C et le second étant à 10000C.• PVl glass PVl glass crystallizes easily in a CET structure close to 13.10 "6 / C The aim is to take advantage of its fluidity to set it up and create the interfaces, before crystallizing it to increase its CET (limitation of thermal stresses) and improve its stability at high temperature The study of the crystallization of PVl has shown that after 4 hours at 85O 0 C, the CET reaches a value of 12.8 × 10 -6 / ° C. An ATD analysis carried out under air and under N 2 shows the presence of two crystallization peaks, the first being at 875 ° C. and the second being at 1000 ° C.
Le cycle thermique de traitement est donc constitué d'un palier à 115O0C pendant 15 minutes puis d'un palier à 85O0C pendant 4 heures pour cristalliser le verre, suivi d'une descente jusqu'à température ambiante, à 2°C/min entre 85O0C et 7000C, l°C/min entre 700°C et 45O0C puis 20°C/min jusqu'à 2O0C. • Verre PV2The heat treatment cycle therefore consists of a plateau at 115 ° C. for 15 minutes and then a plateau at 85O 0 C for 4 hours to crystallize the glass, followed by a descent to room temperature, at 2 ° C / min between 85O 0 C and 700 0 C, 1 ° C / min between 700 ° C and 45O 0 C then 20 ° C / min to 20 ° C. • PV2 glass
L'approche est légèrement différente de celle du verre PVl. L'objectif est d'obtenir l'étalement du verre afin de créer les interfaces céramique/verre et alliage/verre. La courbe de viscosité du verre PV2 est connue. Sa température de ramollissement se situe à 7150C et sa température de stabilisation (ou de recuisson) se situe à 53O0C.The approach is slightly different from that of PVl glass. The goal is to get the glass spread to create the ceramic / glass and alloy / glass interfaces. The viscosity curve of PV2 glass is known. Its softening temperature is at 715 0 C and its stabilization temperature (or annealing) is at 53O 0 C.
Le cycle thermique est tel que représenté sur la figure 3 qui est une courbe donnant la température T (0C) en fonction du temps t (heures) . Ce cycle est donc composé d'une montée en température à 2°/min, un palier d'étalement de 10 min à 75O0C, d'une descente rapide environ jusqu'à une température de stabilisation (53O0C), d'un palier de stabilisation, et d'un refroidissement lent puis d'un refroidissement plus rapide jusqu'à la température ambiante. The thermal cycle is as shown in Figure 3 which is a curve giving the temperature T ( 0 C) as a function of time t (hours). This cycle is therefore composed of a rise in temperature at 2 ° / min, a spreading step of 10 min at 75 ° C., a rapid descent of approximately up to a stabilization temperature (53 ° C.), d a stabilizing bearing, and a slow cooling then a faster cooling to room temperature.

Claims

REVENDICATIONS
1. Ensemble (5) de jonction céramique - métal, ledit ensemble (5) comportant :1. Ceramic-metal junction assembly (5), said assembly (5) comprising:
1) au moins une pièce (3) en céramique se présentant sous la forme d'un tube creux et sensiblement cylindrique d'axe (X'X), fermé à une de ses extrémités (3b) et ouvert à l'autre extrémité (3a), définissant une zone intérieure appelée zone céramique (ZC) et une zone extérieure appelée zone métallique (ZM) , lesdites zones céramique (ZC) et métallique (ZM) ne communiquant pas entre elles et étant séparées au moins partiellement par la pièce (3) en céramique, au moins partiellement gainée par 2) au moins une douille (2) en métal ou alliage métallique comportant une partie (2b) ci-après nommée « zone de jonction » sensiblement cylindrique et creuse d'axe (X'X) enveloppant au moins partiellement ledit tube (3) , un espace (4) sensiblement annulaire d'axe (X'X) étant ménagé entre ledit tube (3) et ladite zone de jonction (2b) ,1) at least one ceramic part (3) in the form of a hollow and substantially cylindrical tube with an axis (X'X), closed at one of its ends (3b) and open at the other end ( 3a), defining an interior zone called ceramic zone (ZC) and an exterior zone called metal zone (ZM), said ceramic (ZC) and metal (ZM) zones not communicating with each other and being separated at least partially by the part ( 3) made of ceramic, at least partially sheathed by 2) at least one socket (2) made of metal or metal alloy comprising a part (2b) hereinafter called "junction zone" substantially cylindrical and hollow with axis (X'X ) at least partially enveloping said tube (3), a substantially annular space (4) with axis (X'X) being provided between said tube (3) and said junction zone (2b),
3) l'étanchéité entre ledit tube (3) et ladite douille (2) étant assurée par au moins un élément (1) de jonction céramique - métal qui est en contact avec le tube (3) et avec ladite zone de jonction (2b) de la douille (2), l'élément (1) de jonction étant au moins partiellement présent dans ledit espace (4) annulaire en en occupant un sous-espace (4a) et se présentant de préférence sous la forme d'une pièce sensiblement annulaire (1),3) the seal between said tube (3) and said socket (2) being ensured by at least one ceramic-metal junction element (1) which is in contact with the tube (3) and with said junction zone (2b ) of the socket (2), the junction element (1) being at least partially present in said annular space (4) by occupying a subspace (4a) and preferably being in the form of a piece substantially annular (1),
* ladite céramique présentant un coefficient d'expansion thermique (CET) strictement supérieur au coefficient d'expansion thermique (CET) du métal ou de l'alliage métallique, * ledit alliage métallique comprenant au moins 10% en poids de nickel et au moins 15% en poids de chrome,* said ceramic having a thermal expansion coefficient (CET) strictly greater than the thermal expansion coefficient (CET) of the metal or metal alloy, * said metal alloy comprising at least 10% by weight of nickel and at least 15% by weight of chromium,
* l'élément (1) de jonction comprenant au moins un matériau de jonction, de préférence constitué dudit matériau de jonction, assurant une étanchéité aux gaz de 20 à 9000C, étant de préférence solide à une température de 650 à 9000C, et ayant un coefficient d'expansion thermique (CET) de la température ambiante à 9000C supérieur ou égal à 9. 10"6/°C, de préférence de 9 à 15.10"6 / 0C, ledit ensemble (5) de jonction étant tel que ladite zone de jonction (2b) a une faible dimension (1) , selon tout axe (Y'Y) traversant ladite zone de jonction (2b) et perpendiculaire à l'axe (X'X) .* the junction element (1) comprising at least one junction material, preferably consisting of said junction material, ensuring gas tightness from 20 to 900 0 C, being preferably solid at a temperature of 650 to 900 0 C , and having a thermal expansion coefficient (CET) from ambient temperature to 900 0 C greater than or equal to 9.10 "6 /°C, preferably from 9 to 15.10 "6 / 0 C, said assembly (5) junction being such that said junction zone (2b) has a small dimension (1), along any axis (Y'Y) crossing said junction zone (2b) and perpendicular to the axis (X'X).
2. Ensemble selon la revendication précédente tel que le rapport de dimensions selon l'axe (X'X) de la zone de jonction (2b) au sous-espace (4a) est au moins égal à 2/1, et est de préférence dans la fourchette de 2/1 à 100/1.2. Assembly according to the preceding claim such that the dimension ratio along the axis (X'X) of the junction zone (2b) to the subspace (4a) is at least equal to 2/1, and is preferably in the range of 2/1 to 100/1.
3. Ensemble selon l'une des revendications 1 ou 2 tel que ladite faible dimension (1) est d'environ 20 à 500 μm, de préférence d'environ 50 à 400 μm, de façon encore plus préférée d'environ 200 à 300μm.3. Assembly according to one of claims 1 or 2 such that said small dimension (1) is approximately 20 to 500 μm, preferably approximately 50 to 400 μm, even more preferably approximately 200 to 300 μm .
4. Ensemble selon l'une quelconque des revendications précédentes tel que ladite céramique est un conducteur ionique, de préférence un conducteur ionique et électronique, ladite céramique comprenant de façon plus préférée au moins un réseau cristallin comportant au moins une lacune en oxygène, ladite céramique étant, de façon encore plus préférée, choisie parmi les céramiques de structure cristalline perovskite et les oxydes de cérium.4. Assembly according to any one of the preceding claims such that said ceramic is an ionic conductor, preferably an ionic and electronic conductor, said ceramic more preferably comprising at least one crystal lattice comprising at least one oxygen vacancy, said ceramic being, even more preferably, chosen from ceramics of perovskite crystal structure and cerium oxides.
5. Ensemble selon l'une quelconque des revendications précédentes tel que ledit métal ou alliage métallique comprend sur une part de, de préférence sur toute, la surface de ladite zone de jonction (2b) , au moins une couche d'au moins un oxyde d'épaisseur supérieure ou égale à environ lμm et de préférence d'épaisseur inférieure ou égale à environ lOμm.5. Assembly according to any one of the preceding claims such that said metal or metal alloy comprises on a part of, preferably over the entire, surface of said junction zone (2b), at least one layer of at least one oxide of thickness greater than or equal to approximately lμm and preferably of thickness less than or equal to approximately lOμm.
6. Ensemble selon l'une quelconque des revendications précédentes tel que ledit métal ou alliage métallique présente une résistance à l'oxydation sous atmosphère oxydante jusqu'à 12000C, une résistance à la réduction sous atmosphère réductrice jusqu'à 12000C, une résistance au fluage jusqu'à 12000C, une température de fusion supérieure ou égale à 12000C, et un coefficient d'expansion thermique de 2O0C à 900°C (CET) de 8 à 25. 10"6 / 0C, de préférence de 10 à 18.10"6 / 0C.6. Assembly according to any one of the preceding claims such that said metal or metal alloy has resistance to oxidation under an oxidizing atmosphere up to 1200 0 C, resistance to reduction under a reducing atmosphere up to 1200 0 C, creep resistance up to 1200 0 C, a melting temperature greater than or equal to 1200 0 C, and a thermal expansion coefficient of 2O 0 C at 900°C (CET) of 8 to 25. 10 "6 / 0 C, preferably 10 to 18.10 "6 / 0 C.
7. Ensemble selon l'une quelconque des revendications précédentes tel que ledit matériau de jonction est du verre, qui possède un coefficient d'expansion thermique7. Assembly according to any one of the preceding claims such that said junction material is glass, which has a thermal expansion coefficient
(CET) supérieur au coefficient d'expansion thermique (CET) du métal ou de l'alliage métallique et inférieur au coefficient d'expansion thermique (CET) de la céramique, une résistance à une différence de pression entre la zone céramique et la zone métallique comprise entre 0 et 3 MPa, une stabilité chimique vis-à-vis de la céramique, une stabilité chimique vis-à-vis du métal ou de l'alliage métallique, une résistance à la réduction sous atmosphère réductrice jusqu'à 12000C, une résistance à l'oxydation sous atmosphère oxydante jusqu'à 12000C, une adhésion sur le métal ou l'alliage métallique et une adhésion sur la céramique, et de préférence ayant une température de ramollissement au moins égale à 65O0C.(CET) greater than the coefficient of thermal expansion (CET) of the metal or metal alloy and less than the coefficient of thermal expansion (CET) of the ceramic, a resistance to a pressure difference between the ceramic zone and the zone metal between 0 and 3 MPa, chemical stability with respect to ceramic, chemical stability with respect to metal or metal alloy, resistance to reduction under a reducing atmosphere up to 1200 0 C, resistance to oxidation under an oxidizing atmosphere up to 1200 0 C, adhesion on the metal or metal alloy and adhesion to the ceramic, and preferably having a softening temperature at least equal to 65O 0 C.
8. Ensemble selon l'une des revendications précédentes tel que la douille (2) comporte au moins un épaulement (2c) de support du tube (3) et/ou au moins un épaulement (2a) de calage du tube (3) .8. Assembly according to one of the preceding claims such that the sleeve (2) comprises at least one shoulder (2c) for supporting the tube (3) and/or at least one shoulder (2a) for wedging the tube (3).
9. Procédé de fabrication d'un ensemble (5) selon l'une quelconque des revendications 1 à 8, ledit procédé comprenant les étapes successives suivantes:9. Method for manufacturing an assembly (5) according to any one of claims 1 to 8, said method comprising the following successive steps:
1. pré oxydation au moins partielle d'une surface d'une zone de jonction (2b) d'une douille (2) en métal ou alliage métallique ou en précurseur de celui-ci, de façon à former au moins partiellement au moins une couche d'au moins un oxyde métallique sur ladite surface;1. at least partial pre-oxidation of a surface of a junction zone (2b) of a socket (2) made of metal or metal alloy or a precursor thereof, so as to at least partially form at least one layer of at least one metal oxide on said surface;
2. assemblage d'un matériau de jonction ou d'un précurseur de celui-ci, de la douille (2) de l'étape2. assembly of a junction material or a precursor thereof, of the socket (2) of step
1, et d'une pièce (3) en céramique ou en précurseur de celle-ci, ledit assemblage comportant généralement un calage par maintien du matériau de jonction au niveau de la zone de jonction (2b) de la douille (2), puis 3. traitement thermique de l'assemblage de l'étape 2, sous gaz inerte tel que l'azote, sous pression partielle d'oxygène comprise entre 0 et 22%, et à température de 650 à 12000C pendant une durée de 5 mn à 10 heures, comportant une montée en température de la température ambiante jusqu'à une température de traitement, au moins un palier de température à la température de traitement, au moins une descente en température jusqu'à une température de stabilisation, au moins un palier de stabilisation à la température de stabilisation, et au moins une descente finale jusqu'à une température de fin de traitement, ledit traitement thermique conduisant à la formation d'un élément (1) de jonction au sein d'un ensemble (5) de jonction.1, and a part (3) made of ceramic or a precursor thereof, said assembly generally comprising wedging by maintaining the junction material at the level of the junction zone (2b) of the socket (2), then 3. heat treatment of the assembly from step 2, under an inert gas such as nitrogen, under partial pressure of oxygen between 0 and 22%, and at a temperature of 650 to 1200 0 C for a period of 5 min to 10 hours, comprising a rise in temperature from ambient temperature to a treatment temperature, at least one temperature step at the treatment temperature, at least one drop in temperature to a stabilization temperature, at least one stabilization level at the stabilization temperature, and at least one final descent to an end of treatment temperature, said heat treatment leading to the formation of a junction element (1) within an assembly (5) junction.
10. Procédé de fabrication selon la revendication 9, comprenant en outre une étape supplémentaire, qui est réalisée entre les étapes 1 et 2 de la revendication 9 ou qui précède l'étape 1 de la revendication 9, ladite étape supplémentaire étant l'étape suivante :10. Manufacturing method according to claim 9, further comprising an additional step, which is carried out between steps 1 and 2 of claim 9 or which precedes step 1 of claim 9, said additional step being the following step :
• fabrication d'une préforme en matériau de jonction, sous la forme d'un tube sensiblement cylindrique et creux ouvert à au moins une de ses extrémités, ladite fabrication comprenant au moins un pressage et une densification, ou au moins un frittage, ou au moins une fusion et un coulage dans un moule, à température de 600 à 12000C pendant 10 à 40 mn, ladite préforme servant de forme au matériau de jonction assemblé à l'étape 2.• manufacturing a preform of joining material, in the form of a substantially cylindrical and hollow tube open at at least one of its ends, said manufacturing comprising at least one pressing and one densification, or at least one sintering, or at least one less melting and casting in a mold, at a temperature of 600 to 1200 0 C for 10 to 40 min, said preform serving as a form for the junction material assembled in step 2.
11. Réacteur (6), ledit réacteur (6) comportant en son sein au moins en majeure partie ledit ensemble (5) de jonction selon l'une quelconque des revendications 1 à 8 ou fabriqué selon un procédé de l'une quelconque des revendications 9 ou 10, ledit réacteur (6) enveloppant la zone (ZM), la douille (2) en métal ou en alliage métallique de l'ensemble (5) de jonction étant liée mécaniquement audit réacteur (6), et l'axe (X'X) étant disposé sensiblement verticalement, ledit réacteur (6) comprenant au moins une arrivée (7) de fluide dans la zone ZM et au moins une sortie (8) de fluide de la zone ZM, ledit réacteur comprenant en outre au moins une arrivée (9) de fluide dans la zone ZC et au moins une sortie (9) de fluide de la zone ZC.11. Reactor (6), said reactor (6) comprising within it at least mainly said junction assembly (5) according to any one of claims 1 to 8 or manufactured according to a method of any one of claims 9 or 10, said reactor (6) enveloping the zone (ZM), the sleeve (2) made of metal or metal alloy of the junction assembly (5) being mechanically linked to said reactor (6), and the axis ( X'X) being arranged substantially vertically, said reactor (6) comprising at least one fluid inlet (7) in zone ZM and at at least one fluid outlet (8) from zone ZM, said reactor further comprising at least one fluid inlet (9) in zone ZC and at least one fluid outlet (9) from zone ZC.
12. Procédé d'utilisation dudit réacteur (6) pour la production de gaz et/ou la séparation de gaz, à une température d'utilisation de 4000C à 9000C, ledit ensemble12. Method of using said reactor (6) for the production of gas and/or gas separation, at an operating temperature of 400 0 C to 900 0 C, said assembly
(5) de jonction étant tel que le matériau de jonction est solide à ladite température d'utilisation. (5) junction being such that the junction material is solid at said operating temperature.
EP05825170A 2004-12-17 2005-12-13 Ceramic-metal or metal alloy junction assembly Withdrawn EP1827670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413533A FR2879594B1 (en) 2004-12-17 2004-12-17 CERAMIC-METAL JUNCTION ASSEMBLY OR METAL ALLOY
PCT/FR2005/051080 WO2006064160A1 (en) 2004-12-17 2005-12-13 Ceramic-metal or metal alloy junction assembly

Publications (1)

Publication Number Publication Date
EP1827670A1 true EP1827670A1 (en) 2007-09-05

Family

ID=34953794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05825170A Withdrawn EP1827670A1 (en) 2004-12-17 2005-12-13 Ceramic-metal or metal alloy junction assembly

Country Status (5)

Country Link
EP (1) EP1827670A1 (en)
JP (1) JP2008524099A (en)
CN (1) CN101080265A (en)
FR (1) FR2879594B1 (en)
WO (1) WO2006064160A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2987878B1 (en) * 2012-03-12 2014-05-09 Air Liquide NEW CERAMIC / METAL JOINT AND METHOD FOR PRODUCING THE SAME
US9969645B2 (en) 2012-12-19 2018-05-15 Praxair Technology, Inc. Method for sealing an oxygen transport membrane assembly
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
WO2015054223A2 (en) 2013-10-07 2015-04-16 Praxair Technology, Inc. Ceramic oxygen transport membrane array reactor and reforming method
US10822234B2 (en) 2014-04-16 2020-11-03 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (IGCC)
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
WO2017112677A1 (en) * 2015-12-21 2017-06-29 Praxair Technology, Inc. Apparatus including a ceramic component, a metal component, and a glass sealing material and a process of forming the apparatus
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
US11052353B2 (en) 2016-04-01 2021-07-06 Praxair Technology, Inc. Catalyst-containing oxygen transport membrane
US10010876B2 (en) 2016-11-23 2018-07-03 Praxair Technology, Inc. Catalyst for high temperature steam reforming
WO2019226435A1 (en) 2018-05-21 2019-11-28 Praxair Technology, Inc. Otm syngas panel with gas heated reformer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE95361C1 (en) * 1934-08-13 1939-04-05
GB527580A (en) * 1938-04-27 1940-10-11 Bosch Gmbh Robert Improvements in and relating to gas-tight joints between metallic and ceramic insulating bodies
FR2592320B1 (en) * 1985-12-30 1988-04-08 Inst Francais Du Petrole NOVEL PROCESS FOR OXIDIZING AN OXIDIZABLE CHARGE IN THE GAS PHASE AND REACTOR FOR CARRYING OUT THIS PROCESS.
GB9412786D0 (en) * 1994-06-24 1994-08-17 Johnson Matthey Plc Improved reformer
US6402156B1 (en) * 1999-04-16 2002-06-11 Eltron Research, Inc. Glass-ceramic seals for ceramic membrane chemical reactor application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006064160A1 *

Also Published As

Publication number Publication date
WO2006064160A1 (en) 2006-06-22
JP2008524099A (en) 2008-07-10
FR2879594A1 (en) 2006-06-23
CN101080265A (en) 2007-11-28
FR2879594B1 (en) 2007-02-02

Similar Documents

Publication Publication Date Title
EP1827670A1 (en) Ceramic-metal or metal alloy junction assembly
BE1001249A5 (en) STRUCTURE FOR A PROTECTIVE pyrometer IMMERSION.
CA2108698C (en) Gas or liquid filtration, separation purification or catalytic transformation module
FR2641995A1 (en) FRITTE LIGHT METALLIC CONSTRUCTION MATERIAL AND METHOD FOR MANUFACTURING THE SAME
EP2326607B1 (en) Multilayer material, used for contacting liquid silicon
EP0418122B1 (en) Oxidation reactor with differential pressure drop and its application .
EP2401539B1 (en) Joining device
EP0092839B1 (en) Filter element and processes for producing the same
EP0272986A1 (en) Process and flame-operated apparatus for the production of synthesis gas
FR3071655A1 (en) CONTAINER AND METHOD FOR SEALING A CONTAINER OPENING
FR2942517A1 (en) COMPLIANT MATERIAL.
FR2942471A1 (en) COATED CERAMIC PIECE.
EP2125661B1 (en) Method for making a refractory ceramic material having a high solidus temperature
FR2942516A1 (en) FLUSH ASSEMBLY.
EP1206591A2 (en) Crucible-holder for single crystal growth
FR2472033A1 (en) MANUFACTURE OF HOLLOW BODIES, BY THERMAL PROJECTION, FOR EXAMPLE BY PLASMA TORCH OR TORCH, OF METAL ALLOYS AND / OR CERAMIC MATERIALS
FR2721241A1 (en) Casting nozzle comprising an internal jacket capable of forming a gas-impermeable layer and method of implementation.
EP2825514B1 (en) Novel ceramic-to-metal seal, and method for producing same
EP3046896A1 (en) Substrate for solidifying a silicon ingot
EP0401106B1 (en) Reactor chamber and method of manufacture
EP3227475A1 (en) Reusible crucible for the manufacture of crystalline material
EP1701777B1 (en) Assembly with a gas separation membrane on a support
FR2804131A1 (en) Crucible holder made by assembling carbonaceous material matching parts designed to overlap and its utilisation in crystal growth operations
FR2663563A2 (en) Oxidation reactor with head loss differential and its use
FR2651689A1 (en) Oxidation reactor with head loss differential and its use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080125

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080605