EP1825565A1 - Perfectionnement aux antennes a bandes interdites photoniques - Google Patents

Perfectionnement aux antennes a bandes interdites photoniques

Info

Publication number
EP1825565A1
EP1825565A1 EP05818906A EP05818906A EP1825565A1 EP 1825565 A1 EP1825565 A1 EP 1825565A1 EP 05818906 A EP05818906 A EP 05818906A EP 05818906 A EP05818906 A EP 05818906A EP 1825565 A1 EP1825565 A1 EP 1825565A1
Authority
EP
European Patent Office
Prior art keywords
source
rods
height
antenna according
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05818906A
Other languages
German (de)
English (en)
Other versions
EP1825565B1 (fr
Inventor
Nicolas Boisbouvier
Ali Louzir
Françoise Le Bolzer
Anne-Claude Tarot
Kouroch Mahdjoubi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1825565A1 publication Critical patent/EP1825565A1/fr
Application granted granted Critical
Publication of EP1825565B1 publication Critical patent/EP1825565B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/44Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/0066Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices being reconfigurable, tunable or controllable, e.g. using switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to photonic bandgap antennas.
  • Photonic bandgap structures are known by the abbreviation BIP, generally by the term "Photonic Band Gap Structure” or PBG structure in English, for periodic structures that prohibit the propagation of a wave for certain frequency bands . Structures were first used in the optical field, but in recent years their application has been extended to other frequency ranges. Photonic bandgap structures are used in particular in microwave devices such as filters, antennas or the like.
  • the present invention relates to a photonic band gap structure using metal elements, more particularly parallel rods perfectly conducting and arranged periodically.
  • This article studies more particularly the directivity and the resistance to radiation for a certain range of frequencies of a resonant antenna (MPBG) comprising a linear radiation source antenna and a cavity constructed in a metallic photonic structure formed of parallel metallic rods, the cavity being obtained by eliminating some rods around the source antenna.
  • MPBG resonant antenna
  • the present invention relates to a photonic band gap antenna (BIP) which is made with metal rods of finite length, the height of the rods relative to the substrate receiving the radiating source being controlled so as to control the radiation pattern of the antenna in the vertical plane.
  • BIP photonic band gap antenna
  • the present invention relates to a photonic bandgap antenna (BIP) having, in a plane of x, y directions, a radiating source and a photonic bandgap structure consisting of parallel metal rods, perpendicular to the plane, the rods of diameter d. repeating nx times with a period x in the x direction and n y times with a period y in the y direction, characterized in that the height of the rods seen from the radiating source is increasing.
  • BIP photonic bandgap antenna
  • the height of the rods between the source and the outermost rod is chosen to be greater than kh / n, n being equal to the number of stems seen from the source, h being the height of the outermost stem and k an integer varying between 1 and n.
  • the height of the first metal rods seen by the source is chosen to be greater than 3 ⁇ 1 where I is the height of the radiating source.
  • I is the height of the radiating source.
  • the BIPM effect is obtained, ie one obtains as a function of the period at a given frequency bandwidths and forbidden.
  • the heights of the rods between the source and the outermost rod follow an increasing monotonous function.
  • the numbers of rods are identical. They are chosen such that n> 3.
  • the numbers of stems seen from the source can be different, which gives numbers nx and ny of stems having different values.
  • the reproduction periods x and y of the metal rods in the x and y directions are chosen to be identical. However, these periods a x and a y may be different.
  • the stems are made of a metal material having a conductivity greater than 10 "7 such as copper (5.9.10 7 S / m), silver (4.1.10 7 S / m), aluminum (3.5.10 7 S / m) or similar.
  • the source is constituted by a vertical dipole or monopole attached to the substrate forming ground plane. The source is positioned in place of one of the metal rods or between the metal rods.
  • FIG. 3 is a diagram showing the bandwidths and forbidden bands of a photonic bandgap antenna as a function of the operating frequency and the period.
  • FIG. 4 shows schematically in A a 3D view and in B a top view of a photonic bandgap antenna, according to an embodiment of the present invention
  • FIG. 5 shows three configurations of photonic bandgap antennas with metal rods of different height according to the views with, for each of the configurations, a radiation pattern in elevation and a 3D radiation pattern.
  • FIG. 1 represents an antenna 1 consisting of a dipole 10, positioned in the middle of a photonic bandgap structure (BIP), formed of metal rods 11 of finite height (referenced to the BIPM structure).
  • the metal rods are made of a material having a conductivity greater than 10 -7 such as copper, silver, aluminum or the like.
  • the metal rods 11 are arranged in 7 rows of 7 elements, the rows and the elements being spaced from each other by a distance a giving the pitch or the period of the photonic bandgap structure.
  • Radiation diagrams show the effect of the BIPM structure on the radiation pattern of a dipole antenna. Indeed, the presence of a metallic BIP structure shows at the working frequency preferred directions of radiation at 0 °, 90 °, 180 ° and 270 ° and radiation minima at 45 °, 135 °, 225 °, 315 °.
  • the height of the metal rods of FIG. 1A has been modified so that, from the source, the heights of the rods are increasing.
  • the use of the height-adjustable rods allows the control of the elevation radiation pattern while maintaining the same azimuth pattern.
  • FIG. 5 there is shown a photonic bandgap antenna in which the source 10 sees three metal rods of height h which are identical and identical.
  • the elevation radiation pattern exhibits several minima due to passing or blocking behaviors of the metal photonic band gap structure for the apparent period in the considered direction.
  • This diagram is similar to the diagram in Figure 2B.
  • the 3D radiation pattern has along the z axis a radiation lobe. Indeed, when the rods are of constant heights h, the radiation pattern is preserved in the xOy plane but evolves in the xOz plane as a function of h.
  • the height of the 3 metal rods seen by the source 10 is different from one rod to the other and increasing so that H3 ⁇ H2 ⁇ H1.
  • the heights H3, H2, H1 can follow an increasing monotonous function.
  • the height of the rods H3, H2, H1 between the source and the outermost rod (H1) is chosen to be greater than kH1 / n, n being equal to the number of rods seen from the source (3). in the embodiment shown), H1 the height of the outer rod and k an integer varying between 1 and n.
  • the height H3 must be at least 3 x I where I is the height of the radiating source.
  • the source 10 has three metal rods whose height is increasing from the source towards the outer rod H'1 rectifc H'3 ⁇ H'2 ⁇ H'1.
  • the size of the metal rods substantially follows the equation given above.
  • the elevation diagram of FIG. 5C shows a significant decrease in the secondary lobes due to the particular structure of the metallic BEP, which is also found on the 3D diagram.
  • the present invention has been described with reference to an antenna in which the source is positioned in place of a metal rod in the center of the metallic BIP structure. However, it is possible to position the source between the rods. On the other hand, the source may be off-center in the photonic band gap structure.
  • the source used in the embodiments described above is a dipole. However, in a practical embodiment, a vertical monopoly mounted on a ground plane substrate is used in which the metal rods of the BIPM structure are also mounted.
  • the number of rods in the x direction may be the same or different from the number of rods in the y direction.
  • the periodicity a x and y between the rods along the x or y directions may be identical, as in the described embodiments, or different.

Abstract

La présente invention concerne les antennes à bandes interdites photoniques. Cette antenne comporte selon un plan de directions x, y, une source rayonnante 10 et une structure à bandes interdites photoniques constituée de tiges métalliques parallèles, les tiges se répétant nx fois dans la direction x et ny fois dans la direction y. La hauteur des tiges vues à partir de la source rayonnante est croissante. L'invention permet de contrôler le diagramme de rayonnement de l'antenne dans le plan vertical.

Description

PERFECTIONNEMENT AUX ANTENNES A BANDES INTERDITES
PHOTONIQUES
La présente invention concerne les antennes à bandes interdites photoniques.
Les structures à bandes interdites photoniques sont connues sous l'abréviation BIP, de manière générale sous le terme « Photonic Band Gap Structure ou PBG structure » en langue anglaise, pour des structures périodiques qui interdisent la propagation d'une onde pour certaines bandes de fréquences. Les structures ont tout d'abord été utilisées dans le domaine optique mais, depuis quelques années, leur application est étendue à d'autres gammes de fréquences. Les structures à bandes interdites photoniques sont utilisées notamment dans des dispositifs micro-ondes tels que des filtres, des antennes ou similaire.
Parmi les structures à bandes interdites photoniques, on trouve des structures métalliques qui utilisent une distribution périodique d'éléments métalliques, d'autres une distribution périodique d'éléments diélectriques mais aussi des structures métallo-diélectriques. La présente invention se rapporte à une structure à bandes interdites photoniques utilisant des éléments métalliques, plus particulièrement des tiges parallèles parfaitement conductrices et disposées périodiquement.
Des antennes à bandes interdites photoniques à base d'éléments métalliques tels que des tiges métalliques parallèles ont déjà été étudiées. Ainsi, l'article publié dans la revue Chin. Phys.Lett. Vol. 19, n° 6 (2002) 804 intitulé « Métal Photonic Band Gap Résonant Antenna with High Directivity and High Radiation Résistance », de Lin Qien, FU-Jian, HE Sai-Ling, Zhang Jian-Wu étudie une structure résonnante à bandes interdites photoniques métallique (MBPG) formée de tiges métalliques parallèles infiniment longues selon la direction Z. Cet article étudie plus particulièrement la directivité et la résistance au rayonnement pour une certaine gamme de fréquences d'une antenne résonnante (MPBG) comportant une antenne source à rayonnement linéaire et une cavité construite dans une structure photonique métallique formée de tiges métalliques parallèles, la cavité étant obtenue en éliminant certaines tiges autour de l'antenne source. Les études sur les antennes à bandes interdites photoniques de ce type ont été réalisées avec des tiges métalliques infinies ou supposées comme telle.
La présente invention concerne une antenne à bandes interdites photoniques (BIP) qui est réalisée avec des tiges métalliques de longueur finie, la hauteur des tiges par rapport au substrat recevant la source rayonnante étant contrôlée de manière à contrôler le diagramme de rayonnement de l'antenne dans le plan vertical.
La présente invention concerne une antenne à bandes interdites photoniques (BIP) comportant, selon un plan de directions x, y, une source rayonnante et une structure à bandes interdites photoniques constituée par des tiges métalliques parallèles, perpendiculaires au plan, les tiges de diamètre d se répétant nx fois avec une période ax dans la direction x et ny fois avec une période ay dans la direction y, caractérisée en ce que la hauteur des tiges vues à partir de la source rayonnante est croissante.
Selon un mode de réalisation préférentiel, la hauteur des tiges comprises entre la source et la tige la plus extérieure est choisie pour être supérieure à kh/n, n étant égal au nombre de tiges vues à partir de la source, h étant la hauteur de la tige la plus extérieure et k un entier variant entre 1 et n.
De préférence, la hauteur des premières tiges métalliques vue par la source est choisie pour être supérieure à 3 x I où I est la hauteur de la source rayonnante. A cette valeur, l'effet BIPM est obtenu, à savoir l'on obtient en fonction de la période à une fréquence donnée des bandes passantes et interdites. De préférence, les hauteurs des tiges comprises entre la source et la tige la plus extérieure suivent une fonction monotone croissante. De préférence, selon chaque direction x ou y, les nombres de tiges sont identiques. Ils sont choisis tels que n > 3. Toutefois, les nombres de tiges vues à partir de la source peuvent être différents, ce qui donne des nombres nx et ny de tiges ayant des valeurs différentes.
Selon une caractéristique préférentielle de la présente invention, les périodes ax et ay de reproduction des tiges métalliques selon les directions x et y sont choisies pour être identiques. Toutefois, ces périodes ax et ay peuvent être différentes.
Selon un mode de réalisation de la présente invention, les tiges sont réalisées en un matériau métallique présentant une conductivité supérieure à 10"7 tel que le cuivre (5.9.107 S/m), l'argent (4.1.107 S/m), l'aluminium (3.5.107 S/m) ou similaire. D'autre part, la source est constituée par un dipôle ou un monopole vertical fixé au substrat formant plan de masse. Ladite source est positionnée à la place d'une des tiges métalliques ou entre les tiges métalliques.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description de différents modes de réalisation préférentiels, cette description étant faite avec référence aux dessins ci- annexés, dans lesquels :
La figure 1 représente schématiquement, en A une antenne à bandes interdites photoniques dans laquelle les tiges sont de même hauteur h (h=8l, avec I hauteur de la source) et en B, un diagramme de rayonnement selon les trois axes x, y, z.
La figure 2 représente les diagrammes de rayonnement d'une antenne à bandes interdites photoniques telle que représentée à la figure 1 par comparaison avec les diagrammes de rayonnement d'un dipôle seul respectivement dans un plan θ = 90°(a) et un plan φ = 0°(b), la hauteur des tiges métalliques étant de h=4.5l, avec I la hauteur de la source. La figure 3 est un diagramme donnant les bandes passantes et les bandes interdites d'une antenne à bandes interdites photoniques en fonction de la fréquence de fonctionnement et de la période.
La figure 4 représente schématiquement en A une vue en 3D et en B une vue de dessus d'une antenne à bandes interdites photoniques, conforme à un mode de réalisation de la présente invention, et
La figure 5 représente trois configurations d'antennes à bandes interdites photoniques avec des tiges métalliques de hauteur différente selon les vues avec, pour chacune des configurations, un diagramme de rayonnement en élévation et un diagramme de rayonnement en 3D.
Les exemples décrits ci-après sont des réalisations schématiques qui ne sont pas limitatives. Ces réalisations ont permis de tester la faisabilité et les résultats obtenus avec la structure conforme à l'invention. Toutefois, dans une réalisation pratique, on utilisera de préférence un monopole monté sur un plan de masse avec des tiges elles aussi fixées sur ledit plan, plutôt qu'un dipôle.
La figure 1 représente une antenne 1 constituée d'un dipôle 10, positionné au milieu d'une structure à bandes interdites photoniques (BIP), formée de tiges métalliques 11 de hauteur finie (référencée structure BIPM). Les tiges métalliques sont réalisées dans un matériau présentant une conductivité supérieure à 10"7 tel que le cuivre, l'argent, l'aluminium ou similaire.
Comme représenté sur la figure 1 , les tiges métalliques 11 sont disposées selon 7 rangées de 7 éléments, les rangées et les éléments étant espacés les uns des autres d'une distance a donnant le pas ou la période de la structure à bandes interdites photoniques.
Dans le mode de réalisation représenté sur la figure 1 , la structure BIPM a la forme d'un motif carré avec nx = ny = 7 et une période ax
= ay = a identique selon les directions x et y. Toutefois, il est évident pour l'homme de l'art qu'une structure BIPM présentant des nombres nx et ny ainsi que des périodes ax et ay différentes selon les directions x et y peuvent aussi être envisagée dans le cadre de la présente invention.
L'antenne telle que représentée à la figure 1 A a été dimensionnée pour fonctionner à une fréquence fO = 5.25 GHz. Dans ce cas, le nombre n de tiges vues par l'élément rayonnant ou source 10 placé au centre de la structure est égal à n = 3, tandis que la période a est égale à 17,5 mm, les tiges métalliques présentant un diamètre de 1 mm et une hauteur h égale à 8xl, I étant la hauteur de la source filaire, à savoir le dipôle.
La figure 1B représente selon les trois dimensions, la surface caractéristique du rayonnement de l'antenne tandis que les figures 2A et 2B représentent, selon une coupe surfacique dans le plan θ = 90° et le plan φ = 0°, un diagramme de rayonnement du dipôle seul et du dipôle au centre d'une structure BIPM telle que celle de la figure 1A, mais avec une hauteur des tiges métalliques h=4.5*l, avec I hauteur de la source. Les diagrammes de rayonnement permettent de mettre en évidence l'effet obtenu par la structure BIPM sur le diagramme de rayonnement d'une antenne formée d'un dipôle. En effet, la présence d'une structure BIP métallique fait apparaître à la fréquence de travail des directions privilégiées de rayonnement à 0°, 90°, 180° et 270° et des minima de rayonnement à 45°, 135°, 225°, 315°.
La figure 3 représente le diagramme des bandes d'une structure à bandes interdites photoniques métallique constituée de n = 3 tiges métalliques vues à partir de la source en fonction de la période a du BIP métallique. Ce type de diagramme ou abaque permet de déterminer, à la fréquence de travail, la valeur de la période a qui doit être prise pour obtenir le rayonnement souhaité.
Ainsi, en utilisant le diagramme de la figure 3, on s'aperçoit qu'à une fréquence de travail de fO = 5.25 GHz, la période vaut a = 17.5 mm. En conséquence, une source placée au centre d'une structure BIP métallique formée de 7 x 7 tiges selon une période a = 17,5, présente selon les directions 0°, 90°, 180°, 270°, un lobe de rayonnement en conformité avec le caractère passant de la bande. Cela a été démontré par les diagrammes de rayonnement des figures 1 B et 2.
On décrira maintenant avec référence aux figures 4 et 5, une antenne à bandes interdites photoniques métallique dont la structure permet d'améliorer les diagrammes de rayonnement de la structure représentée à la figure 1 B, plus particulièrement le diagramme en élévation (plan φ = 0°). Comme représenté respectivement en perspective sur la figure 4A et en vue de dessus sur la figure 4B, la hauteur des tiges métalliques de la figure 1 A a été modifiée de sorte que, à partir de la source, les hauteurs des tiges soient croissantes.
Comme cela sera expliqué ci-après, l'utilisation des tiges à hauteur variable permet le contrôle du diagramme de rayonnement en élévation tout en conservant le même diagramme en azimut.
Sur la figure 5, on a représenté une antenne à bandes interdites photoniques dans laquelle la source 10 voit trois tiges métalliques de hauteur h finie et identique. Dans ce cas, comme représenté sur la figure 5A, le diagramme de rayonnement en élévation présente plusieurs minima dus aux comportements passants ou bloquants de la structure à bandes interdites photoniques métallique pour la période apparente dans la direction considérée. Ce diagramme est semblable au diagramme de la figure 2B. D'autre part, le diagramme de rayonnement en 3D présente selon l'axe z un lobe de rayonnement. En effet, lorsque les tiges sont de hauteurs constantes h, le diagramme de rayonnement se conserve dans le plan xOy mais évolue dans le plan xOz en fonction de h. Dans le présent cas, le diagramme de la figure 1 b est donné pour h=8*l (I hauteur de la source) et ne correspond pas exactement à la représentation 2D de la figure 2 (h=4.5*l).
Conformément à la présente invention et comme représenté sur la figure 5B, la hauteur des 3 tiges métalliques vues par la source 10 est différente d'une tige à l'autre et croissante de sorte que H3 < H2 < H1. Dans ce cas, on s'aperçoit sur le diagramme en élévation que les lobes secondaires dus au comportement de la structure BIP métallique, sont plus faibles, ce qui se retrouve aussi sur le diagramme en 3D. Comme mentionné préalablement, les hauteurs H3, H2, H1 peuvent suivre une fonction monotone croissante. De préférence, la hauteur des tiges H3, H2, H1 comprise entre la source et la tige la plus extérieure (H1 ) est choisie pour être supérieure à kH1/n, n étant égal au nombre de tiges vues à partir de la source (3 dans le mode de réalisation représenté), H1 la hauteur de la tige externe et k un entier variant entre 1 et n. D'autre part, pour obtenir l'effet BIP, la hauteur H3 doit être égale à au moins 3 x I où I est la hauteur de la source rayonnante.
Une autre structure conforme à la présente invention a été représentée dans la partie C de la figure 5. Dans ce cas, la source 10 a trois tiges métalliques dont la hauteur est croissante de la source vers la tige extérieure H'1 aveac H'3 < H'2 < H'1. Dans ce mode de réalisation, la taille des tiges métalliques suit sensiblement l'équation donnée ci-dessus. Dans ce cas, le diagramme en élévation de la figure 5C montre une diminution importante des lobes secondaires due à la structure particulière du BIP métallique, ce qui se retrouve aussi sur le diagramme en 3D.
La présente invention a été décrite en se référant à une antenne dans laquelle la source est positionnée à la place d'une tige métallique au centre de la structure BIP métallique. Toutefois, il est possible de positionner la source entre les tiges. D'autre part, la source peut être excentrée dans la structure à bandes interdites photoniques métallique. La source utilisée dans les modes de réalisation décrits ci-dessus est un dipôle. Toutefois, dans un mode de réalisation pratique, on utilise un monopole vertical monté sur un substrat formant plan de masse dans lequel sont aussi montées les tiges métalliques de la structure BIPM. Le nombre de tiges dans la direction x peut être identique ou différent du nombre de tiges dans la direction y. De plus, la périodicité ax et ay entre les tiges selon les directions x ou y peut être identique, comme dans les modes de réalisation décrits, ou différente.

Claims

REVENDICATIONS
1 - Antenne à bandes interdites photoniques (BIP) comportant, selon un plan de directions x, y, une source rayonnante 10 et une structure à bandes interdites photoniques constituée par des tiges métalliques parallèles, perpendiculaires au dit plan, les tiges de diamètre d se répétant nx fois avec une période ax dans la direction x et ny fois avec une période ay dans la direction y, caractérisée en ce que la hauteur (H3,H2,H1 ; H'3,H'2,H'1 ) des tiges vues à partir de la source rayonnante est croissante.
2 - Antenne selon la revendication 1 , caractérisée en ce que les hauteurs (H'3, H'2, H'1 ) des tiges comprises entre la source et la tige la plus extérieure sont choisies pour être supérieures à k h/n, n étant égal au nombre de tiges vues à partir de la source, h la hauteur de la tige la plus extérieure et k un entier variant entre 1 et n.
3 - Antenne selon l'une des revendications 1 ou 2, caractérisée en ce que les hauteurs des tiges comprises entre la source et la tige la plus extérieure suivent une fonction monotone croissante.
4 - Antenne selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les nombres totaux nx et ny de tiges dans les directions x et y sont identiques.
5 - Antenne selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le nombre n de tiges vues à partir de la source est choisi tel que n > 3.
6 - Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les périodes ax et ay dans les directions x et y sont identiques. 7 - Antenne selon l'une quelconque des revendications 1 à 6, caractérisée en ce que les tiges sont réalisées en un matériau métallique présentant une conductivité supérieure à 10"7 tel que le cuivre, l'argent, l'aluminium.
8 - Antenne selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la hauteur (H3,H'3) de la première tige vue à partir de la source est choisie tel que H > 3.I où I est la hauteur de la source rayonnante.
9 - Antenne selon l'une quelconque des revendications 1 à 8, caractérisée en ce que la source (10) est constituée par un dipôle ou un monopole vertical placé au-dessus du substrat.
10 - Antenne selon l'une quelconque des revendications 1 à 9, caractérisée en ce que la source (10) est positionnée à la place d'une tige ou entre les tiges.
EP05818906A 2004-12-13 2005-11-24 Perfectionnement aux antennes a bandes interdites photoniques Expired - Fee Related EP1825565B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452947A FR2879356A1 (fr) 2004-12-13 2004-12-13 Perfectionnement aux antennes a bandes interdites photoniques
PCT/FR2005/050985 WO2006064140A1 (fr) 2004-12-13 2005-11-24 Perfectionnement aux antennes a bandes interdites photoniques

Publications (2)

Publication Number Publication Date
EP1825565A1 true EP1825565A1 (fr) 2007-08-29
EP1825565B1 EP1825565B1 (fr) 2009-08-19

Family

ID=34955398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05818906A Expired - Fee Related EP1825565B1 (fr) 2004-12-13 2005-11-24 Perfectionnement aux antennes a bandes interdites photoniques

Country Status (8)

Country Link
US (1) US7719478B2 (fr)
EP (1) EP1825565B1 (fr)
JP (1) JP2008523676A (fr)
KR (1) KR20070086011A (fr)
CN (1) CN101073183A (fr)
DE (1) DE602005016147D1 (fr)
FR (1) FR2879356A1 (fr)
WO (1) WO2006064140A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1239223A (fr) * 1984-07-02 1988-07-12 Robert Milne Antenne reseau adaptative
US5689275A (en) * 1995-05-16 1997-11-18 Georgia Tech Research Corporation Electromagnetic antenna and transmission line utilizing photonic bandgap material
US6483640B1 (en) * 1997-04-08 2002-11-19 The United States Of America As Represented By The Secretary Of The Navy Optical notch filters based on two-dimensional photonic band-gap materials
GB0015895D0 (en) * 2000-06-28 2000-08-23 Plasma Antennas Limited An antenna
US7117133B2 (en) * 2001-06-15 2006-10-03 Massachusetts Institute Of Technology Photonic band gap structure simulator
FR2863109B1 (fr) * 2003-11-27 2006-05-19 Centre Nat Rech Scient Antenne a diagramme de rayonnement d'emission/reception configurable et orientable, station de base correspondante

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006064140A1 *

Also Published As

Publication number Publication date
EP1825565B1 (fr) 2009-08-19
FR2879356A1 (fr) 2006-06-16
JP2008523676A (ja) 2008-07-03
DE602005016147D1 (de) 2009-10-01
KR20070086011A (ko) 2007-08-27
CN101073183A (zh) 2007-11-14
US20080191962A1 (en) 2008-08-14
WO2006064140A1 (fr) 2006-06-22
US7719478B2 (en) 2010-05-18

Similar Documents

Publication Publication Date Title
CA2793126C (fr) Antenne reseau reflecteur a compensation de polarisation croisee et procede de realisation d&#39;une telle antenne
CA2681548C (fr) Reseau reflecteur et antenne comportant un tel reseau reflecteur
EP2202846B1 (fr) Elément rayonnant planaire à polarisation duale et antenne réseau comportant un tel élément rayonnant
EP0886889B1 (fr) Antenne reseau imprimee large bande
EP0374008B1 (fr) Antenne à couverture tridimensionnelle et balayage électronique, du type réseau volumique raréfié aléatoire
FR2863109A1 (fr) Antenne a diagramme de rayonnement d&#39;emission/reception configurable et orientable, station de base correspondante
CA2360432C (fr) Antenne pourvue d&#39;un assemblage de materiaux filtrant
FR2959611A1 (fr) Element rayonnant compact a cavites resonantes.
CA2985023C (fr) Systeme antennaire a ondes de surface
EP2079131A1 (fr) Perfectionnement aux antennes planaires comportant au moins un élément rayonnant de type fente à rayonnnement longitudinal
CA2640481C (fr) Antenne a polarisation circulaire ou lineaire
WO2004040696A1 (fr) Antenne a materiau bip multi-faisceaux
EP2817850B1 (fr) Dispositif à bande interdite électromagnétique, utilisation dans un dispositif antennaire et procédé de détermination des paramètres du dispositif antennaire
EP1825565B1 (fr) Perfectionnement aux antennes a bandes interdites photoniques
EP1551078A1 (fr) Antenne omnidirectionnelle configurable
CA2800949C (fr) Antenne compacte a large bande a double polarisation lineaire
EP1825566A1 (fr) Perfectionnement aux antennes a bandes interdites photoniques actives
CA2448636C (fr) Antenne pourvue d&#39;un assemblage de materiaux filtrant
EP4148902A1 (fr) Systeme electromagnetique avec deviation angulaire du lobe principal de rayonnement d&#39;une antenne
EP4189773A1 (fr) Dispositif a metasurface
FR3019385A1 (fr) Antenne a orientation de faisceau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LE BOLZER, FRANCOISE

Inventor name: LOUZIR, ALI

Inventor name: BOISBOUVIER, NICOLAS

Inventor name: MAHDJOUBI, KOUROCH

Inventor name: TAROT, ANNE-CLAUDE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005016147

Country of ref document: DE

Date of ref document: 20091001

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THOMSON LICENSING

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100520

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151130

Year of fee payment: 11

Ref country code: DE

Payment date: 20151126

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151120

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005016147

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161124

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124