EP1825410A1 - Procede et systeme automatique de configuration d'objets - Google Patents

Procede et systeme automatique de configuration d'objets

Info

Publication number
EP1825410A1
EP1825410A1 EP04811349A EP04811349A EP1825410A1 EP 1825410 A1 EP1825410 A1 EP 1825410A1 EP 04811349 A EP04811349 A EP 04811349A EP 04811349 A EP04811349 A EP 04811349A EP 1825410 A1 EP1825410 A1 EP 1825410A1
Authority
EP
European Patent Office
Prior art keywords
room
components
data
user
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04811349A
Other languages
German (de)
English (en)
Inventor
Chandra Pendyala
Robert Broadhead
Rajan Rajbhandari
Roy Riggs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edgenet Inc
Original Assignee
Edgenet Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edgenet Inc filed Critical Edgenet Inc
Publication of EP1825410A1 publication Critical patent/EP1825410A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/02CAD in a network environment, e.g. collaborative CAD or distributed simulation

Definitions

  • Designing a room requires numerous decisions to be made. For each decision there may be many different choices. Such choices may include room style (e.g., contemporary, classic, etc.), room size, room layout, room color, price range, etc. Additional choices may include the types or brands of products to be placed in a room (e.g., sink, range, etc.), along with product size, color, material, price range, etc. The choices can be based on many factors including consumer preferences, engineering constraints, space constraints, industry standards, and design or aesthetic considerations. Each decision made may constrain or otherwise influence other decisions.
  • room style e.g., contemporary, classic, etc.
  • room size e.g., room size, room layout, room color, price range, etc.
  • Additional choices may include the types or brands of products to be placed in a room (e.g., sink, range, etc.), along with product size, color, material, price range, etc.
  • the choices can be based on many factors including consumer preferences, engineering constraints, space constraints, industry standards, and design or aesthetic consideration
  • a "constraint" is broadly understood as a condition upon which certain options may be selected.
  • the set of options that could be selected may be narrower after a given choice is made.
  • it is possible that the set of options could be broader once a given choice is made. For example, if a four-foot cabinet is selected, the range of options may be broader than if a five-foot cabinet is selected.
  • a layout with the sink in one leg of the "L” presents certain constraints: it may be desirable to have a dishwasher next to the sink; or, a dishwasher and/or sink may only be located adjacent to appropriate room-specific plumbing.
  • Other examples may include: a selection of a relatively small kitchen, prevents the use of a relatively large table; or selection of a kitchen in a contemporary style precludes the selection of a sink in the "classic" style.
  • An automated system and method is provided for configuring an object (e.g., a room).
  • configuration is facilitated through the use of layering functionality and frame-based inferences to evaluate stored knowledge of object attributes.
  • the frame-based inferences may be supplemented by a rules-based inference system.
  • a graphics-based user interface may be used to permit interactive configuration using two-dimensional and three-dimensional models of the object, and incorporating engineering specifications, as well as functional and physical attributes.
  • FIG. 1 shows an example of a network arrangement in accordance with a preferred embodiment of the invention
  • FIGs. 2-5 depict exemplary screen shots of a commercial implementation of a preferred embodiment of the invention
  • FIG. 6 illustrates layering functionality in accordance with a preferred embodiment of the invention
  • FIG. 7 illustrates user entry points in accordance with a preferred embodiment of the invention
  • FIG. 8 depicts an exemplary screen shot of a three-dimensional model employed in a commercial implementation of a preferred embodiment of the invention
  • FIG. 9 depicts an exemplary screen shot of a photorealistic rendering employed in a commercial implementation of a preferred embodiment of the invention.
  • FIGS. 10 and 11 are illustrations of hierarchical structures used in accordance with a preferred embodiment of the invention.
  • FIG. 12 depicts an exemplary screen shot of a bill of materials employed in a commercial implementation of a preferred embodiment of the invention
  • FIG. 13 depicts an exemplary screen shot of a quote employed in a commercial implementation of a preferred embodiment of the invention
  • FIG. 14 depicts an exemplary screen shot of a shopping cart employed in a commercial implementation of a preferred embodiment of the invention.
  • FIG. 15 depicts an exemplary sequence of options presented to the user in configuring a room in accordance with a preferred embodiment of the invention.
  • an object configuration method and system is embodied in a single (or multiple) processor-based system that may be supported in a stand-alone, networked, mainframe, or client-server architecture.
  • a single (or multiple) program memory module is provided for storing one or more computer programs used to perform the functionality described herein.
  • one or more user interfaces are provided as part of (or in conjunction with) the object configuration system of the invention to permit users to interact with the system.
  • client devices e.g., network/stand-alone computers, personal digital assistants (PDAs), WebTV (or other Internet-only) terminals, set-top boxes, cellular/PCS phones, screenphones, pagers, kiosks, or other known (wired or wireless) communication devices, etc.
  • computer programs e.g., universal Internet browser programs, dedicated interface programs, etc.
  • a system in the form of a network arrangement is provided, as shown, for example, in Fig. 1.
  • the arrangement can be modified to suit individual circumstances.
  • the system may be used to perform configuration of an object such as a room.
  • a user interface may be provided in the form of a personal computer (PC) 100, which may be located, for example, at a user's home, or in the form of an in-store computer or other processing device such as kiosk 102 (or other mechanism in the store).
  • PC personal computer
  • the store may be a retailer that serves as the retail outlet (e.g., sale, delivery, installation, etc.) for many or all of the components used in the configured room.
  • the retail outlet e.g., sale, delivery, installation, etc.
  • component comprises not only individual products but a component can be a floor, wall, or any other aspect of a room used in room design.
  • a communications medium 104 which may take any form (integrated, distributed, wired, wireless, etc.) such as the Internet, an intranet, a local area network (LAN), etc., may be provided to provide connectivity between a user interface and one or more programmed computers (as symbolically represented by applications server 106 and database 108) that execute the configuration functionality in accordance with preferred embodiments of the invention.
  • applications server 106 and database 108 may be provided to provide connectivity between a user interface and one or more programmed computers (as symbolically represented by applications server 106 and database 108) that execute the configuration functionality in accordance with preferred embodiments of the invention.
  • the configuration functionality as described herein may be located (in whole or in part) in any other portion of the network (e.g., on PC 100, kiosk 102, etc.) in accordance with preferred embodiments of the invention.)
  • the server 106 is in communication with database 108 in which room configuration information is stored. Database 108 may be physically or logically associated with server 106.
  • a user e.g., consumer, sales-representative, buyer, seller, contractor, builder, architect, consultant, organizer, project coordinator, etc.
  • the interactive nature of the system aids the user in arriving at the desired configuration including production of any corresponding information (e.g., layouts, pricing, schematics, product specifications, manufacturing requirements, parametric drawings, etc.).
  • Figs. 2-5 depict an exemplary commercial implementation of a preferred embodiment of the invention.
  • Fig. 2 particularly depicts a screen shot 400 accessible by a user through a user interface (e.g., PC 100, in-store kiosk 102, etc.).
  • a user interface e.g., PC 100, in-store kiosk 102, etc.
  • the user is presented with several options. Those options include a "Bathroom Design Model” option 402, a "What's on Display” option 404, a "Bathroom Design Articles” option 406, a "Project Planner option 408, a "What's New at Merchant” option 410 and a "Promotion and Literature Request” option 412.
  • FIG. 3 screen shot 500 (Fig. 3).
  • Each of the different styles of the bathrooms may be pre- configured (e.g., by the retailer) with different styles and arrangements of appliances, fixtures, or other components (e.g., tubs, sinks, floor, wall paper, paint colors, windows, doors, etc.) to match the style of the room design.
  • the bathroom style titled "Gentleman's Treatment” 502 is pre- configured with a plurality of components, colors and textures fitting a traditional style bathroom having masculine features.
  • the bathroom style titled "City Spa” 508 is pre-configured with an arrangement of components different from those of the Gentleman's Treatment 502 and which are relatively more contemporary in style.
  • the information defining the components of each of these exemplary bathroom styles and other related data are preferably stored in one or more storage units accessible by the system, as symbolically represented by database 108 (Fig. 1).
  • Fig. 3 assuming that the user wishes to configure the bathroom associated with the "Gentleman's Treatment” 502 model, the user selects the linked photograph 502, selects "Gentleman's Treatment” 502 from menu 510, clicks on the image label, or otherwise indicates the intention.
  • the system retrieves the data concerning the components making up the pre-configured model and produces graphical images of the pre-configured components. These graphical images can be viewed by a user (through a user interface, e.g., PC 100), as shown in Fig. 4.
  • Fig. 4 is an exemplary graphical image in the form of screen shot 600 that illustrates a 2-dimensional (2-D) image of a Gentleman's Treatment bathroom model 602.
  • This model bathroom is characterized by a pre-selected arrangement of fixtures including sinks 604, commode 606, tub 608, wall color 610, flooring 612, and other fixtures and products.
  • Each component selected for bathroom model 602 e.g., the tub 608 has various attributes stored in database 108.
  • the tub 608, for example, as used in room model 602, has specific dimensions, available colors, material, and price.
  • the attributes of the tub 602 will be limited or constrained (i.e., limitations placed on attributes that can be used in the Gentleman's Treatment style).
  • the tub 602 may be limited to colors such as white and off-white, the material of the tub 602 might be of a porcelain-type material, metal material, or a polymer material, etc.
  • These constraints imposed by the selection of the Gentleman's Treatment style are typically pre-determined (e.g., for example, by the retailer) and may determine the set of component attributes (or the components themselves) from which a user can choose to include in the room to be configured.
  • a given room style model may have other configurable attributes related to the room. These attributes may include size, shape, style, texture, etc. of the room or components within the room, as well as cost figures (e.g., budget or price range of a given product, project, etc.).
  • Constraints on values of the component attributes can be provided directly by the user (or other entities), be obtained from database 108, derived from a combination of both, or otherwise provided as an input to the system.
  • constraints can include space planning constraints according to standards like the NKBA (National Kitchen and Bath Association) rules, which, for example, specify where a sink might be located in the room relative to a tub. Site-specific realities could be taken into consideration as well (e.g., no piping in a region of a given bathroom precluding the building of a sink in that region).
  • constraints may be implemented from a spatial point of view as one or more of point-to-point constraints (e.g., an immobile camera as the perspective from which the pictorial view is rendered), point-to-line constraints (e.g., where piping may be located), or point-to-plane restraints (e.g., where a mirror is located on a wall). Further, constraints may apply to 2-D but not 3-D models, to 3-D but not 2- D models, etc.
  • point-to-point constraints e.g., an immobile camera as the perspective from which the pictorial view is rendered
  • point-to-line constraints e.g., where piping may be located
  • point-to-plane restraints e.g., where a mirror is located on a wall
  • a retailer may recommend certain products which default as the first choices for a given room style (e.g., Gentleman's Treatment) selected by the user. This is beneficial for a retailer that wishes to promote one or more brands. While only one product may be recommended by the retailer, there may very well be several others that also fit the same description and fit within the user-specific constraints.
  • a given room style e.g., Gentleman's Treatment
  • the user may further customize the components (e.g., selection, arrangement, etc.) as used in the room to be configured.
  • the user may wish to change the flooring 612.
  • the user selects the flooring attribute and modifies it by selecting the flooring 612 on the display screen or employing a menu 614 that enables input of the flooring alternative (e.g., change floor color, type, material, etc.).
  • the applications server 106 of Fig.
  • the configuration will include the new flooring attribute and the system will output an updated graphical image showing the configuration with the new flooring attribute (e.g., 706, as seen in Fig. 5).
  • the original tile flooring 612 (Fig. 4) with a diamond-shaped pattern on a light background is changed (Fig. 5) to flooring 706 with a wood-grained appearance.
  • any component of the room model 602 may be changed by the user.
  • the user may choose to modify the tub 608 style. This would be accomplished by selecting the tub 608 and choosing from a plurality of other tub styles stored in database 108. The same can be done for any component in the room where the list of available components and/or attributes depends on pre-selected constraints (e.g., which have been imposed by the retailer, the user, or other).
  • the retailer has pre-determined the attributes of other tubs that would be suitable for use in the Gentleman's Treatment style room model 602 aside from the one recommended tub 608.
  • the list of other available tubs may also be shortened or lengthened depending upon other data entered by the user (e.g., budgeting constraints, room size constraints, etc.).
  • Figs. 4 and 5 also illustrate the resulting product of a feature of a preferred embodiment of the invention referred to as "layering functionality.”
  • Layering functionality simplifies and makes more efficient the processing of numerous high-quality images as the user makes selections in real-time.
  • each component in a room could be selected from a plurality of different alternatives, multiple unique images could be generated and stored to present the user with all possible selections.
  • the wall color could be selected from 100 different colors, cabinets selected from 10 different types of cabinets, and flooring selected from 10 different types of floors, 10,000 unique images would have to be generated and stored.
  • an image of the room can be divided into separate layers (e.g., three layers: wall colors, cabinet type, and floor style) such that only 121 images (including the original image) need to be stored under the same scenario.
  • layers e.g., three layers: wall colors, cabinet type, and floor style
  • Generating these layers can be accomplished by modeling three- dimensional (3-D) information onto a 2-D image. That is, an original 2-D image of, for example, a room, is processed by the automated system designer manually (or automatically by the system) such that 3-D reference data is added to the data of the original 2-D image.
  • the 3-D information so modeled can include location of the camera, location and intensity of light sources in the picture, identification of various planes (i.e., floor, counter- level, cabinet bottoms, cabinet tops intersecting walls, roof, floor, etc.), 3-D identification of components like counter-tops, cabinets, etc., and three- dimensional visual behavior data of components like cabinet doors.
  • the 3- D data added to the 2-D image may be stored, for example, in a commercially available image rendering software package. This 3-D information is used by 3-D rendering tools to separate the picture into layers 200, 202 and 204, as seen in Fig. 6.
  • the system generates individual layers, each exclusively depicting at least one component (e.g., floor, wall, cabinet, etc.) on a single layer.
  • the generation of such layers may be accomplished with a commercially available image processing package such as, for example, Adobe Photoshop, etc.
  • the single layer presents the depicted component with its recommended (or customized) attributes (e.g., size, proportion, spatial arrangement, etc.), while the remaining portion of the layer is made transparent.
  • the system could be used to generate three new images in addition to the original image (as shown in Fig. 6): a floor layer (200) that depicts only the floor; a wall layer (202) with only the walls showing; and a cabinet layer (204) with only cabinets showing.
  • each layer is processed, or re-rendered, by a rendering engine.
  • a commercially available engine may be used such as, for example, Adobe Photoshop, GIMP, etc.
  • the rendering engine takes each 2-D layer image along with the 3-D information and generates all the required variants of the layer. For example, all 100 variants of the wall color layer are generated and stored prior to the user requesting that color.
  • the same process is used to pre-generate all 10 cabinet styles and all 10 floor styles, etc. (This process may be performed by the software in batch offline, so that the variants of the layers can be generated with very high quality.)
  • the 121 images are then indexed and stored.
  • the index to these images stores a sequence in which these images need to be superimposed.
  • the sequence of superimposition and the correct image set from the library of 121 pictures is thus identified and a unique sequence of superimposed images for each of the 10,000 possible combinations is generated.
  • each layer e.g., wall, floor, commode, tub, etc.
  • attributes e.g., color, texture, materials, finish, etc.
  • a database 108 is compiled comprising products available for use in room configuration.
  • the database may include product information from many different manufacturers including product color, size, compatibility with other products, pricing, etc. That is, the product parameters found in one or more manufacturer's catalogs are included in the database.
  • product information from many different manufacturers including product color, size, compatibility with other products, pricing, etc. That is, the product parameters found in one or more manufacturer's catalogs are included in the database.
  • the product parameters found in one or more manufacturer's catalogs are included in the database.
  • a user selects a white tub, there may be several different white tubs (supplied by several manufacturers) in the database 108. However, based on the applicable constraints, only a subset of those white tubs may be suitable for use in the user-selected room style (e.g., Gentleman's Treatment), thus narrowing the field of suitable tubs.
  • the system provides a plurality of entry points by which a user can undertake room configuration.
  • An exemplary implementation of a plurality of entry points is represented by entry points 300 in Fig. 7.
  • Entry point 302 represents the above-described process in which the customer preferably selects a room (e.g., bathroom or kitchen), room type (e.g., master bath or guest bath), room style (e.g., traditional or contemporary), and/or a room layout. The user will then be presented with a suggested room design, populated with matching fixtures and other components.
  • Another entry point 304 represents the presentation of a room based on an advertisement or in-store display.
  • the customer can select from room models that are pre-configured as in an advertisement (e.g., magazine, television, Internet, etc.), in-store display, or other promotional presentation.
  • the customer can design his or her own room from "scratch.” This may also be considered “expert mode.” The customer can select any components in database 108 (or other sources) for use as specified to create completely customized rooms.
  • carrying out object configuration may .utilize an inheritance-based approach to modeling the data.
  • a room for example, is defined by certain attributes, including: wall colors and textures; floor types, colors and textures; cabinet types and colors; counter top types and colors; and fixture types and colors.
  • a room can be customized or otherwise specialized.
  • a kitchen may have a stove type, dishwasher type and refrigerator type as additional descriptors.
  • a bathroom has a sink type, bathtub type, faucet type, etc.
  • the kitchen further can be specialized into L-Shaped, galley, etc.
  • the bathroom specializes into master, powder, etc.
  • Each level of specialization presents certain attribute constraints.
  • each of the user-selectable attributes are further linked to additional attributes such as engineering specifications of the various manufacturers' products (size, capacity, etc.) that fit into the specific room.
  • the system guides the user via a series of questions to select the attributes (e.g., visual attributes) of the object (e.g., room) being designed or configured. These choices change the look of the object and at the same time are dynamically linked to specifications, engineering and other product data of the various different manufacturers' products or components that are needed to make the object.
  • attributes e.g., visual attributes
  • the object e.g., room
  • the user is able to view a 3-D rendering of the object as configured so far.
  • Fig. 8 illustrates a screen shot 800 that represents an exemplary rendering 802 of a room during the configuration operation.
  • the 3-D model presents a view that enables the user to gain different perspectives inside the room and to visualize better how the room will look.
  • the 3-D view is navigable.
  • the 3-D viewer used may be one that is generally commercially available, such as one developed by View 22 Technology, Inc.
  • space planning decisions may be integrated with product feature decisions.
  • the user is able to move components about the room, add components, delete components, etc.
  • the system identifies a 3-D model based on engineering and other attributes. These 3-D models are then available to interact with a three- dimensional software representation of a room and associated space planning constraints, including but not limited to the NKBA (National Kitchen and Bath Association) rules.
  • NKBA National Kitchen and Bath Association
  • the system can model product catalogs that link product attributes to three-dimensional models.
  • the linking can be accomplished by modeling the product attribute data in a hierarchy of specialization layers. These layers of specialization are arranged in a tree structure. Each node of the tree represents data that effectively overwrites or extends the attributes of the product group it specializes (the parent node). A node, for example, can be used to overwrite the dimensions and the three-dimensional component features.
  • the user may start with the engineering attributes deduced from the visual decisions made at the room design session. The system then helps the user pick more of the engineering attributes that continuously overwrite the most appropriate three-dimensional model. The three-dimensional model is then introduced into a three-dimensional representation of a room with space-related constraints.
  • the user is able to view a high-quality photograph-based image 902 of the room so re ⁇ configured, as shown in Fig. 9, on screen shot 900.
  • the image enables even greater detail and realism, permitting the custom-configured bathroom to be seen virtually as it will be in the actual bathroom itself.
  • the locations of the objects within the room and the number of objects in the room differ from that of Figs. 4, 5 and 8.
  • the configured room is a construct that may take into account many attributes and interrelationships and dependencies thereof. It may take into account relationships between and among attributes of the components making up the room, attributes of the space defining the area in which the components are to be placed, and the relationship of multiple components.
  • an object hierarchy or inheritance may be used to process knowledge (e.g., data concerning components, space, etc.) used in the system, which may be supplemented by an interpreted rules system.
  • the components may be, for example, products such as room fixtures, and the space may be a given room.
  • the components and the room have specified attributes.
  • component attributes include but are not limited to type of product, size, color, material, price range, etc.
  • room attributes may include but are not limited to room size, layout, style and price range.
  • user data is input through user input of answers to a series of questions regarding configuration of objects.
  • the system infers the values of answers to other questions automatically, and thus eliminates the need for excessive rule constructs, as typically required in a rules-based system.
  • the system may also remove or insert questions (and their associated answers) based on the user's previous response(s).
  • attribute-based functionality can be obtained by using an attribute inheritance engine (sometimes referred to generically as a frame-engine).
  • an attribute inheritance engine sometimes referred to generically as a frame-engine.
  • the precise nature of the modules as programmed may differ in light of individual circumstances, taking into account, for example, functional specifications that need to be met, the programmer's style, and interoperability with other programs.
  • the system is primarily constructed using an object hierarchy or inheritance (e.g., an attribute-based) knowledge organization, representation, and [ classification.
  • object hierarchy or inheritance e.g., an attribute-based
  • Attribute-based and rule-based expert systems encode knowledge using fundamentally different models.
  • the expert system must then determine what are now the legal attributes for some other option D.
  • an expert system first has to encode the relationship between the options in some manner (i.e., represent the knowledge). Then, as the expert system is provided current choices as inputs in real time (i.e., "the user has answered options A, B, and C with attributes x, y, and z"), the system must now apply its encoded knowledge to the problem "what are the legal attributes for D" in order to supply the solution(s).
  • a rule-based expert system generally represents knowledge using a large collection of If-Then-Else constructs (i.e., "If the user has answered option ⁇ A x with attribute V, Then attribute 'y ⁇ is no longer available for option ⁇ B ⁇ Else . . . ").
  • This approach is a unidirectional encoding: if the conditional portion (the user has answered option "A” with attribute "x") of the statement is true, the resultant portion must also be true (attribute "j" is no longer available for option "B”). The converse (if attribute "y” is no longer available for option "B", then the user has answered option "A” with "x”) is not necessarily true, nor in general should it be.
  • the attribute-based functionality as used in a preferred embodiment of the invention encodes knowledge in an entirely different manner that does not suffer from this "inverse rule” problem.
  • the knowledge is represented in the object hierarchy in a hierarchical tree-like structure.
  • the nodes of the tree are generically called “frames” (e.g., corresponding to product categories) and each node contains a collection of "slots" (e.g., corresponding to product features and options).
  • a slot is a one-to-many relationship between an option and a subset of the legal values (e.g., attributes) for that option.
  • a frame contains multiple slots, and has child frames as well (because of the tree structure).
  • the first screen in an application would prompt the user for choosing a letter. (As an additional requirement, the questions can be answered in any order, and the user might skip the first screen and come back to it later.)
  • the If-Then-Else rules to handle such option/attribute pairs are as follows:
  • Frame-based operation is particularly useful when applied to real- world, complex product knowledge challenges.
  • Real- world product knowledge contains relationships between products, knowledge common among similar products, knowledge common among different products, and exceptions to all of the above.
  • Product A is a type of Product B
  • This relationship is called inheritance.
  • Inheritance is a parent to child relationship, but not in the traditional sense. In human beings, if a parent has a trait, the child may or may not share that trait (e.g., brown hair). In this form of knowledge inheritance, the child must inherit all traits. Inheritance is important, because it allows the software engineer to combine all the identical traits for the children in one logical place: the parent.
  • Each frame is a parent with children, which in turn have their own children. For example, if there were a system for selecting groceries, the logical way to organize the data would look something like that shown in FIG. 10. The frame based system allows the construction of this tree with the result illustrated in FIG. 11.
  • a rules- based filtering methodology may be used, for example, for filtering output from the frame-based functionality to comply with certain rules established for a particular product, product attributes, room attributes, or a combination thereof. Similar filtering of unwanted answers, or inapplicable questions may be useful. Rules-based functionality may also be used to add special answers, perform calculations, generate user warnings, or any other special processing required for specific system implementations. Rules-based functionality may be particularly suited for computing the price of a room and distribution of any discounts that are available to the room.
  • rules-based functionality may be added to supplement the operation of frame-based functionality.
  • Rules-based functionality is typically employed to handle special cases, exceptions, and functionality that are specific to a product line or product series.
  • any number of additional modules may be added to serve a supportive and optional role (called on an "as-needed" basis).
  • Such modules may relate to pricing.
  • price reports can be graphically generated and prices can be calculated and displayed to the user in multiple currency types.
  • a CAD (Computer Aided Design) module may be added to read CAD drawings and enable multiple CAD drawings to be displayed simultaneously, with separate components to be overlaid upon one another to form a complex illustration.
  • the CAD functionality may handle the determination of which components need to be overlaid and may present a list of the files containing the required components to a CAD control, which may in turn read the CAD files and display the components on the user interface.
  • the CAD functionality may also print, copy or otherwise output the CAD files.
  • the user may initiate access to an input file (e.g., CAD file) with such data.
  • an input file e.g., CAD file
  • the system may be programmed to output files (e.g., CAD files) once all components have been specified and located in a room.
  • files e.g., CAD files
  • a contractor can effectively work with the object as configured by the customer.
  • a preferences module may also be included in the system.
  • a preferences module allows the user to define a set of preferred answers for questions applicable to the design choices.
  • the set of preferred answers may be based on user-selected preferences, regional specification preferences, manufacturer compatibility preferences, etc.
  • the user can initiate a configuration session and choose a desired fixture brand, such as Kohler. The user can then set Kohler as a preference for that entire project.
  • the system will reference the preferences module and will automatically retrieve the preference values by default and override other items.
  • the preferences module can also automatically inform a user that the selected preference is unavailable for a given product during the configuration of that product.
  • the above features can further be made part of a turnkey home- design solution by enabling the user to view a bill of materials and pricing range for the customized project (as shown in Fig. 12), generate a quote for the bill of materials (as shown in Fig. 13), and convert the configuration project into a shopping cart view and execute the purchase after changing any product attributes from the detailed product database (as seen in Fig. 14).
  • Fig. 12 illustrates a screen shot 1000 of an exemplary implementation of a preferred embodiment of the invention.
  • the products 1002 will populate the room.
  • a quantity 1004 is shown for each product.
  • a model number 1006 is given for each product.
  • a description 1008 is given for the product.
  • a color/finish 1010 is given.
  • a price range 1012 is supplied.
  • the user has the option to save the room 1014. By saving the room, the attributes selected are saved for later use. Even more, the user has the option to email the room 1016 so configured to another user.
  • the other user may be, for example, a family member for his or her review.
  • a quote for the bill of materials may be generated.
  • Fig. 13 illustrates a screen shot 1100 of an exemplary implementation of a preferred embodiment of the invention.
  • the screen shot 1100 presents: a date 1102, project number 1104, customer name 1106, customer phone 1108, and customer address 1110, as well as a project name 1112 and email address 1114 to which the project can be sent.
  • a graphic representation of the configured room 1116 can be presented, along with product code descriptions 1118 and price ranges 1120 therefor, leading to a total price 1122 calculated from the price ranges 1120.
  • the screen may suggest 1124 that the user print out the order and give it to a sales associate to purchase the components of the room. The user is also able to return to the quotations given (e.g., as in Fig. 12).
  • Preferred embodiments of the invention may allow modeling a "has a" relationship between rooms and the components therein.
  • An implemented room configuration system can refine a list of products (e.g., bill of materials) in a customized room as the attributes of a room change.
  • a room with red walls, silver appliances and wood floor can have GE appliances with model numbers #1234 and #2345R, and red color paint and wood flooring.
  • a different incarnation of a similar room may have Whirlpool #9876 and WPL #5432 appliances, #345 wallpaper and @Asv floor tile from Daltile.
  • the "has a" relationships can differ as well.
  • the user also has the option to consummate the purchase electronically.
  • the user can convert the project into a shopping cart-type view, as shown by the exemplary implementation of a preferred embodiment illustrated in Fig. 14.
  • the shopping cart contains data relating to the customized room including, for example, a quote ID 1202, customer 1204, and room description 1206.
  • the shopping cart can contain the item designation 1208, the quantity/description thereof 1210, manufacturer 1212, estimated delivery date 1214 and total price 1216.
  • the user is able to delete 1218 a product from the shopping cart, copy 1220 the product (for example, the user wishes to have two identical sinks), or continue with room design 1222.
  • the user may refer back to the 3-D representation (e.g., of Fig. 8) and/or view a plan view of the configured room with the specific appliances now to be finally selected prior to placing the order. In this manner, the user may make last minute substitutions or modifications while viewing both the room and the product specification data as well as pricing.
  • a preferred embodiment of the invention enables use of a knowledge management system to resolve engineering attributes of a product into visual attributes that the user is able to view.
  • the preferred embodiment is able to obtain a visual representation of those attributes.
  • a preferred embodiment of the invention is able to utilize visual attributes of an engineered product to identify the closest graphics-renderable component that will represent the attributes. In doing so, this facilitates accurate custom room design in light of available product features and constraints.
  • a number of manufacturers specialize in plumbing-related fixtures that may be used in a bathroom.
  • One of these manufacturers for example, is Kohler.
  • Kohler makes numerous product models, and each model may differ in size, shape, color, price, material, or other attributes.
  • a Kohler bathtub for example, may be 6 feet long, have a whirlpool feature, have a left-hand drain, be the color white, and cost from $400 to $1000. This corresponds to a description and the corresponding graphic rendering given in Fig. 12 (bill of materials).
  • the frame-based functionality or rules-based functionality or both can be used to make numerous inferences.
  • a commode cannot now be located in the spatial area where the tub is located, nor could any other component be located within the dimensions described by the polygon component that represents the tub. Further, an inference can be made that for practical reasons a sink should not be placed directly next to the tub at a certain spatial orientation, for this would interfere with both use of the sink and the commode. In other words, the user should not be required to stand in the tub to use the sink. This, too, can be accomplished by the inference engine. Besides space and practical constraints, the inference features may be aware of engineering constraints related to a particular component and whether and how it could be used in a particular configuration.
  • Attribute constraints are not to be viewed solely as limitations. Perhaps the user is partial to the Kohler brand. If so, the user might wish to have as many of the fixtures as possible be Kohler fixtures.
  • the inference features could be programmed to enable a "Kohler as first choice" preference. Additionally, the inference features could be programmed to enable selecting sets of attributes. For example, the user could elect a preference for Kohler products, and further set a capped price at a predetermined amount for the objects in the room. In short, the inference features can be programmed to make multivariable determinations based on user input.
  • the inference features can be object attribute-based, rule-based or both. Further, the attribute features and rules features are adapted to interact with a database.
  • the data populating the database can be derived from multiple sources.
  • database e.g., database 108 of Fig. 1
  • database 108 can contain data from vendors, such as product specifications like size or other attributes.
  • database 108 can also contain data generated from the customer, such as the size of the room to be configured or color preferences.
  • database 108 can contain data obtained from a retailer, e.g v which brands are most up-to-date, most reliable, provide the best value, etc.
  • the database can be an extensive library of accumulated product information from diverse sources, including the vendor, consumer, and retailer.
  • Photographs of particular products can be embedded in the database 108. Because the visual rendering of the room can be based on photographs of actual products, greater photorealistic room views are possible enabling optimal user customization.
  • FIG. 15 An exemplary sequence of options presented to the user of the exemplary commercial implementation in configuring a room is illustrated in Fig. 15.
  • a user can begin at a start page 1500. From here, the user can choose a room type 1502, e.g., bathroom, and room style 1506, e.g., Gentleman's Retreat. This is one method of selecting room attributes 302. Or, from start page 1500 a user may enter a room ID 1504. This is one method of configuring a room based on an advertisement or in-store display 304. Optionally, a user may build a custom room 1508 (i.e., draw one's own layout or import a CAD file). This is one method of building a room from "scratch" 306.
  • a custom room 1508 i.e., draw one's own layout or import a CAD file
  • a user can choose a room layout 1510, e.g., L-shaped, square, etc.
  • a room layout 1510 e.g., L-shaped, square, etc.
  • the user can engage in room configuration 1514, 1516 (e.g., a 2-D photorealistic picture and/or 3-D view).
  • room configuration 1514, 1516 e.g., a 2-D photorealistic picture and/or 3-D view
  • the user may optionally print the room 1518.
  • the user After entering at start page 1500, the user can enter a room ID 1504. This is useful where the reader wants a completely preconfigured room. The user may then view and configure the room 1514, 1516.
  • the user may enter at the start page 1500, then build a room from scratch 1508.
  • the user will then choose components 1512, which can be added to a shopping cart 1528 where items can be fully configured in advance of purchase.
  • the user may have performed room configuration at an earlier time. If so, from start page 1500 the user can search for a room or shopping cart 1522 that has been previously stored. Once the room or shopping cart has been opened 1524, the user can engage in room configuration 1514, or configure items by means of a shopping cart 1528.
  • the user may create a new shopping cart 1520, and then configure items by means of a shopping cart 1528 in advance of purchase.
  • the shopping cart 1528 can be saved 1526 into storage, including but not limited to storage in database 108. Or, in configuring a shopping cart 1528 the user may print a quote 1532 or initiate an ordering process via shopping cart 1534. Upon initiating an ordering process via shopping cart 1534, the user can be led to a new start page 1536, which may be, but is not limited to, start page 1500.
  • a customer search 1540 may ensue that determines if the customer is new or not. If the customer is new 1542, the project/cart/room can then be saved and associated with the customer.
  • one or more processor-based (or other processing device-based) systems may be used to implement the modules described or apparent from the description herein and to perform the functionality described (or inherent) herein.
  • processors e.g., central processing unit (CPU)
  • CPU central processing unit
  • the processor(s) perform, control, or at least inform the various processing steps performed by the system in sending and retrieving data to and from at least one user interface and/or network.
  • a user interface may be connected directly to a bus or remotely connected through a network (e.g., Internet).
  • the network represents (wired or wireless) connection of two or more devices, whether directly or indirectly connected (e.g., directly coupling through cable, indirect coupling through one or more hubs or servers, whether the network is local to the processor-based system, geographically remote from system, or a distributed combination of local/remote network components).
  • one or more of the modules are coupled (directly or indirectly) to one or more database structures for use in supplying storage functionality for the modules in accordance with the operations described (or inherent) herein.
  • the database structures can take any form from an individual floppy disk drive, hard disk drive, CD-ROM, redundant array of independent devices (RAID) system, to a network of the same or other storage devices.
  • RAID redundant array of independent devices
  • the database structures may be physically connected within the same location, or have one or more structures remotely located in different locations.
  • Each module may have dedicated or shared access to one or more database structures locally or remotely located from the module.
  • the modules described herein may be one or more hardware, software, or hybrid components residing in (or distributed among) one or more local or remote computer systems. Although the modules are shown or described as physically separated components, it should be readily apparent that the modules may be combined or further separated into a variety of different components, sharing different resources (including processing units, memory, clock devices, software routines, etc.) as required for the particular implementation of the embodiments disclosed herein. Indeed, even a single general purpose computer executing a computer program stored on an article of manufacture (e.g., recording medium) to produce the functionality and any other memory devices referred to herein may be utilized to implement the illustrated embodiments.
  • User interface devices may be any device used to input and/or output information.
  • the user interface device may be implemented as a graphical user interface (GUI) containing a display or the like, or may be a link to other user input/output devices known in the art.
  • GUI graphical user interface
  • Discrete functionality of the system may be separated (logically or physically) to more efficiently operate the system.
  • memory units described herein may be any one or more (integrated or distributed) known storage devices (e.g., Random Access Memory (RAM), Read Only Memory (ROM), hard disk drive (HDD), floppy drive, zip drive, compact disk-ROM, DVD, bubble memory, Redundant Array of Independent Disks (RAID), Network Attached Storage (NAS), Storage Area Network (SAN), etc.), and may also be one or more memory devices embedded within a processor, or shared with one or more of the other components.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • HDD hard disk drive
  • floppy drive zip drive
  • compact disk-ROM DVD
  • bubble memory Redundant Array of Independent Disks
  • RAID Redundant Array of Independent Disks
  • NAS Network Attached Storage
  • SAN Storage Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Finance (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Accounting & Taxation (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Processing Or Creating Images (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

L'invention porte sur un système automatique (106) et un procédé permettant de configurer un objet (par exemple une pièce). Selon un mode de réalisation préféré, la configuration est facilitée par l'utilisation d'une fonctionnalité d'organisation en couches et d'interférences fondées sur des trames afin d'évaluer la connaissance stockée d'attributs d'objets (108). Les interférences fondées sur des trames peuvent être complétées par un système d'interférences fondées sur des trames. Selon un mode de réalisation préféré de l'invention, une interface utilisateur fondée sur des graphiques (100, 102) permet une configuration interactive au moyen de deux modèles bidimensionnels et tridimensionnels de l'objet, et en intégrant des caractéristiques d'ingénierie, ainsi que des attributs fonctionnels et physiques.
EP04811349A 2004-11-19 2004-11-19 Procede et systeme automatique de configuration d'objets Withdrawn EP1825410A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/038621 WO2006054992A1 (fr) 2004-11-19 2004-11-19 Procede et systeme automatique de configuration d'objets

Publications (1)

Publication Number Publication Date
EP1825410A1 true EP1825410A1 (fr) 2007-08-29

Family

ID=36407437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04811349A Withdrawn EP1825410A1 (fr) 2004-11-19 2004-11-19 Procede et systeme automatique de configuration d'objets

Country Status (6)

Country Link
EP (1) EP1825410A1 (fr)
CN (1) CN101103356A (fr)
BR (1) BRPI0419068A (fr)
CA (1) CA2588964A1 (fr)
MX (1) MX2007006022A (fr)
WO (1) WO2006054992A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010058A1 (fr) * 2007-07-13 2009-01-22 Young/Fehn Development A/S Systeme informatique de reprise de conception
GB2453528B (en) * 2007-09-29 2010-03-03 Articad Ltd Methods and apparatus for creating customisable cad images
US20100169059A1 (en) * 2009-02-13 2010-07-01 Grant Thomas-Lepore Layered Personalization
CN102768691A (zh) * 2011-05-06 2012-11-07 讯凯国际股份有限公司 装置组件模型接取装置及其方法
US8989440B2 (en) 2012-03-27 2015-03-24 Way Out Ip, Llc System and method of room decoration for use with a mobile device
US20140025529A1 (en) * 2012-07-23 2014-01-23 Atlatl Software, Llc Systems and Methods for Generating Three-Dimensional Product Configuration
CN102880740B (zh) * 2012-08-10 2015-09-09 广东威创视讯科技股份有限公司 三维拼接墙模型架构和配置信息生成方法与装置
EP2881899B1 (fr) 2013-12-09 2018-09-12 Deutsche Telekom AG Système et procédé d'agrégation automatisée de descriptions de variantes d'objectifs individuels
CN108052612A (zh) * 2017-12-14 2018-05-18 马文波 大数据的list显示方法和装置
WO2021155200A1 (fr) 2020-01-29 2021-08-05 America's Collectibles Network, Inc. (Tennessee Corp.) Système et procédé de pontage de ressources 2d et 3d pour la visualisation et la fabrication de produits
KR20220128452A (ko) * 2020-02-10 2022-09-20 몰렉스 엘엘씨 맞춤형 커넥터를 갖는 실시간 케이블 어셈블리 구성기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467444A (en) * 1990-11-07 1995-11-14 Hitachi, Ltd. Method of three-dimensional display of object-oriented figure information and system thereof
US6016147A (en) * 1995-05-08 2000-01-18 Autodesk, Inc. Method and system for interactively determining and displaying geometric relationships between three dimensional objects based on predetermined geometric constraints and position of an input device
US5737533A (en) * 1995-10-26 1998-04-07 Wegener Internet Projects Bv System for generating a virtual reality scene in response to a database search
JPH09244522A (ja) * 1996-03-05 1997-09-19 Canon Inc 仮想建築物体験方法及び装置
US6249714B1 (en) * 1998-12-31 2001-06-19 Rensselaer Polytechnic Institute Virtual design module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006054992A1 *

Also Published As

Publication number Publication date
MX2007006022A (es) 2008-01-11
WO2006054992A1 (fr) 2006-05-26
BRPI0419068A (pt) 2008-01-29
CN101103356A (zh) 2008-01-09
CA2588964A1 (fr) 2006-05-26

Similar Documents

Publication Publication Date Title
US7869981B2 (en) Automated method and system for object configuration
US7246044B2 (en) Method for aiding space design using network, system therefor, and server computer of the system
AU2009266319B2 (en) Surface design tools
US20120259743A1 (en) System and method for room design visualization
US20110029401A1 (en) Method Of Providing Online House Or Office Décor Related Service
US20190114699A1 (en) System and method for product design, simulation and ordering
US20140351078A1 (en) Systems and Methods for Recommending Products
US20080252640A1 (en) Systems and methods for interactive real estate viewing
US20150228002A1 (en) Apparatus and method for online search, imaging, modeling, and fulfillment for interior design applications
WO2001091016A1 (fr) Systeme pour afficher des produits de maniere interactive, configurable, tridimensionnelle, en temps reel et procede correspondant
CN108454114A (zh) 一种用于3d打印的定制平台及其定制方法
WO2006054992A1 (fr) Procede et systeme automatique de configuration d'objets
US20230214545A1 (en) Smart render design tool and method
US20210209862A1 (en) System and method of providing a customizable virtual environment
Nomura et al. Virtual space decision support system using Kansei engineering
KR20210019363A (ko) 구매자 취향이 반영된 디자인 정보서비스
US11869056B2 (en) System and method for product design, simulation and ordering
KR100476856B1 (ko) 유선 및 무선 인터넷을 이용한 3차원 가상공간 설계시스템 및 그 방법
KR102523515B1 (ko) 단위공간 개념을 도입한 사용자 선택형 메타버스 공간 조합 디자인 시스템
Noguchi et al. Mass Customisation
US12002181B2 (en) System and method of providing a customizable virtual environment
KR20010086771A (ko) 인터넷을 이용한 실내디자인 방법
KR20020059022A (ko) 인테리어 견적 서비스 시스템 및 방법
CA3144605A1 (fr) Methodes et systemes pour la personnalisation et la visualisation interactives d'environnements virtuels et la configuration numerique d'assemblages d'objets virtuels
JP2004234547A (ja) 集合住宅の間取り選択方法及び間取り選択プログラムを記録した記録媒体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090603