EP1819910B1 - Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes - Google Patents

Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes Download PDF

Info

Publication number
EP1819910B1
EP1819910B1 EP05807630.8A EP05807630A EP1819910B1 EP 1819910 B1 EP1819910 B1 EP 1819910B1 EP 05807630 A EP05807630 A EP 05807630A EP 1819910 B1 EP1819910 B1 EP 1819910B1
Authority
EP
European Patent Office
Prior art keywords
heat
temperature
equipment
low
transfer fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05807630.8A
Other languages
German (de)
English (en)
Other versions
EP1819910A1 (fr
Inventor
Ngy-Sun Ap
Pascal Guerrero
Philippe Jouanny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP1819910A1 publication Critical patent/EP1819910A1/fr
Application granted granted Critical
Publication of EP1819910B1 publication Critical patent/EP1819910B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/14Condenser

Definitions

  • the invention relates to a low-temperature cooling system of at least one equipment, in particular a motor vehicle equipment, comprising at least a first and a second heat-transfer fluid circulation loop on which a low-temperature heat exchanger is mounted. and at least a first and a second equipment exchanger respectively provided on each of the loops.
  • Some of these equipment do not need to be cooled to a low temperature. They can therefore be placed without inconvenience on the cooling circuit of the engine of the vehicle in which circulates a heat transfer fluid whose temperature is generally between 85 ° C and 100 ° C.
  • other equipment must operate at as low a temperature as possible to improve their efficiency. This is particularly the case condenser of the air conditioning circuit and the charge air cooler.
  • the low temperature cooling circuit is equipped with a low temperature heat exchanger which has a single inlet manifold and a single outlet manifold, the circulation of heat transfer fluid one or more passes.
  • the low temperature heat exchanger delivers only one temperature level and the fluid to be cooled, for example the air of the charge air cooler, is at a single heat exchange level.
  • the refrigerant is condensed by the ambient air, but it is possible, using a low temperature circuit, to condense with the same heat transfer fluid as the cooling of the fitter.
  • the cooling of these fluids is therefore frequently insufficient to guarantee an optimum temperature lowering.
  • the temperature of the charge air is too high towards the intake on the critical points in the event of heavy load of the engine or the condensing refrigerant is insufficient, which results in degraded performance of the air conditioning circuit.
  • the present invention relates to a low temperature cooling system of at least one motor vehicle equipment that overcomes these disadvantages.
  • first heat exchanger is crossed by a first coolant flow
  • second equipment heat exchanger is traversed by a second flow of coolant, the first flow being greater than the second flow.
  • the fluid to be cooled is cooled. according to at least two levels of heat exchange. Of course, it can also be cooled according to more than two levels of heat exchange.
  • the two equipment exchangers are independent. In other words, they do not define the same exchanger having an exchange surface divided into a first exchange section and a second exchange section, crossed by different flow rates.
  • the sum of the heat transfer fluid flows entering the equipment exchangers is, for example, equal to the output flow of the cooling radiator.
  • said equipment exchangers are, for example, crossed in series by the fluid to be treated, said fluid to be processed leaving the first equipment exchanger to enter the second equipment exchanger via of flow ducts.
  • Flow conduit means any type of conduit excluding filtration and dewatering tank components.
  • the fluid to be treated is different in the first and the second equipment exchanger.
  • This cooling system is advantageously applied to air conditioning circuit condensers operating in series with respect to the refrigerant to be treated.
  • the low temperature heat exchanger can deliver only one temperature level. In this case, it has a single outlet tubing.
  • the low temperature heat exchanger comprises at least a first and a second heat transfer fluid outlet pipe, the first pipe being connected to the first heat exchanger of equipment, the second pipe of heat transfer fluid outlet being connected to the second equipment heat exchanger, the coolant leaving the heat exchanger at low temperature by the first pipe being at a temperature higher than that of the fluid leaving the heat exchanger at low temperature through the second tubing.
  • the temperature of the coolant is lower in the second equipment heat exchanger, which allows to further cool the fluid flowing through the exchanger.
  • the low-temperature heat exchanger comprises a multiplicity of fluid circulation passes successively traversed by the heat transfer fluid, the first pipe being disposed upstream of the second pipe with respect to the circulation of the heat transfer fluid in the pipes. successive passes.
  • the heat transfer fluid taken by the first pipe is at a temperature higher than the heat transfer fluid taken by the second pipe.
  • the flow rates are decreasing.
  • the flow rate taken by the first pipe is higher than the flow taken by the second pipe which is itself higher than the flow taken by the third pipe, etc..
  • the figure 1 is an overview of a thermal energy management system released by a motor vehicle engine, which comprises a high temperature loop, designated by the general reference 2 and two low temperature loops designated by the reference general 4 and 4 ', loops 2 and 4; 4 'being independent.
  • the high temperature loop 2 comprises the motor 10, a circulation pump 12 for circulating the coolant in the circuit, a thermostat or a thermostatic valve (not shown) and a high temperature radiator 18 which is the main radiator of the vehicle .
  • the high temperature loop also comprises a heating branch 22 on which is mounted a heater 24 used for heating the passenger compartment of the vehicle.
  • equipment that does not need to be cooled to a very low temperature for example an oil cooler 34 or an exhaust gas cooler 38 are mounted on a branch 32.
  • the flow rate of heat transfer fluid circulating in the high temperature loop 2 is approximately ten times greater than the flow rate that circulates in the low temperature loops 4, 4 '.
  • the flow rate that flows in the high temperature radiator 18 can be 5000 to 10,000 liters per hour, while the flow rate flowing in the low temperature radiator 60 is between 0 and 1000 liters / hour. .
  • the low temperature radiator 60 includes an inlet manifold 72 and an outlet manifold 74.
  • An inlet manifold 76 is connected to the inlet manifold 72 and an outlet manifold 78 is connected to the manifold 74.
  • a bundle of tubes 80 is arranged between the inlet 72 and outlet manifolds 74.
  • the inlet manifold 72 is divided in two by a transverse partition 82, and, of the same In this way, the outlet manifold 74 is divided in two by a transverse partition 84. Three passes 86, 88 and 90 are thus defined for the circulation of the coolant.
  • the heat transfer fluid After entering the collecting box 72, the heat transfer fluid first travels the pass 86, as shown schematically by the arrows 92, then the pass 88 as shown schematically by the arrow 94 and finally the pass 90 as shown schematically by the arrow 96.
  • the cooling system also comprises a first and a second equipment exchanger 104, 106, for example a charge air cooler or an air conditioning circuit condenser.
  • the first heat exchanger 104 allows the passage of a flow rate of fluid Q1 greater than the flow rate Q2 passing through the second exchanger 106.
  • the fluid circulation loops comprise a common branch 108 situated downstream of the equipment exchangers in which the heat transfer fluid circulates in the direction defined by the arrow 110 under the impulsion of a circulation pump 112, for example a pump electric.
  • the fluid circulation loops also comprise two branches 114 and 116, upstream of the equipment exchangers, in which the fluid circulates in the direction defined by the arrows 118.
  • the fluid to be cooled for example the air of the charge air cooler or the refrigerant of the air-conditioning circuit, first passes through the first heat exchanger 104 and then the second heat exchanger. 106.
  • the fluid to be cooled is cooled according to two heat exchange levels.
  • the through-flow fluid can be treated in series with the two exchangers in two different stages.
  • the low-temperature radiator 60 has two outlet pipes, namely a pipe 78, as before, and a second pipe 132.
  • the pipe 132 takes the heat transfer fluid at the first flow passage of fluid (arrows 92), while the second tubing 78 draws the fluid at the last fluid flow pass (arrow 96).
  • the coolant that has passed through a single pass of the low temperature heat exchanger 60 exits through the outlet pipe 132 at a temperature greater than that of the heat transfer fluid which has passed successively through the three passes of the heat exchanger 60 and which exits through the tubing 78.
  • the low temperature cooling radiator 60 thus delivers two temperature levels.
  • the fluid of the first temperature level enters the first heat exchanger 104 through a pipe 134, while the fluid of the second (lower) temperature level enters the second heat exchanger 106 via a pipe 136.
  • the distribution of the losses circuit charging, including outlet pipes 78 and 132 is such that the flow Q1 through the first exchanger 104 is greater than the flow Q2 through the second exchanger 106.
  • a system of this type may allow the fluid to be cooled to a much lower temperature than a system delivering only one temperature level.
  • the heat transfer fluid exits the first pass at a temperature between 40 ° C and 60 ° C.
  • the second pass 94 its temperature is between 30 ° C and 50 ° C and finally, after the third pass 90, its temperature drops to about 20 ° C to 40 ° C.
  • the coolant entering the first heat exchanger 104 therefore has an average temperature of about 50 ° C, while the fluid entering the second heat exchanger 106 has a temperature of about 30 ° C.
  • the fluid to be cooled transfers most of its heat into the first heat exchanger 104 before being placed in heat exchange relation with a fluid coolant at the much lower temperature that lowers its outlet temperature.
  • This cooling system is advantageously applied to an air conditioning circuit condenser because it allows, in the first heat exchanger 104, to carry out the condensation of the refrigerant and to ensure that this fluid is sub-cooled in the process.
  • second heat exchanger 106 is advantageously applied to an air conditioning circuit condenser because it allows, in the first heat exchanger 104, to carry out the condensation of the refrigerant and to ensure that this fluid is sub-cooled in the process.
  • the low temperature cooling radiator 60 has four passes.
  • the inlet manifold 72 has two transverse partition walls 142 and 146, while the outlet manifold 74 has a single partition wall 144.
  • the partition walls 142, 144 and 146 thus determine four paths and return of the coolant in the tubes of the heat exchanger at low temperature 60.
  • An outlet pipe 141 draws the fluid after passing through the third pass. This fluid is fed, as in the previous example, to the first heat exchanger 104 through the pipe 134 of the first loop. An outlet pipe 143 withdraws the coolant after passing through the fourth and last pass of the low-temperature heat exchanger 60. This fluid is fed through a pipe 144 of the second loop to the second heat exchanger 106. Thus, as before, the fluid passing through the second heat exchanger 106 is at a lower temperature than the fluid flowing through the first heat exchanger 104.
  • a pipe 150 can take the fluid directly to the engine outlet.
  • a pipe 152 is connected to the engine inlet of the vehicle.
  • the temperature of the fluid is higher than in the previous cases.
  • the coolant enters the inlet manifold at a temperature of about 90 ° C. It emerges from the outlet pipe 141 at a temperature of about 60 ° C and through the outlet pipe 143 at a temperature of about 40 ° C. It is found, therefore, that, despite a high inlet temperature, the coolant can be cooled to a relatively low temperature.

Description

  • L'invention concerne un système de refroidissement à basse température d'au moins un équipement, notamment un équipement de véhicule automobile, comprenant au moins une première et une deuxième boucles de circulation de fluide caloporteur sur lesquelles sont montés un échangeur de chaleur à basse température et au moins un premier et un second échangeur d'équipement, respectivement prévus sur chacune des boucles.
  • Les véhicules à moteur actuels comportent un nombre de plus en plus élevé d'équipements qui échangent de la chaleur avec leur milieu extérieur. Il arrive que certains de ces équipements doivent être réchauffés, par exemple le réchauffeur de carburant. Toutefois, la plus grande partie de ces équipements doivent être refroidis. C'est le cas, en particulier, du condenseur qui fait partie du circuit de climatisation de l'habitacle du véhicule automobile, mais également du radiateur de refroidissement d'huile et du radiateur de refroidissement de l'air de suralimentation. De plus en plus souvent, également, on refroidit les gaz d'échappement afin de diminuer la pollution. Le document US5,353,757 montre un système de refroidissement.
  • Certains de ces équipements, comme le radiateur de refroidissement d'huile ou le radiateur de refroidissement des gaz d'échappement, ne nécessitent pas d'être refroidis à une basse température. Ils peuvent donc être placés sans inconvénient sur le circuit de refroidissement du moteur thermique du véhicule dans lequel circule un fluide caloporteur dont la température est généralement comprise entre 85°C et 100°C. Cependant, d'autres équipement doivent fonctionner à une température aussi basse que possible afin d'améliorer leur rendement. C'est le cas en particulier du condenseur du circuit de climatisation et du refroidisseur d'air de suralimentation.
  • C'est la raison pour laquelle il est prévu d'équiper les véhicules actuellement connus d'un circuit de refroidissement à basse température dans lequel circule un fluide caloporteur à une température inférieure à celle du circuit à haute température. Le condenseur du circuit de climatisation ou le refroidisseur d'air de suralimentation peuvent ainsi être refroidis plus efficacement jusqu'à une température plus basse.
  • Les échangeurs de gaz d'échappement sont d'ailleurs destinés à être soumis aux mêmes contraintes en raison des exigences de plus en plus fortes en matière de dépollution.
  • Toutefois, dans les véhicules actuellement connus, le circuit de refroidissement à basse température est équipé d'un échangeur de chaleur à basse température qui dispose d'une seule tubulure d'entrée et d'une seule tubulure de sortie, la circulation du fluide caloporteur s'effectuant en une ou plusieurs passes. L'échangeur de chaleur à basse température ne délivre qu'un seul niveau de température et le fluide à refroidir, par exemple l'air du refroidisseur d'air de suralimentation, l'est selon un seul niveau d'échange thermique.
  • Sur les véhicules actuellement connus, le fluide frigorigène est condensé par l'air ambiant, mais il est possible, en utilisant un circuit à basse température, de le condenser avec le même fluide caloporteur que le refroidissement du monteur.
  • Le refroidissement de ces fluides est de ce fait fréquemment insuffisant pour garantir un abaissement de température optimum. Par exemple, la température de l'air de suralimentation est trop élevée vers l'admission sur les points critiques en cas de forte charge du moteur ou bien la condensation du fluide frigorigène est insuffisante, ce qui se traduit par des performances dégradées du circuit de climatisation.
  • La présente invention a pour objet un système de refroidissement à basse température d'au moins un équipement de véhicule automobile qui remédie à ces inconvénients.
  • Ces buts sont atteints, conformément à l'invention, par le fait que le premier échangeur de chaleur est traversé par un premier débit de fluide caloporteur, et le second échangeur de chaleur d'équipement est traversé par un second débit de fluide caloporteur, le premier débit étant supérieur au second débit.
  • Grâce à cette caractéristique, le fluide à refroidir est refroidi. selon au moins deux niveaux d'échange thermique. Bien entendu, il peut également être refroidi selon plus de deux niveaux d'échange thermique.
  • Les deux échangeurs d'équipement sont indépendants. Autrement dit, ils ne définissent pas un même échangeur présentant une surface d'échange divisée en une première section d'échange et une seconde section d'échange, traversées par des débits différents. La somme des débits de fluide caloporteur entrant dans les échangeurs d'équipement est, par exemple, égale au débit sortant du radiateur de refroidissement.
  • Dans un premier mode de réalisation, lesdits échangeurs d'équipement sont, par exemple, traversés en série par le fluide à traiter, ledit fluide à traiter sortant du premier échangeur d'équipement pour rentrer dans le second échangeur d'équipement par l'intermédiaire de conduits d'écoulement. On entend par conduit d'écoulement tout type de conduits à l'exclusion de composants formant réservoir de filtration et de déshydratation.
  • Selon un autre mode de réalisation, le fluide à traiter est différent dans le premier et le second échangeur de d'équipement.
  • Ce système de refroidissement s'applique avantageusement à des condenseurs de circuit de climatisation fonctionnant en série vis-vis du fluide frigorigène à traiter.
  • L'échangeur de chaleur à basse température peut ne délivrer qu'un seul niveau de température. Dans ce cas, il comporte une tubulure de sortie unique. Toutefois, dans un mode de réalisation préférée, l'échangeur de chaleur à basse température comporte au moins une première et une seconde tubulure de sortie du fluide caloporteur, la première tubulure étant raccordée au premier échangeur de chaleur d'équipement, la seconde tubulure de sortie du fluide caloporteur étant raccordée au second échangeur de chaleur d'équipement, le fluide caloporteur sortant de l'échangeur de chaleur à basse température par la première tubulure étant à une température supérieure à celle du fluide sortant de l'échangeur de chaleur à basse température par la seconde tubulure.
  • Grâce à cette caractéristique, la température du fluide caloporteur est plus basse dans le second échangeur de chaleur d'équipement, ce qui permet de refroidir encore davantage le fluide qui traverse cet échangeur.
  • Dans une réalisation particulière, l'échangeur de chaleur à basse température comporte une multiplicité de passes de circulation de fluide parcourues successivement par le fluide caloporteur, la première tubulure étant disposée en amont de la seconde tubulure par rapport à la circulation du fluide caloporteur dans les passes successives.
  • De cette manière, le fluide caloporteur prélevé par la première tubulure est à une température supérieure au fluide caloporteur prélevé par la seconde tubulure. Bien entendu, il est possible de prévoir plus de deux tubulures de sortie. On peut, par exemple, prévoir une troisième tubulure de sortie située en aval de la deuxième tubulure de manière à prélever du fluide à une température encore inférieure.
  • Avantageusement, les débits vont en décroissant. En d'autres termes, le débit prélevé par la première tubulure est plus élevé que le débit prélevé par la seconde tubulure qui est lui-même plus élevé que le débit prélevé par la troisième tubulure, etc. On peut, par exemple, prévoir des pertes de charges croissantes afin d'arriver à ce résultat.
  • Des caractéristiques complémentaires ou alternatives de l'invention sont énumérées ci-après :
    • la première et la seconde boucle de refroidissement présentent une partie commune en aval des échangeurs d'équipement et ladite partie commune comporte une pompe de circulation.
    • les boucles de circulation sont montées en dérivation entre l'entrée et la sortie du circuit de refroidissement du moteur thermique du véhicule automobile ;
    • les échangeurs d'équipement sont des refroidisseurs d'air de suralimentation fonctionnant en série en vis-à-vis de l'air de suralimentation à traiter ;
    • les échangeurs d'équipement sont des condenseurs faisant partie d'un circuit de climatisation de l'habitacle du véhicule automobile, comme déjà évoqué plus haut ;
  • D'autres caractéristiques et avantages de l'invention apparaîtrons encore à la lecture de la description qui suit d'exemples de réalisation donnés à titre illustratif en référence aux figures annexées. Sur ces figures :
    • la figure 1 illustre la gestion de l'énergie thermique dégagée par un moteur de véhicule automobile au moyen d'un système comportant une boucle à haute température et deux boucles à basse température ;
    • la figure 2 représente un exemple de circulation d'un système de refroidissement à basse température indépendant qui ne fait pas partie de l'invention.
    • la figure 3 représente un exemple de réalisation d'un système de refroidissement à basse température indépendant conforme à l'invention ; et
    • la figure 4 représente un système de refroidissement conforme à l'invention monté en dérivation aux bornes du circuit à haute température du moteur thermique.
  • La figure 1 est une vue d'ensemble d'un système de gestion de l'énergie thermique dégagée par un moteur 10 de véhicule automobile, qui comprend une boucle à haute température, désignée par la référence générale 2 et deux boucles à basse température désignée par la référence générale 4 et 4', les boucles 2 et 4 ; 4' étant indépendantes. La boucle à haute température 2 comporte le moteur 10, une pompe de circulation 12 pour faire circuler le fluide caloporteur dans le circuit, un thermostat ou une vanne thermostatique (non représentée) et un radiateur à haute température 18 qui est le radiateur principal du véhicule. La boucle à haute température comporte également une branche de chauffage 22 sur laquelle est montée un aérotherme 24 utilisé pour le chauffage de l'habitacle du véhicule. Par ailleurs, des équipements qui ne nécessitent pas d'être refroidis jusqu'à une température très basse, par exemple un radiateur d'huile 34 ou un refroidisseur des gaz d'échappement 38 sont montés sur une branche 32.
  • Les boucles à basse température 4, 4' comprennent une pompe de circulation, non représentée, et un échangeur d'équipement 104, 106, par exemple un condenseur d'un circuit de climatisation ou un refroidisseur d'air de suralimentation. Elles sont chacune reliées au même échangeur de chaleur 60 à basse température (ici un radiateur de refroidissement).
    Dans chaque boucle, les pompes et les échangeurs 60 ; 104 et 106 sont montés en série.
  • Le débit de fluide caloporteur qui circule dans la boucle à haute température 2 est environ dix fois plus important que le débit qui circule dans les boucles à basse température 4, 4'. A titre d'exemple, le débit qui circule dans le radiateur à haute température 18 peut être de 5000 à 10 000 litres par heure, tandis que le débit qui circule dans le radiateur à basse température 60 est compris entre 0 et 1000 litres/heure.
  • On a représenté sur la figure 2 un mode de réalisation d'un système de refroidissement à basse température qui ne fait pas partie de l'invention. Le radiateur à basse température 60 comporte une boîte collectrice d'entrée 72 et une boîte collectrice de sortie 74. Une tubulure d'entrée 76 est raccordée à la boîte collectrice d'entrée 72 et une tubulure de sortie 78 est raccordée à la boîte collectrice de sortie 74. Un faisceau de tubes 80, généralement plan, est disposé entre les boîtes collectrices d'entrée 72 et de sortie 74. La boîte collectrice d'entrée 72 est divisée en deux par une cloison transversale 82, et, de la même manière, la boîte collectrice de sortie 74 est divisée en deux par une cloison transversale 84. On délimite ainsi trois passes 86, 88 et 90 pour la circulation du fluide caloporteur.
  • Après son entrée dans la boîte collectrice 72, le fluide caloporteur parcourt d'abord la passe 86, comme schématisé par les flèches 92, puis la passe 88 comme schématisé par la flèche 94 et enfin la passe 90 comme schématisé par la flèche 96.
  • Le système de refroidissement comporte également un premier et un second échangeur d'équipement 104, 106, par exemple un refroidisseur d'air de suralimentation ou un condenseur de circuit de climatisation. Le premier échangeur de chaleur 104 permet le passage d'un débit de fluide Q1 supérieur au débit Q2 passant dans le second échangeur 106.
  • Les boucles de circulation de fluide comprennent une branche 108 commune, située en aval des échangeurs d'équipement dans laquelle le fluide caloporteur circule dans le sens défini par la flèche 110 sous l'impulsion d'une pompe de circulation 112, par exemple une pompe électrique. Les boucles de circulation de fluide comprennent également deux branches 114 et 116, en amont des échangeurs d'équipement, dans lesquelles le fluide circule dans le sens défini par les flèches 118.
  • Comme schématisé par les flèches 120 et 122, le fluide à refroidir, par exemple l'air du refroidisseur d'air de suralimentation ou le fluide frigorigène du circuit de climatisation parcourt d'abord le premier échangeur de chaleur 104 puis le second échangeur de chaleur 106. Ainsi, le fluide à refroidir est refroidi selon deux niveaux d'échange de chaleur.
  • Le débit Q1 du fluide caloporteur qui circule dans le premier échangeur de chaleur 104 étant supérieur au débit Q2 qui circule dans le second échangeur de chaleur 106, on peut traiter le fluide traversant en série les deux échangeurs selon deux étages différents.
  • On a représenté sur la figure 3 un exemple de réalisation d'un système de refroidissement conforme à l'invention. Dans cet exemple, le radiateur à basse température 60 comporte deux tubulures de sortie, à savoir une tubulure 78, comme précédemment, et une deuxième tubulure référencée 132. La tubulure 132 prélève le fluide caloporteur au niveau de la première passe de circulation de fluide (flèches 92), tandis que la seconde tubulure 78 prélève le fluide au niveau de la dernière passe de circulation de fluide (flèche 96). Ainsi, le fluide caloporteur qui n'a traversé qu'une seule passe de l'échangeur à basse température 60 ressort par la tubulure de sortie 132 à une température supérieure à celle du fluide caloporteur qui a traversé successivement les trois passes de l'échangeur 60 et qui ressort par la tubulure 78.
  • Dans cet exemple, le radiateur de refroidissement à basse température 60 délivre donc deux niveaux de température. Le fluide du premier niveau de température pénètre dans le premier échangeur de chaleur 104 par une canalisation 134, tandis que le fluide du deuxième niveau de température (plus basse) pénètre dans le second échangeur de chaleur 106 par une canalisation 136. La répartition des pertes de charge du circuit, notamment des tubulures de sortie 78 et 132 est telle que le débit Q1 qui traverse le premier échangeur 104 est supérieur au débit Q2 qui traverse le second échangeur 106.
  • Un système de ce type peut permettre d'amener le fluide à refroidir à une température bien plus basse qu'un système ne délivrant qu'un seul niveau de température. A titre d'exemple, le fluide caloporteur ressort de la première passe à une température comprise entre 40°C et 60°C. Après la deuxième passe 94, sa température est comprise entre 30°C et 50°C et enfin, après la troisième passe 90, sa température descend à environ 20°C à 40°C. Le fluide caloporteur qui pénètre dans le premier échangeur de chaleur 104 a donc une température moyenne de 50°C environ, tandis que le fluide qui pénètre dans le second échangeur de chaleur 106 a une température de 30°C environ. Ces valeurs sont indicatives et fonction de la température ambiante.
  • Le fluide à refroidir cède la plus grande partie de sa chaleur dans le premier échangeur de chaleur 104 avant d'être mis en relation d'échange thermique avec un fluide caloporteur à la température beaucoup plus basse qui permet d'abaisser sa température de sortie. Ce système de refroidissement s'applique avantageusement à un condenseur de circuit de climatisation parce qu'il permet, dans le premier échangeur de chaleur 104, d'effectuer la condensation du fluide frigorigène et d'assurer un sous-refroidissement de ce fluide dans le second échangeur de chaleur 106.
  • On a représenté sur la figure 4 un autre mode de réalisation d'un système de refroidissement conforme à l'invention. Dans ce système, le radiateur de refroidissement à basse température 60 comporte quatre passes. En effet, la boîte collectrice d'entrée 72 comporte deux cloisons transversales de séparation 142 et 146, tandis que la boîte collectrice de sortie 74 comporte une seule cloison de séparation 144. Les cloisons de séparation 142, 144 et 146 déterminent donc quatre allers et retour du fluide caloporteur dans les tubes de l'échangeur à basse température 60.
  • Une tubulure de sortie 141 prélève le fluide après son passage dans la troisième passe. Ce fluide est amené, comme dans l'exemple précédent, au premier échangeur de chaleur 104 par la canalisation 134 de la première boucle. Une tubulure de sortie 143 prélève le fluide caloporteur après son passage dans la quatrième et dernière passe de l'échangeur de chaleur à basse température 60. Ce fluide est amené par une canalisation 144 de la seconde boucle au second échangeur de chaleur 106. Ainsi, comme précédemment, le fluide qui traverse le second échangeur de chaleur 106 est à une température inférieure à celle du fluide qui traverse le premier échangeur de chaleur 104.
  • Par ailleurs, contrairement aux exemples précédents, les boucles de circulation de fluide ne sont pas indépendantes, mais elles sont montées en dérivation aux bornes du circuit à haute température 2. Une canalisation 150 peut prélever le fluide directement à la sortie du moteur. Une canalisation 152 est raccordée à l'entrée du moteur du véhicule.
  • Ainsi, dans cet exemple de réalisation, la température du fluide est plus élevée que dans les cas précédents. Le fluide caloporteur pénètre dans la boîte collectrice d'entrée à une température de 90°C environ. Il ressort par la tubulure de sortie 141 à une température de 60°C environ et par la tubulure de sortie 143 à une température de 40°C environ. On constate, en conséquence, que, malgré une température d'entrée élevée, le fluide caloporteur peut être refroidi jusqu'à une température relativement basse.

Claims (6)

  1. Système de refroidissement à basse température d'au moins un équipement, notamment un équipement de véhicule automobile, comprenant au moins une première (4) et une deuxième (4') boucle de circulation de fluide caloporteur sur lesquelles sont montés un échangeur de chaleur à basse température (60) et au moins un premier (104) et un second (106) échangeur d'équipement, respectivement prévus sur chacune des boucles, le premier échangeur de chaleur d'équipement (104) étant traversée par un premier débit (Q1) de fluide caloporteur, le second échangeur de chaleur d'équipement (106) étant traversée par un second débit (Q2) de fluide caloporteur, caractérisé en ce que le premier débit (Q1) est supérieur au second débit (Q2) et que l'échangeur de chaleur à basse température (60) comporte au moins une première et une seconde tubulures de sortie (78, 132, 141, 143) du fluide caloporteur, la première tubulure étant raccordée au premier échangeur de chaleur (104), la seconde tubulure étant raccordée au second échangeur de chaleur (106), le fluide caloporteur sortant de l'échangeur à basse température (60) par la première tubulure de sortie étant à une température supérieure à celle du fluide caloporteur sortant de l'échangeur de chaleur basse température par la seconde tubulure de sortie.
  2. Système de refroidissement selon la revendication 1, caractérisé en ce que l'échangeur de chaleur à basse température (60) comporte une multiplicité de passes de circulation de fluide (86, 88, 90) parcourues successivement par le fluide caloporteur, la première tubulure étant disposée en amont de la seconde tubulure par rapport à la circulation du fluide caloporteur dans les passes (86, 88, 90).
  3. Système de refroidissement selon l'une des revendications. 1 à 2, caractérisé en ce que la première et la seconde boucle de refroidissement présentent une partie commune (108) en aval des échangeurs d'équipement et ladite partie commune (4) comporte une pompe de circulation (58).
  4. Systeme de refroidissement selon l'une des revendications 1 à 2, caractérisé en ce que les boucles de circulation à basse température sont montées en dérivation entre l'entrée et la sortie du circuit de refroidissement du moteur thermique du véhicule automobile.
  5. Système de refroidissement selon l'une des revendications 1 à 4, caractérisé en ce que les échangeurs d'équipement (104 ; 106) sont des refroidisseurs d'air de suralimentation, l'air de suralimentation circulant en série dans lesdits échangeurs.
  6. Système de refroidissement selon l'une des revendications 1 à 4, caractérisé en ce que les échangeurs d'équipement (104 ;106) sont des condenseurs faisant partie du circuit du climatisation de l'habitacle du véhicule automobile, le fluide du circuit de climatisation circulant en série dans lesdits échangeurs.
EP05807630.8A 2004-09-23 2005-09-23 Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes Not-in-force EP1819910B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0410080A FR2875590B1 (fr) 2004-09-23 2004-09-23 Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes
PCT/FR2005/002370 WO2006032798A1 (fr) 2004-09-23 2005-09-23 Système de refroidissement à basse température d'un équipe ment, notamment d'un équipement de véhicule automobile, et échangeurs de chaleur associés

Publications (2)

Publication Number Publication Date
EP1819910A1 EP1819910A1 (fr) 2007-08-22
EP1819910B1 true EP1819910B1 (fr) 2014-08-27

Family

ID=34951682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05807630.8A Not-in-force EP1819910B1 (fr) 2004-09-23 2005-09-23 Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes

Country Status (3)

Country Link
EP (1) EP1819910B1 (fr)
FR (1) FR2875590B1 (fr)
WO (1) WO2006032798A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422036B2 (ja) * 1992-07-13 2003-06-30 株式会社デンソー 車両用冷却装置
FR2748428B1 (fr) * 1996-05-07 1998-06-19 Renault Systeme de refroidissement pour vehicule a propulsion hybride
FR2815401A1 (fr) * 2000-10-13 2002-04-19 Renault Dispositif, systeme et procede de refroidissement d'un fluide caloporteur
FR2852678B1 (fr) * 2003-03-21 2005-07-15 Valeo Thermique Moteur Sa Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes

Also Published As

Publication number Publication date
FR2875590B1 (fr) 2007-03-02
FR2875590A1 (fr) 2006-03-24
WO2006032798A1 (fr) 2006-03-30
EP1819910A1 (fr) 2007-08-22

Similar Documents

Publication Publication Date Title
EP1620637B1 (fr) Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes
EP1444473B1 (fr) Module d'echange de chaleur comportant un radiateur principal et un radiateur secondaire
EP1558886B1 (fr) Système de gestion de l'énergie thermique développée par un moteur thermique de véhicule automobile
FR3002285A1 (fr) Systeme de recuperation de chaleur des gaz d'echappement dans un moteur a combustion interne, avec deux echangeurs de chaleur au niveau d'un circuit de recirculation de gaz
EP3564504A1 (fr) Systeme de refroidissement d'un moteur avec deux thermostats et integrant un circuit selon un cycle de rankine
EP2553232B1 (fr) Dispositif de refroidissement pour un circuit de recirculation de gaz d'echappement d'un moteur
EP1432907B1 (fr) Dispositif perfectionne de regulation thermique de l'air d'admission d'un moteur a combustion interne de vehicule automobile
EP1636479B1 (fr) Procede de regulation de la temperature des gaz admis dans un moteur thermique de vehicule automobile et systeme pour la mise en oeuvre de ce procede
EP1819910B1 (fr) Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes
FR2897392A1 (fr) Dispositif et procede de refroidissement pour moteur et organe de vehicule.
FR2976322A1 (fr) Repartiteur d'air comprenant un dispositif adapte a echanger de la chaleur avec de l'air de suralimentation, et systeme de transfert thermique comprenant un tel repartiteur
EP1556588B1 (fr) Systeme de refroidissement d'un groupe motopropulseur, notament de vehicule automobile, comprenant un echangeur liquide/liquide
FR2986316A1 (fr) Ensemble comprenant un echangeur de chaleur et un support sur lequel ledit echangeur est monte
EP3835701A1 (fr) Echangeur double à flux de gaz orthogonaux
EP2061959B1 (fr) Systeme de refroidissement d'un groupe motopropulseur de vehicule automobile, et procede de commande d'un tel systeme
FR2978206A1 (fr) Dispositif de regulation thermique pour vehicule automobile
FR2832185A1 (fr) Systeme de gestion de l'energie thermique developpee par un moteur thermique de vehicule automobile
WO2023030791A1 (fr) Échangeur thermique pour une boucle de fluide réfrigérant
FR2880067A1 (fr) Installation de regulation thermique des gaz admis dans un moteur
EP3922825A1 (fr) Circuit de refroidissement pour module double flux
FR2661953A1 (fr) Systeme de refroidissement de l'air de suralimentation d'un moteur a combustion interne, utilisant le circuit de refroidissement du moteur.
EP2480767A1 (fr) Procede de gestion d'un module d'echange air/eau pour la regulation en temperature des gaz d'admission d'un moteur thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110601

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 684649

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005044606

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 684649

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140827

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141128

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141227

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005044606

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005044606

Country of ref document: DE

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

26N No opposition filed

Effective date: 20150528

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140923

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141027

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050923

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140923