EP1818633A2 - Device for cooling liquid or gaseous media - Google Patents

Device for cooling liquid or gaseous media Download PDF

Info

Publication number
EP1818633A2
EP1818633A2 EP07100542A EP07100542A EP1818633A2 EP 1818633 A2 EP1818633 A2 EP 1818633A2 EP 07100542 A EP07100542 A EP 07100542A EP 07100542 A EP07100542 A EP 07100542A EP 1818633 A2 EP1818633 A2 EP 1818633A2
Authority
EP
European Patent Office
Prior art keywords
pressure
container
cooling medium
carbon dioxide
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07100542A
Other languages
German (de)
French (fr)
Other versions
EP1818633A3 (en
Inventor
Thomas Berger
Thomas Böckler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Group GmbH
Original Assignee
Messer Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Group GmbH filed Critical Messer Group GmbH
Publication of EP1818633A2 publication Critical patent/EP1818633A2/en
Publication of EP1818633A3 publication Critical patent/EP1818633A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0374Localisation of heat exchange in or on a vessel in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • F17C2250/0413Level of content in the vessel with floats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Definitions

  • the invention relates to a device for cooling liquid or gaseous media.
  • Low-boiling liquefied gases can only be kept liquid by means of particularly good insulation of the storage tanks and the pipelines. Even the slightest heat or frictional heat can lead to partial evaporation, depending on the boiling state.
  • the boiling bubbles collect, except in the headspace of the storage container, e.g. also in vertical pipe bends. These so-called gas cushions in the supply line lead to disruptions at the sampling point when a reproducible dosing of the liquefied gas is required. It is easy to see that due to the density difference between the gas and the liquid, different amounts flow through an opening of the same size at equal time intervals. In order to have reliable pure liquid in front of the dosing, it is necessary to subcool the liquefied gas with respect to its respective boiling state.
  • Such supercooling can be accomplished, for example, by cooling the liquid coolant isobarically by means of an electric cooling unit so that no partial evaporation occurs during the circulation in a loop system due to heat radiation and friction losses.
  • an electric cooling unit so that no partial evaporation occurs during the circulation in a loop system due to heat radiation and friction losses.
  • the necessary aggregates are very expensive to buy and operate due to their high power requirements.
  • the device comprises a heat exchanger through which the liquid nitrogen to be cooled flows, which is arranged in an insulated container.
  • the heat exchanger is designed as a cooling coil, to which a float-operated lever valve is connected, which maintains a container surrounding the cooling coil bath of liquid nitrogen.
  • a gas outlet valve is provided, which ensures that the pressure in the container corresponds to the ambient pressure.
  • a disadvantage of this embodiment is that the bandwidth of the temperature setting is very narrow.
  • the invention is therefore based on the object to provide a device for cooling fluid media, in particular for subcooling liquids, with the simple way a high bandwidth of the temperature setting can be achieved.
  • a device for cooling of liquid or gaseous media with an arranged in an insulated container heat exchanger, which is flowed through by the medium to be cooled and which is accommodated in a bath of a cooling medium, with a in the interior of the isolated Container at an expansion organ ausmündenden pressure line for the cooling medium and with a equipped with a pressure control valve for adjusting the pressure in the container outlet line for the cooling medium.
  • the temperature of the cooling medium drops due to the Joule-Thomson effect.
  • the height of the pressure drop occurring during the expansion is determined by the pressure of the supplied cooling medium and the freely adjustable pressure holding value at the pressure control valve in the output line. Together with the additional parameter of the temperature of the supplied cooling medium before the relaxation can thus be set in theissermediumsbad a predetermined temperature.
  • a forced cooling such a gaseous or liquid medium can be cooled by heat exchange with thedemediumsbad, only care must be taken that the temperature of thedemediumsbades inside the container is not so low that the guided through the heat exchanger medium freezes.
  • the pressure line passes through a device for controlling the temperature of the cooling medium in front of its mouth on the expansion element.
  • a device for controlling the temperature of the cooling medium in front of its mouth on the expansion element.
  • the cooling medium already has a particularly low temperature before the relaxation.
  • a device for determining the level of the cooling medium bath is expediently provided, which is operatively connected to a arranged in the pressure line for the cooling medium blocking member. Falls below a predetermined level height, the blocking member of the pressure line opens and liquid cooling medium flows after.
  • the device for determining the filling height is a float-controlled lever valve.
  • float-controlled valves are often unreliable in practice, since the density of the high-boiling liquid in the container, and thus the buoyancy for the float, often insufficient to close the valve. In addition, the density difference between liquid and gas near the critical point is becoming smaller and smaller.
  • a device for detecting the temperature of the cooled medium is provided, which is operatively connected to the pressure control valve.
  • the pressure at the pressure control valve and thus the temperature of the cooling medium bath is set in this embodiment of the invention continuously in response to a desired temperature of the treated medium.
  • a preferred cooling medium is carbon dioxide. Due to its physical properties, carbon dioxide makes it possible to adjust the temperature of the cooling medium bath by adjusting the pressure in a wide range between +10 ° C and -55 ° C.
  • the device according to the invention is particularly advantageously suitable for subcooling, ie for cooling to a temperature well below the boiling point of the cryogenic medium used, for example liquid carbon dioxide.
  • subcooling in particular cavitation effects can be reduced in piston pumps.
  • the yield i. E. the proportion of snow compared to the proportion of generated carbon dioxide gas increase.
  • FIG. 1 schematically illustrates an embodiment of the device according to the invention.
  • the device 1 comprises a closed container 2 with a lid 3 with thermally insulated walls. Inside the container 3, two cooling coils 4,5 are arranged.
  • the cooling coil 4 serves to cool a liquid or gaseous medium, which is led into the container 3 via an insulated feed line 7 and leaves the container again via an equally insulated discharge line 8.
  • the cooling coil 5 is used for subcooling of liquid carbon dioxide, which is brought via an isolated and pressure-resistant carbon dioxide feed line 9 from a carbon dioxide supply tank, not shown here, for example, a low pressure or medium pressure tank.
  • an expansion valve 11 is connected, which is actuated by a float 12.
  • a valve 11 relaxation member which is located for example in the region of the inlet of the supply line 9 in the container 3, are introduced into the container .
  • the float control and other measuring devices may be provided for level measurement, which are operatively connected to the expansion valve 11, and in particular when using the Carbon dioxide near its critical point are more appropriate.
  • an exhaust pipe 14 is provided for the discharge of gaseous carbon dioxide.
  • a pressure-holding valve 15 is mounted, which keeps the pressure in the exhaust pipe 14, upstream of the pressure-holding valve 15, and thus in the container 3, to a predetermined value constant.
  • the pressure-maintaining valve 15 is in data communication with a temperature measuring device 16, which measures the temperature in the discharge line 8 immediately after it leaves the container 3.
  • the pressure of carbon dioxide in the carbon dioxide feed line. 9 either corresponds to that of the supply tank or it is interposed in the carbon dioxide feed line 8 means for increasing the pressure.
  • the expansion valve 11 is constructed so that in the presence of a pressure difference between the carbon dioxide feed line and falling below a predetermined level of the level 17 liquid carbon dioxide flows into the container 3.
  • the relaxing liquid carbon dioxide evaporates partially and is discharged via the exhaust pipe 14.
  • the unevaporated portion of the incoming carbon dioxide forms the cooling coils surrounding the 4.5 bath 18.
  • the pressure-holding valve 15 can be regulated in the interior of the container 3 and thus the pressure drop occurring during the outflow of carbon dioxide. Due to the Joule-Thomson effect, the relaxation of the liquid carbon dioxide leads to a drop in the temperature of the liquid carbon dioxide flowing into the container 3. For this reason, the temperature of the liquid carbon dioxide in the container 3 is lower than that of the liquid carbon dioxide in the carbon dioxide feed line 9. With a suitable choice of the pressure and the temperature in the carbon dioxide feed line 9 and the pressure in the container 3 so it is possible to precisely set the temperature of the bath 18 within a range between + 10 ° C and -55 ° C.
  • the temperature of the cooled medium is continuously measured by means of the temperature measuring device 16, so that the control pressure at the pressure-holding valve 15 can be regulated as a function of the measured temperature to a desired value or course.
  • the height of the level 17 by means of the float 12 and the controlled with this functionally connected expansion valve 11. If the water level drops, the expansion valve 11 is opened and liquid carbon dioxide flows out of the carbon dioxide feed line 9.
  • the medium introduced via the supply line 7 emits heat to the carbon dioxide bath 18 in the container 3 on its way through the cooling coil 4 and leaves the container 3 via the discharge line 8 in a cooled manner.
  • the medium to be cooled becomes, with a sufficiently dimensioned design of the cooling coil 4, cooled to approximately the temperature of the bath 18.
  • the device 1 according to the invention thus operates completely independent of external energy. Due to the wide range within which the temperature of the bath 18 in the container 3 can be adjusted, the device according to the invention is suitable for cooling a large number of liquid or gaseous media, for example from the pharmaceutical or food technology sector.
  • the device 1 is also suitable for supercooling of liquid carbon dioxide, wherein the separation of the two cooling coils 4 and 5 allows the setting of independent temperature and pressure conditions in the supply lines 9 and 7.
  • the liquid carbon dioxide used as a cooling medium can be removed from the stream of carbon dioxide to be supercooled.
  • the liquid carbon dioxide 9 introduced in the carbon dioxide feed line 9 has a pressure of 20 bar and a temperature of -25 ° C. After passing through the cooling coil 5, which, however, only serves for pre-cooling and on the achievable temperature value of the bath 18 has no influence, and the subsequent exit on the expansion valve 11, the carbon dioxide to a pressure of about 5 bar, the set target pressure at the pressure holding valve 15th corresponds, relaxed. This reduces its temperature to -50 ° C.
  • a portion of the carbon dioxide evaporates and is discharged via the exhaust pipe 14 as soon as the pressure in the container exceeds a value of slightly more than 5 bar - ie a pressure at which the cooled to -50 ° C carbon dioxide in the container 3 just barely liquid - exceeds ,
  • the non-evaporating in the relaxation part forms and continuously adds the bath 18 of liquid carbon dioxide, the temperature is therefore also -50 ° C.
  • Cooling energy is taken from the bath 18 made of liquid carbon dioxide by this partially evaporated and flows off via the exhaust pipe 14 irreversibly into the open air.

Abstract

The substance is guided through a heat exchanger comprising an insulated container (3) closed with a lid (2) and accommodating two cooling elements (4,5). It is filled with a cryogenic coolant, in particular fluid carbon dioxide. The coolant is inserted under pressure and in a fluid condition through an insulated duct (7) and guided to a relief valve (11) located at the outer end of the cooling devices (4,5). The pressure inside the container (3) and the related temperature of the fluid can be adjusted by using a pressure valve (15). An independent claim is given for the use of the arrangement.

Description

Die Erfindung betrifft eine Vorrichtung zum Kühlen von flüssigen oder gasförmigen Medien.The invention relates to a device for cooling liquid or gaseous media.

Tiefsiedende verflüssigte Gase können nur durch besonders gute Isolation der Speicherbehälter und der Rohrleitungen flüssig gehalten werden. Schon die geringste Wärmeeinstrahlung oder Reibungswärme kann je nach Siedezustand zu einer Teilverdampfung führen. Die Siedebläschen sammeln sich außer im Kopfraum des Speicherbehälters z.B. auch in senkrechten Rohrkrümmern. Diese sogenannten Gaspolster in der Versorgungsleitung führen zu Störungen an der Entnahmestelle, wenn eine reproduzierbare Dosierung des verflüssigten Gases gefordert wird. Es ist leicht einzusehen, dass durch eine gleich große Öffnung in gleichen Zeitintervallen wegen des Dichteunterschiedes zwischen Gas und Flüssigkeit unterschiedliche Mengen strömen. Um nun zuverlässig reine Flüssigkeit vor dem Dosierorgan anstehen zu haben, muss man das verflüssigte Gas gegenüber seinem jeweiligen Siedezustand unterkühlen.Low-boiling liquefied gases can only be kept liquid by means of particularly good insulation of the storage tanks and the pipelines. Even the slightest heat or frictional heat can lead to partial evaporation, depending on the boiling state. The boiling bubbles collect, except in the headspace of the storage container, e.g. also in vertical pipe bends. These so-called gas cushions in the supply line lead to disruptions at the sampling point when a reproducible dosing of the liquefied gas is required. It is easy to see that due to the density difference between the gas and the liquid, different amounts flow through an opening of the same size at equal time intervals. In order to have reliable pure liquid in front of the dosing, it is necessary to subcool the liquefied gas with respect to its respective boiling state.

Eine solche Unterkühlung lässt sich beispielsweise dadurch bewerkstelligen, dass das flüssige Kühlmittel isobar mittels eines elektrischen Kühlaggregates so weit unterkühlt wird, dass bei der Umwälzung in einem Ringleitungssystem durch Wärmeeinstrahlung und Reibungsverluste keine Teilverdampfung auftritt. Die hierzu notwendigen Aggregate sind jedoch aufgrund ihres hohen Leistungsbedarfs sehr teuer in Anschaffung und Betrieb.Such supercooling can be accomplished, for example, by cooling the liquid coolant isobarically by means of an electric cooling unit so that no partial evaporation occurs during the circulation in a loop system due to heat radiation and friction losses. However, the necessary aggregates are very expensive to buy and operate due to their high power requirements.

In der DE 2929709 A1 wird eine Vorrichtung beschrieben, bei der eine Eigenmediumskühlung der zu unterkühlenden Flüssigkeit, nämlich Flüssigstickstoff, erfolgt. Die Vorrichtung umfasst einem von dem zu unterkühlenden Flüssigstickstoff durchströmten Wärmeaustauscher, der in einem isolierten Behälter angeordnet ist. Der Wärmeaustauscher ist als Kühlschlange ausgebildet, an die ein schwimmerbetätigtes Hebelventil angeschlossen ist, welches im Behälter ein die Kühlschlange umgebendes Bad aus Flüssigstickstoff aufrechterhält. Im Kopfraum des Behälters ist ein Gasauslassventil vorgesehen, das dafür sorgt, dass der Druck im Behälter dem Umgebungsdruck entspricht. Da der Druck des Flüssigstickstoffbades gegenüber dem Druck des zu unterkühlenden Gases reduziert ist, liegt seine Siedetemperatur unter der Siedetemperatur des zu unterkühlenden Gases. Durch das Bad wird daher der unter Druck stehende Flüssigstickstoff in der Kühlschlange unterkühlt, bereits aufgetretene Gasblasen werden wieder verflüssigt.In the DE 2929709 A1 a device is described in which a self-medium cooling of the liquid to be supercooled, namely liquid nitrogen takes place. The device comprises a heat exchanger through which the liquid nitrogen to be cooled flows, which is arranged in an insulated container. The heat exchanger is designed as a cooling coil, to which a float-operated lever valve is connected, which maintains a container surrounding the cooling coil bath of liquid nitrogen. In the headspace of the container, a gas outlet valve is provided, which ensures that the pressure in the container corresponds to the ambient pressure. As the pressure of the liquid nitrogen bath opposite is reduced to the pressure of the gas to be cooled, its boiling temperature is below the boiling point of the gas to be cooled. By the bath, therefore, the pressurized liquid nitrogen in the cooling coil is supercooled, already occurred gas bubbles are liquefied again.

Ein Nachteil dieser Ausgestaltung ist, dass die Bandbreite der Temperatureinstellung sehr schmal ist.A disadvantage of this embodiment is that the bandwidth of the temperature setting is very narrow.

Der Erfindung liegt daher die Aufgabe zu Grunde, eine Vorrichtung zum Kühlen von fluiden Medien, insbesondere zum Unterkühlen von Flüssigkeiten zu schaffen, mit der auf einfache Weise eine hohe Bandbreite der Temperatureinstellung erreicht werden kann.The invention is therefore based on the object to provide a device for cooling fluid media, in particular for subcooling liquids, with the simple way a high bandwidth of the temperature setting can be achieved.

Gelöst wird diese Aufgabe durch eine Vorrichtung zum Kühlen von flüssigen oder gasförmigen Medien, mit einem in einem isolierten Behälter angeordneten Wärmetauscher, der von dem zu kühlenden Medium durchströmt wird und der in einem Bad aus einem Kühlmedium aufgenommen ist, mit einem in das Innere des isolierten Behälters an einem Entspannungsorgan ausmündenden Druckleitung für das Kühlmedium und mit einer mit einem Druckregelventil zur Einstellung des Drucks im Behälter ausgerüsteten Ausgangsleitung für das Kühlmedium.This object is achieved by a device for cooling of liquid or gaseous media, with an arranged in an insulated container heat exchanger, which is flowed through by the medium to be cooled and which is accommodated in a bath of a cooling medium, with a in the interior of the isolated Container at an expansion organ ausmündenden pressure line for the cooling medium and with a equipped with a pressure control valve for adjusting the pressure in the container outlet line for the cooling medium.

Durch die Entspannung des Kühlmediums beim Eintritt in den Behälter sinkt die Temperatur des Kühlmediums aufgrund des Joule-Thomson-Effektes. Die Höhe des bei der Entspannung auftretenden Druckabfalls wird vom Druck des zugeführten Kühlmediums und vom frei einstellbaren Druckhaltewert am Druckregelventil in der Ausgangsleitung bestimmt. Zusammen mit dem zusätzlichen Parameter der der Temperatur des zugeführten Kühlmediums vor der Entspannung kann somit eine vorgegebene Temperatur im Kühlmediumsbad eingestellt werden. Unabhängig von einer Fremdkühlung kann so ein gasförmiges oder flüssiges Medium durch Wärmetausch mit dem Kühlmediumsbad gekühlt werden, wobei lediglich darauf geachtet werden muss, dass die Temperatur des Kühlmediumsbades im Innern des Behälters nicht so niedrig ist, dass das durch den Wärmetauscher geführte Medium einfriert.Due to the relaxation of the cooling medium entering the container, the temperature of the cooling medium drops due to the Joule-Thomson effect. The height of the pressure drop occurring during the expansion is determined by the pressure of the supplied cooling medium and the freely adjustable pressure holding value at the pressure control valve in the output line. Together with the additional parameter of the temperature of the supplied cooling medium before the relaxation can thus be set in the Kühlmediumsbad a predetermined temperature. Regardless of a forced cooling, such a gaseous or liquid medium can be cooled by heat exchange with the Kühlmediumsbad, only care must be taken that the temperature of the Kühlmediumsbades inside the container is not so low that the guided through the heat exchanger medium freezes.

Um die Temperatur des zugeführten Kühlmediums als weiteren freien Parameter nutzen zu können, ist es zweckmäßig, dass die Druckleitung vor ihrer Mündung am Entspannungsorgan eine Einrichtung zur Temperierung des Kühlmediums durchläuft. In vielen Fällen kommt es jedoch darauf an, dass das Kühlmedium bereits vor der Entspannung eine besonders tiefe Temperatur aufweist. In diesem Fall ist es besonders wirtschaftlich, wenn als Einrichtung zum Temperieren des Kühlmediums ein Wärmetauscher im Kühlmediumsbad vorgesehen ist. Das Kühlmedium wird also im eigenen Kühlmediumsbad vorgekühlt.In order to use the temperature of the supplied cooling medium as a further free parameter, it is expedient that the pressure line passes through a device for controlling the temperature of the cooling medium in front of its mouth on the expansion element. In many cases, however, it is important that the cooling medium already has a particularly low temperature before the relaxation. In this case, it is particularly economical if a heat exchanger is provided in the cooling medium bath as means for controlling the temperature of the cooling medium. The cooling medium is thus pre-cooled in its own cooling medium bath.

Um den Pegelstand im Innern des Behälters konstant zu halten und somit eine gleich bleibende Kühlung zu erzielen, ist zweckmäßigerweise eine Einrichtung zur Ermittlung des Füllstandes des Kühlmediumsbades vorgesehen, die mit einem in der Druckleitung für das Kühlmedium angeordneten Sperrorgan wirkverbunden ist. Bei Unterschreiten einer vorgegebenen Pegelhöhe öffnet sich das Sperrorgan der Druckleitung und flüssiges Kühlmedium strömt nach. Im einfachsten Fall handelt es sich bei der Einrichtung zur Ermittlung der Füllhöhe um ein schwimmergesteuertes Hebelventil. Freilich sind schwimmergesteuerte Ventile in der Praxis oft unzuverlässig, da die Dichte der stark siedenden Flüssigkeit im Behälter, und damit der Auftrieb für den Schwimmer, oftmals nicht ausreicht, um das Ventil zu schließen. Hinzu kommt, dass der Dichteunterschied zwischen Flüssigkeit und Gas nahe des kritischen Punktes immer geringer wird. Dies ist insbesondere bei Verwendung von Kohleindioxid als Kühlmittel von Bedeutung, da dieses häufig in der Nähe des kritischen Punktes eingesetzt wird. Zuverlässiger hat sich in solchen Systemen die Ermittlung von Füllständen mittels Widerstandsmessung oder Messung der Wärmeleitfähigkeit erwiesen. Bei diesen Messmethoden wird durch einen Vergleich dieser Parameter an mehreren, vertikal voneinander beabstandeten Punkten im Behälter auf den Aggregatszustand und damit die Füllhöhe geschlossen.In order to keep the level in the interior of the container constant and thus to achieve a constant cooling, a device for determining the level of the cooling medium bath is expediently provided, which is operatively connected to a arranged in the pressure line for the cooling medium blocking member. Falls below a predetermined level height, the blocking member of the pressure line opens and liquid cooling medium flows after. In the simplest case, the device for determining the filling height is a float-controlled lever valve. Of course, float-controlled valves are often unreliable in practice, since the density of the high-boiling liquid in the container, and thus the buoyancy for the float, often insufficient to close the valve. In addition, the density difference between liquid and gas near the critical point is becoming smaller and smaller. This is particularly important when using carbon dioxide as a coolant, as this is often used in the vicinity of the critical point. In such systems, the determination of fill levels by means of resistance measurement or measurement of the thermal conductivity has proved to be more reliable. With these measuring methods, a comparison of these parameters at several, vertically spaced points in the container on the state of aggregation and thus the filling level is closed.

Zweckmäßigerweise ist eine Einrichtung zur Erfassung der Temperatur des gekühlten Mediums vorgesehen, die mit dem Duckregelventil wirkverbunden ist. Der Druck am Druckregelventil und damit die Temperatur des Kühlmediumsbades wird bei dieser erfindungsgemäßen Ausgestaltung kontinuierlich in Abhängigkeit von einer gewünschten Temperatur des behandelten Mediums eingestellt.Appropriately, a device for detecting the temperature of the cooled medium is provided, which is operatively connected to the pressure control valve. The pressure at the pressure control valve and thus the temperature of the cooling medium bath is set in this embodiment of the invention continuously in response to a desired temperature of the treated medium.

Ein bevorzugtes Kühlmedium ist Kohlendioxid. Kohlendioxid ermöglicht aufgrund seiner physikalischen Eigenschaften eine Einstellung der Temperatur des Kühlmediumsbades durch entsprechende Einstellung des Drucks in einem weiten Bereich zwischen +10 °C und -55 °C.A preferred cooling medium is carbon dioxide. Due to its physical properties, carbon dioxide makes it possible to adjust the temperature of the cooling medium bath by adjusting the pressure in a wide range between +10 ° C and -55 ° C.

Besonders vorteilhaft eignet sich die erfindungsgemäße Vorrichtung zur Unterkühlung, also zur Abkühlung auf eine Temperatur deutlich unterhalb des Siedepunkts des eingesetzten kryogenen Mediums, beispielsweise von flüssigem Kohlendioxid. Durch Unterkühlung lassen sich insbesondere Kavitationseffekte bei Kolbenpumpen reduzieren. Bei der Erzeugung von Kohlendioxidschnee mittels Entspannung des flüssigen Kohlendioxids auf Umgebungsdruck lässt sich durch Unterkühlung zudem die Ausbeute, d.h. der Schneeanteil gegenüber dem Anteil an erzeugtem Kohlendioxidgas, erhöhen.The device according to the invention is particularly advantageously suitable for subcooling, ie for cooling to a temperature well below the boiling point of the cryogenic medium used, for example liquid carbon dioxide. By subcooling in particular cavitation effects can be reduced in piston pumps. In the generation of carbon dioxide snow by means of expansion of the liquid carbon dioxide to ambient pressure can be by subcooling also the yield, i. E. the proportion of snow compared to the proportion of generated carbon dioxide gas increase.

Die Zeichnung (Fig .1) veranschaulicht schematisch ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung.The drawing (Fig. 1) schematically illustrates an embodiment of the device according to the invention.

Die Vorrichtung 1 umfasst einen mit einem Deckel 2 verschlossenen Behälter 3 mit thermisch isolierten Wänden. Im Innern des Behälters 3 sind zwei Kühlschlangen 4,5 angeordnet. Die Kühlschlange 4 dient zur Kühlung eines flüssigen oder gasförmigen Mediums, das über eine isolierte Zuleitung 7 in den Behälter 3 hineingeführt wird und über eine gleichfalls isolierte Ableitung 8 den Behälter wieder verlässt. Die Kühlschlange 5 dient zur Unterkühlung von flüssigem Kohlendioxid, das über eine isolierte und druckfeste Kohlendioxid-Zuleitung 9 aus einem hier nicht gezeigten Kohlendioxid-Versorgungstank, beispielsweise einem Niederdruck- oder Mitteldrucktank herangeführt wird. Am Ende der Kühlschlange 5 ist ein Entspannungsventil 11 angeschlossen, welches durch einen Schwimmer 12 betätigt wird. In einer vereinfachten Ausgestaltung der Vorrichtung 1 kann jedoch auch auf die Kühlschlange verzichtet werden und das flüssige Kohlendioxid unmittelbar an einem mit einem Ventil 11 ausgerüsteten Entspannungsorgan, das sich beispielsweise im Bereich des Eintritts der Zuleitung 9 in den Behälter 3 befindet, in den Behälter eingeleitet werden. Anstelle der Schwimmersteuerung können auch andere Messeinrichtungen zur Füllstandmessung vorgesehen sein, die mit dem Entspannungsventil 11 wirkverbunden sind, und die insbesondere beim Einsatz des Kohlendioxids in der Nähe seines kritischen Punktes geeigneter sind. Im Deckel 2 des Behälters 3 ist eine Abgasleitung 14 zur Ableitung von gasförmigem Kohlendioxid vorgesehen. In der Abgasleitung 14 ist ein Druckhalteventil 15 montiert, das den Druck in der Abgasleitung 14, stromaufwärts zum Druckhalteventil 15, und damit im Behälter 3, auf einen vorbestimmten Wert konstant hält. Das Druckhalteventil 15 steht mit einem Temperaturmessgerät 16 in Datenverbindung, das die Temperatur in der Ableitung 8, unmittelbar nach dem Austritt aus dem Behälter 3, misst.The device 1 comprises a closed container 2 with a lid 3 with thermally insulated walls. Inside the container 3, two cooling coils 4,5 are arranged. The cooling coil 4 serves to cool a liquid or gaseous medium, which is led into the container 3 via an insulated feed line 7 and leaves the container again via an equally insulated discharge line 8. The cooling coil 5 is used for subcooling of liquid carbon dioxide, which is brought via an isolated and pressure-resistant carbon dioxide feed line 9 from a carbon dioxide supply tank, not shown here, for example, a low pressure or medium pressure tank. At the end of the cooling coil 5, an expansion valve 11 is connected, which is actuated by a float 12. In a simplified embodiment of the device 1, however, can also be dispensed with the cooling coil and the liquid carbon dioxide directly on a equipped with a valve 11 relaxation member, which is located for example in the region of the inlet of the supply line 9 in the container 3, are introduced into the container , Instead of the float control and other measuring devices may be provided for level measurement, which are operatively connected to the expansion valve 11, and in particular when using the Carbon dioxide near its critical point are more appropriate. In the lid 2 of the container 3, an exhaust pipe 14 is provided for the discharge of gaseous carbon dioxide. In the exhaust pipe 14, a pressure-holding valve 15 is mounted, which keeps the pressure in the exhaust pipe 14, upstream of the pressure-holding valve 15, and thus in the container 3, to a predetermined value constant. The pressure-maintaining valve 15 is in data communication with a temperature measuring device 16, which measures the temperature in the discharge line 8 immediately after it leaves the container 3.

Beim Betrieb der Vorrichtung 1 befindet sich ein Bad 18 aus flüssigem Kohlendioxid bis zur Höhe eines bestimmten Pegels 17 im Innern des Behälters 3. Zugleich befindet sich flüssiges Kohlendioxid unter Druck in der Kohlendioxid-Zuleitung 9. Der Druck des Kohlendioxids in der Kohlendioxid-Zuleitung 9 entspricht entweder dem des Versorgungstanks oder es ist in der Kohlendioxid-Zuleitung 8 eine Einrichtung zur Druckerhöhung zwischengeschaltet. Das Entspannungsventil 11 ist so aufgebaut, dass bei Vorliegen einer Druckdifferenz zwischen der Kohlendioxid-Zuleitung und Unterschreiten einer vorgegebenen Höhe des Pegels 17 flüssiges Kohlendioxid in den Behälter 3 nachströmt. Das sich entspannende flüssige Kohlendioxid verdampft dabei zum Teil und wird über die Abgasleitung 14 abgeführt. Der nicht verdampfte Teil des einströmenden Kohlendioxids bildet das die Kühlschlangen 4,5 umgebende Bad 18. Über das Druckhalteventil 15 kann dabei der Druck im Innern des Behälters 3 und damit der beim Ausströmen des Kohlendioxids stattfindende Druckabfall geregelt werden. Aufgrund des Joule -Thomson - Effekts führt die Entspannung des flüssigen Kohlendioxids zu einem Temperaturabfall des in den Behälter 3 einströmenden flüssigen Kohlendioxids. Aus diesem Grund ist die Temperatur des flüssigen Kohlendioxids im Behälter 3 geringer als die des flüssigen Kohlendioxids in der Kohlendioxid-Zuleitung 9. Bei einer geeigneten Wahl des Drucks und der Temperatur in der Kohlendioxid-Zuleitung 9 und des Drucks im Behälter 3 ist es so möglich, die Temperatur des Bades 18 innerhalb eines Bereiches zwischen +10°C und -55°C exakt festzulegen. Die Temperatur des gekühlten Mediums wird mittels des Temperaturmessgerätes 16 laufend gemessen, sodass der Stelldruck am Druckhalteventil 15 in Abhängigkeit von der gemessenen Temperatur auf einen gewünschten Wert oder Verlauf geregelt werden kann. Darüber hinaus wird die Höhe des Pegels 17 mittels des Schwimmers 12 und dem mit diesem wirkverbundenen Entspannungsventil 11 kontrolliert. Sinkt der Pegelstand ab, wird das Entspannungsventil 11 geöffnet und flüssiges Kohlendioxid strömt aus der Kohlendioxid-Zuleitung 9 nach. Das über die Zuleitung 7 herangeführte Medium gibt bei seinem Weg durch die Kühlschlange 4 Wärme an das Kohlendioxid-Bad 18 im Behälter 3 ab und verlässt gekühlt den Behälter 3 über die Ableitung 8. Das zu kühlende Medium wird dabei, bei genügend dimensionierter Auslegung der Kühlschlange 4, bis annähernd auf die Temperatur des Bades 18 abgekühlt. Die erfindungsgemäße Vorrichtung 1 arbeitet demnach völlig unabhängig von Fremdenergie. Aufgrund des weiten Bereiches, innerhalb dessen die Temperatur des Bades 18 im Behälter 3 eingestellt werden kann, eignet sich die erfindungsgemäße Vorrichtung zur Kühlung einer Vielzahl von flüssigen oder gasförmigen Medien, beispielsweise aus dem pharmazeutischen oder lebensmitteltechnischen Bereich. Die Vorrichtung 1 ist auch zur Unterkühlung von flüssigem Kohlendioxid geeignet, wobei die Trennung der beiden Kühlschlangen 4 und 5 die Einstellung unabhängiger Temperatur- und Druckverhältnisse in den Zuleitungen 9 und 7 ermöglicht. In einer Variante der Vorrichtung 1 kann jedoch auch das als Kühlmedium eingesetzte flüssige Kohlendioxid dem Strom des zu unterkühlenden Kohlendioxids entnommen werden.During operation of the device 1 is a bath 18 of liquid carbon dioxide to the level of a certain level 17 in the interior of the container 3. At the same time there is liquid carbon dioxide under pressure in the carbon dioxide feed line 9. The pressure of carbon dioxide in the carbon dioxide feed line. 9 either corresponds to that of the supply tank or it is interposed in the carbon dioxide feed line 8 means for increasing the pressure. The expansion valve 11 is constructed so that in the presence of a pressure difference between the carbon dioxide feed line and falling below a predetermined level of the level 17 liquid carbon dioxide flows into the container 3. The relaxing liquid carbon dioxide evaporates partially and is discharged via the exhaust pipe 14. The unevaporated portion of the incoming carbon dioxide forms the cooling coils surrounding the 4.5 bath 18. About the pressure-holding valve 15 can be regulated in the interior of the container 3 and thus the pressure drop occurring during the outflow of carbon dioxide. Due to the Joule-Thomson effect, the relaxation of the liquid carbon dioxide leads to a drop in the temperature of the liquid carbon dioxide flowing into the container 3. For this reason, the temperature of the liquid carbon dioxide in the container 3 is lower than that of the liquid carbon dioxide in the carbon dioxide feed line 9. With a suitable choice of the pressure and the temperature in the carbon dioxide feed line 9 and the pressure in the container 3 so it is possible to precisely set the temperature of the bath 18 within a range between + 10 ° C and -55 ° C. The temperature of the cooled medium is continuously measured by means of the temperature measuring device 16, so that the control pressure at the pressure-holding valve 15 can be regulated as a function of the measured temperature to a desired value or course. In addition, the height of the level 17 by means of the float 12 and the controlled with this functionally connected expansion valve 11. If the water level drops, the expansion valve 11 is opened and liquid carbon dioxide flows out of the carbon dioxide feed line 9. The medium introduced via the supply line 7 emits heat to the carbon dioxide bath 18 in the container 3 on its way through the cooling coil 4 and leaves the container 3 via the discharge line 8 in a cooled manner. The medium to be cooled becomes, with a sufficiently dimensioned design of the cooling coil 4, cooled to approximately the temperature of the bath 18. The device 1 according to the invention thus operates completely independent of external energy. Due to the wide range within which the temperature of the bath 18 in the container 3 can be adjusted, the device according to the invention is suitable for cooling a large number of liquid or gaseous media, for example from the pharmaceutical or food technology sector. The device 1 is also suitable for supercooling of liquid carbon dioxide, wherein the separation of the two cooling coils 4 and 5 allows the setting of independent temperature and pressure conditions in the supply lines 9 and 7. In a variant of the device 1, however, the liquid carbon dioxide used as a cooling medium can be removed from the stream of carbon dioxide to be supercooled.

Beispiel:Example:

Das in der Kohlendioxid-Zuleitung 9 herangeführte flüssige Kohlendioxid 9 besitze einen Druck von 20 bar und eine Temperatur von -25°C. Nach Durchlaufen der Kühlschlange 5, die allerdings lediglich der Vorkühlung dient und auf den erreichbaren Temperaturwert des Bades 18 keinen Einfluss hat, und dem anschließenden Austritt am Entspannungsventil 11 werde das Kohlendioxid auf einen Druck von etwas über 5 bar, der dem eingestellten Solldruck am Druckhalteventil 15 entspricht, entspannt. Dadurch reduziert sich seine Temperatur auf -50°C. Ein Teil des Kohlendioxids verdampft und wird über die Abgasleitung 14 abgeführt, sobald der Druck im Behälter einen Wert von etwas über 5 bar - also ein Druckwert, bei dem das auf -50°C gekühlte Kohlendioxid im Behälter 3 gerade eben noch flüssig ist - übersteigt. Der bei der Entspannung nicht verdampfende Teil bildet und ergänzt laufend das Bad 18 aus flüssigem Kohlendioxid, dessen Temperatur demzufolge ebenfalls -50°C beträgt. Bei der Kühlung des durch die Kühlschlange 4 hindurch geführten Mediums wird Kälteenergie dem Bad 18 aus flüssigem Kohlendioxid entnommen, indem dieses teilweise verdampft und über die Abgasleitung 14 irreversibel ins Freie abströmt.The liquid carbon dioxide 9 introduced in the carbon dioxide feed line 9 has a pressure of 20 bar and a temperature of -25 ° C. After passing through the cooling coil 5, which, however, only serves for pre-cooling and on the achievable temperature value of the bath 18 has no influence, and the subsequent exit on the expansion valve 11, the carbon dioxide to a pressure of about 5 bar, the set target pressure at the pressure holding valve 15th corresponds, relaxed. This reduces its temperature to -50 ° C. A portion of the carbon dioxide evaporates and is discharged via the exhaust pipe 14 as soon as the pressure in the container exceeds a value of slightly more than 5 bar - ie a pressure at which the cooled to -50 ° C carbon dioxide in the container 3 just barely liquid - exceeds , The non-evaporating in the relaxation part forms and continuously adds the bath 18 of liquid carbon dioxide, the temperature is therefore also -50 ° C. When cooling the by the cooling coil 4th Cooling energy is taken from the bath 18 made of liquid carbon dioxide by this partially evaporated and flows off via the exhaust pipe 14 irreversibly into the open air.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1.1.
Vorrichtungcontraption
2.Second
Deckelcover
3.Third
Behältercontainer
4.4th
Kühlschlange (für die zu kühlende Flüssigkeit)Cooling coil (for the liquid to be cooled)
5.5th
Kühlschlange (für Kohlendioxid)Cooling coil (for carbon dioxide)
6.6th
--
7.7th
Zuleitungsupply
8.8th.
Ableitungderivation
9.9th
Kohlendioxid-ZuleitungCarbon dioxide feed line
10.10th
--
11.11th
Entspannungsventilexpansion valve
12.12th
Schwimmerswimmer
13.13th
--
14.14th
Abgasleitungexhaust pipe
15.15th
DruckhalteventilPressure holding valve
16.16th
Temperaturmessgerättemperature meter
17.17th
Pegellevel
18.18th
Badbath

Claims (7)

Vorrichtung zum Kühlen von flüssigen oder gasförmigen Medien, mit einem in einem isolierten Behälter (3) angeordneten Wärmetauscher (4), der von dem zu kühlenden Medium durchströmt wird und der in einem Bad (18) aus einem Kühlmedium aufgenommen ist, mit einem in das Innere des isolierten Behälters (3) an einem Entspannungsorgan (11) ausmündenden Druckleitung (9) für das Kühlmedium und mit einer mit einem Druckregelventil (15) zur Einstellung des Drucks im Behälter (3) ausgerüsteten Ausgangsleitung (14) für das Kühlmedium.Apparatus for cooling liquid or gaseous media, comprising a heat exchanger (4) arranged in an insulated container (3), through which the medium to be cooled flows and which is accommodated in a bath (18) of a cooling medium, with one in the Inside of the insulated container (3) on a pressure relief device (11) discharging pressure line (9) for the cooling medium and with a with a pressure control valve (15) for adjusting the pressure in the container (3) equipped output line (14) for the cooling medium. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Druckleitung (9) für das Kühlmedium vor ihrer Ausmündung an dem Entspannungsorgan (11) eine Einrichtung zum Temperieren des Kühlmediums durchläuft.Apparatus according to claim 1, characterized in that the pressure line (9) for the cooling medium before its outlet at the expansion device (11) passes through a device for controlling the temperature of the cooling medium. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass als Einrichtung zum Temperieren ein Wärmetauscher (5) im Kühlmediumsbad (18) vorgesehen ist.Apparatus according to claim 2, characterized in that as a means for tempering a heat exchanger (5) in the cooling medium bath (18) is provided. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Einrichtung zur Ermittlung des Füllstandes des Kühlmediumsbades (18) mit einem in der Druckleitung (9) für das Kühlmedium angeordneten Sperrorgan (11) zur Aufrechterhaltung eines vorbestimmten Pegelstandes (17) im Behälter (3) wirkverbunden ist.Device according to one of the preceding claims, characterized in that a device for determining the filling level of the cooling medium bath (18) with a in the pressure line (9) arranged for the cooling medium blocking member (11) for maintaining a predetermined water level (17) in the container (3 ) is operatively connected. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Einrichtung (16) zur Erfassung der Temperatur des gekühlten Mediums vorgesehen ist, die mit dem Duckregelventil (15) wirkverbunden ist.Device according to one of the preceding claims, characterized in that a device (16) for detecting the temperature of the cooled medium is provided, which is operatively connected to the pressure control valve (15). Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Kühlmedium im Behälter (3) Kohlendioxid zum Einsatz kommt.Device according to one of the preceding claims, characterized in that carbon dioxide is used as the cooling medium in the container (3). Verwendung einer Vorrichtung nach einem der vorhergehenden Ansprüche zur Unterkühlung kryogener Medien.Use of a device according to one of the preceding claims for subcooling cryogenic media.
EP07100542A 2006-02-09 2007-01-15 Device for cooling liquid or gaseous media Withdrawn EP1818633A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610005885 DE102006005885A1 (en) 2006-02-09 2006-02-09 Device for cooling liquid or gaseous media

Publications (2)

Publication Number Publication Date
EP1818633A2 true EP1818633A2 (en) 2007-08-15
EP1818633A3 EP1818633A3 (en) 2008-07-09

Family

ID=38066675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07100542A Withdrawn EP1818633A3 (en) 2006-02-09 2007-01-15 Device for cooling liquid or gaseous media

Country Status (2)

Country Link
EP (1) EP1818633A3 (en)
DE (1) DE102006005885A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951242A1 (en) * 2009-10-08 2011-04-15 Air Liquide Supplying sub-cooled cryogenic liquid from a reservoir to a consumer equipment, comprises placing a liquid nitrogen bath in a heat exchanger immersed in a bath of (non)cryogenic liquid, and controlling the bath at a predetermined level
CN103443564A (en) * 2011-03-24 2013-12-11 空中客车作业有限公司 Multifunctional refrigerant container and method of operating the refrigerant container
WO2014170583A1 (en) * 2013-04-18 2014-10-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and facility for supplying at least one machining station with subcooled cryogenic liquid
EP2863103A3 (en) * 2013-09-03 2015-05-06 Messer Group GmbH Device and method for supercooling carbon dioxide
DE102017010690A1 (en) * 2017-11-17 2019-05-23 Gisela Höckenreiner Temperature change device
EP3594554A1 (en) * 2018-07-11 2020-01-15 Messer Group GmbH Device for supercooling of liquefied gases

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107795846B (en) * 2017-10-31 2018-10-30 清华大学 Improve the caisson and its adjusting method of gas storage efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1530663A (en) * 1967-05-19 1968-06-28 Air Liquide Liquid bath refrigeration device
DE2929709A1 (en) * 1979-07-21 1981-02-12 Messer Griesheim Gmbh Supercooling of pressurised low-boiling liq. gases - to be delivered to metering device
US4510760A (en) * 1984-03-02 1985-04-16 Messer Griesheim Industries, Inc. Compact integrated gas phase separator and subcooler and process
US5123250A (en) * 1990-04-10 1992-06-23 Union Carbide Canada Limited Cryogenic apparatus
WO1998045642A1 (en) * 1997-04-04 1998-10-15 Impress Metal Packaging B.V. Device for dispensing liquid nitrogen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422632A (en) * 1966-06-03 1969-01-21 Air Prod & Chem Cryogenic refrigeration system
US4716738A (en) * 1986-08-04 1988-01-05 Cv International, Inc. Apparatus and method for delivering cryogenic liquid from a supply vessel to receiver vessels
US4715187A (en) * 1986-09-29 1987-12-29 Vacuum Barrier Corporation Controlled cryogenic liquid delivery
US5214925A (en) * 1991-09-30 1993-06-01 Union Carbide Chemicals & Plastics Technology Corporation Use of liquified compressed gases as a refrigerant to suppress cavitation and compressibility when pumping liquified compressed gases
EP0800048B1 (en) * 1994-12-14 2003-04-16 Shuzo Nomura Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1530663A (en) * 1967-05-19 1968-06-28 Air Liquide Liquid bath refrigeration device
DE2929709A1 (en) * 1979-07-21 1981-02-12 Messer Griesheim Gmbh Supercooling of pressurised low-boiling liq. gases - to be delivered to metering device
US4510760A (en) * 1984-03-02 1985-04-16 Messer Griesheim Industries, Inc. Compact integrated gas phase separator and subcooler and process
US5123250A (en) * 1990-04-10 1992-06-23 Union Carbide Canada Limited Cryogenic apparatus
WO1998045642A1 (en) * 1997-04-04 1998-10-15 Impress Metal Packaging B.V. Device for dispensing liquid nitrogen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951242A1 (en) * 2009-10-08 2011-04-15 Air Liquide Supplying sub-cooled cryogenic liquid from a reservoir to a consumer equipment, comprises placing a liquid nitrogen bath in a heat exchanger immersed in a bath of (non)cryogenic liquid, and controlling the bath at a predetermined level
CN103443564A (en) * 2011-03-24 2013-12-11 空中客车作业有限公司 Multifunctional refrigerant container and method of operating the refrigerant container
CN103443564B (en) * 2011-03-24 2015-09-30 空中客车作业有限公司 Multifunction refrigeration agent container and operate the method for this cryogen vessel
US9603380B2 (en) 2011-03-24 2017-03-28 Airbus Operations Gmbh Multifunctional refrigerant container and method of operating such a refrigerant container
WO2014170583A1 (en) * 2013-04-18 2014-10-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and facility for supplying at least one machining station with subcooled cryogenic liquid
FR3004784A1 (en) * 2013-04-18 2014-10-24 Air Liquide METHOD AND SYSTEM FOR SUPPLYING AT LEAST ONE WORKING UNIT IN SUB-COOLING CRYOGENIC LIQUID
EP2863103A3 (en) * 2013-09-03 2015-05-06 Messer Group GmbH Device and method for supercooling carbon dioxide
DE102017010690A1 (en) * 2017-11-17 2019-05-23 Gisela Höckenreiner Temperature change device
EP3594554A1 (en) * 2018-07-11 2020-01-15 Messer Group GmbH Device for supercooling of liquefied gases

Also Published As

Publication number Publication date
EP1818633A3 (en) 2008-07-09
DE102006005885A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
EP1818633A2 (en) Device for cooling liquid or gaseous media
EP3285032B1 (en) Cryostat arrangement and method of operation thereof
DE69729988T2 (en) refrigerated containers
EP2863103B1 (en) Device and method for supercooling carbon dioxide
EP2320244B1 (en) Cooling device for cryogenic cooling of an NMR detection system with the help of a container filled with cryogenic fluid
EP3594554B1 (en) Device for supercooling of liquefied gases
DE2929709A1 (en) Supercooling of pressurised low-boiling liq. gases - to be delivered to metering device
DE3813962B4 (en) Two-stage gas pressure regulator
EP2719434A1 (en) Method and device for at least partially degassing a vessel containing a fluid
DE1501283B1 (en) Device for cooling objects
DE4126054C2 (en) Refrigerant consumption measuring system
DE4228752A1 (en) Milk cooler consisting of pre-cooler and cooled storage tank - has pre-cooler in form of refrigerant evaporator, with temp. sensor controlling refrigerant flow or opening of refrigerant expansion valve
DE2605273C2 (en) Cooling device
DE2340055B1 (en) PROCEDURE AND DEVICE FOR SETTING A TEMPERATURE IN THE NEGATIVE TEMPERATURE RANGE
AT98205B (en) Small cooler.
DE2014502B2 (en) CRYOGENIC REFRIGERATOR
DE2507245A1 (en) COOLING DEVICE
EP2679879A2 (en) Device for supercooling low boiling point liquefied gases
DE3435229A1 (en) CRYSTATE FOR OPERATING A (ARROW UP) 3 (ARROW UP) HE (ARROW UP) 4 (ARROW UP) HE MIXING UNIT
DE2852009C3 (en) Device for heating and / or vaporizing gases
DE1922514C3 (en) Equipment for refrigeration
DE1251776B (en)
EP0358134B1 (en) Valve for very cold liquid gases
DE1501283C (en) Device for cooling objects
DE2054054B2 (en) Device for supplying refrigerant in cryostats

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOECKLER, THOMAS

Inventor name: BERGER, THOMAS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090109

17Q First examination report despatched

Effective date: 20090211

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090623