EP1815492A2 - Microwave generating device with oscillating virtual cathode - Google Patents

Microwave generating device with oscillating virtual cathode

Info

Publication number
EP1815492A2
EP1815492A2 EP05810745A EP05810745A EP1815492A2 EP 1815492 A2 EP1815492 A2 EP 1815492A2 EP 05810745 A EP05810745 A EP 05810745A EP 05810745 A EP05810745 A EP 05810745A EP 1815492 A2 EP1815492 A2 EP 1815492A2
Authority
EP
European Patent Office
Prior art keywords
reflector
cathode
guide
anode
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05810745A
Other languages
German (de)
French (fr)
Other versions
EP1815492B1 (en
Inventor
Jean-Louis Faure
Philippe Gouard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1815492A2 publication Critical patent/EP1815492A2/en
Application granted granted Critical
Publication of EP1815492B1 publication Critical patent/EP1815492B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/74Tubes specially designed to act as transit-time diode oscillators, e.g. monotrons

Definitions

  • the present invention relates to an oscillating virtual cathode microwave generator device.
  • FIGS. 1 to 3 An oscillating virtual cathode microwave wave generator device of the prior art, commonly called a vircator (vircator for "VIRtual Oscillator Method"), is represented in FIGS. 1 to 3.
  • the vircator comprises a diode consisting of a cathode 2 and an anode 3, 4 and a cylindrical waveguide 5.
  • the anode consists of a thick reinforcement 3 and a thin sheet or thin anode 4. This type of device is known to produce high power microwave pulses.
  • a potential difference whose amplitude increases with time is applied across the two electrodes of the diode.
  • an electron beam 1 of increasing intensity is emitted by the cathode 2.
  • the electron beam 1 flows laminarly along the axis ZZ of the waveguide 5 (cf. . figure 1) .
  • the voltage applied to the diode reaches a threshold value, the beam begins to pinch under the effect of its magnetic field (see Figure 2). This nip results from the cancellation, at the level of the anode 4, of the transverse components of the electric field with respect to the ZZ axis.
  • the virtual cathode 6 oscillates around an average position which is at a distance from the thin anode 4 equal to the distance separating the thin anode 4 from the cathode 2.
  • the electrons E which are returned by the virtual cathode 6 towards the anode 4 return to the diode, are modulated by the latter at the frequency of the microwave and slightly modulate in turn the accelerated electron beam 1 in the cathode-anode space.
  • These backscattered electrons are braked between the anode 4 and the cathode 2 and are diverted towards the armature of the anode 3.
  • the electrons which cross the virtual cathode take up on average energy at the wave which propagates in the guide 5, thus decreasing its intensity.
  • GHz is estimated from the distance d (expressed in cm) between the cathode 2 of the thin anode 4 and the relativistic factor ⁇ of the electron beam 1 by the following formula:
  • c / f
  • the device described above is simple in design and its operation is robust. On the other hand, its power efficiency (ratio of the maximum power of the wave emitted to the maximum electrical power injected into the diode) is very low, of the order of 1%. Moreover, the frequencies of the emitted wave directly follow the temporal variations of the applied voltage, which leads to obtaining an electromagnetic wave of poor spectral quality.
  • the invention does not have these disadvantages.
  • the invention relates to a microwave wave generating device comprising a diode consisting of an anode and a cathode and capable of creating a virtual cathode by accumulation of electrons in a waveguide.
  • circular wave capable of propagating a microwave wave emitted by oscillation of the virtual cathode, characterized in that it comprises a first reflector transparent to the electrons and reflecting the microwave wave and located in the waveguide so that the virtual cathode is positioned between the anode and the first reflector.
  • the first reflector is positioned within the waveguide at a distance from the anode equal to substantially twice the distance between the anode and the cathode.
  • the first reflector completely closes a straight section of the guide.
  • the first reflector closes a cross section of the guide on a central portion of said cross section so that a substantially annular opening is present between the reflector and the wall of the guide.
  • the central portion of the first reflector which closes the cross section of the guide has a radius greater than or equal to substantially 0.75 times the radius of the circular guide.
  • the first reflector is made of aluminized mylar.
  • the central portion of the open reflector closes the cross section of the guide on a radius greater than or equal to substantially 0.75 times the radius of the circular guide.
  • each additional reflector is made of aluminized mylar.
  • the virtual cathode microwave generator device makes it possible to obtain very significantly improved performances compared with the performances of the devices of the known art.
  • the emitted microwave is of better spectral quality and the conversion efficiency is very substantially improved.
  • FIG. 4 represents a longitudinal view of an example of a virtual cathode microwave generator device according to the invention.
  • FIG. 5 represents a first sectional view of the virtual cathode microwave generator device of FIG. 4;
  • FIG. 6 represents a second sectional view of the virtual cathode microwave generator device of FIG. 4.
  • FIGS. 1 to 3 have been previously described. It is therefore useless to return to it.
  • FIG. 4 represents a longitudinal view of an example of a virtual cathode microwave generator device according to the invention.
  • the device comprises two reflector elements 8 and 9 located in the waveguide 5.
  • the reflectors 8 and 9 are transparent to the electrons and able to reflect the electromagnetic waves generated in the waveguide. They are made, for example, aluminized mylar.
  • the first reflector 8, which is closest to the thin anode 4 closes a straight section of the waveguide 5 (FIG. 5) over its entire surface, whereas the second reflector 9 closes only a centered fraction of cross-section of the waveguide (see FIG.
  • the expression “closed reflector” will be used for a reflector which closes over its entire surface a cross section of the waveguide and the expression “open reflector” for any reflector which closes only one centered fraction of cross section of the guide, leaving a substantially annular opening between its periphery and the inner wall of the guide.
  • the first reflector 8 is positioned so that the virtual cathode 6 is substantially in the center of the cylindrical cavity formed by the thin anode 4, the waveguide 5 and the first reflector 8.
  • the distance D1 which separates the first reflector 8 of the thin anode 4 is then substantially equal to twice the distance d between the thin anode 4 of the cathode 2.
  • the distance D2 between the second reflector 9 of the first reflector 8 is substantially equal to the distance dl.
  • the first reflector 8 has the function of reflecting the wave created by the virtual cathode 6. The reflected wave then comes into interaction again with the electrons and the virtual cathode 6, increasing the microwave wave.
  • the cylindrical cavity formed by the first closed reflector 8, the thin anode 4 and the waveguide 5 thus makes it possible to reinforce the power of the wave created by the virtual cathode 6.
  • the electromagnetic wave emitted by this second virtual cathode can then propagate in the waveguide 5, via the substantially annular opening 10.
  • the device of the invention according to the example given in Figures 4 to 6 comprises a first reflector 8 closed and a second reflector 9 open. More generally, the device of the invention comprises at least one closed or open reflector.
  • the device of the invention allows a very significant improvement in performance.
  • a device with a single closed reflector leads to a yield improvement of the order of 4%.
  • a device with two reflectors such as that shown in Figures 4 to 6 leads to an efficiency improvement of the order of 6%, the addition of reflectors can further increase the yield.
  • the reflectors can be closed or open.
  • the reflector farthest from the anode is preferably open, to allow more easily the wave to propagate in the guide.
  • the distance between the reflectors and that between the thin anode and the first reflector is substantially equal to twice the distance d between anode and cathode.
  • the inner radius of an open reflector is preferably greater than 0.75 R to reflect the maximum of the radial component of the electric field of the wave (see equation (3)).
  • the device of the invention can advantageously be used in many configurations among which can be mentioned: several phase vircators coupled together; a master / slave structure (s) in which one or more phase relativistic magnetrons or klystrons coupled together (the slaves) are triggered by an external vircator (the master); a vircator powered by an external radiation source in the region of the diode that promotes the bundling of the electron beam.

Abstract

The invention concerns a microwave generating device comprising a diode (4, 2) consisting

Description

DISPOSITIF GENERATEUR D'ONDES HYPERFREQUENCES A CATHODE VIRTUELLE OSCILLANTE OSCILLATING VIRTUAL CATHODE HYPERFREQUENCY WAVE GENERATING DEVICE
Domaine technique et art antérieur : La présente invention concerne un dispositif générateur d' ondes hyperfréquences à cathode virtuelle oscillante.TECHNICAL FIELD AND PRIOR ART The present invention relates to an oscillating virtual cathode microwave generator device.
Un dispositif générateur d' ondes hyperfréquences à cathode virtuelle oscillante de l'art antérieur, communément appelé vircator (vircator pour « VIRtual CAthode oscillaTOR ») , est représenté aux figures 1 à 3.An oscillating virtual cathode microwave wave generator device of the prior art, commonly called a vircator (vircator for "VIRtual Oscillator Method"), is represented in FIGS. 1 to 3.
Le vircator comprend une diode constituée d'une cathode 2 et d'une anode 3, 4 et un guide d'onde cylindrique 5. L'anode est constituée d'une armature épaisse 3 et d'une feuille mince ou anode mince 4. Ce type de dispositif est connu pour produire des impulsions hyperfréquences de forte puissance.The vircator comprises a diode consisting of a cathode 2 and an anode 3, 4 and a cylindrical waveguide 5. The anode consists of a thick reinforcement 3 and a thin sheet or thin anode 4. This type of device is known to produce high power microwave pulses.
A cette fin, une différence de potentiel dont l'amplitude croît en fonction du temps est appliquée aux bornes des deux électrodes de la diode. Au cours d'une première phase, un faisceau d'électrons 1 d'intensité croissante est émis par la cathode 2. Le faisceau d'électrons 1 s'écoule de façon laminaire selon l'axe ZZ du guide d'onde 5 (cf. figure 1) . Lorsque la tension appliquée à la diode atteint une valeur de seuil, le faisceau commence à se pincer sous l'effet de son champ magnétique (cf. figure 2) . Ce pincement résulte de l'annulation, au niveau de l'anode 4, des composantes transverses du champ électrique par rapport à l'axe ZZ. Alors que la tension continue à croître, le pincement du faisceau devient si fort et la densité électronique si élevée que le faisceau d'électrons ne peut plus se propager correctement dans le guide d'onde 5. Une accumulation de charges 6, communément appelée cathode virtuelle, se forme alors derrière l'anode mince 4 (cf. figure 3) . La cathode virtuelle 6 dévie alors de nombreux électrons jusqu'à renvoyer certains d'entre eux (électrons E sur la figure 3) vers la cathode 2, à travers l'anode 4. Tout en se rapprochant de l'anode 4, la cathode virtuelle 6 accroît sa quantité de charges jusqu'au moment où elle éclate sous l'effet de sa charge d'espace et une nouvelle cathode virtuelle 6 se reconstitue un peu plus loin dans le guide d'onde 5. C'est ce principe d'oscillation de la cathode virtuelle 6 qui est à l'origine de l'émission d'une onde hyperfréquence 7.For this purpose, a potential difference whose amplitude increases with time is applied across the two electrodes of the diode. During a first phase, an electron beam 1 of increasing intensity is emitted by the cathode 2. The electron beam 1 flows laminarly along the axis ZZ of the waveguide 5 (cf. . figure 1) . When the voltage applied to the diode reaches a threshold value, the beam begins to pinch under the effect of its magnetic field (see Figure 2). This nip results from the cancellation, at the level of the anode 4, of the transverse components of the electric field with respect to the ZZ axis. As the voltage continues to grow, the beam nip becomes so strong and the electronic density so high that the electron beam can no longer propagate properly in the waveguide 5. An accumulation of charges 6, commonly called virtual cathode, is then formed behind the thin anode 4 (see Figure 3) . The virtual cathode 6 then deviates many electrons until returning some of them (electrons E in Figure 3) to the cathode 2, through the anode 4. While approaching the anode 4, the cathode virtual 6 increases its amount of charge until it explodes under the effect of its space charge and a new virtual cathode 6 is reconstituted a little further in the waveguide 5. It is this principle of oscillation of the virtual cathode 6 which is at the origin of the emission of a microwave wave 7.
La cathode virtuelle 6 oscille autour d'une position moyenne qui se situe à une distance de l'anode mince 4 égale à la distance qui sépare l'anode mince 4 de la cathode 2. Les électrons E qui sont renvoyés par la cathode virtuelle 6 vers l'anode 4 reviennent dans la diode, sont modulés par cette dernière à la fréquence de 1 ' onde hyperfréquence et modulent légèrement à leur tour le faisceau d'électrons accélérés 1 dans l'espace cathode-anode. Ces électrons rétrodiffuses sont freinés entre l'anode 4 et la cathode 2 et sont déviés vers l'armature de l'anode 3. Les électrons qui franchissent la cathode virtuelle reprennent en moyenne de l'énergie à l'onde qui se propage dans le guide 5, diminuant ainsi son intensité. Le dimensionnement d'un vircator de l'art connu va maintenant être explicité. La fréquence f de l'onde émise (exprimée enThe virtual cathode 6 oscillates around an average position which is at a distance from the thin anode 4 equal to the distance separating the thin anode 4 from the cathode 2. The electrons E which are returned by the virtual cathode 6 towards the anode 4 return to the diode, are modulated by the latter at the frequency of the microwave and slightly modulate in turn the accelerated electron beam 1 in the cathode-anode space. These backscattered electrons are braked between the anode 4 and the cathode 2 and are diverted towards the armature of the anode 3. The electrons which cross the virtual cathode take up on average energy at the wave which propagates in the guide 5, thus decreasing its intensity. The sizing of a vircator of the known art will now be explained. The frequency f of the transmitted wave (expressed in
GHz) est estimée à partir de la distance d (exprimée en cm) qui sépare la cathode 2 de 1 ' anode mince 4 et du facteur relativiste γ du faisceau d'électrons 1 par la formule suivante :GHz) is estimated from the distance d (expressed in cm) between the cathode 2 of the thin anode 4 and the relativistic factor γ of the electron beam 1 by the following formula:
avec γ= eV/mc2 + 1, où e est la charge d'un électron, V la différence de potentiel appliquée entre les électrodes de la diode, m la masse de l'électron et c la vitesse de la lumière.with γ = eV / mc 2 + 1, where e is the charge of an electron, V the potential difference applied between the electrodes of the diode, m the mass of the electron and c the speed of light.
L'onde ayant une symétrie axiale de révolution évolue dans des modes dits transverses magnétiques TM0n (la composante axiale de son champ magnétique est nulle) . Pour qu'elle se propage à l'intérieur du guide circulaire 5 dans le seul mode fondamental TM01, il faut que le rayon R du guide d'onde 5 soit supérieur à la longueur d'onde de coupure du mode TM0I et inférieur à celui du mode suivant TM02 • L'équation ci-dessous rend compte de ces conditions de propagation :The wave having an axial symmetry of revolution evolves in so-called transverse magnetic modes TM 0n (the axial component of its magnetic field is zero). For it to propagate inside the circular guide 5 in the only basic mode TM 01 , it is necessary that the radius R of the waveguide 5 is greater than the cut-off wavelength of the TM 0I mode and lower to that of the following mode TM 02 • The following equation accounts for these propagation conditions:
où kOn représente la racine de l'équation de la fonction de Bessel J0(kon)=0 (k0i=2,4048 et kO2=5,52Ol) .wherein k is representing the root of the equation of the Bessel function J 0 (k on) = 0 (k 0 i = 2.4048 and k = 5,52Ol O2).
La longueur du guide d'onde 5 doit être égale à plusieurs fois la longueur d'onde λ de l'onde électromagnétique 7 (λ=c/f) . Un meilleur fonctionnement du couplage cathode virtuelle - onde électromagnétique est obtenu lorsque la position moyenne de la cathode virtuelle est située dans le voisinage du maximum de la composante radiale du champ électrique de l'onde électromagnétique. Considérant que l'onde électromagnétique se propage dans le seul mode TM01, le rayon r de la cathode 2 doit alors vérifier la relation suivante :The length of the waveguide 5 must be equal to several times the wavelength λ of the electromagnetic wave 7 (λ = c / f). A better operation of the virtual cathode-electromagnetic wave coupling is obtained when the average position of the virtual cathode is located in the vicinity of the maximum of the radial component of the electric field of the electromagnetic wave. Considering that the electromagnetic wave propagates in the only mode TM 0 1, the radius r of the cathode 2 must then verify the following relation:
R≥r≥l,8412R≈075R (3) R≥r≥ 1, 8412R ≈075R (3)
M)IMID
Le dispositif décrit ci-dessus est de conception simple et son fonctionnement est robuste. Par contre son rendement en puissance (rapport de la puissance maximale de l'onde émise sur la puissance électrique maximale injectée dans la diode) est très faible, de l'ordre de 1%. Par ailleurs, les fréquences de l'onde émise suivent directement les variations temporelles de la tension appliquée, ce qui conduit à l'obtention d'une onde électromagnétique de qualité spectrale médiocre.The device described above is simple in design and its operation is robust. On the other hand, its power efficiency (ratio of the maximum power of the wave emitted to the maximum electrical power injected into the diode) is very low, of the order of 1%. Moreover, the frequencies of the emitted wave directly follow the temporal variations of the applied voltage, which leads to obtaining an electromagnetic wave of poor spectral quality.
L'invention ne présente pas ces inconvénients.The invention does not have these disadvantages.
Exposé de l'invention : En effet, l'invention concerne un dispositif générateur d' ondes hyperfréquences comprenant une diode constituée d'une anode et d'une cathode et apte à créer une cathode virtuelle par accumulation d'électrons dans un guide d'ondes circulaire apte à propager une onde hyperfréquence émise par oscillation de la cathode virtuelle, caractérisé en ce qu'il comprend un premier réflecteur transparent aux électrons et réfléchissant l'onde hyperfréquence et situé dans le guide d' ondes de façon que la cathode virtuelle soit positionnée entre l'anode et le premier réflecteur.The invention relates to a microwave wave generating device comprising a diode consisting of an anode and a cathode and capable of creating a virtual cathode by accumulation of electrons in a waveguide. circular wave capable of propagating a microwave wave emitted by oscillation of the virtual cathode, characterized in that it comprises a first reflector transparent to the electrons and reflecting the microwave wave and located in the waveguide so that the virtual cathode is positioned between the anode and the first reflector.
Selon une caractéristique supplémentaire de l'invention, le premier réflecteur est positionné à l'intérieur du guide d'ondes à une distance de l'anode égale à sensiblement deux fois la distance qui sépare l'anode de la cathode.According to a further feature of the invention, the first reflector is positioned within the waveguide at a distance from the anode equal to substantially twice the distance between the anode and the cathode.
Selon encore une caractéristique supplémentaire de l'invention, le premier réflecteur ferme entièrement une section droite du guide. Selon encore une caractéristique supplémentaire de l'invention, le premier réflecteur ferme une section droite du guide sur une partie centrale de ladite section droite de sorte qu'une ouverture sensiblement annulaire soit présente entre le réflecteur et la paroi du guide.According to yet another feature of the invention, the first reflector completely closes a straight section of the guide. According to yet another feature of the invention, the first reflector closes a cross section of the guide on a central portion of said cross section so that a substantially annular opening is present between the reflector and the wall of the guide.
Selon encore une caractéristique supplémentaire de l'invention, la partie centrale du premier réflecteur qui ferme la section droite du guide a un rayon supérieur ou égal à sensiblement 0,75 fois le rayon du guide circulaire.According to yet another feature of the invention, the central portion of the first reflector which closes the cross section of the guide has a radius greater than or equal to substantially 0.75 times the radius of the circular guide.
Selon encore une caractéristique supplémentaire de l'invention, le premier réflecteur est réalisé en mylar aluminisé.According to yet another feature of the invention, the first reflector is made of aluminized mylar.
Selon encore une caractéristique supplémentaire de l'invention, le dispositif comprend un ensemble de N réflecteurs supplémentaires placés dans le guide d'ondes, N étant un entier supérieur ou égal à 1, chaque réflecteur supplémentaire étant un réflecteur ouvert ou fermé transparent aux électrons et réfléchissant l'onde hyperfréquence, le réflecteur supplémentaire de rang i (i=l, 2, ..., N) étant situé, dans le guide d'ondes, au-delà du premier réflecteur de sorte que la distance entre deux réflecteurs successifs soit sensiblement égale à deux fois la distance qui sépare l'anode de la cathode. Selon encore une caractéristique supplémentaire de l'invention, dans le cas d'un réflecteur ouvert, la partie centrale du réflecteur ouvert ferme la section droite du guide sur un rayon supérieur ou égal à sensiblement 0,75 fois le rayon du guide circulaire.According to yet another feature of the invention, the device comprises a set of N additional reflectors placed in the waveguide, N being an integer greater than or equal to 1, each additional reflector being an open or closed reflector transparent to the electrons and reflecting the microwave, the additional reflector of rank i (i = 1, 2,. .., N) being located, in the waveguide, beyond the first reflector so that the distance between two successive reflectors is substantially equal to twice the distance between the anode and the cathode. According to a further feature of the invention, in the case of an open reflector, the central portion of the open reflector closes the cross section of the guide on a radius greater than or equal to substantially 0.75 times the radius of the circular guide.
Selon encore une caractéristique supplémentaire de l'invention, chaque réflecteur supplémentaire est réalisé en mylar aluminisé.According to yet another characteristic of the invention, each additional reflector is made of aluminized mylar.
Le dispositif générateur d' ondes hyperfréquences à cathode virtuelle selon l'invention permet d'obtenir des performances très sensiblement améliorées par rapport aux performances des dispositifs de l'art connu. L'onde hyperfréquence émise est de meilleure qualité spectrale et le rendement de conversion est très sensiblement amélioré.The virtual cathode microwave generator device according to the invention makes it possible to obtain very significantly improved performances compared with the performances of the devices of the known art. The emitted microwave is of better spectral quality and the conversion efficiency is very substantially improved.
Brève description des figuresBrief description of the figures
D'autres caractéristiques et avantages de l'invention apparaîtront à la lumière de la description qui va suivre faite en référence aux figures jointes, parmi lesquelles : - les figures 1 à 3 représentent un vircator en fonctionnement selon l'art connu ;Other characteristics and advantages of the invention will emerge in the light of the following description given with reference to the appended figures, among which: - Figures 1 to 3 show a vircator in operation according to the prior art;
- la figure 4 représente une vue longitudinale d'un exemple de dispositif générateur d'ondes hyperfréquences à cathode virtuelle selon l'invention ;FIG. 4 represents a longitudinal view of an example of a virtual cathode microwave generator device according to the invention;
- la figure 5 représente une première vue en coupe du dispositif générateur d' ondes hyperfréquences à cathode virtuelle de la figure 4 ;FIG. 5 represents a first sectional view of the virtual cathode microwave generator device of FIG. 4;
- la figure 6 représente une deuxième vue en coupe du dispositif générateur d'ondes hyperfréquences à cathode virtuelle de la figure 4.FIG. 6 represents a second sectional view of the virtual cathode microwave generator device of FIG. 4.
Description détaillée de modes de réalisation de 1 ' invention Les figures 1 à 3 ont été décrites précédemment. Il est donc inutile d'y revenir.DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION FIGS. 1 to 3 have been previously described. It is therefore useless to return to it.
La figure 4 représente une vue longitudinale d'un exemple de dispositif générateur d'ondes hyperfréquences à cathode virtuelle selon l'invention. En plus des éléments décrits en référence aux figures 1 à 3, le dispositif comprend deux éléments réflecteurs 8 et 9 situés dans le guide d'ondes 5. Les réflecteurs 8 et 9 sont transparents aux électrons et aptes à réfléchir les ondes électromagnétiques générées dans le guide d'ondes. Ils sont réalisés, par exemple, en mylar aluminisé. A titre d'exemple non limitatif, le premier réflecteur 8, qui est le plus proche de l'anode mince 4, ferme sur toute sa surface une section droite du guide d'ondes 5 (cf. figure 5) alors que le deuxième réflecteur 9 ne ferme qu'une fraction centrée de section droite du guide d'ondes (cf. figure 6), laissant ainsi une ouverture sensiblement annulaire 10 entre sa périphérie et la paroi du guide. Dans la suite de la description, l'expression « réflecteur fermé » sera utilisée pour un réflecteur qui ferme sur toute sa surface une section droite du guide d' ondes et l'expression « réflecteur ouvert » pour tout réflecteur qui ne ferme qu'une fraction centrée de section droite du guide, laissant une ouverture sensiblement annulaire entre sa périphérie et la paroi interne du guide. Le premier réflecteur 8 est positionné de façon que la cathode virtuelle 6 soit sensiblement au centre de la cavité cylindrique formée par l'anode mince 4, le guide d' ondes 5 et le premier réflecteur 8. La distance Dl qui sépare le premier réflecteur 8 de l'anode mince 4 est alors sensiblement égale au double de la distance d qui sépare l'anode mince 4 de la cathode 2. De même, la distance D2 qui sépare le deuxième réflecteur 9 du premier réflecteur 8 est sensiblement égale à la distance Dl. Le premier réflecteur 8 a pour fonction de réfléchir l'onde créée par la cathode virtuelle 6. L'onde réfléchie vient alors interagir à nouveau avec les électrons et la cathode virtuelle 6, accroissant l'onde hyperfréquence. La cavité cylindrique formée par le premier réflecteur fermé 8, l'anode mince 4 et le guide d'ondes 5 permet ainsi de renforcer la puissance de 1 ' onde créée par la cathode virtuelle 6. Ce renforcement de la puissance de l'onde contribue à renforcer la mise en paquet des électrons de la cathode virtuelle à la fréquence d'oscillation souhaitée. Les électrons qui franchissent le premier réflecteur 8 pour se diriger vers le deuxième réflecteur 9 créent alors une deuxième cathode virtuelle dont la fréquence d' oscillation est optimisée dans la pseudo cavité constituée par le premier réflecteur 8, le guide d'ondes 5 et le deuxième réflecteur 9. L'onde électromagnétique émise par cette deuxième cathode virtuelle peut alors se propager dans le guide d' ondes 5, via l'ouverture sensiblement annulaire 10.FIG. 4 represents a longitudinal view of an example of a virtual cathode microwave generator device according to the invention. In addition to the elements described with reference to Figures 1 to 3, the device comprises two reflector elements 8 and 9 located in the waveguide 5. The reflectors 8 and 9 are transparent to the electrons and able to reflect the electromagnetic waves generated in the waveguide. They are made, for example, aluminized mylar. By way of nonlimiting example, the first reflector 8, which is closest to the thin anode 4, closes a straight section of the waveguide 5 (FIG. 5) over its entire surface, whereas the second reflector 9 closes only a centered fraction of cross-section of the waveguide (see FIG. thus leaving a substantially annular opening 10 between its periphery and the wall of the guide. In the remainder of the description, the expression "closed reflector" will be used for a reflector which closes over its entire surface a cross section of the waveguide and the expression "open reflector" for any reflector which closes only one centered fraction of cross section of the guide, leaving a substantially annular opening between its periphery and the inner wall of the guide. The first reflector 8 is positioned so that the virtual cathode 6 is substantially in the center of the cylindrical cavity formed by the thin anode 4, the waveguide 5 and the first reflector 8. The distance D1 which separates the first reflector 8 of the thin anode 4 is then substantially equal to twice the distance d between the thin anode 4 of the cathode 2. Similarly, the distance D2 between the second reflector 9 of the first reflector 8 is substantially equal to the distance dl. The first reflector 8 has the function of reflecting the wave created by the virtual cathode 6. The reflected wave then comes into interaction again with the electrons and the virtual cathode 6, increasing the microwave wave. The cylindrical cavity formed by the first closed reflector 8, the thin anode 4 and the waveguide 5 thus makes it possible to reinforce the power of the wave created by the virtual cathode 6. This strengthening of the power of the wave contributes to enhance the packing of the electrons of the virtual cathode at the desired oscillation frequency. Electrons that cross the first reflector 8 for to move towards the second reflector 9 then create a second virtual cathode whose oscillation frequency is optimized in the pseudo cavity constituted by the first reflector 8, the waveguide 5 and the second reflector 9. The electromagnetic wave emitted by this second virtual cathode can then propagate in the waveguide 5, via the substantially annular opening 10.
Le dispositif de l'invention selon l'exemple donné aux figures 4 à 6 comprend un premier réflecteur 8 fermé et un deuxième réflecteur 9 ouvert. De façon plus générale, le dispositif de l'invention comprend au moins un réflecteur fermé ou ouvert.The device of the invention according to the example given in Figures 4 to 6 comprises a first reflector 8 closed and a second reflector 9 open. More generally, the device of the invention comprises at least one closed or open reflector.
Quel que soit son mode de réalisation, le dispositif de l'invention permet une amélioration très sensible du rendement. Un dispositif à un seul réflecteur fermé conduit à une amélioration du rendement de l'ordre de 4%. Un dispositif à deux réflecteurs tel que celui représenté aux figures 4 à 6 conduit à une amélioration du rendement de l'ordre de 6%, l'adjonction de réflecteurs pouvant encore accroître le rendement.Whatever its embodiment, the device of the invention allows a very significant improvement in performance. A device with a single closed reflector leads to a yield improvement of the order of 4%. A device with two reflectors such as that shown in Figures 4 to 6 leads to an efficiency improvement of the order of 6%, the addition of reflectors can further increase the yield.
De façon générale, les réflecteurs peuvent être fermés ou ouverts. Dans le cas d'une pluralité de réflecteurs, le réflecteur le plus éloigné de l'anode est préférentiellement ouvert, afin de permettre plus facilement à l'onde de se propager dans le guide. La distance entre les réflecteurs et celle entre l'anode mince et le premier réflecteur est sensiblement égale à deux fois la distance d entre anode et cathode. Le rayon interne d'un réflecteur ouvert est préférentiellement supérieur à 0,75 R pour réfléchir le maximum de la composante radiale du champ électrique de l'onde (cf. équation (3)) .In general, the reflectors can be closed or open. In the case of a plurality of reflectors, the reflector farthest from the anode is preferably open, to allow more easily the wave to propagate in the guide. The distance between the reflectors and that between the thin anode and the first reflector is substantially equal to twice the distance d between anode and cathode. The inner radius of an open reflector is preferably greater than 0.75 R to reflect the maximum of the radial component of the electric field of the wave (see equation (3)).
Il faut également noter l'existence d'une autre pseudo cavité ouverte constituée par la diode, entre la cathode 2 et l'anode 3, 4. Si la fréquence fondamentale de résonance de cette autre pseudo cavité est identique à celle créée dans le guide d'onde où se trouvent les réflecteurs, le rendement est encore meilleur. Le dispositif de l'invention peut avantageusement être utilisé dans de nombreuses configurations parmi lesquelles on peut citer : plusieurs vircators en phase couplés entre eux ; une structure maître/esclave (s) dans laquelle un ou plusieurs magnétrons ou klystrons relativistes en phase couplés entre eux (les esclaves) sont déclenchés par un vircator externe (le maître) ; un vircator alimenté par une source de rayonnement externe dans la région de la diode qui favorise la mise en paquets du faisceau d'électrons. It should also be noted the existence of another pseudo open cavity constituted by the diode, between the cathode 2 and the anode 3, 4. If the fundamental frequency of resonance of this other pseudo cavity is identical to that created in the guide where the reflectors are, the efficiency is even better. The device of the invention can advantageously be used in many configurations among which can be mentioned: several phase vircators coupled together; a master / slave structure (s) in which one or more phase relativistic magnetrons or klystrons coupled together (the slaves) are triggered by an external vircator (the master); a vircator powered by an external radiation source in the region of the diode that promotes the bundling of the electron beam.

Claims

REVENDICATIONS
1. Dispositif générateur d' ondes hyperfréquences comprenant une diode (4,2) constituée d'une anode (4) et d'une cathode (2) et apte à créer une cathode virtuelle (6) par accumulation d'électrons dans un guide d'ondes circulaire (5) apte à propager une onde hyperfréquence émise par oscillation de la cathode virtuelle (6), caractérisé en ce qu'il comprend un premier réflecteur (8) transparent aux électrons et réfléchissant l'onde hyperfréquence et situé dans le guide d'ondes (5) de façon que la cathode virtuelle (6) soit positionnée entre l'anode (4) et le premier réflecteur (8) .1. Microwave wave generating device comprising a diode (4,2) consisting of an anode (4) and a cathode (2) and able to create a virtual cathode (6) by electron accumulation in a guide circular waveguide (5) adapted to propagate a microwave wave emitted by oscillation of the virtual cathode (6), characterized in that it comprises a first reflector (8) transparent to the electrons and reflecting the microwave wave and located in the waveguide (5) so that the virtual cathode (6) is positioned between the anode (4) and the first reflector (8).
2. Dispositif selon la revendication 1, caractérisé en ce que le premier réflecteur est positionné à l'intérieur du guide d'ondes (5) à une distance (Dl) de l'anode (4) égale à sensiblement deux fois la distance (d) qui sépare l'anode (4) de la cathode (2) .2. Device according to claim 1, characterized in that the first reflector is positioned inside the waveguide (5) at a distance (Dl) of the anode (4) equal to substantially twice the distance ( d) which separates the anode (4) from the cathode (2).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le premier réflecteur (8) ferme entièrement une section droite du guide (5) .3. Device according to claim 1 or 2, characterized in that the first reflector (8) completely closes a straight section of the guide (5).
4. Dispositif selon la revendication 1 ou4. Device according to claim 1 or
2, caractérisé en ce que le premier réflecteur (8) ferme une section droite du guide (5) sur une partie centrale de ladite section droite de sorte qu'une ouverture sensiblement annulaire soit présente entre le réflecteur et la paroi du guide (5) .2, characterized in that the first reflector (8) closes a straight section of the guide (5) on a central portion of said straight section so that a substantially annular opening is present between the reflector and the wall of the guide (5).
5. Dispositif selon la revendication 4, caractérisé en ce que la partie centrale du premier réflecteur (8) qui ferme la section droite du guide a un rayon supérieur ou égal à sensiblement 0,75 fois le rayon du guide circulaire (5) .5. Device according to claim 4, characterized in that the central portion of the first reflector (8) which closes the cross section of the guide has a radius greater than or equal to substantially 0.75 times the radius of the circular guide (5).
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier réflecteur est réalisé en mylar aluminisé.6. Device according to any one of the preceding claims, characterized in that the first reflector is made of aluminized mylar.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un ensemble de N réflecteurs supplémentaires (9) placés dans le guide d'ondes (5), N étant un entier supérieur ou égal à 1, chaque réflecteur supplémentaire (9) étant un réflecteur ouvert ou fermé transparent aux électrons et réfléchissant l'onde hyperfréquence, le réflecteur supplémentaire de rang i (i=l, 2, ..., N) étant situé, dans le guide d'ondes (5), au-delà du premier réflecteur (8) de sorte que la distance entre deux réflecteurs successifs soit sensiblement égale à deux fois la distance (d) qui sépare l'anode (4) de la cathode (2) .7. Device according to any one of the preceding claims, characterized in that it comprises a set of N additional reflectors (9) placed in the waveguide (5), N being an integer greater than or equal to 1, each an additional reflector (9) being an open or closed reflector transparent to the electrons and reflecting the microwave, the additional reflector of rank i (i = 1, 2, ..., N) being located in the waveguide ( 5), beyond the first reflector (8) so that the distance between two successive reflectors is substantially equal to twice the distance (d) between the anode (4) of the cathode (2).
8. Dispositif selon la revendications 7, caractérisé en ce que, dans le cas d'un réflecteur ouvert, la partie centrale du réflecteur ouvert ferme la section droite du guide sur un rayon supérieur ou égal à sensiblement 0,75 fois le rayon du guide circulaire (5) .8. Device according to claim 7, characterized in that, in the case of an open reflector, the central portion of the open reflector closes the cross section of the guide on a higher radius or equal to substantially 0.75 times the radius of the circular guide (5).
9. Dispositif selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que chaque réflecteur supplémentaire (9) est réalisé en mylar aluminisé. 9. Device according to any one of claims 7 or 8, characterized in that each additional reflector (9) is made of aluminized mylar.
EP05810745A 2004-10-05 2005-10-03 Microwave generating device with oscillating virtual cathode Active EP1815492B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452264A FR2876218B1 (en) 2004-10-05 2004-10-05 HYPERFREQUENCY WAVE GENERATING DEVICE WITH OSCILLATING VIRTUAL CATHODE.
PCT/FR2005/050802 WO2006037918A2 (en) 2004-10-05 2005-10-03 Microwave generating device with oscillating virtual cathode

Publications (2)

Publication Number Publication Date
EP1815492A2 true EP1815492A2 (en) 2007-08-08
EP1815492B1 EP1815492B1 (en) 2009-09-02

Family

ID=34951832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05810745A Active EP1815492B1 (en) 2004-10-05 2005-10-03 Microwave generating device with oscillating virtual cathode

Country Status (5)

Country Link
EP (1) EP1815492B1 (en)
AT (1) ATE441936T1 (en)
DE (1) DE602005016452D1 (en)
FR (1) FR2876218B1 (en)
WO (1) WO2006037918A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE532955C2 (en) * 2006-06-01 2010-05-18 Bae Systems Bofors Ab Microwave generating device
SE532962C2 (en) * 2006-06-01 2010-05-25 Bae Systems Bofors Ab Microwave generating device
WO2011037497A1 (en) * 2009-09-25 2011-03-31 Bae Systems Bofors Ab Device for generation of microwaves
IN2012DN03098A (en) * 2009-09-25 2015-09-18 Bae Systems Bofors Ab
RU2444082C2 (en) * 2010-05-24 2012-02-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" Generator of microwave signals on virtual cathode
RU2444081C1 (en) * 2010-07-05 2012-02-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" Controlled generator on virtual cathode
RU2444805C1 (en) * 2010-08-04 2012-03-10 Алексей Иванович Арбузов Microwave generator based on virtual cathode
FR3000289B1 (en) * 2012-12-20 2017-08-11 Commissariat Energie Atomique OSCILLATING VIRTUAL CATHODE MICROWAVE GENERATOR WITH OPEN REFLECTORS
FR3015767B1 (en) 2013-12-23 2016-02-05 Commissariat Energie Atomique OSCILLATING VIRTUAL CATHODE MICROWAVE WAVE GENERATING DEVICE WITH AXIAL GEOMETRY, COMPRISING AT LEAST ONE REFLECTOR AND A MAGNETIC RING, CONFIGURED TO BE POWERED BY A HIGH IMPEDANCE GENERATOR
RU2562831C1 (en) * 2014-06-27 2015-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Generator of electromagnetic pulses
RU2572104C1 (en) * 2014-08-26 2015-12-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Generator of electromagnetic pulses
RU2570196C1 (en) * 2014-08-26 2015-12-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Generator of electromagnetic pulses
RU2611574C2 (en) * 2015-08-03 2017-02-28 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for generating electromagnetic radiation of uhf range
RU2650103C1 (en) * 2016-12-30 2018-04-09 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Electromagnetic pulses generator
RU178718U1 (en) * 2017-12-04 2018-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" SHF-GENERATOR ON MULTI-SPEED ELECTRON FLOWS
CN110706990B (en) * 2019-10-08 2021-10-29 中国工程物理研究院应用电子学研究所 Waveguide inner filling metal grid array type C-band virtual cathode oscillator
RU201842U1 (en) * 2020-10-21 2021-01-15 Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет геосистем и технологий» (СГУГиТ) Vircator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553068A (en) * 1983-10-26 1985-11-12 The United States Of America As Represented By The Secretary Of The Army High power millimeter-wave source
FR2643506B1 (en) * 1989-02-17 1996-04-19 Thomson Csf VIRTUAL CATHODE MICROWAVE GENERATOR DEVICE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006037918A3 *

Also Published As

Publication number Publication date
DE602005016452D1 (en) 2009-10-15
WO2006037918A3 (en) 2008-06-26
FR2876218A1 (en) 2006-04-07
WO2006037918A2 (en) 2006-04-13
FR2876218B1 (en) 2006-11-24
ATE441936T1 (en) 2009-09-15
EP1815492B1 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
EP1815492B1 (en) Microwave generating device with oscillating virtual cathode
EP0013242B1 (en) Generator for very high frequency electromagnetic waves
EP0564359B1 (en) Microwave applicator and plasma reactor using the same
FR2499312A1 (en) MODEL MITIGATION DEVICE FOR GYROTRON CAVITIES
WO1999057542A1 (en) Method for exciting an optical cavity for detecting gas traces
EP0197843B1 (en) Device to excite a plasma in a gas column using microwaves, especially for the production of an ion laser
EP3087580B1 (en) Microwave wave generator device with oscillating virtual cathode, with axial geometry, comprising at least one reflector and a magnetic ring, which is configured to be powered by a high-impedance generator
EP2936537B1 (en) Microwave generator with oscillating virtual cathode and open reflectors
EP0015837A2 (en) Parallel-plane antenna with rotating polarisation
FR3042063A1 (en) DEVICE FOR GENERATING MICROWAVES
FR2942348A1 (en) DEVICE FOR GENERATING MICROWAVES
EP0407558B1 (en) Amplifier or oscillator device operating at ultrahigh frequency
EP0082769A1 (en) Frequency multiplier
EP0413018B1 (en) Hyperfrequency wave generator device with virtual cathode
FR2694447A1 (en) Electron gun to supply electrons grouped in short pulses.
EP0093058B1 (en) Feeding device for a corrugated conical primary radiating element for two frequency bands
FR2526582A1 (en) METHOD AND APPARATUS FOR PRODUCING MICROWAVE
EP0734048B1 (en) Procedure and device for coating or cleaning a substrate
FR2985384A1 (en) System for generating high power electromagnetic waves in e.g. acoustic field, has closing device adapted to outlet electromagnetic waves outside of cavity through outlet opening in passing configuration of device
EP3204984B1 (en) Method for generating high-power electromagnetic radiation
FR2688342A1 (en) Microwave electron tube
FR2544129A1 (en) RADIO WAVE GENERATOR FOR HYPERFREQUENCIES
FR2789216A1 (en) ELECTRIC POWER GENERATOR
FR2704695A1 (en) Rear radiation source for reflector antenna.
FR2893180A1 (en) Hyperfrequency oscillator tube e.g. backward wave oscillator, for e.g. medical application, has line constituted of obstacles generating wave whose one part is transmitted via prism towards hyperfrequency output to form electromagnetic wave

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070309

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20080626

17Q First examination report despatched

Effective date: 20081027

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005016452

Country of ref document: DE

Date of ref document: 20091015

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

26N No opposition filed

Effective date: 20100603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091203

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231025

Year of fee payment: 19

Ref country code: FR

Payment date: 20231023

Year of fee payment: 19

Ref country code: DE

Payment date: 20231018

Year of fee payment: 19