EP1813365B1 - Method of manufacturing a turbomachine part comprising cooling air outlets - Google Patents
Method of manufacturing a turbomachine part comprising cooling air outlets Download PDFInfo
- Publication number
- EP1813365B1 EP1813365B1 EP07101169A EP07101169A EP1813365B1 EP 1813365 B1 EP1813365 B1 EP 1813365B1 EP 07101169 A EP07101169 A EP 07101169A EP 07101169 A EP07101169 A EP 07101169A EP 1813365 B1 EP1813365 B1 EP 1813365B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- orifices
- wall
- portions
- orifice
- wax
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title description 4
- 238000000034 method Methods 0.000 claims description 30
- 238000003754 machining Methods 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 3
- 238000005495 investment casting Methods 0.000 claims description 2
- 239000002826 coolant Substances 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 8
- 238000005266 casting Methods 0.000 description 7
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/02—Lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/30—Arrangement of components
- F05D2250/32—Arrangement of components according to their shape
- F05D2250/324—Arrangement of components according to their shape divergent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/52—Outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/202—Heat transfer, e.g. cooling by film cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49336—Blade making
- Y10T29/49339—Hollow blade
- Y10T29/49341—Hollow blade with cooling passage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53613—Spring applier or remover
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53613—Spring applier or remover
- Y10T29/53617—Transmission spring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53613—Spring applier or remover
- Y10T29/53635—Leaf spring
Definitions
- the present invention relates to the cooling of turbine engine parts by air film.
- the engine parts swept by these gases are then subjected to high thermomechanical stresses. They are protected by circulating cooling air taken from the compressor in channels arranged under the wall and by evacuating it into the gas stream through small diameter orifices arranged so as to form a film of protective gas between the wall and the flow of hot gas.
- the parts concerned by this treatment are essentially the distributor sectors, consisting of one or more radial blades between two platforms in ring sectors delimiting the gas stream, as well as the blades of the first turbine stages. The mechanical strength and the life of the parts are increased by this means.
- the orifices are generally cylindrical holes, made in appropriate areas of the wall to be protected. In order to improve the formation of the air film along the wall, these holes are given a flared shape at its surface. These holes therefore consist of two distinct parts: a cylindrical portion calibrating the air flow and a portion shaped so as to diffuse and orient the flow of air to promote the flow in the formation zone of the cooling film . Examples of such orifices are illustrated in the patents US6183199 , EP 228338 and US 4197443 .
- a known method of manufacture consists in making these holes in two stages; the flaring portion of the orifice is first machined by electroerosion, a technique also referred to as EDM for electrodischarge machining, then the bottom is pierced by means of a laser beam, for example, to produce a cylindrical channel.
- EDM electrodischarge machining
- an electrode is placed at a distance from the surface to be eroded and electrical discharges are produced between it and the part. These discharges cause particles of matter and gradually erode the surface of the piece.
- the shape of the cavity obtained depends on the geometry of the electrode, which may be frustoconical, for example of rectangular section, or more complex with portions rounded as seen in the documents US 6,183,199 or EP228.338 .
- the second part, calibrated, is carried out either with the same electrode or by means of a laser beam.
- the electrode whatever its shape, even if it makes it possible to produce rounded wall portions inside the cavity, can not prevent sharp edges remaining. These edges are the seat of stress concentrations and present risks of crack initiation.
- the orifices are made in series by means of electrodes cut in a plate and which are therefore arranged in a row. Such a practice does not allow an individual optimization of the geometry of the orifices according to the local profile surrounding them.
- the patent EP 1616642 discloses a method for making cooling orifices in the wall of a blade. In the wax model are inserted points whose shape corresponds to that of the desired orifices. This process involves interventions on the delicate mold to achieve.
- This method is characterized in that it consists in forming in the wax model cavities corresponding to the first portions of said orifices of the part, by means of protuberances in the wax mold having a shape with radiated connection areas having a curved profile, complementary to that of said first portions, so that that the model has said cavities and that the output part of the foundry comprises said first portions of the preformed orifices, then machining in the casting part a second orifice portion, placing in communication the bottom of the first portion of orifice with the inner surface of the wall.
- this orifice portion on the wax model of the part, so that it is formed by casting, one can optimize its shape easily for each emission on the profile of the vein.
- the heavy and expensive implementation of the electroerosion technique can be avoided and such a method is compatible with the manufacture of multi-blade foundry distributor sectors.
- said first portion is of flared shape but the method of the invention allows any type of shape.
- connection areas between two non-coplanar surface portions of the protuberances at least in part have a curved profile so as to avoid the formation of sharp edges. They say they are radiated.
- the radius of curvature of the radiated surfaces is at least 0.1 mm, preferably 0.2 mm. The curvature of these surfaces is possibly progressive.
- a second portion of orifice is machined in the casting piece bringing the bottom of the first portion into communication with the inner surface of the wall.
- the section of this second orifice portion is advantageously calibrated so as to dose the air flow.
- This portion is of tubular shape with circular section or other, in particular oblong, slot-shaped for example.
- the machining is performed by means of a laser beam but other means can be implemented.
- the invention also covers the turbomachine part obtained according to the method and having cooling air outlet orifices whose connection areas of the first portions with the outer wall of the part are radiated.
- a blade 1 comprises a movable foot 3, a platform 5 and a blade 7.
- the blade is mounted by the foot in a suitable housing on the rim of a turbine disk.
- the blade is hollow and includes cavities arranged for the circulation of cooling air. A fraction of this air is directed through the wall of the blade through calibrated orifices. Some of these orifices are simple, tubular. Other orifices 10 comprise a flared portion so as to direct the air along the wall and make it possible to form a film or film for protecting the latter.
- orifices 10 with a flared portion downstream are for example arranged along the leading edge of the blade on the extrados face 10a or along a generally radial line on the underside of the blade 10b.
- Another example of a row of flared apertures is along the trailing edge on the intrados face at 10c.
- FIG. 2 a sectional view along the plane II-II of the wall 71 of the blade through an orifice 10.
- a first flared portion 10E opening on the outer surface of the wall 71 and a tubular portion 10T.
- the section of this portion 10T determines the rate of cooling air through the orifice.
- the air jet is spread laterally in the flared portion 10E, and forms a film together with the other adjacent jets along the wall of the blade.
- a model made of wax or other equivalent material which comprises a foundry core which forms the internal cavities of the blading.
- This nucleus is itself manufactured separately and generally has a complex shape in several elementary nuclei.
- This core is placed in a wax mold and the wax is injected into the space between the core and the inner wall of the mold.
- the wax model incorporates a core comprising a plurality of core elements 21a to 21d of ceramic material.
- the wax mold 30 here consists of two parts 30a and 30b each with a molding wall 30a 'and 30b' corresponding to the envelope of the piece.
- the mold of the example shown is simple in form but depending on the complexity of the room, it can include multiple elements.
- the wax model 20 is extracted from the mold 30 and is soaked in slips consisting of suspensions of ceramic particles to coat it with successive layers and to make a shell mold. After hardening the mold by cooking, the wax is removed.
- the piece is obtained by casting a molten metal which occupies the voids between the inner wall of the shell mold and the core. Thanks to a germ or a suitable selector and a controlled cooling, the metal solidifies according to a determined structure. Depending on the nature of the alloy and the expected properties of the part resulting from the casting, it may be directed solidification with a columnar structure, directed solidification with monocrystalline structure or equiaxial solidification respectively.
- the first two families of parts concern superalloys for parts subjected to high thermal and mechanical stresses in the turbojet engine, such as HP turbine blades.
- flared holes are formed by machining the casting piece.
- the hole that we see on the figure 2 is obtained by EDM machining.
- the connection area between the surface 71 ext and the flared hole 10E has an edge 10E1 that can not be avoided.
- a machining of this part would lead at best to the realization of a chamfer but not a rounded due in particular to the small size of this type of orifice.
- the machining tolerances would not allow a sufficiently precise positioning of the tool relative to the area to be machined.
- the wax mold in which the wax is injected has the impression of the first portions of the orifices.
- FIG 4 there is shown a sectional view at the inner surface 130a 'of the mold 130a and the model through a protrusion 132 of molding a first portion according to the invention.
- the elements of the invention corresponding to those of the prior art have the same reference increased by a hundred.
- the protrusion 132 has the shape of the first portion that is desired to print in the wall 120 'of the model 120 in wax.
- the faces of the protuberance do not include a part forming an angle less than a demolding limit angle with respect to the demoulding direction in this zone, represented by the arrow D.
- the angle is defined relative to the withdrawal direction of this insert.
- the use of an insert has the additional advantage of facilitating the modification of the profile of the protuberances, for example in the phase of part development. Just change the insert alone to make a room with the new flared opening profile.
- the piece 101 foundry has in its wall 171 a cavity 110E corresponding to the shape of the protrusion 132 which has been applied in the wall 120 'of the wax model 120.
- This cavity 110E constitutes the first portion of the orifice that it is desired to dig into the wall 120 '.
- the formation of the cooling air discharge orifices is completed by piercing the bottom of the cavity 110E, for example by a laser beam. This piercing forms a tubular channel 110T.
- the section of this channel 110T is determined by the desired air flow and its shape can be advantageously circular or oblong.
- the cavity 110E has a bottom A, whose shape seen from above, is substantially trapezoidal.
- the cavity is turned downstream with respect to the flow direction of the gases. This bottom is inclined between the tubular portion 110T and the edge A1 of connection to the outer surface 171 ext. of the wall 171.
- the flanks L1 and L2 of the cavity are curved in the form of cylindrical sectors L1A and L2A concave, here in evolutionary profile, along their connection zone with the bottom A. The surfaces are said to be radiated.
- the radius of curvature of these surfaces is preferably at least 0.1 mm. and varies along the profile.
- the flanks L1 and L2 also comprise curved surface portions L1S and L2S, with an evolutive profile, in the direction of the surface of the wall 171ext.
- the flank of the cavity located transversely between the two lateral flanks L1 and L2 also comprises a convex radiated portion BS of connection with the outer surface 171ext. of the wall 171, and concave radiated portions with the flanks L1 and L2.
- These radiated surface portions L1S, L2S and BS are complementary to the connecting surfaces of the protuberances 132 with the surface 130a 'of the wax mold 130a in which the model is molded. It is enough to conform correctly the protuberances to obtain a piece without sharp edge in these places.
- radiating connection portions having a radius of curvature, for example of 0.2 mm, with a minimum of 0.1 mm. They limit the thermal and mechanical stresses in these areas and reduce the occurrences of crack initiation. This improves the overall mechanical strength of the part and its life.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
La présente invention concerne le refroidissement de pièces de turbomachines par film d'air.The present invention relates to the cooling of turbine engine parts by air film.
Pour accroître les performances d'un moteur à turbine à gaz, on est amené à augmenter la température des gaz en sortie de la chambre de combustion. Les pièces du moteur balayées par ces gaz sont alors soumises à des contraintes thermomécaniques élevées. On les protège en faisant circuler de l'air de refroidissement prélevé au compresseur dans des canaux disposés sous la paroi et en évacuant celui-ci dans la veine gazeuse par des orifices de faible diamètre ménagés de manière à former une pellicule de gaz protectrice entre la paroi et le flux de gaz chaud. Les pièces concernées par ce traitement sont essentiellement les secteurs de distributeur, constitués d'une ou plusieurs pales radiales entre deux plates-formes en secteurs d'anneau délimitant la veine gazeuse, ainsi que les aubes mobiles des premiers étages de turbine. La tenue mécanique et la durée de vie des pièces s'en trouvent augmentées par ce moyen.To increase the performance of a gas turbine engine, it is necessary to increase the temperature of the gases at the outlet of the combustion chamber. The engine parts swept by these gases are then subjected to high thermomechanical stresses. They are protected by circulating cooling air taken from the compressor in channels arranged under the wall and by evacuating it into the gas stream through small diameter orifices arranged so as to form a film of protective gas between the wall and the flow of hot gas. The parts concerned by this treatment are essentially the distributor sectors, consisting of one or more radial blades between two platforms in ring sectors delimiting the gas stream, as well as the blades of the first turbine stages. The mechanical strength and the life of the parts are increased by this means.
Les orifices sont généralement des perçages de forme cylindrique, pratiqués dans des zones appropriées de la paroi à protéger. Afin d'améliorer la formation de la pellicule d'air le long de la paroi, on donne à ces perçages une forme évasée au niveau de sa surface. Ces trous sont donc constitués de deux parties distinctes : une partie cylindrique calibrant le flux d'air et une partie conformée de manière à diffuser et orienter le flux d'air afin de favoriser l'écoulement dans la zone de formation de la pellicule de refroidissement. Des exemples de tels orifices sont illustrés dans les brevets
Une méthode de fabrication connue consiste à réaliser ces perçages en deux temps ; on commence par usiner la partie évasée de l'orifice par électroérosion, technique désignée aussi par le sigle EDM pour electrodischarge machining, puis on en perce le fond au moyen d'un faisceau laser, par exemple, pour réaliser un canal cylindrique.A known method of manufacture consists in making these holes in two stages; the flaring portion of the orifice is first machined by electroerosion, a technique also referred to as EDM for electrodischarge machining, then the bottom is pierced by means of a laser beam, for example, to produce a cylindrical channel.
Selon la technique EDM, une électrode est placée à distance de la surface à éroder et des décharges électriques sont produites entre celle-ci et la pièce. Ces décharges entraînent des particules de matière et érodent progressivement la surface de la pièce. La forme de la cavité obtenue dépend de la géométrie de l'électrode qui peut être tronconique, par exemple à section rectangulaire, ou plus complexe avec des portions arrondies comme on le voit dans les documents
On rencontre avec cette technique les problèmes suivants.The following problems are encountered with this technique.
L'électrode, quelle que soit sa forme, même si elle permet de réaliser à l'intérieur de la cavité des portions de paroi arrondies, ne peut empêcher que des arêtes vives subsistent. Ces arêtes sont le siège de concentrations de contraintes et présentent des risques d'amorces de criques.The electrode, whatever its shape, even if it makes it possible to produce rounded wall portions inside the cavity, can not prevent sharp edges remaining. These edges are the seat of stress concentrations and present risks of crack initiation.
Pour des raisons principalement économiques, on réalise les orifices en série au moyen d'électrodes découpées dans une plaque et qui sont donc disposées en rangée. Une telle pratique ne permet pas une optimisation individuelle de la géométrie des orifices en fonction du profil local les environnant.For mainly economic reasons, the orifices are made in series by means of electrodes cut in a plate and which are therefore arranged in a row. Such a practice does not allow an individual optimization of the geometry of the orifices according to the local profile surrounding them.
Il n'est pas possible de réaliser ce type d'orifice dans les zones d'accès réduit. C'est le cas notamment lorsqu'il s'agit de réaliser des perçages le long des pales d'un secteur de distributeur bipale dans le canal inter aubes. Comme dans cette zone la forme évasée des orifices est indispensable, il n'est alors pas possible de réaliser des secteurs de distributeur bipales par fonderie en une seule pièce. On fabrique chaque aubage séparément et on les soude ensemble pour former le secteur de distributeur. Le coût de fabrication est alors plus élevé.It is not possible to make this type of orifice in areas of reduced access. This is particularly the case when it comes to making holes along the blades of a two-way distributor sector in the inter-blade channel. As in this area the flared shape of the orifices is essential, it is not possible to achieve dual distributor sectors by casting in one piece. Each vane is manufactured separately and welded together to form the dispenser sector. The manufacturing cost is then higher.
Le brevet
On résout ces problèmes conformément à l'invention, avec un procédé de réalisation d'orifices d'évacuation de fluide de refroidissement dans la paroi d'une pièce fabriquée selon la technique de la fonderie à la cire perdue avec formation d'un modèle dans un moule à cire, la paroi comportant une surface interne et une surface externe, les orifices comportant une première portion débouchant à la surface externe de la paroi. Ce procédé est caractérisé par le fait qu'il consiste à ménager dans le modèle en cire des cavités correspondant aux premières portions desdits orifices de la pièce, par le moyen de protubérances dans le moule à cire ayant une forme avec des zones de raccordement rayonnées ayant un profil courbe, complémentaire à celle des dites premières portions, de telle sorte que le modèle présente lesdites cavités et que la pièce en sortie de fonderie comporte les dites premières portions des orifices préformées, puis à usiner dans la pièce venue de fonderie une seconde portion d'orifice, mettant en communication le fond de la première portion d'orifice avec la surface interne de la paroi.These problems are solved in accordance with the invention with a method of producing cooling fluid discharge ports in the wall of a piece made by the lost-wax casting technique with formation of a pattern in a wax mold, the wall having an inner surface and an outer surface, the orifices having a first portion opening to the outer surface of the wall. This method is characterized in that it consists in forming in the wax model cavities corresponding to the first portions of said orifices of the part, by means of protuberances in the wax mold having a shape with radiated connection areas having a curved profile, complementary to that of said first portions, so that that the model has said cavities and that the output part of the foundry comprises said first portions of the preformed orifices, then machining in the casting part a second orifice portion, placing in communication the bottom of the first portion of orifice with the inner surface of the wall.
En réalisant cette portion d'orifice sur le modèle en cire de la pièce, de telle sorte qu'elle soit formée par fonderie, on peut optimiser sa forme aisément pour chaque émission sur le profil de la veine. On peut éviter la mise en oeuvre lourde et coûteuse de la technique d'électroérosion et une telle méthode est compatible avec la fabrication de secteurs de distributeurs multi-pales de fonderie.By making this orifice portion on the wax model of the part, so that it is formed by casting, one can optimize its shape easily for each emission on the profile of the vein. The heavy and expensive implementation of the electroerosion technique can be avoided and such a method is compatible with the manufacture of multi-blade foundry distributor sectors.
Le plus fréquemment, ladite première portion est de forme évasée mais le procédé de l'invention permet tout type de forme.Most frequently, said first portion is of flared shape but the method of the invention allows any type of shape.
Les zones de raccordement entre deux portions de surface non coplanaires des protubérances au moins en partie ont un profil courbe de manière à éviter la formation d'arêtes vives. On dit qu'elles sont rayonnées. Le ou Les rayons de courbure des surfaces rayonnées est ou sont d'au moins 0,1 mm, de préférence 0,2 mm. La courbure de ces surfaces est éventuellement évolutive.The connection areas between two non-coplanar surface portions of the protuberances at least in part have a curved profile so as to avoid the formation of sharp edges. They say they are radiated. The radius of curvature of the radiated surfaces is at least 0.1 mm, preferably 0.2 mm. The curvature of these surfaces is possibly progressive.
Conformément à une autre caractéristique, on usine dans la pièce venue de fonderie une seconde portion d'orifice mettant en communication le fond de la première portion avec la surface interne de la paroi. La section de cette seconde portion d'orifice est avantageusement calibrée de manière à doser le débit d'air. Cette portion est de forme tubulaire à section circulaire ou autre, notamment oblongue, en forme de fente par exemple.According to another characteristic, a second portion of orifice is machined in the casting piece bringing the bottom of the first portion into communication with the inner surface of the wall. The section of this second orifice portion is advantageously calibrated so as to dose the air flow. This portion is of tubular shape with circular section or other, in particular oblong, slot-shaped for example.
Selon une méthode préférée, l'usinage est effectué au moyen d'un faisceau laser mais d'autres moyens peuvent être mis en oeuvre.According to a preferred method, the machining is performed by means of a laser beam but other means can be implemented.
L'invention couvre également la pièce de turbomachine obtenue selon le procédé et comportant des orifices d'évacuation d'air de refroidissement dont les zones de raccordement des premières portions avec la paroi externe de la pièce sont rayonnées.The invention also covers the turbomachine part obtained according to the method and having cooling air outlet orifices whose connection areas of the first portions with the outer wall of the part are radiated.
On décrit maintenant l'invention plus en détail en relation avec un mode de réalisation non limitatif illustré sur les dessins annexés et sur lesquels
- La
figure 1 montre une aube mobile de turbine refroidie; - La
figure 2 montre une vue en coupe de la paroi au niveau d'un orifice d'évacuation d'air de refroidissement selon l'art antérieur ; - La
figure 3 montre en coupe un modèle de pièce dans son moule à cire ; - Les
figures 4 à 6 montrent les étapes de réalisation de trous évasés selon l'invention ; - Les
figures 7 et 8 montrent des vues en perspective d'un orifice évasé selon l'invention.
- The
figure 1 shows a turbine blade cooled turbine; - The
figure 2 shows a sectional view of the wall at a cooling air discharge orifice according to the prior art; - The
figure 3 shows in section a piece model in its wax mold; - The
Figures 4 to 6 show the steps of making flared holes according to the invention; - The
Figures 7 and 8 show perspective views of a flared orifice according to the invention.
Comme on le voit sur la
On a représenté sur la
En raison de la complexité de sa géométrie et des contraintes thermomécaniques auxquelles elle doit résister, ce type de pièce est fabriqué par fonderie à la cire perdue. On rappelle ci-après cette technique connue.Due to the complexity of its geometry and the thermomechanical constraints it must resist, this type of piece is made by lost wax foundry. This technique is known below.
On réalise tout d'abord un modèle en cire ou autre matériau équivalent qui comprend un noyau de fonderie figurant les cavités internes de l'aubage. Ce noyau est lui-même fabriqué séparément et a généralement une forme complexe en plusieurs noyaux élémentaires. On place ce noyau dans un moule à cire et on injecte la cire dans l'espace ménagé entre le noyau et la paroi interne du moule. On obtient le modèle incorporant le noyau ; il est la réplique de la pièce à fondre.First of all, a model made of wax or other equivalent material is produced which comprises a foundry core which forms the internal cavities of the blading. This nucleus is itself manufactured separately and generally has a complex shape in several elementary nuclei. This core is placed in a wax mold and the wax is injected into the space between the core and the inner wall of the mold. We obtain the model incorporating the nucleus; it is the replica of the piece to be melted.
Un exemple de pièce, ici une aube de turbine, est représenté sur la
Ensuite, on extrait du moule 30 le modèle en cire 20 et on le trempe dans des barbotines constituées de suspensions de particules céramiques pour l'enrober de couches successives et confectionner un moule carapace. Après avoir durci le moule par une cuisson, on élimine la cire. On obtient la pièce en coulant un métal en fusion qui vient occuper les vides entre la paroi intérieure du moule carapace et le noyau. Grâce à un germe ou un sélecteur approprié et un refroidissement contrôlé, le métal se solidifie selon une structure déterminée. Selon la nature de l'alliage et les propriétés attendues de la pièce résultant de la coulée, il peut s'agir de solidification dirigée à structure colonnaire, de solidification dirigée à structure monocristalline ou de solidification équiaxe respectivement. Les deux premières familles de pièces concernent des superalliages pour pièces soumises à de fortes contraintes tant thermiques que mécaniques dans le turboréacteur, comme les aubes de turbine HP.Then, the
Selon la technique de l'art antérieur, on forme les trous évasés par usinage de la pièce venue de fonderie. L'orifice que l'on voit sur la
On propose selon l'invention de réaliser la dite première portion, évasée, des orifices directement sur le modèle en cire. De préférence le moule à cire dans lequel la cire est injectée présente l'empreinte des premières portions des orifices.According to the invention, it is proposed to make said first flared portion of the orifices directly on the wax model. Preferably the wax mold in which the wax is injected has the impression of the first portions of the orifices.
Sur la
La pièce 101 venue de fonderie présente dans sa paroi 171 une cavité 110E correspondant à la forme de la protubérance 132 que l'on a appliquée dans la paroi 120' du modèle en cire 120. Cette cavité 110E constitue la première portion de l'orifice que l'on souhaite creuser dans la paroi 120'. On termine la formation des orifices d'évacuation d'air de refroidissement en perçant le fond de la cavité 110E, par faisceau laser par exemple. Ce perçage forme un canal tubulaire 110T. La section de ce canal 110T est déterminée par le débit d'air souhaité et sa forme peut être avantageusement circulaire ou oblongue. Ces deux étapes sont illustrées par les
Sur les
On voit la première portion 110E, de forme évasée, débouchant sur la surface externe 171ext. de la paroi 171. Une seconde portion 110T, tubulaire, est usinée dans le fond la première portion et débouche sur la surface interne 171int. de la paroi 171. La cavité 110E a un fond A, dont la forme vue de dessus, est sensiblement trapézoïdale. La cavité est tournée vers l'aval par rapport au sens d'écoulement des gaz. Ce fond est incliné entre la portion tubulaire 110T et le bord A1 de raccordement à la surface extérieure 171 ext. de la paroi 171. Les flancs L1 et L2 de la cavité sont incurvés en forme de secteurs cylindriques L1A et L2A concave, ici à profil évolutif, le long de leur zone de raccordement avec le fond A. Les surfaces sont dites rayonnées. Le rayon de courbure de ces surfaces est avantageusement d'au moins 0,1 mm. et varie le long du profil. Les flancs L1 et L2 comprennent également des portions de surface incurvées L1S et L2S, à profil évolutif, en direction de la surface de la paroi 171ext. Le flanc de la cavité situé transversalement entre les deux flancs latéraux L1 et L2 comprend aussi une partie rayonnée BS convexe de raccordement avec la surface extérieure 171ext. de la paroi 171, et des portions rayonnées concaves avec les flancs L1 et L2.We see the
Ces portions de surface rayonnées L1S, L2S et BS sont complémentaires des surfaces de raccordement des protubérances 132 avec la surface 130a' du moule à cire 130a dans lequel le modèle est moulé. Il suffit de conformer correctement les protubérances pour obtenir une pièce sans arête vive en ces endroits.These radiated surface portions L1S, L2S and BS are complementary to the connecting surfaces of the
Ces portions de raccordement rayonnées présentant un rayon de courbure, par exemple de 0,2 mm, avec un minimum de 0,1 mm. Elles limitent les contraintes thermiques et mécaniques dans ces zones et réduisent les occurrences d'amorce de crique. On améliore ainsi globalement la tenue mécanique de la pièce et sa durée de vie.These radiating connection portions having a radius of curvature, for example of 0.2 mm, with a minimum of 0.1 mm. They limit the thermal and mechanical stresses in these areas and reduce the occurrences of crack initiation. This improves the overall mechanical strength of the part and its life.
Un autre avantage par rapport à l'usinage EDM est l'obtention de surfaces présentant une faible rugosité, favorable aérodynamiquement. Par exemple la rugosité Ra par EDM est typiquement de 4,5 µm. Obtenir une valeur plus faible est très onéreux. Par le procédé de fonderie on obtient aisément un état de surface plus fin ; Ra = 1,2 µm par exemple.Another advantage compared to EDM machining is the obtaining of surfaces having a low roughness, favorable aerodynamically. For example, the roughness Ra by EDM is typically 4.5 μm. Getting a lower value is very expensive. By the foundry process it is easy to obtain a finer surface condition; Ra = 1.2 μm, for example.
On note que la ligne d'intersection de la zone tubulaire 110T avec le fond de la première portion 110 E n'est pas rayonnée dans la mesure où elle est obtenue par usinage.Note that the line of intersection of the
Claims (11)
- Method for forming coolant discharge orifices (110) in a wall (171) of a part produced in accordance with the lost-wax casting process with formation of a model in a wax mould, the wall (171) comprising an inner surface (171int) and an outer surface (171ext), the orifices comprising a first portion (110E) which opens into the outer surface (171 ext) of the wall, characterised in that the method involves forming, in the wax model, cavities which correspond to the first portions (110E) of said orifices (110) in the part by means of protrusions (132) in the wax mould which are shaped with radiating connection regions and have a curved profile, this shaping being complementary to that of said first portions (110E), in such a way that the model has said cavities and the cast part comprises said first portions of the preformed orifices, then machining in the cast part a second orifice portion (110T) which connects the base of the first portion (110E) of the orifice to the inner surface (171 int) of the wall.
- Method according to the preceding claim, wherein the cavities corresponding to said first portions (110E) of the orifices are flared in shape.
- Method according to either claim 1 or claim 2, wherein the connection regions, at least in part, formed over the cavities corresponding to said first portions (110E) of the orifices radiate with a curved profile.
- Method according to claim 3, wherein the connection region connecting the flanks of the cavities corresponding to said first portions (110E) of the orifices to the outer surface of the model radiates with a curved profile.
- Method according to either claim 3 or claim 4, wherein the radius/radii of curvature of the radiating surfaces is/are at least 0.1 mm.
- Method according to the preceding claim, wherein the radius/radii of curvature of the radiating surfaces is/are 0.2 mm.
- Method according to any one of claims 3 to 6, wherein the radius of curvature progresses along the profile of the radiating surfaces.
- Method according to claim 1, wherein the second portion (110T) of the orifice is machined into a tubular shape.
- Method according to the preceding claim, wherein the machining is carried out by means of a laser beam or by EDM.
- Turbomachine part formed in accordance with the method of any one of the preceding claims and comprising cooling air discharge orifices with wall elements, of which the regions (BS) connecting the first portions of the orifice to the outer wall (171 ext) of the part radiate with a curved profile.
- Part according to the preceding claim, of which the radii of curvature of the radiating surfaces are at least 0.1 mm.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0650292A FR2896710B1 (en) | 2006-01-27 | 2006-01-27 | PROCESS FOR MANUFACTURING TURBOMACHINE COMPONENT WITH COOLING AIR EXHAUST ORIFICES |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1813365A1 EP1813365A1 (en) | 2007-08-01 |
EP1813365B1 true EP1813365B1 (en) | 2011-05-18 |
Family
ID=37027418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07101169A Active EP1813365B1 (en) | 2006-01-27 | 2007-01-25 | Method of manufacturing a turbomachine part comprising cooling air outlets |
Country Status (6)
Country | Link |
---|---|
US (1) | US7841083B2 (en) |
EP (1) | EP1813365B1 (en) |
CN (1) | CN101007337B (en) |
CA (1) | CA2576709C (en) |
FR (1) | FR2896710B1 (en) |
RU (1) | RU2421296C2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8915289B2 (en) * | 2011-05-10 | 2014-12-23 | Howmet Corporation | Ceramic core with composite insert for casting airfoils |
US8899303B2 (en) | 2011-05-10 | 2014-12-02 | Howmet Corporation | Ceramic core with composite insert for casting airfoils |
US9138804B2 (en) | 2012-01-11 | 2015-09-22 | United Technologies Corporation | Core for a casting process |
US8408446B1 (en) | 2012-02-13 | 2013-04-02 | Honeywell International Inc. | Methods and tooling assemblies for the manufacture of metallurgically-consolidated turbine engine components |
US9033670B2 (en) | 2012-04-11 | 2015-05-19 | Honeywell International Inc. | Axially-split radial turbines and methods for the manufacture thereof |
US9115586B2 (en) | 2012-04-19 | 2015-08-25 | Honeywell International Inc. | Axially-split radial turbine |
US9476305B2 (en) | 2013-05-13 | 2016-10-25 | Honeywell International Inc. | Impingement-cooled turbine rotor |
US20150184518A1 (en) * | 2013-12-26 | 2015-07-02 | Ching-Pang Lee | Turbine airfoil cooling system with nonlinear trailing edge exit slots |
EP3002415A1 (en) * | 2014-09-30 | 2016-04-06 | Siemens Aktiengesellschaft | Turbomachine component, particularly a gas turbine engine component, with a cooled wall and a method of manufacturing |
US11280214B2 (en) | 2014-10-20 | 2022-03-22 | Raytheon Technologies Corporation | Gas turbine engine component |
US10260353B2 (en) | 2014-12-04 | 2019-04-16 | Rolls-Royce Corporation | Controlling exit side geometry of formed holes |
US20160298462A1 (en) | 2015-04-09 | 2016-10-13 | United Technologies Corporation | Cooling passages for a gas turbine engine component |
US10006293B1 (en) | 2015-07-22 | 2018-06-26 | Florida Turbine Technologies, Inc. | Apparatus and process for refining features in an additive manufactured part |
FR3053999B1 (en) * | 2016-07-13 | 2020-06-26 | Safran Aircraft Engines | IMPROVED PRODUCTION OF VANE COOLING HOLES |
US10927705B2 (en) * | 2018-08-17 | 2021-02-23 | Raytheon Technologies Corporation | Method for forming cooling holes having separate complex and simple geometry sections |
US11000925B2 (en) * | 2018-09-21 | 2021-05-11 | Raytheon Technologies Corporation | Method of forming cooling holes |
FR3101104B1 (en) * | 2019-09-23 | 2021-09-03 | Safran Aircraft Engines | Device for cooling by air jets of a turbine housing |
FR3124822B1 (en) | 2021-07-02 | 2023-06-02 | Safran | TURBOMACHINE BLADE EQUIPPED WITH A COOLING CIRCUIT AND LOST WAX MANUFACTURING METHOD OF SUCH A BLADE |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR90962E (en) * | 1961-11-07 | 1968-03-22 | Howe Sound Co | Method and device for the production of core models |
FR1305064A (en) * | 1961-11-07 | 1962-09-28 | Howe Sound Co | Method and device for the production of core models |
US3596703A (en) * | 1968-10-01 | 1971-08-03 | Trw Inc | Method of preventing core shift in casting articles |
US3957104A (en) * | 1974-02-27 | 1976-05-18 | The United States Of America As Represented By The Administrator Of The United States National Aeronautics And Space Administration | Method of making an apertured casting |
FR2569225A1 (en) * | 1977-06-11 | 1986-02-21 | Rolls Royce | Cooled hollow blade for a gas turbine engine |
US4197443A (en) * | 1977-09-19 | 1980-04-08 | General Electric Company | Method and apparatus for forming diffused cooling holes in an airfoil |
US4684323A (en) * | 1985-12-23 | 1987-08-04 | United Technologies Corporation | Film cooling passages with curved corners |
US5243759A (en) * | 1991-10-07 | 1993-09-14 | United Technologies Corporation | Method of casting to control the cooling air flow rate of the airfoil trailing edge |
US5382133A (en) * | 1993-10-15 | 1995-01-17 | United Technologies Corporation | High coverage shaped diffuser film hole for thin walls |
EP0945593B1 (en) * | 1998-03-23 | 2003-05-07 | ALSTOM (Switzerland) Ltd | Film-cooling hole |
US7036556B2 (en) * | 2004-02-27 | 2006-05-02 | Oroflex Pin Development Llc | Investment casting pins |
US7172012B1 (en) * | 2004-07-14 | 2007-02-06 | United Technologies Corporation | Investment casting |
US7144220B2 (en) * | 2004-07-30 | 2006-12-05 | United Technologies Corporation | Investment casting |
-
2006
- 2006-01-27 FR FR0650292A patent/FR2896710B1/en active Active
-
2007
- 2007-01-25 EP EP07101169A patent/EP1813365B1/en active Active
- 2007-01-26 RU RU2007103246/02A patent/RU2421296C2/en active
- 2007-01-26 CA CA2576709A patent/CA2576709C/en active Active
- 2007-01-29 CN CN2007100032267A patent/CN101007337B/en active Active
- 2007-01-29 US US11/668,198 patent/US7841083B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR2896710A1 (en) | 2007-08-03 |
CA2576709A1 (en) | 2007-07-27 |
RU2421296C2 (en) | 2011-06-20 |
CN101007337A (en) | 2007-08-01 |
RU2007103246A (en) | 2008-08-10 |
CN101007337B (en) | 2013-01-09 |
US7841083B2 (en) | 2010-11-30 |
EP1813365A1 (en) | 2007-08-01 |
FR2896710B1 (en) | 2009-10-30 |
US20070175009A1 (en) | 2007-08-02 |
CA2576709C (en) | 2014-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1813365B1 (en) | Method of manufacturing a turbomachine part comprising cooling air outlets | |
EP2307157B1 (en) | Method of manufacturing a blading component | |
EP3313597B1 (en) | Method for manufacturing a blade comprising a squealer tip integrating a small wall | |
CN109128022B (en) | Additive manufacturing integrated cast core structure with ceramic shell | |
EP3325777B1 (en) | High-pressure distributor blading having a variable-geometry insert | |
EP3274559A1 (en) | Ceramic core for a multi-cavity turbine blade | |
FR2898384A1 (en) | MOBILE TURBINE DRAWER WITH COMMON CAVITY COOLING AIR SUPPLY | |
WO2016001544A1 (en) | Method for manufacturing a two-component blade for a gas turbine engine and blade obtained by such a method | |
CA2887335C (en) | Method for manufacturing at least one metal turbine engine part | |
EP3942156B1 (en) | Tubular impingement insert for a turbomachine vane | |
EP4363697A1 (en) | Turbomachine vane provided with a cooling circuit and method for lost-wax manufacturing of such a vane | |
EP4118304A1 (en) | Turbomachine hollow blade | |
EP3942157B1 (en) | Turbine engine vane equipped with a cooling circuit and lost-wax method for manufacturing such a vane | |
FR2874187A1 (en) | Fabrication by lost wax casting of turbine components, such as blades incorporating two or more cavities, using wedging elements to improve control of wall thickness | |
FR3037972A1 (en) | PROCESS SIMPLIFYING THE CORE USED FOR THE MANUFACTURE OF A TURBOMACHINE BLADE | |
WO2024056977A1 (en) | Cluster of wax models and mould for manufacturing a plurality of turbine engine elements by lost-wax casting | |
FR2949366A1 (en) | Low pressure turbine's fixed or movable blade i.e. nozzle blade, repairing method for aeronautical turbojet engine, involves assembling replacement part on blade by welding/soldering, where part is formed by metal powder injection molding | |
FR3085288A1 (en) | METHOD FOR MANUFACTURING A METAL ASSEMBLY FOR A TURBOMACHINE BY LOST WAX FOUNDRY | |
FR3026973A1 (en) | IMPROVED CLUSTER AND CARAPACE MODEL FOR THE MANUFACTURE BY LOST WAX MOLDING OF AIRCRAFT TURBOMACHINE AIRCRAFT ELEMENTS | |
WO2023057705A1 (en) | Improved method for manufacturing a shell mould for the manufacture of aeronautical metal components by lost-wax casting | |
WO2024218455A1 (en) | Turbine engine blade blank obtained by metal casting and method for manufacturing such a blank | |
FR3094035A1 (en) | TURBOMACHINE VANE EQUIPPED WITH A COOLING CIRCUIT WITH OPTIMIZED CONNECTION ZONE | |
FR3076750A1 (en) | METHOD FOR MANUFACTURING A WHEEL FOR A TURBOMACHINE | |
FR3108539A1 (en) | DIRECTED SOLIDIFICATION PROCESS FOR METAL ALLOYS AND MODEL IN ELIMINABLE MATERIAL FOR THE PROCESS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070125 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ROSSET, PATRICE Inventor name: HUCHIN, PATRICK Inventor name: SOULALIOUX, BORIS Inventor name: ALAUX, THIERRY |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20090304 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007014596 Country of ref document: DE Effective date: 20110630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007014596 Country of ref document: DE Effective date: 20120221 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES, FR Effective date: 20170719 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231219 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231219 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231219 Year of fee payment: 18 |