EP1813032B1 - Antenna architecture and lc coupler - Google Patents

Antenna architecture and lc coupler Download PDF

Info

Publication number
EP1813032B1
EP1813032B1 EP05807888A EP05807888A EP1813032B1 EP 1813032 B1 EP1813032 B1 EP 1813032B1 EP 05807888 A EP05807888 A EP 05807888A EP 05807888 A EP05807888 A EP 05807888A EP 1813032 B1 EP1813032 B1 EP 1813032B1
Authority
EP
European Patent Office
Prior art keywords
antenna
gate
coupler
signal
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05807888A
Other languages
German (de)
French (fr)
Other versions
EP1813032A2 (en
Inventor
Holger Heuermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fachhochschule Aachen
Original Assignee
Fachhochschule Aachen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fachhochschule Aachen filed Critical Fachhochschule Aachen
Publication of EP1813032A2 publication Critical patent/EP1813032A2/en
Application granted granted Critical
Publication of EP1813032B1 publication Critical patent/EP1813032B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • H01Q3/2617Array of identical elements
    • H01Q3/2623Array of identical elements composed of two antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude

Definitions

  • the invention relates to an antenna architecture according to the preamble of patent claim 1.
  • the digital data to be transmitted is transmitted via a gigahertz radio link.
  • a gigahertz radio link For example, in the UMTS standard frequencies between 1.900 and 2.170 GHz and for a WLAN frequencies around 2.4 GHz are used.
  • the wavelengths are a few centimeters and thus in the microwave range. Radio signals of this wavelength are thus to be disturbed by comparatively small objects, with the interference of an object depending on the distance of the object to the antenna and on the electrical conductivity of the object. The smaller the distance of the object to the antenna and the greater its electrical conductivity, the more the radio signal emitted by the antenna is disturbed.
  • the disturbance can on the one hand cause the propagation of the radio signal to be impaired, on the other hand, the radio signal can be deflected in its direction, in particular reflected, so that the reflected portion is directed back to the antenna, for example.
  • the antennas of such a UMTS or WLAN device are almost directly connected to a power amplifier, so that for optimum transmission of the transmission power between the power amplifier and the antenna, an adaptation of the resistors must be present.
  • the ideal state if no disturbing object in the vicinity of the antenna changes the antenna characteristic, adaptation is present. If, however, the input resistance of the antenna changes, this leads to a change in the operating point of the power amplifier and the transmission behavior:
  • EVM value Error Vector Magnitude
  • the object of the invention is thus to propose a reaction-free and adapted antenna architecture.
  • a circuit is to be proposed which can be implemented with as few and simple components as possible.
  • LC coupler encompasses all coupler architectures which use lumped elements, ie concentrated components such as SMD components, thin-film or thick-film elements, semiconductor elements, capacitors or coils and similar assemblies.
  • the LC coupler has a load port at which a signal that is not emitted and reflected by an antenna can be coupled out, so that it is ensured in a simple and reliable manner that this reflected signal no longer reaches a power amplifier.
  • the proposed antenna architecture thus preferably consists of a four-core 0 ° / 90 ° LC coupler and an antenna, which is formed from two identical individual antennas and a termination or load resistor, which is adapted in its resistance of the system impedance.
  • the input port of the LC coupler is connected to the power amplifier and the load port is terminated with the terminator.
  • Each of the two identical individual antennas is connected to one antenna port each.
  • the LC coupler causes a wave entering the LC coupler from the output to ultimately be absorbed in the matched terminator.
  • wave portions reflected on an object close to the antenna and received by one of the individual antennas are absorbed in the terminating resistor of the LC coupler and thus do not revert to the power amplifier.
  • the LC coupler acts for these from the output into the circuit incoming waves as an insulator with respect to the power amplifier, so that the 0 ° / 90 ° coupler forms an isolator antenna in conjunction with the two individual antennas.
  • a 0 ° / 90 ° coupler is proposed alternatively or cumulatively, which has an input port, a load port and another first and another second port, each gate each of a first and a second Torklemme is formed.
  • Torklemmen adjacent gates are not in the working frequency range substantially effective, so ohmic or otherwise influence signals components so that two Torklemmen adjacent gates each coincide to a Torklemme and can form a common Torklemme, of course, negligible and never completely avoidable residual resistances, - inductances and capacities are present or may be present.
  • Such an arrangement is referred to herein as short-circuited, so that the first gate terminal of the input gate and the first gate terminal of the first further gate are short-circuited, the second gate terminal of the input gate and the first gate terminal of the load gate are short-circuited, the second gate terminal of the first further gate and the first gate terminal of the second further gate are short-circuited and the second gate terminal of the second further gate and the second gate terminal of the load gate are short-circuited.
  • the first gate terminal of the input gate is preferably the first gate terminal of the first further gate and the second gate terminal of the input gate is the first gate terminal of the load gate.
  • the second gate terminal of the first further gate is the first gate terminal of the second further gate and the second gate terminal is preferably the second gate terminal of the load gate.
  • the 0 ° / 90 ° coupler thus has only four gate terminals.
  • the LC coupler is now characterized in that the first gate terminal of the input gate is connected via a first LC element to the second terminal of the second further gate and the second gate terminal of the input port is connected via a second LC element to the second gate terminal of the first further gate is, and that the dimensioning of the two LC-members in the intended working frequency range causes a phase shift of 90 ° between the two signal transmission paths.
  • the 0 ° / 90 ° coupler can be realized in particular with only two passive components which effect the desired phase shift in the signal transmission paths in the range of the operating frequency of the 0 ° / 90 ° coupler.
  • couplers are known as a way of connecting two signal-carrying circuits to one another in such a way that an exchange of the signals can take place.
  • a line coupler is mentioned as a possibility for defined signal attenuation or signal attenuation, and it is stated that couplers can be used to split signals into multiple ports.
  • line couplers can be used to generate two signals with broadband 90 ° phase shift.
  • an abstract sketched ring coupler is given.
  • a resistive coupler which has only resistances, ie purely ohmic resistors as coupler resistors and for which an example calculation for determining the attenuation is given. A phase shift between the gates is not possible with this resistive coupler due to the use of pure resistors.
  • the coupler resistances can also be complex. Thus, for example, one effective resistance can be replaced by an inductance and the other effective resistance can be replaced by a capacitance. Although the coupler would then be lossless and decoupled to a broadband gate, the coupling itself would become frequency-dependent.
  • FIG. 1 1 shows a schematic circuit diagram of the antenna architecture 1 with a 0 ° / 90 ° LC coupler, an antenna 3 formed from two identical individual antennas 3a, 3b and a terminating resistor 4.
  • the input port 5 of the 0 ° / 90 ° LC coupler 2 is connected via the non-phase-shifting signal transmission path 6 with the first antenna port 7, to which the individual antenna 3a is connected.
  • the input 5 is connected to the second Antennenausgangstor 9, to which the sub-antenna 3b is connected.
  • the load gate 10 the terminating resistor 4 which is matched in its resistance value to the system impedance of the 0 ° / 90 ° coupler, is connected.
  • each of the sub-antennas 3a, 3b must emit only half of the energy emitted by the power amplifier, so that thus the sub-antennas 3a, 3b must be designed for only half of the energy emitted by the power amplifier.
  • the subantenna 3a, 3b must be designed compared to the classical solution with an antenna and insulators only for half the current carrying capacity, so that this antenna architecture can also be realized in media that was hardly possible for the classic design with an antenna.
  • the arrangement is also much more robust against interference, since often only one of the two sub-antennas is detected by such a disorder.
  • Another advantage is that the directional characteristic of the antenna 3 can be optimized, so that, for example, in a mobile phone, the electromagnetic load of a user can be reduced.
  • the arrangement has the particular advantage that a wave reflected by an antenna or a wave traveling from the output into the circuit is absorbed in the terminating resistor 4 and thus is not reflected to the input port.
  • LC coupler for example, a 0 ° / 90 ° hybrid coupler can be used, which is particularly suitable when the subantenna 3a, 3b and the input port 5 are constructed in unbalanced line technology. It is understood that other 0 ° / 90 ° couplers can be used.
  • FIG. 2 shows a schematic circuit diagram of the antenna architecture 1 with a plurality of 0 ° / 90 ° -Koppplem connected in series.
  • the power amplifier is connected to the input port 5 of the uppermost 0 ° / 90 ° coupler 2.
  • the input port 5 of the second 0 ° / 90 ° coupler is connected.
  • a plurality of 0 ° / 90 ° couplers 2 can thus be connected in series one behind the other, wherein an input port 5 of a 0 ° / 90 ° coupler is always connected to the load port 10 of the preceding 0 ° / 90 ° coupler and thus forms the terminating resistor , Only the last 0 ° / 90 ° coupler 2 in the row must then be completed with a matching terminating resistor 4.
  • the 0 ° / 90 ° couplers in this series connection can then be advantageously designed to be dimensioned for different, mutually adjacent operating frequencies, thereby forming an ultra broad band (UWB) antenna and so that the antenna architecture over a wide frequency range can be used.
  • UWB ultra broad band
  • separate frequency bands can be controlled if the operating frequencies do not adjoin one another.
  • FIG. 3 shows a 0 ° / 90 ° coupler 2, which can be realized in the manner described above only with a capacitance 11 and an inductance 12, and thus can be referred to as LC coupler.
  • Each gate of the LC coupler 2 is formed from two gate clamps.
  • Each gate terminal of a gate is connected to a gate terminal of the respective adjacent gate via an ideal line, so that in each case two to one Torklemme coincide.
  • the gate terminal 5a of the entrance gate 5 is connected via an ideal line to the gate terminal 7a of the first further gate 7, so that these two coincide to form a common gate terminal.
  • the Torklemmen 7b and 10, 10b and 9b and 9a and 5b fall together in each case to a common Torklemme, so that the LC coupler 2 actually has only four gate terminals.
  • the capacitance 11 and the inductance 12 are connected between these four gate terminals so that the capacitance 11, the common gate terminal of the input gate 5 and the first further gate 7 with the common gate terminal of the load gate 10 and the second further gate 9, and the inductor 12th the common gate terminal of the input 5 and the antenna gate 9 connects to the common gate terminal of the first further gate 7 and the second further gate 10.
  • the LC coupler is a mono-band 0 ° / 90 ° coupler for a working frequency of 2GHz.
  • this 0 ° / 90 ° coupler is that one point of this circuit may be connected to ground, resulting in two unbalanced gates. If, for example, the common door terminal of the input door 5 and the antenna door 9 is connected to ground, unbalanced components can be connected to these two gates. Thus, it is a 0 ° / 90 ° coupler 2 with integrated balun functionality.
  • the two individual antennas 3 a, 3 b and the input port 5 can be realized either in symmetrical ladder technology, or all three components must be realized in asymmetrical ladder technology.
  • a balun must be connected between the gate and the component in a known manner in order to restore the symmetry.
  • a so-called Balun balanced - unbalanced
  • FIG. 4 shows a circuit diagram in which a mono-band coupler described above to a -90 ° / 90 ° dual-band coupler 13 is developed.
  • the -90 ° / 90 ° coupler 13 has an input port 5 and an antenna port 9 and a first further port 7 and a second further port 10.
  • the inductance and the capacitance used in the 0 ° / 90 ° coupler are here by a parallel resonant circuit, which is formed from the inductor 17 and the capacitor 16, and a series resonant circuit consisting of the capacitance 14 and the inductance 15 is formed replaced.
  • the operation for the two operating frequencies of the dual-band coupler 13 is equal to that of the LC and the CL coupler.
  • the dual-band coupler thus acts as a 90 ° coupler and for the higher operating frequency than -90 ° coupler. If one interchanges the parallel and the series resonant circuit in this variant of the coupler 13, then the dual-band coupler 13 behaves correspondingly at the lower operating frequency as a -90 ° coupler and at the higher operating frequency as a 90 ° coupler.
  • the respective center frequencies of the two operating frequencies of the dual-band coupler must stand in no particular distance from each other.

Abstract

Disclosed is an antenna architecture for the non-reacting connection of an antenna to a power amplifier, the antenna being connected to the power amplifier via a coupler. The inventive architecture is improved by the fact that the coupler is provided with an input gate for feeding the signal that is to be transmitted to the antenna while comprising a first and a second antenna gate for transmitting the signal to the antenna, the input gate and the load gate encompassing a joint gate terminal and the first and the second antenna gate being equipped with a joint gate terminal. Furthermore, the antenna comprises a first and a second, identically designed individual antenna, the first individual antenna being connected to the first antenna gate and the second individual antenna being connected to the second antenna gate. Additionally, an adjusted terminating resistor is connected to the load gate while the coupler transmits the signal to the first antenna gate at a phase angle of 0° and to the second antenna gate at a phase angle of 90°.

Description

Die Erfindung betrifft eine Antennenarchitektur gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to an antenna architecture according to the preamble of patent claim 1.

In einem modernen drahtlosen Kommunikationssystemen, wie zum Beispiel dem Mobilfimkstandard UMTS oder in einem drahtlos vernetzten Computernetzwerk, einem so genannten wireless local area network (WLAN), werden die zu übertragenden digitalen Daten über eine Funkverbindung im Gigahertzbereich übertragen. Beispielsweise werden im UMTS Standard Frequenzen zwischen 1,900 und 2,170 GHz und für ein WLAN Frequenzen um 2,4 GHz genutzt. Für Funksignale dieser Frequenzen liegen die Wellenlängen bei einigen Zentimetern und damit im Mikrowellenbereich. Funksignale dieser Wellenlänge sind damit durch vergleichsweise kleine Objekte zu stören, wobei die Störwirkung eines Objekts vom Abstand des Objekts zur Antenne und von der elektrischen Leitfähigkeit des Objekts abhängt. Je geringer der Abstand des Objekts zur Antenne und je größer dessen elektrische Leitfähigkeit ist, umso stärker wird das von der Antenne ausgesendete Funksignal gestört. Dabei kann die Störung einerseits bewirken, dass die Ausbreitung des Funksignals beeinträchtigt wird, andererseits kann das Funksignal in seiner Richtung umgelenkt, insbesondere reflektiert werden, so dass der reflektierte Anteil beispielsweise zur Antenne zurück gelenkt wird.In modern wireless communication systems, such as the UMTS mobile phone standard or in a wirelessly networked computer network, a so-called wireless local area network (WLAN), the digital data to be transmitted is transmitted via a gigahertz radio link. For example, in the UMTS standard frequencies between 1.900 and 2.170 GHz and for a WLAN frequencies around 2.4 GHz are used. For radio signals of these frequencies, the wavelengths are a few centimeters and thus in the microwave range. Radio signals of this wavelength are thus to be disturbed by comparatively small objects, with the interference of an object depending on the distance of the object to the antenna and on the electrical conductivity of the object. The smaller the distance of the object to the antenna and the greater its electrical conductivity, the more the radio signal emitted by the antenna is disturbed. In this case, the disturbance can on the one hand cause the propagation of the radio signal to be impaired, on the other hand, the radio signal can be deflected in its direction, in particular reflected, so that the reflected portion is directed back to the antenna, for example.

Gegebenenfalls, und insbesondere in dem Fall, dass ein elektrisch gut leitendes Objekt sich in der Nähe der Antenne befindet, werden durch ein Objekt nicht nur die ausgestrahlten Signale in ihrer Ausbreitung gestört, sondern es kommt, beispielsweise durch den geringen Abstand, auch zu Veränderungen der Antennencharakteristik, insbesondere des Eingangswiderstands der Antenne.If necessary, and in particular in the event that a good electrical conductive object is located in the vicinity of the antenna, not only the emitted signals are disturbed by an object in their propagation, but it comes, for example by the small distance, also to changes in the antenna characteristic, in particular the input resistance of the antenna.

In der Praxis sind die Antennen eines solchen UMTS- oder WLAN-Gerätes nahezu direkt einem Leistungsverstärker verbunden, so dass für eine optimale Übertragung der Sendeleistung zwischen dem Leistungsverstärker und der Antenne eine Anpassung der Widerstände vorliegen muss. Im Idealzustand, wenn also kein störendes Objekt in der Nähe der Antenne die Antennencharakteristik verändert, liegt Anpassung vor. Ändert sich jedoch der Eingangswiderstand der Antenne, so führt dies zu einer Veränderung des Arbeitspunktes des Leistungsverstärkers und des Übertragungsverhaltens: In der Praxis steigt der Wert der Error Vector Magnitude (EVM-Wert), die als Maß für die Linearitätsabweichung von Hochfrequenz-Leistungsverstärkern herangezogen wird.In practice, the antennas of such a UMTS or WLAN device are almost directly connected to a power amplifier, so that for optimum transmission of the transmission power between the power amplifier and the antenna, an adaptation of the resistors must be present. In the ideal state, if no disturbing object in the vicinity of the antenna changes the antenna characteristic, adaptation is present. If, however, the input resistance of the antenna changes, this leads to a change in the operating point of the power amplifier and the transmission behavior: In practice, the value of the Error Vector Magnitude (EVM value), which is used as a measure of the linearity deviation of high-frequency power amplifiers ,

Zur Erzielung einer hohen Datenübertragungsrate muss jedoch ein lineares Übertragungsverhalten des vorgeschalteten Leistungsverstärkers erreicht werden. Ein Verschiebung des Arbeitspunktes des Leistungsverstärkers, mit der ein steigender EVM-Wert einhergeht, ist damit nachteilig. Versuche, einen Leistungsverstärker in seinem Verhalten so robust auszulegen, dass ein elektrisch gut leitendes, nahes Objekt den Arbeitspunkt nicht beeinflusst, sind bis jetzt ohne Erfolg geblieben.To achieve a high data transmission rate, however, a linear transmission behavior of the upstream power amplifier must be achieved. A shift of the operating point of the power amplifier, which is accompanied by an increasing EVM value, is disadvantageous. Attempts to design a power amplifier so robust in its behavior that an electrically good conductive, close object does not affect the operating point, have so far been unsuccessful.

Aus dem Stand der Technik ist bekannt, dass in solchen System so genannte "Isolatoren" eingesetzt werden, die zwischen die Antenne und den Leistungsverstärker geschaltet werden und den Leistungsverstärker von der Antenne "isolieren", um so Rückwirkungen auf den Leistungsverstärker zu verhindern. Diese Isolatoren bewirken damit, dass der Arbeitspunkt des Leistungsverstärkers nicht aus dem Idealpunkt verschoben wird. Weiterhin wird neben diesen aus passiven Bauelementen bestehenden Isolatoren an elektronischen Regellösungen gearbeitet, bei denen elektronische Regler eingesetzt werden. Solche Isolatoren sowie elektronische Regellösungen werden beispielsweise beschrieben in Bezooijen A., Chanlo Ch., Roermund, A.H.M., Adaptively Preserving Power Amplifier Linearity under Antenna Mismatch, IMS2004, Fort Worth.It is known in the art that in such systems so-called "isolators" are used which are connected between the antenna and the power amplifier and "isolate" the power amplifier from the antenna so as to prevent feedback to the power amplifier. These insulators thus cause the operating point of the power amplifier is not shifted from the ideal point. Furthermore, in addition to these existing passive components insulators to electronic control solutions worked in which electronic controllers are used. Such isolators and electronic control solutions are described for example in Bezooijen A., Chanlo Ch., Roermund, AHM, Adaptively Preserving Power Amplifier Linearity under Antenna Mismatch, IMS2004, Fort Worth.

Der Einsatz solcher aus dem Stand der Technik bekannten Isolatoren bringt mehrere Nachteile mit sich. Isolatoren sind teuer, sie benötigen viel Raum und weisen im Vergleich zu anderen Bauteilen ein hohes Gewicht auf. Weiterhin weisen sie eine hohe Dämpfung auf, so dass die von dem Leistungsverstärker abgegebene Ausgangsleistung nicht optimal an die Antenne übertragen und damit abgestrahlt wird. Dies führt zu einer erhöhten Leistungsaufnahme durch den Verstärker und damit insbesondere in batteriebetriebenen Mobilfunkgeräten, wie beispielsweise UMTS-Mobiltelefonen, so genannten Handsets, dazu, dass die Batterien bzw. Akkus schnell leer sind. Weiterhin können die auf elektronischer Regelung basierenden Isolatoren auf Grund des zurück geführten Regelkreises zur Instabilität neigen, was gegebenenfalls weitere unerwünschte Störungen verursacht. Der Einsatz derartiger Isolatoren zur Entkopplung der Antenne von dem Leistungsverstärker ist somit zwar möglich, jedoch mit großen Nachteilen und Schwierigkeiten verbunden.
Eine gattungsgemäße Antennenarchitektur ist aus der WO 2004/051878 A1 und der US 3,375,524 bekannt.
The use of such known from the prior art isolators brings several disadvantages. Insulators are expensive, they require a lot of space and have a high weight compared to other components. Furthermore, they have a high attenuation, so that the output power output by the power amplifier is not optimally transmitted to the antenna and thus emitted. This leads to an increased power consumption by the amplifier and thus in particular in battery-powered mobile devices, such as UMTS mobile phones, so-called handsets, to the fact that the batteries or rechargeable batteries are quickly empty. Furthermore, the electronic control based insulators may tend to be unstable due to the feedback control loop, possibly causing further unwanted noise. The use of such isolators for decoupling the antenna from the power amplifier is thus possible, but associated with great disadvantages and difficulties.
A generic antenna architecture is from the WO 2004/051878 A1 and the US 3,375,524 known.

Aufgabe der Erfindung ist es somit, eine rückwirkungsfreie und angepasste Antennenarchitektur vorzuschlagen. Um dies zu erreichen soll eine Schaltung vorgeschlagen werden, die mit möglichst wenigen und einfachen Bauelementen realisiert werden kann.The object of the invention is thus to propose a reaction-free and adapted antenna architecture. To achieve this, a circuit is to be proposed which can be implemented with as few and simple components as possible.

Zur Lösung dieser Aufgabe wird eine Antennenarchitektur mit den Merkmalen.To solve this problem is an antenna architecture with the features.

In vorliegendem Zusammenhang umfasst der Begriff "LC-Koppler" sämtlicher Kopplerarchitekturen, die auf "lumped elements", also auf konzentrierte Bauteile, wie SMD-Bauelemente, Dünnschicht oder Dickschichtelemente, Halbleiterelemente, Kondensatoren oder Spulen und ähnliche Baugruppen, zurückgreifen.In the present context, the term "LC coupler" encompasses all coupler architectures which use lumped elements, ie concentrated components such as SMD components, thin-film or thick-film elements, semiconductor elements, capacitors or coils and similar assemblies.

Der LC-Koppler weist ein Lasttor auf, an welchem ein von einer Antenne nicht abgestrahltes und reflektiertes Signal ausgekoppelt werden kann, so dass auf einfache und betriebssichere Weise sichergestellt wird, dass dieses reflektierte Signal einen Leistungsverstärker nicht mehr erreicht.The LC coupler has a load port at which a signal that is not emitted and reflected by an antenna can be coupled out, so that it is ensured in a simple and reliable manner that this reflected signal no longer reaches a power amplifier.

Die vorgeschlagene Antennenarchitektur besteht damit vorzugsweise aus einem viertorigen 0°/90°-LC-Koppler und einer Antenne, die aus zwei baugleichen Einzelantennen gebildet ist sowie einem Abschluss- oder Lastwiderstand, der in seinem Widerstandswert der Systemimpedanz angepasst ist. Das Eingangstor des LC-Kopplers wird mit dem Leistungsverstärker verbunden und das Lasttor wird mit dem Abschlusswiderstand abgeschlossen. Jede der beiden baugleichen Einzelantennen wird an jeweils ein Antennentor angeschlossen.The proposed antenna architecture thus preferably consists of a four-core 0 ° / 90 ° LC coupler and an antenna, which is formed from two identical individual antennas and a termination or load resistor, which is adapted in its resistance of the system impedance. The input port of the LC coupler is connected to the power amplifier and the load port is terminated with the terminator. Each of the two identical individual antennas is connected to one antenna port each.

Der LC-Koppler bewirkt, dass eine vom Ausgang in den LC-Koppler hineinlaufende Welle letztlich in dem angepassten Abschlusswiderstand absorbiert wird. Somit werden Wellenanteile, die an einem nahe an der Antenne befindlichen Objekt reflektiert und von einer der Einzelantennen empfangen werden, in dem Abschlusswiderstand des LC-Kopplers absorbiert und wirken damit nicht auf den Leistungsverstärker zurück. Insofern wirkt der LC-Koppler für diese vom Ausgang her in die Schaltung einlaufenden Wellen wie ein Isolator gegenüber dem Leistungsverstärker, so dass der 0°/90°-Koppler in Verbindung mit den beiden Einzelantennen eine Isolatorantenne bildet.The LC coupler causes a wave entering the LC coupler from the output to ultimately be absorbed in the matched terminator. Thus, wave portions reflected on an object close to the antenna and received by one of the individual antennas are absorbed in the terminating resistor of the LC coupler and thus do not revert to the power amplifier. In this respect, the LC coupler acts for these from the output into the circuit incoming waves as an insulator with respect to the power amplifier, so that the 0 ° / 90 ° coupler forms an isolator antenna in conjunction with the two individual antennas.

Zur möglichst einfachen Realisierung einer solchen Antennenarchitektur wird alternativ bzw. kumulativ ein 0°/90°-Koppler vorgeschlagen, der ein Eingangstor, ein Lasttor sowie ein weiteres erstes und ein weiteres zweites Tor aufweist, wobei jedes Tor jeweils aus einer ersten und einer zweiten Torklemme gebildet ist. Zwischen den Torklemmen benachbarter Tore befinden sich keine in dem Arbeitsfrequenzbereich wesentlich wirksame, also ohmsche oder sonst wie Signale beeinflussende Bauelemente, so dass zwei Torklemmen benachbarter Tore jeweils zu einer Torklemme zusammenfallen und eine gemeinsame Torklemme bilden können, wobei selbstverständlich vernachlässigbare und nie ganz vermeidbare Restwiderstände, - induktivitäten und -kapazitäten vorliegen bzw. vorliegen können. Eine derartige Anordnung wird vorliegend als kurzgeschlossen bezeichnet, so dass die erste Torklemme des Eingangstores und die erste Torklemme des ersten weiteren Tores kurzgeschlossen sind, die zweite Torklemme des Eingangstores und die erste Torklemme des Lasttores kurzgeschlossen sind, die zweite Torklemme des ersten weiteren Tores und die erste Torklemme des zweiten weiteren Tores kurzgeschlossen sind sowie die zweite Torklemme des zweiten weiteren Tores und die zweite Torklemme des Lasttores kurzgeschlossen sind.For the simplest possible realization of such an antenna architecture, a 0 ° / 90 ° coupler is proposed alternatively or cumulatively, which has an input port, a load port and another first and another second port, each gate each of a first and a second Torklemme is formed. Between the Torklemmen adjacent gates are not in the working frequency range substantially effective, so ohmic or otherwise influence signals components so that two Torklemmen adjacent gates each coincide to a Torklemme and can form a common Torklemme, of course, negligible and never completely avoidable residual resistances, - inductances and capacities are present or may be present. Such an arrangement is referred to herein as short-circuited, so that the first gate terminal of the input gate and the first gate terminal of the first further gate are short-circuited, the second gate terminal of the input gate and the first gate terminal of the load gate are short-circuited, the second gate terminal of the first further gate and the first gate terminal of the second further gate are short-circuited and the second gate terminal of the second further gate and the second gate terminal of the load gate are short-circuited.

Damit ist vorzugsweise die erste Torklemme des Eingangstores die erste Torklemme des ersten weiteren Tores und die zweite Torklemme des Eingangstores die erste Torklemme des Lasttores. Die zweite Torklemme des ersten weiteren Tores ist die erste Torklemme des zweiten weiteren Tores und dessen zweite Torklemme ist vorzugsweise die zweite Torklemme des Lasttores. Der 0°/90°-Koppler weist somit dann nur vier Torklemmen auf.Thus, the first gate terminal of the input gate is preferably the first gate terminal of the first further gate and the second gate terminal of the input gate is the first gate terminal of the load gate. The second gate terminal of the first further gate is the first gate terminal of the second further gate and the second gate terminal is preferably the second gate terminal of the load gate. The 0 ° / 90 ° coupler thus has only four gate terminals.

Der LC-Koppler ist nun dadurch gekennzeichnet, dass die erste Torklemme des Eingangstores über ein erstes LC-Glied mit der zweiten Klemme des zweiten weiteren Tores und die zweite Torklemme des Eingangstores über ein zweites LC-Glied mit der zweiten Torklemme des ersten weiteren Tores verbunden ist, und dass die Dimensionierung der beiden LC-Glieder im vorgesehenen Arbeitsfrequenzbereich zwischen den beiden Signalübertragungspfaden eine Phasenverschiebung von 90° bewirkt.The LC coupler is now characterized in that the first gate terminal of the input gate is connected via a first LC element to the second terminal of the second further gate and the second gate terminal of the input port is connected via a second LC element to the second gate terminal of the first further gate is, and that the dimensioning of the two LC-members in the intended working frequency range causes a phase shift of 90 ° between the two signal transmission paths.

Damit lässt sich der 0°/90°-Koppler insbesondere mit nur zwei passiven Bauelementen realisieren, die im Bereich der Arbeitsfrequenz des 0°/90°-Kopplers die gewünschte Phasenverschiebung in den Signalübertragungspfaden bewirken.In this way, the 0 ° / 90 ° coupler can be realized in particular with only two passive components which effect the desired phase shift in the signal transmission paths in the range of the operating frequency of the 0 ° / 90 ° coupler.

Aus dem Stand der Technik sind andererseits Koppler als Möglichkeit bekannt, zwei signalführende Kreise so miteinander zu verbinden, dass ein Austausch der Signale stattfinden kann. So ist in der Fachliteratur, " Messsysteme der Hochfrequenztechnik", Burkhard Schiek, Hütbig Verlag 1984 , ein Leitungskoppler als Möglichkeit zur definierten Signalabschwächung oder Signaldämpfung erwähnt, und es ist angegeben, dass Koppler dazu eingesetzt werden können, Signale auf mehrere Tore aufzuteilen. Schließlich ist angegeben, dass Leitungskoppler dafür eingesetzt werden können, zwei Signale mit breitbandig 90°-Phasenverschiebung zu erzeugen. Als Beispiel ist zum einen ein abstrakt skizzierter Ringkoppler angegeben. Weiterhin ist ein resistiver Koppler erwähnt, der ausschließlich Wirkwiderstände, also rein ohmsche Widerstände als Kopplerwiderstände aufweist und für den eine Beispielrechnung zur Bestimmung der Dämpfung angegeben ist. Eine Phasenverschiebung zwischen den Toren ist bei diesem resistiven Koppler auf Grund der Verwendung der reinen Wirkwiderstände nicht möglich. Zu diesem resistiven Koppler ist schließlich angegeben, dass die Kopplerwiderstände auch komplex sein können. So könne beispielsweise der eine Wirkwiderstand durch eine Induktivität und der andere Wirkwiderstand durch eine Kapazität ersetzt sein. Damit sei der Koppler dann zwar verlustlos und zu einem Tor breitbandig entkoppelt, jedoch werde die Kopplung selbst frequenzabhängig.On the other hand, couplers are known as a way of connecting two signal-carrying circuits to one another in such a way that an exchange of the signals can take place. So in the literature, " Measuring Systems of High Frequency Technology ", Burkhard Schiek, Hütbig Verlag 1984 , a line coupler is mentioned as a possibility for defined signal attenuation or signal attenuation, and it is stated that couplers can be used to split signals into multiple ports. Finally, it is stated that line couplers can be used to generate two signals with broadband 90 ° phase shift. As an example, an abstract sketched ring coupler is given. Furthermore, a resistive coupler is mentioned, which has only resistances, ie purely ohmic resistors as coupler resistors and for which an example calculation for determining the attenuation is given. A phase shift between the gates is not possible with this resistive coupler due to the use of pure resistors. Finally, for this resistive coupler it is stated that the coupler resistances can also be complex. Thus, for example, one effective resistance can be replaced by an inductance and the other effective resistance can be replaced by a capacitance. Although the coupler would then be lossless and decoupled to a broadband gate, the coupling itself would become frequency-dependent.

Die Verwendung von "lumped elements" ermöglicht es bei den erfindungsgemäßen LC-Kopplern die elektrische Länge auf 20° zu begrenzen. Hierdurch können die entsprechenden Koppler sehr klein gebaut werden und insbesondere auch in mobilen Geräten ohne weiteres zur Anwendung kommen. Andererseits versteht es sich, dass die Begrenzung der elektrischen Länge der Koppler auf 20° bzw. 18° oder insbesondere 15° auch unabhängig von der Verwendung von "lumped elements" vorteilhaft ist, um baulich kleine und robuste Antennenarchitekturen zur rückwirkungsfreien Verbindung einer Antenne mit einem Leistungsverstärker bereitzustellen, bei welchen die Antenne über einen Koppler an den Leistungsverstärker angeschlossen ist, wobei der Koppler zur Einspeisung des an die Antenne zu übertragenden Signals ein Eingangstor sowie zur Übertragung des Signals an die Antenne ein erstes und ein zweites Antennentor aufweist, wobei die Antenne eine erste und eine zweite, baugleiche Einzelantenne aufweist, wobei die erste Einzelantenne an das erste Antennentor und die zweite Einzelantenne an das zweite Antennentor angeschlossen ist, wobei das Lasttor abgeschlossen ist, und wobei der Koppler das Signal auf das erste Antennentor mit einer ersten Phase und auf das zweite Antennentor mit einer zweiten, um 90° gegenüber der ersten Phase verschobenen Phase überträgt.The use of "lumped elements" makes it possible with the LC couplers according to the invention to limit the electrical length to 20 °. As a result, the corresponding coupler can be built very small and especially in mobile devices are readily used. On the other hand, it is understood that the limitation of the electrical length of the coupler to 20 ° or 18 ° or 15 ° in particular regardless of the use of "lumped elements" is advantageous to structurally small and robust antenna architectures for non-reactive connection of an antenna with a Power amplifier in which the antenna is connected via a coupler to the power amplifier, wherein the coupler for feeding the signal to be transmitted to the antenna has an input port and for transmitting the signal to the antenna, a first and a second antenna port, wherein the antenna a first and a second, identical single antenna, wherein the first individual antenna is connected to the first antenna port and the second individual antenna to the second antenna port, wherein the load port is completed, and wherein the coupler, the signal to the first antenna port with a first phase and the second antenna port mi t transmits a second, by 90 ° relative to the first phase shifted phase.

Es gibt nun mehrere Möglichkeiten, die erfindungsgemäße Antennenarchitektur und den 0°/90°-LC-Koppler in vorteilhafter Art und Weise auszugestalten. Im Folgenden werden nun mehrere bevorzugte Ausführungsbeispiele der Antennearchitektur und des 0°/90°-LC-Kopplers anhand von Zeichnungen beschrieben. Dabei zeigt

Figur 1:
eine schematische Schaltskizze der Antennenarchitektur;
Figur 2:
eine schematische Schaltskizze der Antennenarchitektur mit mehreren, in Reihe geschalteten 0°/90°-Kopplern;
Figur 3:
eine Schaltskizze eines 0°/90°-Kopplers; und
Figur 4
eine Schaltskizze eines -90°/90°-Dual-Band-Kopplers.
There are now several ways to design the antenna architecture according to the invention and the 0 ° / 90 ° LC coupler in an advantageous manner. Several preferred embodiments of the antenna architecture and the 0 ° / 90 ° LC coupler will now be described with reference to drawings. It shows
FIG. 1:
a schematic circuit diagram of the antenna architecture;
FIG. 2:
a schematic circuit diagram of the antenna architecture with multiple, connected in series 0 ° / 90 ° couplers;
FIG. 3:
a circuit diagram of a 0 ° / 90 ° coupler; and
FIG. 4
a circuit diagram of a -90 ° / 90 ° dual-band coupler.

Figur 1 zeigt eine schematische Schaltskizze der Antennenarchitektur 1 mit einem 0°/90°-LC-Koppler, einer aus zwei baugleichen Einzelantennen 3a, 3b gebildeten Antenne 3 und einem Abschlusswiderstand 4. Das Eingangstor 5 des 0°/90°-LC-Kopplers 2 ist über den nicht phasenverschiebenden Signalübertragungspfad 6 mit dem ersten Antennentor 7 verbunden, an das die Einzelantenne 3a angeschlossen ist. Über den um 90°-phasenverschiebenden Signalübertragungspfad 8 ist der Eingang 5 mit dem zweiten Antennenausgangstor 9 verbunden, an dem die Teilantenne 3b angeschlossen ist. An dem vierten Tor des LC-Kopplers, dem Lasttor 10, ist der in seinem Widerstandswert an die Systemimpedanz des 0°/90°-Kopplers angepasste Abschlusswiderstand 4 angeschlossen. FIG. 1 1 shows a schematic circuit diagram of the antenna architecture 1 with a 0 ° / 90 ° LC coupler, an antenna 3 formed from two identical individual antennas 3a, 3b and a terminating resistor 4. The input port 5 of the 0 ° / 90 ° LC coupler 2 is connected via the non-phase-shifting signal transmission path 6 with the first antenna port 7, to which the individual antenna 3a is connected. about the 90 ° phase-shifting signal transmission path 8, the input 5 is connected to the second Antennenausgangstor 9, to which the sub-antenna 3b is connected. At the fourth port of the LC coupler, the load gate 10, the terminating resistor 4, which is matched in its resistance value to the system impedance of the 0 ° / 90 ° coupler, is connected.

Läuft nun eine Welle von einem hier nicht dargestellten Leistungsverstärker über das Eingangstor 5 in den 0°/90°-Koppler 2, so wird diese zum Einen über den nicht phasenverschiebenden Signalübertragungspfad 6 zu dem ersten Antennentor 7 und damit auf die Teilantenne 3a übertragen. Zum anderen wird die Welle über den 90° phasenverschiebenden Signalübertragungspfad 8 zu dem zweiten Antennentor 9 und damit auf die zweite Teilantenne 3b übertragen. Das in den 0°/90°-Koppler eingespeiste Wellensignal wird so auf die beiden Signalübertragungspfade 6, 8 aufgeteilt und von der ersten Teilantenne 3a ohne Phasenverschiebung und von der zweiten Teilantenne 3b mit einer Phasenverschiebung von 90° abgestrahlt.Now runs a wave from a power amplifier, not shown here via the input port 5 in the 0 ° / 90 ° coupler 2, it is transmitted to the one not on the phase-shifting signal transmission path 6 to the first antenna port 7 and thus to the sub-antenna 3a. On the other hand, the wave is transmitted via the 90 ° phase-shifting signal transmission path 8 to the second antenna port 9 and thus to the second sub-antenna 3b. The wave signal fed into the 0 ° / 90 ° coupler is thus split between the two signal transmission paths 6, 8 and emitted by the first subantenna 3a without phase shift and by the second subantenna 3b with a phase shift of 90 °.

Damit muss jede der Teilantennen 3a, 3b nur die Hälfte der vom Leistungsverstärker abgegebenen Energie abstrahlen, so dass damit die Teilantennen 3a, 3b nur für die Hälfte der vom Leistungsverstärker abgegebenen Energie ausgelegt sein müssen. Damit müssen die Teilantennen 3a, 3b gegenüber der klassischen Lösung mit einer Antenne und Isolatoren nur noch für die halbe Stromtragfähigkeit ausgelegt sein, so dass diese Antennenarchitektur auch in Medien realisiert werden kann, die für den klassischen Aufbau mit einer Antenne kaum möglich war. Die Anordnung wird darüber hinaus auch gegenüber Störeinflüssen wesentlich robuster, da häufig lediglich eine der beiden Teilantennen von einer derartigen Störung erfasst wird.Thus, each of the sub-antennas 3a, 3b must emit only half of the energy emitted by the power amplifier, so that thus the sub-antennas 3a, 3b must be designed for only half of the energy emitted by the power amplifier. Thus, the subantenna 3a, 3b must be designed compared to the classical solution with an antenna and insulators only for half the current carrying capacity, so that this antenna architecture can also be realized in media that was hardly possible for the classic design with an antenna. The arrangement is also much more robust against interference, since often only one of the two sub-antennas is detected by such a disorder.

Ein weiterer Vorteil liegt darin, dass die Richtcharakteristik der Antenne 3 optimiert werden kann, so dass beispielsweise bei einem Mobilfunktelefon die elektromagnetische Belastung eines Benutzers gesenkt werden kann.Another advantage is that the directional characteristic of the antenna 3 can be optimized, so that, for example, in a mobile phone, the electromagnetic load of a user can be reduced.

Die Anordnung hat insbesondere den Vorteil, dass eine von einer Antenne reflektierte Welle bzw. eine vom Ausgang in die Schaltung laufende Welle in dem Abschlusswiderstand 4 absorbiert und somit nicht zu dem Eingangstor reflektiert wird.The arrangement has the particular advantage that a wave reflected by an antenna or a wave traveling from the output into the circuit is absorbed in the terminating resistor 4 and thus is not reflected to the input port.

Als LC-Koppler kann beispielsweise ein 0°/90° Hybrid-Koppler eingesetzt werden, der besonders geeignet ist, wenn die Teilantennen 3a, 3b und das Eingangstor 5 in unsymmetrischer Leitungstechnik aufgebaut werden. Es versteht sich, dass auch andere 0°/90°-Koppler zur Anwendung kommen können.As LC coupler, for example, a 0 ° / 90 ° hybrid coupler can be used, which is particularly suitable when the subantenna 3a, 3b and the input port 5 are constructed in unbalanced line technology. It is understood that other 0 ° / 90 ° couplers can be used.

Figur 2 zeigt eine schematische Schaltskizze der Antennenarchitektur 1 mit mehreren, in Reihe geschalteten 0°/90°-Kopplem. Dabei ist der Leistungsverstärker an das Eingangstor 5 des obersten 0°/90°-Kopplers 2 angeschlossen. An das Lasttor 10 des ersten 0°/90°-Kopplers 2 ist das Eingangstor 5 des zweiten 0°/90°-Kopplers angeschlossen. Mehrere 0°/90°-Koppler 2 können so in Reihe hintereinander geschaltet sein, wobei ein Eingangstor 5 eines 0°/90°-Kopplers immer an das Lasttor 10 des vorhergehenden 0°/90°-Kopplers angeschlossen ist und damit dessen Abschlusswiderstand bildet. Nur der letzte 0°/90°-Koppler 2 in der Reihe muss dann mit einem angepassten Abschlusswiderstand 4 abgeschlossen sein. Die 0°/90°-Koppler in dieser Reihenschaltung können dann vorteilhaft so ausgelegt sein, dass sie für verschiedene, aneinander angrenzende Arbeitsfrequenzen dimensioniert sind, so dass dadurch eine Ultra-Breitband Antenne bzw. UWB-Antenne (ultra wide band) gebildet ist und damit die Antennenarchitektur über eine breiten Frequenzbereich eingesetzt werden kann. Andererseits können getrennt Frequenzbänder angesteuert werden, wenn die Arbeitsfrequenzen nicht aneinander grenzen. FIG. 2 shows a schematic circuit diagram of the antenna architecture 1 with a plurality of 0 ° / 90 ° -Koppplem connected in series. In this case, the power amplifier is connected to the input port 5 of the uppermost 0 ° / 90 ° coupler 2. To the load port 10 of the first 0 ° / 90 ° coupler 2, the input port 5 of the second 0 ° / 90 ° coupler is connected. A plurality of 0 ° / 90 ° couplers 2 can thus be connected in series one behind the other, wherein an input port 5 of a 0 ° / 90 ° coupler is always connected to the load port 10 of the preceding 0 ° / 90 ° coupler and thus forms the terminating resistor , Only the last 0 ° / 90 ° coupler 2 in the row must then be completed with a matching terminating resistor 4. The 0 ° / 90 ° couplers in this series connection can then be advantageously designed to be dimensioned for different, mutually adjacent operating frequencies, thereby forming an ultra broad band (UWB) antenna and so that the antenna architecture over a wide frequency range can be used. On the other hand, separate frequency bands can be controlled if the operating frequencies do not adjoin one another.

Figur 3 zeigt einen 0°/90°-Koppler 2, der in der oben beschriebenen Weise nur mit einer Kapazität 11 und einer Induktivität 12 realisiert und damit als LC-Koppler bezeichnet werden kann. Jedes Tor des LC-Kopplers 2 ist aus jeweils zwei Torklemmen gebildet. Jede Torklemme eines Tores ist dabei mit einer Torklemme des jeweils benachbarten Tores über eine ideale Leitung verbunden, so dass jeweils zwei zu einer Torklemme zusammenfallen. So ist beispielsweise die Torklemme 5a des Eingangstores 5 über eine ideale Leitung mit der Torklemme 7a des ersten weiteren Tores 7 verbunden, so dass diese beiden zu einer gemeinsamen Torklemme zusammenfallen. Ebenso fallen die Torklemmen 7b und 10, 10b und 9b sowie 9a und 5b zu jeweils einer gemeinsamen Torklemme zusammen, so dass der LC-Koppler 2 tatsächlich nur vier Torklemmen aufweist. Die Kapazität 11 und die Induktivität 12 sind dabei zwischen diesen vier Torklemmen so geschaltet, dass die Kapazität 11 die gemeinsame Torklemme des Eingangstores 5 und des ersten weiteren Tores 7 mit der gemeinsamen Torklemme des Lasttores 10 und des zweiten weiteren Tores 9, und die Induktivität 12 die gemeinsame Torklemme des Eingangs- 5 und des Antennentores 9 mit der gemeinsamen Torklemme des ersten weiteren Tores 7 und des zweiten weiteren Tores 10 verbindet. FIG. 3 shows a 0 ° / 90 ° coupler 2, which can be realized in the manner described above only with a capacitance 11 and an inductance 12, and thus can be referred to as LC coupler. Each gate of the LC coupler 2 is formed from two gate clamps. Each gate terminal of a gate is connected to a gate terminal of the respective adjacent gate via an ideal line, so that in each case two to one Torklemme coincide. Thus, for example, the gate terminal 5a of the entrance gate 5 is connected via an ideal line to the gate terminal 7a of the first further gate 7, so that these two coincide to form a common gate terminal. Likewise, the Torklemmen 7b and 10, 10b and 9b and 9a and 5b fall together in each case to a common Torklemme, so that the LC coupler 2 actually has only four gate terminals. The capacitance 11 and the inductance 12 are connected between these four gate terminals so that the capacitance 11, the common gate terminal of the input gate 5 and the first further gate 7 with the common gate terminal of the load gate 10 and the second further gate 9, and the inductor 12th the common gate terminal of the input 5 and the antenna gate 9 connects to the common gate terminal of the first further gate 7 and the second further gate 10.

Die für die Funktion des 0°/90°-Kopplers 2 notwendige Phasenverschiebung erhält man für die vorgesehene Arbeitsfrequenz des LC-Kopplers über eine geeignete Dimensionierung der Kapazität 11 und der Induktivität 12, für die im Folgenden nach den bekannten Rechenregeln ein kurzes Beispiel ausgeführt ist.The necessary for the function of the 0 ° / 90 ° coupler 2 phase shift is obtained for the intended operating frequency of the LC coupler via a suitable dimensioning of the capacitance 11 and the inductance 12, for the following a short example is carried out according to the known calculation rules ,

In diesem Beispiel sei die Systemimpedanz des LC-Kopplers Z0=50 Ohm und die Arbeitsfrequenz sei f0=2 GHz. Der Widerstand Z1 einer Kapazität C und der Widerstand Z2 einer Induktivität L lassen sich dann bestimmen zu Z 1 = 1 / ω 0 C

Figure imgb0001
Z 2 = ω 0 L
Figure imgb0002
mit ω0=2πf0
Mit den für einen Resonanzkreis bekannten Bedingungen

  1. 1. Z1 + Z2 = 0 und
  2. 2. Z1 * Z2 = Z0 2 lassen sich die Werte für die Induktivität L und der Kapazität C bestimmen zu L = Z 0 / 2 πf 0 = 3 , 97 nH
    Figure imgb0003
    C = 1 / ω 0 2 L = 1 , 59 pF
    Figure imgb0004
In this example, let the system impedance of the LC coupler be Z 0 = 50 ohms and let the operating frequency be f 0 = 2 GHz. The resistance Z 1 of a capacitance C and the resistance Z 2 of an inductance L can then be determined Z 1 = 1 / ω 0 C
Figure imgb0001
Z 2 = ω 0 L
Figure imgb0002
with ω 0 = 2πf 0
With the conditions known for a resonant circuit
  1. 1. Z 1 + Z 2 = 0 and
  2. 2. Z 1 * Z 2 = Z 0 2 , the values for the inductance L and the capacitance C can be determined L = Z 0 / 2 πf 0 = 3 . 97 nH
    Figure imgb0003
    C = 1 / ω 0 2 L = 1 . 59 pF
    Figure imgb0004

Mit dieser Dimensionierung der Kapazität und der Induktivität wird für die gewählte Arbeitsfrequenz von 2 GHz eine Phasenverschiebung von 0° bzw. 90° erreicht. Damit ist der LC-Koppler ein Mono-Band 0°/90°-Koppler für eine Arbeitsfrequenz von 2GHz.With this dimensioning of the capacitance and the inductance, a phase shift of 0 ° or 90 ° is achieved for the selected operating frequency of 2 GHz. Thus, the LC coupler is a mono-band 0 ° / 90 ° coupler for a working frequency of 2GHz.

Eine Besonderheit dieses 0°/90°-Kopplers ist, dass ein Punkt dieser Schaltung mit Masse verbunden werden darf, so dass zwei unsymmetrische Tore entstehen. Wird beispielsweise die gemeinsame Torklemme des Eingangstores 5 und des Antennentores 9 mit Masse verbunden, so können an diese beiden Tore unsymmetrische Komponenten angeschlossen werden. Somit handelt es sich um einen 0°/90°-Koppler 2 mit integrierter Balunfunktionalität.A special feature of this 0 ° / 90 ° coupler is that one point of this circuit may be connected to ground, resulting in two unbalanced gates. If, for example, the common door terminal of the input door 5 and the antenna door 9 is connected to ground, unbalanced components can be connected to these two gates. Thus, it is a 0 ° / 90 ° coupler 2 with integrated balun functionality.

Vertauscht man die Platzierung von Kapazität 11 und Induktivität 12, so ergibt sich ein 0°/-90°-Koppler, der alternativ genutzt werden kann.If one interchanges the placement of capacitance 11 and inductance 12, this results in a 0 ° / -90 ° coupler, which can be used alternatively.

Weiterhin können bei diesem 0°/90°-Koppler die beiden Einzelantennen 3a, 3b und das Eingangstor 5 entweder in symmetrischer Leitertechnik realisiert sein, oder es müssen alle drei Komponenten in unsymmetrischer Leitertechnik realisiert sein. Soll dagegen eine anzuschließende Komponente unsymmetrisch zu den anderen ausgelegt sein, so ist in bekannter Weise zur Wiederherstellung der Symmetrie ein Symmetrierglied zwischen das Tor und die Komponente zu schalten. Hier kann beispielsweise ein so genannter Balun (balanced - unbalanced) eingesetzt werden, der beispielsweise als Transformator realisiert sein kann.Furthermore, in this 0 ° / 90 ° coupler, the two individual antennas 3 a, 3 b and the input port 5 can be realized either in symmetrical ladder technology, or all three components must be realized in asymmetrical ladder technology. If, on the other hand, a component to be connected is designed to be asymmetrical with respect to the others, a balun must be connected between the gate and the component in a known manner in order to restore the symmetry. Here, for example, a so-called Balun (balanced - unbalanced) can be used, which can be implemented as a transformer, for example.

Figur 4 zeigt eine Schaltskizze, in der ein oben beschriebener Mono-Band-Koppler zu einem -90°/90°-Dual-Band-Koppler 13 weitergebildet ist. Ebenso wie der zuvor beschriebene Mono-Band-0°/90°-Koppler 2 weist der -90°/90°-Koppler 13 ein Eingangstor 5 und ein Antennentor 9 sowie ein erstes weiteres Tor 7 und ein zweites weiteres Tor 10 auf. Die in dem 0°/90°-Koppler eingesetzte Induktivität und die Kapazität sind hier durch einen Parallelschwingkreis, der aus der Induktivität 17 und der Kapazität 16 gebildet ist, bzw. einen Serienschwingkreis, der aus der Kapazität 14 und der Induktivität 15 gebildet ist, ersetzt. Die Funktionsweise für die beiden Arbeitsfrequenzen des Dual-Band-Kopplers 13 ist gleich der des LC- und des CL-Kopplers. Für die tiefere der beiden Arbeitsfrequenzen des Dual-Band-Kopplers 13 wirkt der Dual-Band-Koppler damit als 90°-Koppler und für die höhere Arbeitsfrequenz als -90°-Koppler. Vertauscht man in dieser Variante des Kopplers 13 den Parallel- mit dem Serienschwingkreis, so verhält sich der Dual-Band-Koppler 13 bei der tieferen Arbeitsfrequenz entsprechend als -90°-Koppler und bei der höheren Arbeitsfrequenz als 90°-Koppler. Die jeweiligen Mittenfrequenzen der beiden Arbeitsfrequenzen des Dual-Band-Kopplers müssen dabei in keinem besonderen Abstand zueinander stehen. FIG. 4 shows a circuit diagram in which a mono-band coupler described above to a -90 ° / 90 ° dual-band coupler 13 is developed. Like the mono-band 0 ° / 90 ° coupler 2 described above, the -90 ° / 90 ° coupler 13 has an input port 5 and an antenna port 9 and a first further port 7 and a second further port 10. The inductance and the capacitance used in the 0 ° / 90 ° coupler are here by a parallel resonant circuit, which is formed from the inductor 17 and the capacitor 16, and a series resonant circuit consisting of the capacitance 14 and the inductance 15 is formed replaced. The operation for the two operating frequencies of the dual-band coupler 13 is equal to that of the LC and the CL coupler. For the lower of the two operating frequencies of the dual-band coupler 13, the dual-band coupler thus acts as a 90 ° coupler and for the higher operating frequency than -90 ° coupler. If one interchanges the parallel and the series resonant circuit in this variant of the coupler 13, then the dual-band coupler 13 behaves correspondingly at the lower operating frequency as a -90 ° coupler and at the higher operating frequency as a 90 ° coupler. The respective center frequencies of the two operating frequencies of the dual-band coupler must stand in no particular distance from each other.

Claims (2)

  1. An antenna architecture (1) for non-reactive connection of an antenna (3) to a power amplifier, said antenna (3) being connected to said power amplifier through a coupler (2), said coupler (2) comprising an entrance gate (5) for feeding the signal to be transmitted to the antenna (3) as well as a first and a second antenna gate (7, 9) for transmitting the signal to the antenna (3), said antenna (3) comprising a first and a second individual antenna (3a, 3b), said first individual antenna (3a) being connected to the first antenna gate (7) and said second individual antenna (3b) being connected to the second antenna gate (9) and the coupler (2) transmitting the signal to the first antenna gate (7) with a first phase and to the second antenna gate (9) with a second phase, which is displaced 90° with respect to the first phase, characterized in that the coupler (2) is an LC coupler the gates of which are respectively formed from two gate terminals (5a, 5b, 7a, 7b, 9a, 9b, 10a, 10b), that said first and said second individual antenna are built identically and that said individual antennae (3a, 3b) are each implemented in symmetrical conductor technique, that the load gate (10) is terminated with an adapted terminating resistor and that the entrance gate (5) is built in non-symmetrical conductor technique wherein the gate terminals of the entrance gate (5) and of the antenna gate (9) are connected together and grounded for the coupler (2) to comprise an integrated balun function.
  2. The antenna architecture (1) as set forth in claim 1, characterized in that the terminating resistor (4) comprises at least one additional coupler, preferably an additional LC coupler, with an antenna and that the additional coupler comprises an entrance gate for feeding the signal to be transmitted to its antenna and a first and a second antenna gate for transmitting the signal to its antenna and also a load gate, that its antenna comprises a first and a second individual antenna of identical construction, its first individual antenna being connected to its first antenna gate and its second individual antenna to its second antenna gate, that its load gate is terminated and that the coupler transmits the signal to its first antenna gate with a first phase and to its second antenna gate with a second phase displaced 90° with respect to the first phase.
EP05807888A 2004-11-10 2005-11-08 Antenna architecture and lc coupler Not-in-force EP1813032B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004054442A DE102004054442A1 (en) 2004-11-10 2004-11-10 Antenna architecture and coupler
PCT/DE2005/002002 WO2006050701A2 (en) 2004-11-10 2005-11-08 Antenna architecture and lc coupler

Publications (2)

Publication Number Publication Date
EP1813032A2 EP1813032A2 (en) 2007-08-01
EP1813032B1 true EP1813032B1 (en) 2009-02-25

Family

ID=35695714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05807888A Not-in-force EP1813032B1 (en) 2004-11-10 2005-11-08 Antenna architecture and lc coupler

Country Status (5)

Country Link
US (1) US7812780B2 (en)
EP (1) EP1813032B1 (en)
AT (1) ATE424062T1 (en)
DE (3) DE102004054442A1 (en)
WO (1) WO2006050701A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058875B4 (en) 2005-12-09 2016-02-25 Infineon Technologies Ag matching

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375524A (en) * 1963-10-10 1968-03-26 Siemens Ag Antenna distributor circuit for four dipoles with adjacent dipoles in phase quadrature

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1207511A (en) 1967-01-04 1970-10-07 Ass Elect Ind Improvements in dielectric heating apparatus
US4101901A (en) * 1975-12-22 1978-07-18 Motorola, Inc. Interleaved antenna array for use in a multiple input antenna system
US4218685A (en) * 1978-10-17 1980-08-19 Nasa Coaxial phased array antenna
CA1208714A (en) * 1983-09-22 1986-07-29 Igor Miletic Rf hybrid
DE3523876C1 (en) * 1985-07-04 1986-09-25 Rohde & Schwarz GmbH & Co KG, 8000 München Antenna changeover device
FR2741221B1 (en) * 1995-11-13 1997-12-05 Alcatel Telspace DIRECT DEMODULATION STAGE OF A PHASE QUADRATURE MODULATED SIGNAL AND RECEIVER COMPRISING SUCH A DEMODULATION STAGE
EP1341258A1 (en) * 1998-06-26 2003-09-03 Thales Antennas Limited Signal coupling methods and arrangements
GB2395843B (en) 2002-11-29 2006-04-26 Motorola Inc Wireless subscriber communication unit and antenna arrangement therefor
US7206566B1 (en) * 2004-07-21 2007-04-17 Hrl Laboratories, Llc Apparatus and method for frequency conversion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375524A (en) * 1963-10-10 1968-03-26 Siemens Ag Antenna distributor circuit for four dipoles with adjacent dipoles in phase quadrature

Also Published As

Publication number Publication date
DE112005003391A5 (en) 2007-10-18
EP1813032A2 (en) 2007-08-01
DE102004054442A1 (en) 2006-05-24
ATE424062T1 (en) 2009-03-15
WO2006050701A2 (en) 2006-05-18
WO2006050701A3 (en) 2006-07-20
DE502005006715D1 (en) 2009-04-09
US20080030421A1 (en) 2008-02-07
US7812780B2 (en) 2010-10-12

Similar Documents

Publication Publication Date Title
EP1012899B1 (en) Device for contactless transmission of electrical signals and/or energy
DE102010040290B4 (en) directional coupler
DE102010046677B4 (en) circuitry
DE69730389T2 (en) LOW PASS FILTER WITH DIRECTED COUPLER AND PORTABLE TELEPHONE THEREOF
DE60306513T2 (en) ANTENNA ARRANGEMENT
DE69835937T2 (en) TWO-FREQUENCY SWITCHES, ASSEMBLY WITH COMMON TWO-FREQUENCY ANTENNA AND MOBILE TWO-FREQUENCY RADIO TRANSMISSION EQUIPMENT THEREWITH
DE102011012927B4 (en) amplifier module
DE102012010201B4 (en) communication module
DE69929968T2 (en) ANTENNA SWITCH
DE10114769B4 (en) Active broadband antenna
EP1406349B1 (en) Active wide-band reception antenna with regulation of the receiving level
WO2000018026A1 (en) Multiband antenna switcher
DE60128700T2 (en) WIRELESS RADIO
DE10247025A1 (en) Difference radio device
DE102013013579A1 (en) Combiner / splitter with connection structure
DE102006046190B4 (en) Circuit arrangement, method for operating a circuit arrangement and method for operating a dual-mode UMTS / GSM mobile telephone
DE10158791A1 (en) High frequency amplifier and radio transmission device
EP1388206B1 (en) Filter arrangement for symmetrical and asymmetrical line systems
DE102014102704A1 (en) Combined impedance matching and RF filter circuit
EP1813032B1 (en) Antenna architecture and lc coupler
US20080197939A1 (en) Passive microwave (de)multiplexer
DE19700110A1 (en) Contactless electrical energy and signal transmission device
CN109193163A (en) Three frequency filter antennas, radio system radio-frequency front-end based on minor matters load resonator
WO2000046934A1 (en) Transceiver unit for a first and second transmitting/receiving frequency
DE60037125T2 (en) Radio frequency amplifier circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070606

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEUERMANN, HOLGER

17Q First examination report despatched

Effective date: 20071127

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006715

Country of ref document: DE

Date of ref document: 20090409

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090605

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

26N No opposition filed

Effective date: 20091126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141212

Year of fee payment: 10

Ref country code: GB

Payment date: 20141127

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141128

Year of fee payment: 10

Ref country code: NL

Payment date: 20141128

Year of fee payment: 10

Ref country code: AT

Payment date: 20141127

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141127

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20141201

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 424062

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151108

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151108

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161125

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006715

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602