EP1812819A1 - Mehrfokale kontaktlinsen - Google Patents

Mehrfokale kontaktlinsen

Info

Publication number
EP1812819A1
EP1812819A1 EP04811222A EP04811222A EP1812819A1 EP 1812819 A1 EP1812819 A1 EP 1812819A1 EP 04811222 A EP04811222 A EP 04811222A EP 04811222 A EP04811222 A EP 04811222A EP 1812819 A1 EP1812819 A1 EP 1812819A1
Authority
EP
European Patent Office
Prior art keywords
region
power
lens
add
multifocal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04811222A
Other languages
English (en)
French (fr)
Inventor
Jeffrey H. Roffman
Larry G. Jones
James W. Haywood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of EP1812819A1 publication Critical patent/EP1812819A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/045Sectorial configuration

Definitions

  • the invention relates to ophthalmic lenses.
  • the invention provides lenses that incorporate more than one optical power, or focal length, and that are useful in the correction of presbyopia.
  • the eye is less able to accommodate, or bend the natural lens, to focus on objects that are relatively near to the observer. This condition is known as presbyopia.
  • presbyopia a condition in which presbyopia is a condition in which presbyopia is a condition in which presbyopia is a condition in which presbyopia is a condition in which presbyopia is a condition in which presbyopia is a condition in which presbyopia.
  • presbyopia Similarly, for persons who have had their natural lens removed and an intraocular lens inserted as a replacement, the ability to accommodate is totally absent.
  • the mono-vision lens system in which a person is fitted with, and wears, two contact lenses; one lens for distance vision and one lens for near vision.
  • the mono-vision system permits the wearer to distinguish both distance and near objects, but is disadvantageous in that a substantial loss in depth perception results.
  • multifocal contact lenses provide distance and near vision power or distance, near and intermediate power. These lenses overcome the depth perception loss and typically use alternating concentric rings or alternating radial segments of distance and near power.
  • multifocal contact lenses are problematic in that they expose the wearer's retina to two images at once, one in and one out of focus. The two images are not disadvantageous for near vision because the out of focus distance objects being viewed in the near segments of the lens do not interfere, but rather contribute to the near vision resolution. The reason for this is that the out of focus distance objects are in an orientation that does not interfere with the near images.
  • Figure 1 is apian view of a lens surface of one embodiment of the lens of the invention.
  • the invention provides methods for correcting presbyopia, lenses for such correction, and methods for producing the lenses of the invention.
  • Each of the lenses of the invention provide both distance and near vision correction by providing both multifocal and monofocal regions within the same lens.
  • the invention provides an ophthalmic lens for a lens wearer comprising, consisting essentially of, and consisting of an optic zone having a first region that is a multifocal region, a second region that is a monofocal region, and a third region of alternating distance optical power segments and near optical power segments wherein the near optical power segments are asymmetrical.
  • ophthalmic lens is meant a contact, intraocular lens, or the like, or combinations thereof.
  • the lenses of the invention are contact lenses.
  • multifocal region is meant a region in which the power continuously increases from distance to near optical power or continuously decreases from near to distance optical power as one moves outwardly toward the lens edge from the center of the region.
  • distance optical power is meant the amount of refractive power required to correct the wearer's distance vision acuity to the desired degree.
  • near optical power is meant the amount of refractive power required to correct the wearer's near vision acuity to the desired degree.
  • asymmetrical is meant that given any first point that is on a near optical power segment of the lens surface, any second point on the surface that is at a corresponding location 180 degrees around the center of the lens from the first point is a point on a distance optical power segment of the surface.
  • the near optical power segments in the asymmetrical portion of the lenses of the invention may be any distance from each other provided that the asymmetry requirement is met.
  • Figure 1 depicts apian view of a surface of lens 10 of the invention.
  • Lens 10 has an optic zone containing multifocal region 11, monofocal region 12, and region 15 which is a region of asymmetric, alternating, distance and near optical power segments.
  • the optic zones is surrounded by non-optical zone 16.
  • the multifocal region of the lens of the invention preferably is located at the optical center of a surface of the lens.
  • the multifocal region used in the lenses of the invention has at least distance and near vision power, and preferably distance, near, and intermediate vision power.
  • intermediate vision power is meant power that is suitable for viewing objects located at distances of about 46 to about 80 cm from the eye.
  • Intermediate vision power may be supplied as a consequence of the power progression between the peak of the power of the near and distance optical power within the multifocal zone, hi a preferred embodiment, a pair of lenses according to the invention is provided, the lens to be worn on the eye dominant for distance vision having a multifocal region in which the power continuously increases from distance to near optical power as one moves outwardly from the center of the lens and region to the periphery of the region.
  • the multifocal region may be designed by any convenient method.
  • the multifocal region is designed wherein a position, an amplitude, and a width for the region is determined by the following equation:
  • Y is the Add power at any point x on a surface within the multifocal region; x is a point on the lens surface; a is 0.5; k is the point within the multifocal region at which the power peaks;
  • P is the coefficient that controls the width of the multifocal region and is greater than about 0 and less than about 15;
  • S is the coefficient that controls the amplitude and its decrease in the periphery of the multifocal region and is greater than about 0 and less than about 30;
  • Add is a value that is equal to or less than the difference in power between the near vision power and distance vision power of the multifocal region.
  • the multifocal region may be a region wherein a speed or contour, meaning, the slope of the power change from near to distance power, for the zone is determined by the following equation:
  • Add (X) is actual instantaneous add power at any point x on a surface of the lens within the multifocal region; x is a point on the lens surface at a distance x from the center; a is a constant and preferably is 1 ; Addp e ak is the full peak dioptric add power, or add power required for near vision correction; x c is the cutoff semi-diameter or the midpoint in the power transition from distance to near power, or near to distance power within the multifocal region; n is a variable between 1 and 40, preferably between 1 and 20; and Add is a value that is equal to the difference in power between the near vision power and distance vision power of the multifocal region.
  • n is the variable that controls the slope of the progression from near to distance vision power and distance to near vision power in the multifocal region. The less the value of n, the more gradual the progression will be.
  • the multifocal power region may be such that the a speed or contour for the zone is determined by the following equation:
  • Add ( ⁇ ) is actual instantaneous add power at any point x on a surface of the lens within the multifocal region; x is a point on the lens surface at a distance x from the center; a is a constant and preferably is 1 : Addpeak is the full peak dioptric add power within the multifocal region; x c is the cutoff semi-diameter within the multifocal region; n is is a variable between 1 and 40, preferably between 1 and 20; and
  • Add is a value that is equal to the difference in power between the near vision power and distance vision power of the multifocal region.
  • the multifocal power region is such that the speed and a contour for the region is determined by the following equation:
  • Add M Add peak * (l/(a *Q- + (x/x c Y)*n)
  • Add ( ⁇ ) is actual instantaneous add power at any point x on a surface of the lens within the multifocal region; x is a point on the lens surface at a distance x from the center; a is a constant and preferably is 1; d is an arbitrary value between 1 and 40;
  • Add peak is the full peak dioptric add power within the multifocal region;
  • x c is the cutoff semi-diameter within the multifocal region;
  • n is between 1 and 40, preferably between 1 and 20;
  • Add is a value that is equal to the difference in power between the near vision power and distance vision power of the multifocal region.
  • the second region of the lens lies at the periphery, and preferably surrounds, the multifocal region.
  • the second region is a monofocal region that may be distance, intermediate, or near optical power.
  • the power of the monofocal region preferably is the same power as the power at the extreme periphery of the multifocal region and which is immediately adjacent to the monofocal region. For example, if the multifocal region increases from near to distance vision power as one moves from the center of the multifocal region to the its periphery, relative to the lens periphery, the monofocal region will be distance vision power.
  • the third region of the lens is adjacent to and lies at the periphery of, and preferably substantially surrounds, the monofocal region.
  • the third region contains both distance and near optical power segments of any convenient shape that are asymmetrical.
  • the segments are radial segments. More preferably, the radial segments are triangular in shape. Any number of near and distance segments may be used. Preferably however, the number of near optical power segments are equal to or less than the areas for distance optical segments within the third region.
  • the region may also include segments of intermediate vision optical power.
  • intermediate vision power segments are provided, they too preferably are asymmetrical in that, given any first point that is on an intermediate optical power segment of the lens surface, any second point on the surface that is at a corresponding location 180 degrees around the center of the lens from the first point is a point on a distance or near optical power segment of the surface.
  • region 15 has near optical power segments 13 alternating with distance optical power segments 14.
  • the distance and near segments are arc-shaped alternating as one moves circumferentially around the center of the lens. Any number of alternating distance and near segments may be used. Preferably, three segments each of distance and near optical power are used
  • the distance, near, and intermediate optical powers may be spherical, aspheric, or toric powers. Additionally, each of the three regions and the distance, near optical power zones or segments therein may be of any desired and practical dimensions.
  • the multifocal, monofocal, and asymmetrical distance and near segment regions may be on the same surface of the lens. Alternatively, the multifocal and monofocal, multifocal and asymmetrical segments, or asymmetrical segments and monofocal region may be on one surface and the remaining region may be on the opposite lens surface. Preferably, the multifocal, monofocal, and asymmetric regions are all on the same surface.
  • the lens of the invention may, if desired, include a zone for rotationally stabilizing the lens on eye. Any number of rotational stabilization zones are known in the art and may be used in the lens of the invention. Typically, rotational stabilization is categorized as static or dynamic stabilization. Examples of rotational stabilization includes, without limitation, ballast, prism ballast, thick zone, thin zone, protuberances on the lens surface, such as one or more bosses, and the like and combinations thereof. If the lens includes tone correction, or cylinder power, a stabilization zone will be required.
  • one surface of the lens provides each of the multifocal, monofocal and asymmetric segment regions and the other surface of the lens corrects the lens wearer's high order aberrations.
  • high order aberrations is meant aberration of third or higher order.
  • on the front surface of the lens is each of the multifocal, monofocal and asymmetric segment regions and the back, or eye side, surface is matched to the wearer's corneal topography meaning that the back surface inversely corresponds to the wearer's corneal topography.
  • Such lens incorporates an inverse topographic elevation map of the lens wearers' cornea.
  • the inverse topographic elevation map may be derived from the wearer's corneal topography, which corneal topography may be determined by any known method including, without limitation, by use of a corneal topographer.
  • the elevational data initially is applied to a lens model in the unflexed state.
  • the data is transformed by taking into account the soft lens flexure, or wrap, when the lens placed on the eye.
  • the flexure transformed data then may be mapped onto a CNC grid pattern and used to make the lenses or mold tool surface.
  • cylinder power may be provided.
  • on one surface of the lens is each of the multifocal, monofocal and asymmetric a segment regions and the opposite surface is a toric surface.
  • cylinder power may be combined with one or more of the asymmetric distance arid near optical power segments, the monofocal, and the multifocal region.
  • the lenses of the invention may be made by any convenient method.
  • One such method uses a lathe to produce mold inserts.
  • the mold inserts in turn are used to form molds.
  • a suitable lens material is placed between the molds followed by compression and curing of the resin to form the lenses of the invention.
  • any number of known methods may be used to produce the lenses of the invention.
  • Contact lenses useful in the invention may be made of hard lens materials orsoft lens materials, but the invention may provide particular utility when applied to the design and production of soft contact lenses.
  • soft contact lenses made of any material suitable for producing such lenses, preferably are used.
  • Illustrative materials for formation of soft contact lenses include, without limitation silicone elastomers, silicone-containing macromers including, without limitation, those disclosed in United States Patent Nos. 5,371,147, 5,314,960, and 5,057,578 incorporated in their entireties herein by reference, hydrogels, silicone-containing hydrogels, and the like and combinations thereof.
  • the surface is a siloxane* or contains a siloxane functionality, including, without limitation, polydimethyl siloxane macromers, methacryloxypropyl polyalkyl siloxanes, and mixtures thereof, silicone hydrogel, such as galyfilcon, or a hydrogel, such as etafilcon A.
  • a siloxane functionality including, without limitation, polydimethyl siloxane macromers, methacryloxypropyl polyalkyl siloxanes, and mixtures thereof, silicone hydrogel, such as galyfilcon, or a hydrogel, such as etafilcon A.
  • a preferred lens material is a poly 2-hydroxyethyl methacrylate polymers, meaning, having a peak molecular weight between about 25,000 and about 80,000 and a polydispersity of less than about 1.5 to less than about 3.5 respectively and covalently bonded thereon, at least one cross-linkable functional group.
  • This material is described in United States Serial No. 60/363,630 incorporated herein in its entirety by reference.
  • Suitable materials for forming intraocular lenses include, without limitation, polymethyl methacrylate, hydroxyethyl methacrylate, inert clear plastics, silicone-based polymers, and the like and combinations thereof.
  • Curing of the lens material may be carried out by any means known including, without limitation, thermal, irradiation, chemical, electromagnetic radiation curing and the like and combinations thereof.
  • the lens is molded which molding is carried out using ultraviolet light or using the full spectrum of visible light. More specifically, the precise conditions suitable for curing the lens material will depend on the material selected and the lens to be formed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)
EP04811222A 2004-11-16 2004-11-16 Mehrfokale kontaktlinsen Withdrawn EP1812819A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/038436 WO2006054986A1 (en) 2004-11-16 2004-11-16 Multifocal ophthalmic lenses

Publications (1)

Publication Number Publication Date
EP1812819A1 true EP1812819A1 (de) 2007-08-01

Family

ID=34959654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04811222A Withdrawn EP1812819A1 (de) 2004-11-16 2004-11-16 Mehrfokale kontaktlinsen

Country Status (4)

Country Link
EP (1) EP1812819A1 (de)
AU (1) AU2004325005A1 (de)
CA (1) CA2587796A1 (de)
WO (1) WO2006054986A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011284783B2 (en) * 2010-07-26 2014-07-31 Vision Crc Limited Treating ocular refractive error

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923296A (en) * 1988-07-14 1990-05-08 Erickson Paul M Oriented simultaneous vision bifocal contact lenses or the like utilizing introaocular suppression of blur
US6554425B1 (en) * 2000-10-17 2003-04-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for high order aberration correction and processes for production of the lenses
US6520638B1 (en) * 2001-08-14 2003-02-18 Johnson & Johnson Vision Care, Inc. Methods for designing multifocal ophthalmic lenses
US6802607B2 (en) * 2002-10-31 2004-10-12 Johnson & Johnson Vision Care, Inc. Progressive cylinder ophthalmic lenses
US6986578B2 (en) * 2003-01-30 2006-01-17 Johnson & Johnson Vision Care, Inc. Multifocal ophthalmic lenses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006054986A1 *

Also Published As

Publication number Publication date
CA2587796A1 (en) 2006-05-26
WO2006054986A1 (en) 2006-05-26
AU2004325005A1 (en) 2006-05-26

Similar Documents

Publication Publication Date Title
US6899425B2 (en) Multifocal ophthalmic lenses
US6986578B2 (en) Multifocal ophthalmic lenses
US6802606B2 (en) Multifocal contact lens pairs
AU2003285064B2 (en) Methods for designing multifocal ophthalmic lenses
AU2009221955B2 (en) Rotationally stabilized contact lenses and methods for their design
CA2536147C (en) Rotationally stabilized contact lenses
KR20100135278A (ko) 노안 교정용 렌즈 및 렌즈의 설계 방법
EP2149069A1 (de) Brillengläser zur prävention der progression von myopie
KR20050084610A (ko) 안과용 누진 원주 렌즈
EP1812819A1 (de) Mehrfokale kontaktlinsen
AU2004211145B2 (en) Multifocal contact lens pairs
KR20110042242A (ko) 원환체 콘택트 렌즈

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IE IT

17Q First examination report despatched

Effective date: 20070905

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IE IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080116