EP1812775A1 - Measuring and operational circuit for a coriolis-mass flow meter comprising three measuring channels - Google Patents

Measuring and operational circuit for a coriolis-mass flow meter comprising three measuring channels

Info

Publication number
EP1812775A1
EP1812775A1 EP05801324A EP05801324A EP1812775A1 EP 1812775 A1 EP1812775 A1 EP 1812775A1 EP 05801324 A EP05801324 A EP 05801324A EP 05801324 A EP05801324 A EP 05801324A EP 1812775 A1 EP1812775 A1 EP 1812775A1
Authority
EP
European Patent Office
Prior art keywords
measuring
mass flow
channels
sensor signals
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05801324A
Other languages
German (de)
French (fr)
Inventor
Philipp Alber
Christian Matt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP1812775A1 publication Critical patent/EP1812775A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits

Definitions

  • the invention relates to a measuring and operating circuit for a Coriolis mass flow meter with three measuring channels.
  • Coriolis mass flow meters are widely used in process measurement for determining the mass flow of a fluid in a pipe section.
  • the Coriolis measuring principle is based on the measuring tube in which the fluid flows to vibrate and evaluate the resulting oscillatory motion.
  • Coriolis mass flowmeters therefore have one oscillation exciter and two oscillation sensors per measuring tube.
  • Measuring tube and fluid together form a vibratory system, which is usually excited at its resonant frequency.
  • the resonant frequency depends, among other things, on the material and dimensions of the measuring tube.
  • the density of the flowing fluid also has an influence on the resonance frequency.
  • the measuring tube is not excited at the resonant frequency but at an adjacent frequency.
  • the vibration sensors detect the oscillatory movement of the measuring tube at two spaced locations in the flow direction and convert them into sensor signals.
  • the two sensor signals have the same frequency as the Meßrohr ⁇ vibration. If a fluid (liquid, gas) flows through the measuring tube, the two sensor signals are out of phase due to the Coriolis effect.
  • the phase shift is a measure of the mass flow of the fluid through this section of the pipeline.
  • the sensor signals are evaluated in a measuring / subcircuit to determine the exact value of the mass flow.
  • the measured value can be displayed in a display unit on the Coriolis mass flow meter or for process control to a higher-level unit, eg. B. a controller (PLC, PLC) or forwarded to a control system.
  • PLC controller
  • US Pat. No. 4,801,897 describes an exciter / subcircuit for a Coriolis mass flow meter, which is designed in the manner of an analog phase logarithm. Loop control is established. The exciter frequency for the measuring tube automatically adjusts itself to the resonance frequency of the measuring tube even with variable fluid density.
  • the known measuring circuits operate either analog or digital.
  • EP 698783, US 4,895,030, EP 702212 and US 4,529,002 such measuring circuits are described in more detail.
  • Mass flow meter known, which has an analog control loop, which controls the two sensor signals to the same amplitude.
  • phase errors are referred to as phase errors.
  • the object of the invention is to provide a method for determining the Masse ⁇ flow of a Coriolis mass flow meter, the above does not have said disadvantages, which in particular eliminates phase errors and at the same time allows a continuous measurement.
  • the essential idea of the invention is not to provide two but three measuring channels for the two sensor signals. By corresponding switching of the sensor signals to the three measuring channels, the relative phase error of respectively two measuring channels can be determined and taken into account in the determination of the mass flow.
  • the sensor signals are cyclically switched to the three measurement channels.
  • a measurement channel is permanently provided for a specific measurement signal.
  • the relative phase error of two measuring channels is measured only every second Zy ⁇ klussian.
  • a significant advantage offered by the method according to the invention is that an interruption of the measurement is no longer necessary.
  • the invention also relates to a device for carrying out the method.
  • FIG. 2 shows a block diagram of a measuring and operating circuit belonging to the measuring sensor according to FIG. 1
  • FIG. 3 shows a block diagram of a measuring and operating circuit according to the invention
  • the sensor 1 shows a sensor 1 for a Coriolis mass flow meter in a schematic representation.
  • the sensor 1 is arranged in a pipeline, not shown, in which a fluid F flows whose mass flow rate is one of the parameters of interest.
  • the connection with the pipeline takes place via the two flanges 2,3.
  • the sensor 1 has a single straight measuring tube 4, which is fixed on the inlet side via an end plate 13 on the flange 2 and the outlet side via an end plate 14 on the flange 3.
  • the measuring and operating circuit according to the invention is not limited to this special sensor 1 with a single straight measuring tube. She can in Connection can be used with the various known sensors. To mention are, for example, sensors with a measuring tube with cantilever mass, as described for example in EP 97 81 0559, sensor with a curved measuring tube (EP 96 10 9242) and sensors with two parallel straight or curved measuring tubes (US 4793191 or US 41 27 028 ).
  • the flanges 2, 3 and the end plates are attached to or in a support tube 15.
  • a vibration exciter 16 is arranged in the middle between the two end plates 13, 14 on the measuring tube 4.
  • the vibration exciter 16 may be e.g. to act an electromagnetic drive consisting of a permanent magnet 161 and a coil 162.
  • the coil 162 is fixed to the support tube 15 and the permanent magnet 161 on the measuring tube 4.
  • the oscillation movement of the measuring tube 4 is recorded by means of two vibration sensors 17 and 18, which are likewise arranged symmetrically to the vibration exciter 16, likewise on the supporting tube 15.
  • vibration sensors 17 and 18, it may be z. B. are electromagnetic transducers that are similar to the arrangement permanent magnet coil of the vibrator 16 are constructed.
  • the two permanent magnets 171, 181 are fixed to the measuring tube 4 and the two coils 172, 182 on the support tube 15.
  • the movement of the measuring tube 4 causes via the magnets 171, 181, an induction voltage in the respective coil 172, 182, which is tapped as an analog sensor signal X17 and X18.
  • a Coriolis mass flowmeter generally consists of a measuring transducer and an associated measuring and operating circuit.
  • FIG. 2 shows a block diagram of such a measuring and operating circuit belonging to the measuring sensor 1, which, inter alia, carries out the evaluation of the two sensor signals and controls the oscillation excitation of the measuring tube 4.
  • the two sensor signals xl7 and xl8, which are received by the vibration sensors 17 and 18, are amplified in two preamplifiers VVl and VV2 and each digitized in an analog / digital converter AWl or AW2 in sensor signals X17, X18 and a digital Signal processor DSP supplied.
  • the digital signal processor DSP supplies the measured value of the mass at a first output A1.
  • An output A2 supplies a signal which controls the excitation current I ⁇ rr for the oscillation excitation of the measuring tubes.
  • the two sensor signals X17 and X18 are supplied to the digital signal processor DSP via two measuring channels K1 and K2.
  • FIG. 3 shows a block diagram of a measuring and operating circuit according to the invention, with three measuring channels K1, K2, K3 in more detail.
  • This measuring and operating circuit substantially corresponds to the circuit shown in FIG.
  • the two sensor signals X17 and X18 are supplied from the two coils 172 and 182, respectively. These two sensor signals are amplified in two preamplifiers VVl and VV2, respectively, and fed to three switches SRI, SR2 and SR3 in each case. Each of these switches is assigned to a measuring channel K1, K2, K3.
  • the switches SRI, SR2, SR3 each have an amplifier Vl, V2, V3 with downstream analog-to-digital converter AWl, AW2, AW3.
  • the outputs of the three analog-to-digital converters AW1, AW2, AW3 provide signals, each with one, two or three superscripts ', "or"', to a digital signal processor DSP.
  • the digital signal processor DSP calculates the mass flow m
  • the switches SR1, SR2, SR3 are controlled by three control signals S1, S2, S3 supplied by the digital signal processor.
  • An output A2 supplies a signal which controls the exciting current I for the oscillation excitation of the measuring tubes.
  • the table (FIG. 4) explains below how the two sensor signals X 17, X18 are switched to the three channels K1, K2 and K3.
  • a first step the sensor signal X 17 is switched to the channel Kl and the sensor signal Xl 8 to the two channels K2 and K3.
  • the phase error ⁇ 23 ⁇ > 2 ⁇ > 3 between the channels K2 and K3 can be determined.
  • cycle step 2 there is no new assignment of the signals.
  • the signal Xl 8 is switched to the channel and the channel 2.
  • the signal Xl 8 remains on the channel 3.
  • cycle step 4 again no change of the channel assignment takes place.
  • the sensor signal X18 is switched to the channel K1 and the channel K3.
  • the sensor signal Xl 8 remains on the channel K2.
  • the phase error ⁇ 13 ⁇ 1 - ⁇ 3 between the two channels K 1 and K3 are determined.
  • Other channel assignments are conceivable but not necessary, since all possible phase errors are already determined.
  • the respective phase error ⁇ of the two channels is measured and stored with identical signals.
  • the phase error ⁇ which is caused by the different measuring channels, is taken into account accordingly (see table in FIG. 4).
  • the mass flow rate rh the phase error is also taken into account.
  • the measurement accuracy of a Coriolis mass flow meter can be significantly increased.
  • the inventive method also temporally fluctuating influences, eg. B. the Tem ⁇ temperature dependence of the phase error detected.
  • a signal in this case the signal X 18, permanently associated with a particular channel, here the channel K3.
  • the change of channel switching takes place approximately every 10 seconds. Typical values for the measuring raw vibration are 800 Hz.
  • the measuring tube diameter is 12mm.
  • the invention is particularly suitable even if the individual switches SRI, SR2, SR3 cause a phase error.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The invention relates to a method for determining the mass flow rate with the aid of a Coriolis-mass flow meter, wherein the mass flow rate (I) is determined from the phase difference of the two sensor signals (X17, X18). Three measuring channels (K1, K2, K3) are provided for both of the sensor signals (X17, X18). Phase errors related to the different signal paths can be determined by switching the sensor signals (X17, X18) on the measuring channels (K1, K2, and/or K3) and can be taken into account when calculating the mass flow rate (I).

Description

Beschreibung description
MESS- UND BETRIEBSSCHALTUNG FÜR EINEN CORIOLIS-MASSENDURCHFLUSSMESSER MIT DREI MESSKANÄLENMEASURING AND OPERATING CIRCUITS FOR A CORIOLIS MASS FLOWMETER WITH THREE MEASURING CHANNELS
[0001] Die Erfindung betrifft eine Mess- und Betriebsschaltung für einen Coriolis- Massedurchflussmesser mit drei Messkanälen.The invention relates to a measuring and operating circuit for a Coriolis mass flow meter with three measuring channels.
[0002] Coriolis-Massedurchflussmesser werden vielfach in der Prozessmesstechnik zur Bestimmung des Massendurchflusses eines Fluids in einem Rohrleitungsabschnitt eingesetzt.Coriolis mass flow meters are widely used in process measurement for determining the mass flow of a fluid in a pipe section.
[0003] Das Coriolis-Messprinzip basiert darauf, das Messrohr in dem das Fluid fließt in Schwingung zu versetzen und die resultierende Schwingungsbewegung auszuwerten.The Coriolis measuring principle is based on the measuring tube in which the fluid flows to vibrate and evaluate the resulting oscillatory motion.
[0004] Coriolis-Massedurchflussmesser weisen deshalb je Messrohr einen Schwin¬ gungserreger und zwei Schwingungssensoren auf.Coriolis mass flowmeters therefore have one oscillation exciter and two oscillation sensors per measuring tube.
[0005] Messrohr und Fluid bilden zusammen ein schwingungsfähiges System, das in der Regel auf seiner Resonanzfrequenz angeregt wird. Die Resonanzfrequenz hängt unter anderem vom Material und den Abmessungen des Messrohrs ab. Auch die Dichte des strömenden Fluids hat einen Einfluss auf die Resonanzfrequenz.Measuring tube and fluid together form a vibratory system, which is usually excited at its resonant frequency. The resonant frequency depends, among other things, on the material and dimensions of the measuring tube. The density of the flowing fluid also has an influence on the resonance frequency.
[0006] Bei bestimmten Anwendungen wird das Messrohr jedoch nicht auf der Reso¬ nanzfrequenz, sondern auf einer benachbarten Frequenz angeregt.In certain applications, however, the measuring tube is not excited at the resonant frequency but at an adjacent frequency.
[0007] Die Schwingungssensoren erfassen die Schwingungsbewegung des Messrohrs an zwei in Strömungsrichtung beabstandeten Stellen und wandeln diese in Sensorsignale um. Die beiden Sensorsignale weisen die gleiche Frequenz wie die Messrohr¬ schwingung auf. Strömt ein Fluid (Flüssigkeit, Gas) durch das Messrohr, so sind die beiden Sensorsignale aufgrund des Coriolis -Effekts gegeneinander phasenverschoben. Die Phasenverschiebung ist ein Maß für den Massedurchfluss des Fluids durch diesen Rohrleitungsabschnitt. Die Sensorsignale werden in einer Mess-/Teilschaltung ausgewertet, um den genauen Wert des Massedurchflusses zu bestimmen. Der Messwert kann in einer Anzeigeeinheit am Coriolis-Massedurchflussmessers dargestellt oder zur Prozesssteuerung an eine übergeordnete Einheit, z. B. eine Steuerung (SPS, PLC) oder an ein Leitsystem weitergeleitet werden.The vibration sensors detect the oscillatory movement of the measuring tube at two spaced locations in the flow direction and convert them into sensor signals. The two sensor signals have the same frequency as the Meßrohr¬ vibration. If a fluid (liquid, gas) flows through the measuring tube, the two sensor signals are out of phase due to the Coriolis effect. The phase shift is a measure of the mass flow of the fluid through this section of the pipeline. The sensor signals are evaluated in a measuring / subcircuit to determine the exact value of the mass flow. The measured value can be displayed in a display unit on the Coriolis mass flow meter or for process control to a higher-level unit, eg. B. a controller (PLC, PLC) or forwarded to a control system.
[0008] Neben dem Massedurchfluss können auch weitere Eigenschaften des Fluids, wie zum Beispiel die Dichte bestimmt werden. Hierzu ist zusätzlich eine Frequenz¬ auswertung der Messrohrschwingung notwendig.In addition to the mass flow and other properties of the fluid, such as the density can be determined. For this purpose, a frequency evaluation of the measuring tube oscillation is additionally necessary.
[0009] Verschiedene Typen von Coriolis-Massedurchflussmessern werden von der Firma Endress+Hauser Flowtec AG hergestellt und vertrieben.Various types of Coriolis mass flowmeters are manufactured and sold by Endress + Hauser Flowtec AG.
[0010] In der Patentschrift US 4,801,897 ist eine Erreger-/Teilschaltung für einen Coriolis- Massedurchflussmesser beschrieben, die nach Art einer analogen Phaselog- Loop-Regelung aufgebaut ist. Die Erregerfrequenz für das Messrohr stellt sich dabei auch bei veränderlicher Fluiddichte automatisch auf die Resonanzfrequenz des Messrohrs ein.[0010] US Pat. No. 4,801,897 describes an exciter / subcircuit for a Coriolis mass flow meter, which is designed in the manner of an analog phase logarithm. Loop control is established. The exciter frequency for the measuring tube automatically adjusts itself to the resonance frequency of the measuring tube even with variable fluid density.
[0011] Die bekannten Messschaltungen arbeiten entweder analog oder digital. In den Druckschriften EP 698783, US 4,895,030, EP 702212 bzw. US 4,529,002 sind derartige Messschaltungen näher beschrieben.The known measuring circuits operate either analog or digital. In the documents EP 698783, US 4,895,030, EP 702212 and US 4,529,002 such measuring circuits are described in more detail.
[0012] Aus der EP 698783 ist eine Messschaltung für einen Corio lis-From EP 698783 a measuring circuit for a Corio lis-
Massedurchflussmesser bekannt, die einen analogen Regelkreis aufweist, der die beiden Sensorsignale auf gleiche Amplitude regelt.Mass flow meter known, which has an analog control loop, which controls the two sensor signals to the same amplitude.
[0013] Aus der EP 866319 ist eine weitere Mess- und Betriebsschaltung für einen Coriolis- Massedurchflussmesser bekannt. Bei dieser Schaltung werden die beiden Sen¬ sorsignale vor deren Weiterverarbeitung verstärkt, wobei der Verstärkungsfaktor eines Verstärkers variabel ist. In einem digitalen Signalprozessor werden die Summe und die Differenz der beiden Sensorsignale sowie eines der Sensorsignale ausgewertet.From EP 866319 a further measuring and operating circuit for a Coriolis mass flow meter is known. In this circuit, the two sensor signals are amplified prior to their further processing, wherein the amplification factor of an amplifier is variable. In a digital signal processor, the sum and the difference of the two sensor signals and one of the sensor signals are evaluated.
[0014] Neuerdings sind Messschaltungen für Coriolis-Massedurchflussmesser bekannt (siehe z. B. deutsche Offenlegungsschrift DE10132603), die die Phasenverschiebung zwischen den beiden Sensorsignalen direkt messen und daraus den Massedurchfluss berechnen. Je nach Aufbau des Coriolis-Massedurchflussmessers können die auf¬ tretenden Phasenverschiebungen relativ klein sein. Maximale Phasenverschiebungen von 1,5° sind nicht unwahrscheinlich. Zusätzliche Phasenverschiebungen, die durch die zwei Messkanäle für die beiden Sensorsignale hervorgerufen werden, sollten möglichst vermieden werden. Diese nicht vom Coriolis -Effekt herrührenden Phasen¬ verschiebungen werden als Phasenfehler bezeichnet.Recently, measuring circuits for Coriolis mass flow meters are known (see, for example, German published patent application DE10132603), which directly measure the phase shift between the two sensor signals and calculate the mass flow therefrom. Depending on the structure of the Coriolis mass flow meter, the occurring phase shifts can be relatively small. Maximum phase shifts of 1.5 ° are not unlikely. Additional phase shifts, which are caused by the two measuring channels for the two sensor signals, should be avoided as far as possible. These phase shifts, which are not caused by the Coriolis effect, are referred to as phase errors.
[0015] Aufgrund des kleinen Messefektes insbesondere bei kleinen Strömungsgeschwin¬ digkeiten können auch sehr kleine Phasenfehler sich äußerst negativ auf das Mes¬ sergebnis auswirken.Due to the small measuring effect, especially at low flow speeds, even very small phase errors can have an extremely negative effect on the measurement result.
[0016] Denkbar ist es, den Phasenfehler für die Sensorsignale in den beiden Messkanälen vorab zu bestimmen und bei der weiteren Auswertung entsprechend zu berück¬ sichtigen.It is conceivable to determine in advance the phase error for the sensor signals in the two measuring channels and to consider them accordingly in the further evaluation.
[0017] Aufgrund der Zeitabhängigkeit der Einflussfaktoren wie Alterung der Mes¬ saufnehmer, Umgebungstemperatur etc, wäre eine einmalige Bestimmung sicherlich nicht ausreichend. Eine regelmäßige Wiederholung der Bestimmung wäre dringend notwendig.Due to the time dependence of the influencing factors such as aging of the measuring transducer, ambient temperature, etc., a one-time determination would certainly not be sufficient. A regular repetition of the provision would be urgently needed.
[0018] Leider muss jedoch bei der Messung des Phasenfehlers die eigentliche Messung zumindest kurzfristig unterbrochen werden. Dies ist nicht erwünscht und bei bestimmten Anwendungen nicht akzeptabel.Unfortunately, however, the actual measurement must be interrupted at least in the short term when measuring the phase error. This is undesirable and unacceptable in certain applications.
[0019] Aufgabe der Erfindung ist es, ein Verfahren zur Bestimmung des Masse¬ durchflusses eines Coriolis-Massedurchflussmessers anzugeben, das die oben genannten Nachteile nicht aufweist, das insbesondere Phasenfehler eliminiert und gleichzeitig eine kontinuierliche Messung erlaubt.The object of the invention is to provide a method for determining the Masse¬ flow of a Coriolis mass flow meter, the above does not have said disadvantages, which in particular eliminates phase errors and at the same time allows a continuous measurement.
[0020] Gelöst wird diese Aufgabe durch das im Anspruch 1 angegebene Verfahren.This object is achieved by the method specified in claim 1.
[0021] Vorteilhafte Weiterentwicklungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous further developments of the invention are specified in the subclaims.
[0022] Die wesentliche Idee der Erfindung besteht darin, für die beiden Sensorsignale nicht zwei sondern drei Messkanäle vorzusehen. Durch entsprechendes Umschalten der Sen¬ sorsignale auf die drei Messkanäle kann der relative Phasenfehler von jeweils zwei Messkanälen ermittelt und bei der Bestimmung des Massedurchflusses berücksichtigt werden.The essential idea of the invention is not to provide two but three measuring channels for the two sensor signals. By corresponding switching of the sensor signals to the three measuring channels, the relative phase error of respectively two measuring channels can be determined and taken into account in the determination of the mass flow.
[0023] In einer Weiterentwicklung der Erfindung werden die Sensorsignale zyklisch auf die drei Messkanäle umgeschaltet.In a further development of the invention, the sensor signals are cyclically switched to the three measurement channels.
[0024] In einer alternativen Ausgestaltung der Erfindung ist ein Messkanal permanent für ein bestimmtes Messsignal vorgesehen.In an alternative embodiment of the invention, a measurement channel is permanently provided for a specific measurement signal.
[0025] Gemäß einer weiteren Ausgestaltung der Erfindung wird nur bei jedem zweiten Zy¬ klusschritt der relative Phasenfehler zweier Messkanäle gemessen.According to a further embodiment of the invention, the relative phase error of two measuring channels is measured only every second Zy¬ klusschritt.
[0026] Ein wesentlicher Vorteil, den das erfindungsgemäße Verfahren bietet, besteht darin, dass eine Unterbrechung der Messung nicht mehr notwendig ist.A significant advantage offered by the method according to the invention is that an interruption of the measurement is no longer necessary.
[0027] Die Erfindung betrifft auch eine Vorrichtung zur Durchführung des Verfahrens.The invention also relates to a device for carrying out the method.
[0028] Nachfolgend ist die Erfindung anhand eines in der Zeichnung dargestellten Ausfüh¬ rungsbeispiels erläutert.The invention is explained below with reference to an exemplary embodiment shown in the drawing.
[0029] Es zeigen:In the drawings:
[0030] Fig. 1 Messaufnehmer für einen Coriolis-MassedurchflußmesserFig. 1 sensor for a Coriolis mass flowmeter
[0031] Fig. 2 Blockschaltbild einer zum Messaufnehmer nach Fig. 1 gehörenden Mess- und BetriebschaltungFIG. 2 shows a block diagram of a measuring and operating circuit belonging to the measuring sensor according to FIG. 1
[0032] Fig. 3 Blockschaltbild einer erfindungsgemäßen Mess- und Betriebsschaltung3 shows a block diagram of a measuring and operating circuit according to the invention
[0033] Fig. 4 Tabelle Zuordnung Messkanal SensorsignalFig. 4 Table Assignment Measuring Channel Sensor Signal
[0034] Fig. 5 Flußdiagramm mit den einzelnen VerfahrenschrittenFig. 5 flowchart with the individual process steps
[0035] In Fig. 1 ist ein Messaufnehmer 1 für einen Coriolis-Massedurchflußmesser in sche- matischer Darstellung gezeigt. Der Messaufnehmer 1 ist in einer nicht dargestellten Rohrleitung angeordnet in der ein Fluid F strömt, dessen Massedurchfluss eine der in¬ teressierenden Größen ist. Die Verbindung mit der Rohrleitung erfolgt über die beiden Flansche 2,3.1 shows a sensor 1 for a Coriolis mass flow meter in a schematic representation. The sensor 1 is arranged in a pipeline, not shown, in which a fluid F flows whose mass flow rate is one of the parameters of interest. The connection with the pipeline takes place via the two flanges 2,3.
[0036] Der Messaufnehmer 1 weist ein einziges gerades Messrohr 4 auf, das einlassseitig über eine Endplatte 13 am Flansch 2 und auslassseitig über eine Endplatte 14 am Flansch 3 fixiert ist.The sensor 1 has a single straight measuring tube 4, which is fixed on the inlet side via an end plate 13 on the flange 2 and the outlet side via an end plate 14 on the flange 3.
[0037] Die erfindungsgemäße Mess- und Betriebsschaltung ist nicht auf diesen speziellen Messaufnehmer 1 mit einem einzigen geraden Messrohr beschränkt. Sie kann in Verbindung mit den verschiedenen bekannten Messaufnehmern eingesetzt werden. Zu erwähnen sind z.B. Messaufnehmer mit einem Messrohr mit Auslegermasse, wie z.B. in der EP 97 81 0559 beschrieben, Messaufnehmer mit einem gebogenen Messrohr (EP 96 10 9242) sowie Messaufnehmer mit zwei parallelen geraden oder gebogenen Messrohren (US 4793191 bzw. US 41 27 028).The measuring and operating circuit according to the invention is not limited to this special sensor 1 with a single straight measuring tube. She can in Connection can be used with the various known sensors. To mention are, for example, sensors with a measuring tube with cantilever mass, as described for example in EP 97 81 0559, sensor with a curved measuring tube (EP 96 10 9242) and sensors with two parallel straight or curved measuring tubes (US 4793191 or US 41 27 028 ).
[0038] Die Flansche 2, 3 und die Endplatten sind an oder in einem Trägerrohr 15 befestigt.The flanges 2, 3 and the end plates are attached to or in a support tube 15.
[0039] Zur Erzeugung der Messrohrschwingung ist in der Mitte zwischen den beiden Endplatten 13, 14 am Messrohr 4 ein Schwingungserreger 16 angeordnet. Bei dem Schwingungserreger 16 kann es sich z.B. um einen elektromagnetischen Antrieb bestehend aus einem Permanentmagnet 161 und einer Spule 162 handeln.To generate the measuring tube vibration, a vibration exciter 16 is arranged in the middle between the two end plates 13, 14 on the measuring tube 4. The vibration exciter 16 may be e.g. to act an electromagnetic drive consisting of a permanent magnet 161 and a coil 162.
[0040] Die Spule 162 ist am Tragrohr 15 und der Permanentmagnet 161 am Messrohr 4 fixiert.The coil 162 is fixed to the support tube 15 and the permanent magnet 161 on the measuring tube 4.
[0041][0041]
[0042] Über den in der Spule 162 fließenden Strom lässt sich die Amplitude und dieOver the current flowing in the coil 162, the amplitude and the
Frequenz der Biegeschwingung des Messrohrs 4, die in der Zeichenebene verläuft, steuern.Frequency of the bending vibration of the measuring tube 4, which runs in the drawing plane control.
[0043] In der Zeichenebene treten auch die Corioliskräfte auf, die bewirken, dass nicht mehr alle Punkte entlang des Messrohrs 4 in Phase schwingen.In the drawing plane, the Coriolis forces occur, which cause that no longer all points along the measuring tube 4 oscillate in phase.
[0044] Die Schwingungsbewegung des Messrohrs 4 wird mit Hilfe zweier Schwin¬ gungssensoren 17 bzw. 18, die etwa symmetrisch zum Schwingungserrreger 16, ebenfalls am Tragrohr 15 angeordnet sind, aufgenommen. Bei den Schwin¬ gungssensoren 17 bzw. 18 kann es sich z. B. um elektromagnetische Wandler handeln, die ähnlich der Anordnung Permanentmagnet- Spule des Schwingungserregers 16 aufgebaut sind.The oscillation movement of the measuring tube 4 is recorded by means of two vibration sensors 17 and 18, which are likewise arranged symmetrically to the vibration exciter 16, likewise on the supporting tube 15. In the vibra tion sensors 17 and 18, it may be z. B. are electromagnetic transducers that are similar to the arrangement permanent magnet coil of the vibrator 16 are constructed.
[0045] Die beiden Permanentmagnet 171, 181 sind am Messrohr 4 und die beiden Spulen 172, 182 am Tragrohr 15 fixiert. Die Bewegung des Messrohrs 4 bewirkt über die Magnete 171, 181 eine Induktionsspannung in der jeweiligen Spule 172, 182, die als analoges Sensorsignal X17 bzw. X18 abgegriffen wird.The two permanent magnets 171, 181 are fixed to the measuring tube 4 and the two coils 172, 182 on the support tube 15. The movement of the measuring tube 4 causes via the magnets 171, 181, an induction voltage in the respective coil 172, 182, which is tapped as an analog sensor signal X17 and X18.
[0046] Ein Coriolis-Massedurchflussmesser besteht in der Regel aus einem Mes¬ saufnehmer und einer zugehörigen Mess- und Betriebsschaltung.A Coriolis mass flowmeter generally consists of a measuring transducer and an associated measuring and operating circuit.
[0047] Fig. 2 zeigt ein Blockschaltbild einer solchen zum Messaufnehmer 1 gehörenden Mess- und Betriebsschaltung, die unter anderem die Auswertung der beiden Sen¬ sorsignale durchführt und die Schwingungsanregung des Messrohrs 4 steuert.FIG. 2 shows a block diagram of such a measuring and operating circuit belonging to the measuring sensor 1, which, inter alia, carries out the evaluation of the two sensor signals and controls the oscillation excitation of the measuring tube 4.
[0048] Die beiden Sensorsignale xl7 und xl8, die von den Schwingungssensoren 17 bzw. 18 aufgenommen werden, werden in zwei Vorverstärkern VVl und VV2 verstärkt und jeweils in einem Analog-/Digitalwandler AWl bzw. AW2 in Sensorsignale X17, X18 digitalisiert und einem digitalen Signalprozessor DSP zugeführt. Der digitale Signal¬ prozessor DSP liefert an einem ersten Ausgang Al den gemessenen Wert des Masse- durchflusses mThe two sensor signals xl7 and xl8, which are received by the vibration sensors 17 and 18, are amplified in two preamplifiers VVl and VV2 and each digitized in an analog / digital converter AWl or AW2 in sensor signals X17, X18 and a digital Signal processor DSP supplied. The digital signal processor DSP supplies the measured value of the mass at a first output A1. flow m
. Ein Ausgang A2 liefert ein Signal, das den Erregerstrom I εrr für die Schwingun gsanregung der Messrohre steuert. Die beiden Sensorsignale X17 und X18 werden, wie aus der Zeichnung ersichtlich ist, über zwei Messkanäle Kl und K2 dem digitalen Signalprozessor DSP zugeführt., An output A2 supplies a signal which controls the excitation current I εrr for the oscillation excitation of the measuring tubes. As can be seen from the drawing, the two sensor signals X17 and X18 are supplied to the digital signal processor DSP via two measuring channels K1 and K2.
[0049] In Fig. 3 ist ein Blockschaltbild einer erfindungsgemäßen Mess- und Betriebs¬ schaltung, mit drei Messkanälen Kl, K2, K3 näher dargestellt. Diese Mess- und Betrie¬ bschaltung entspricht im Wesentlichen der in Fig. 2 dargestellten Schaltung. Die beide Sensorsignale X17 und X18 werden jeweils von den beiden Spulen 172 und 182 geliefert. Diese beiden Sensorsignale werden in zwei Vorverstärkern VVl bzw. VV2 verstärkt und jeweils drei Schaltern SRI, SR2 und SR3 zugeführt. Jeder dieser Schalter ist einem Messkanal Kl, K2, K3 zugeordnet. In jedem der Messkanäle Kl, K2 bzw. K3 befindet sich neben den Schaltern SRI, SR2, SR3 jeweils ein Verstärker Vl, V2, V3 mit nachgeschaltetem Analog-Digitalwandler AWl, AW2, AW3. Die Ausgänge der drei Analog-Digitalwandler AWl, AW2, AW3, liefern Signale, die jeweils mit einem, zwei bzw. drei hochgestellten Strichen ', " bzw. "' gekennzeichnet sind, an einen digitalen Signalprozessor DSP. Der digitale Signalprozessor DSP berechnet den Massendurchfluss mFIG. 3 shows a block diagram of a measuring and operating circuit according to the invention, with three measuring channels K1, K2, K3 in more detail. This measuring and operating circuit substantially corresponds to the circuit shown in FIG. The two sensor signals X17 and X18 are supplied from the two coils 172 and 182, respectively. These two sensor signals are amplified in two preamplifiers VVl and VV2, respectively, and fed to three switches SRI, SR2 and SR3 in each case. Each of these switches is assigned to a measuring channel K1, K2, K3. In each of the measuring channels Kl, K2 and K3 is in addition to the switches SRI, SR2, SR3 each have an amplifier Vl, V2, V3 with downstream analog-to-digital converter AWl, AW2, AW3. The outputs of the three analog-to-digital converters AW1, AW2, AW3 provide signals, each with one, two or three superscripts ', "or"', to a digital signal processor DSP. The digital signal processor DSP calculates the mass flow m
, der am Ausgang Al ausgegeben wird, aus der Frequenz der Messrohrschwingung f und der jeweiligen Phasenverschiebung zwischen zwei Eingangssignalen z. B. X17' und Xl 8". Die Schalter SRI, SR2, SR3 werden über drei vom digitalen Signal¬ prozessor gelieferten Steuersignale Sl, S2, S3 angesteuert., which is output at the output Al, from the frequency of the Meßrohrschwingung f and the respective phase shift between two input signals z. The switches SR1, SR2, SR3 are controlled by three control signals S1, S2, S3 supplied by the digital signal processor.
[0050] Ein Ausgang A2 liefert ein Signal, das den Erregerstrom I für die Schwin- err gungsanregung der Messrohre steuert.An output A2 supplies a signal which controls the exciting current I for the oscillation excitation of the measuring tubes.
[0051] Anhand der Tabelle (Fig. 4) ist nachfolgend erläutert, wie die beiden Sensorsignale X 17, X18 auf die drei Kanäle Kl, K2 und K3 geschaltet werden. In einem ersten Schritt wird das Sensorsignal X 17 auf den Kanal Kl und das Sensorsignal Xl 8 auf die beiden Kanäle K2 und K3 geschaltet. Im ersten Zyklusschritt kann der Phasenfehler Δφ 23= ς>2- ς>3 zwischen den Kanälen K2 und K3 ermittelt werden. Im Zyklusschritt 2 erfolgt keine neue Zuordnung der Signale. Im Zyklusschritt 3 wird das Signal Xl 8 auf den Kanal und den Kanal 2 geschaltet. Das Signal Xl 8 verbleibt auf dem Kanal 3. In diesem Zyklusschritt kann der Phasenfehler Δφ 12= φl- φ2 zwischen den Kanälen Kl und K2 bestimmt werden. Im Zyklusschritt 4 erfolgt wiederum keine Änderung der Kanalzuordnung. Im Zyklusschritt 5 wird das Sensorsignal X18 auf den Kanal Kl und den Kanal K3 geschaltet. Das Sensorsignal Xl 8 bleibt auf dem Kanal K2. In diesem Zyklusschritt kann der Phasenfehler Δ 13= φl- φ3 zwischen den beiden Kanälen Kl und K3 bestimmt werden. Weitere Kanalzuordnungen sind denkbar aber nicht notwendig, da alle möglichen Phasenfehler bereits bestimmt sind.The table (FIG. 4) explains below how the two sensor signals X 17, X18 are switched to the three channels K1, K2 and K3. In a first step, the sensor signal X 17 is switched to the channel Kl and the sensor signal Xl 8 to the two channels K2 and K3. In the first cycle step, the phase error Δφ 23 = ς> 2 ς> 3 between the channels K2 and K3 can be determined. In cycle step 2 there is no new assignment of the signals. In the cycle step 3, the signal Xl 8 is switched to the channel and the channel 2. The signal Xl 8 remains on the channel 3. In this cycle step, the phase error Δφ 12 = φl-φ2 between the channels Kl and K2 can be determined. In cycle step 4 again no change of the channel assignment takes place. In the cycle step 5, the sensor signal X18 is switched to the channel K1 and the channel K3. The sensor signal Xl 8 remains on the channel K2. In this cycle step, the phase error Δ 13 = φ 1 -φ 3 between the two channels K 1 and K3 are determined. Other channel assignments are conceivable but not necessary, since all possible phase errors are already determined.
[0052] Im Flussdiagramm nach Fig. 5 sind die Verfahrenschritte, die der ersten Zeile der Tabelle nach Fig. 4 zugrunde liegen, explizit angegeben.In the flowchart of FIG. 5, the method steps that are the basis of the first row of the table of FIG. 4, explicitly stated.
[0053] Im digitalen Signalprozessor DSP wird der jeweilige Phasenfehler Δφ der beiden Kanäle mit identischen Signalen gemessen und gespeichert. Bei der Bestimmung der Phasendifferenz Δφ der beiden Sensorsignale X 17 und Xl 8 wird der Phasenfehler Δφ , der durch die unterschiedlichen Messkanäle verursachte wird, entsprechend be¬ rücksichtigt (siehe Tabelle Fig. 4). Bei der Berechnung des Massedurchflusses rh wird der Phasenfehler ebenso berücksichtig. Dadurch kann die Messgenauigkeit eines Coriolis-Massedurchflussmessers erheblich erhöht werden. Mit dem erfin¬ dungsgemäßen Verfahren werden auch zeitlich schwankende Einflüsse, z. B. die Tem¬ peraturabhängigkeit des Phasenfehlers, erfasst.In the digital signal processor DSP, the respective phase error Δφ of the two channels is measured and stored with identical signals. When determining the phase difference Δφ of the two sensor signals X 17 and Xl 8, the phase error Δφ, which is caused by the different measuring channels, is taken into account accordingly (see table in FIG. 4). When calculating the mass flow rate rh, the phase error is also taken into account. As a result, the measurement accuracy of a Coriolis mass flow meter can be significantly increased. With the inventive method also temporally fluctuating influences, eg. B. the Tem¬ temperature dependence of the phase error detected.
[0054] Für die Frequenzmessung und die Amplitudenbestimmung hat es sich als sehr vorteilhaft herausgestellt, wenn ein Signal, hier das Signal X 18, permanent einem bestimmten Kanal, hier dem Kanal K3 zugeordnet ist.For the frequency measurement and the amplitude determination, it has proved to be very advantageous if a signal, in this case the signal X 18, permanently associated with a particular channel, here the channel K3.
[0055] Der Wechsel der Kanalumschaltung erfolgt etwa alle 10s. Typische Werte für die Messrohschwingung sind 800 Hz. Der Messrohrdurchmesser beträgt 12mm.The change of channel switching takes place approximately every 10 seconds. Typical values for the measuring raw vibration are 800 Hz. The measuring tube diameter is 12mm.
[0056] Die Erfindung eignet sich insbesondere auch dann, wenn die einzelnen Schalter SRI, SR2, SR3 einen Phasenfehler verursachen. The invention is particularly suitable even if the individual switches SRI, SR2, SR3 cause a phase error.

Claims

Ansprücheclaims
[0001] Verfahren zur Bestimmung des Massedurchflusses mit Hilfe eines Coriolis-Method for determining the mass flow with the aid of a Coriolis
Massedurchflussmesser, bei dem aus der Phasendifferenz zweier Sensorsignale Xl 7, Xl 8 der Massedurchfluss rix gewonnen wird, wobei für die beiden Sensorsignale X17, X18 drei Messkanale Kl, K2 und K3 vorgesehen sind, über die Signale eine digitalen Signalprozessor DSP zugeführt werden und ein Schalter SRI, SR2, SR3 vorgesehen sind, die ein Umschalten der Sensorsignale X17, X18 auf einzelnen Messkanäle Kl, K2, bzw. K3 ermöglichen, mit folgenden Verfahrens schritten: Schalten des ersten Sen¬ sorsignals X 17 auf den Messkanal Kl Schalten des zweiten Sensorsignals Xl 8 auf die Messkanäle K2, K3 Bestimmung des Phasenfehlers Δφ 23 der Messkanälen K2, K3 durch Messung der Phasenverschiebung der Aus¬ gangssignale Xl 8' und Xl 8" dieser beiden Messkanäle K2, K3 Speichern des Phasenfehlers Δφ 23 Messung der Phasenverschiebung Δφ zwischen den Aus¬ gangssignale des Messkanalpaars Kl und K2 Bestimmung des Masse¬ durchflusses rix aus der Phasenverschiebung Δφ unter Berücksichtigung eines zu einem früherenMass flow meter, in which from the phase difference between two sensor signals Xl 7, Xl 8 of the mass flow is obtained rix, wherein for the two sensor signals X17, X18 three measuring channels Kl, K2 and K3 are provided, via the signals a digital signal processor DSP are fed and a switch SR1, SR2, SR3 are provided, which enable a switching of the sensor signals X17, X18 to individual measuring channels K1, K2 or K3, with the following method steps: switching of the first sensor signal X17 to the measuring channel K1 switching of the second sensor signal X1 8 to the measuring channels K2, K3 Determining the phase error Δφ 23 of the measuring channels K2, K3 by measuring the phase shift of the output signals Xl 8 'and Xl 8 "of these two measuring channels K2, K3 Saving the phase error Δφ 23 Measuring the phase shift Δφ between the off ¬ gang signals of the measuring channel pair Kl and K2 determination of Masse¬ flow rix from the phase shift Δφ under consideration one to one earlier
Zeitpunkt gewonnen Phasenfehlers Δ 23 des Messkanalpaars Kl, K2. [0002] Verfahren nach Anspruch 1, wobei die Sensorsignale Xl 7, Xl 8 zyklisch auf dieTime gained phase error Δ 23 of the measuring channel pair Kl, K2. The method of claim 1, wherein the sensor signals Xl 7, Xl 8 cyclically to the
Messkanäle Kl, K2, K3 umgeschaltet werden. [0003] Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Messkanal K3 permanent für das Messsignal Xl 8 vorgesehen ist. [0004] Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass nur bei jedem zweitenMeasuring channels Kl, K2, K3 are switched. A method according to claim 2, characterized in that the measuring channel K3 is permanently provided for the measuring signal Xl 8. A method according to claim 3, characterized in that only every second
Zyklusschritt eine Messung des Phasenfehlers Δφ zweier Messkanäle erfolgt. [0005] Vorrichtung zur Durchführung des Verfahrens nach einem der vorher gehendenCycle step takes place a measurement of the phase error Δφ two measurement channels. Apparatus for carrying out the method according to one of the preceding
Ansprüche. Claims.
EP05801324A 2004-11-17 2005-11-02 Measuring and operational circuit for a coriolis-mass flow meter comprising three measuring channels Withdrawn EP1812775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004055553A DE102004055553A1 (en) 2004-11-17 2004-11-17 Measuring and operating circuit for a Coriolis mass flowmeter with three measuring channels
PCT/EP2005/055698 WO2006053829A1 (en) 2004-11-17 2005-11-02 Measuring and operational circuit for a coriolis-mass flow meter comprising three measuring channels

Publications (1)

Publication Number Publication Date
EP1812775A1 true EP1812775A1 (en) 2007-08-01

Family

ID=35544039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05801324A Withdrawn EP1812775A1 (en) 2004-11-17 2005-11-02 Measuring and operational circuit for a coriolis-mass flow meter comprising three measuring channels

Country Status (4)

Country Link
US (1) US7469600B2 (en)
EP (1) EP1812775A1 (en)
DE (1) DE102004055553A1 (en)
WO (1) WO2006053829A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044431A (en) * 2018-01-16 2019-07-23 高准有限公司 Transmitter and flowmeter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024276A1 (en) * 2007-05-23 2008-11-27 Endress + Hauser Flowtec Ag Method for measuring and monitoring flow parameter of medium, involves exciting measuring tube to mechanical vibrations by one converter element according to one excitation signal during one measurement
CO6170078A1 (en) * 2008-12-12 2010-06-18 Ecopetrol Sa SMART TOOL FOR DETECTION OF PERFORACINES AND INTERPRETATION OF DATA ONLINE
JP4888550B2 (en) * 2009-12-29 2012-02-29 横河電機株式会社 Coriolis mass flow meter
KR20130138222A (en) * 2010-08-27 2013-12-18 마이크로 모우션, 인코포레이티드 Analog-to-digital conversion stage and phase synchronization method for digitizing two or more analog signals
DE102011100092B4 (en) * 2011-04-29 2013-04-18 Krohne Messtechnik Gmbh Method for operating a resonance measuring system
DE102013021136B3 (en) * 2013-12-13 2014-12-18 Abb Technology Ag Method for determining the transit time of the signals in the signal paths in a Coriolis flowmeter
JP5860942B2 (en) * 2014-10-03 2016-02-16 マイクロ モーション インコーポレイテッド Analog-to-digital conversion stage and phase synchronization method for digitizing two or more analog signals
DE102016105419B4 (en) * 2016-03-23 2017-11-02 Endress + Hauser Gmbh + Co. Kg Method for determining a pipe inside diameter of a still pipe by a level gauge
EP4095492B1 (en) * 2021-05-26 2023-09-27 Krohne Messtechnik GmbH Method for operating a coriolis flow meter and related coriolis flow meter
DE102021116633B3 (en) 2021-05-26 2022-07-07 Krohne Messtechnik Gmbh Method of operating a Coriolis mass flow meter and corresponding Coriolis mass flow meter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559171A (en) * 1967-07-24 1971-01-26 Honeywell Inc Control apparatus having signal processing through plural channels
US5231884A (en) * 1991-07-11 1993-08-03 Micro Motion, Inc. Technique for substantially eliminating temperature induced measurement errors from a coriolis meter
US5469748A (en) * 1994-07-20 1995-11-28 Micro Motion, Inc. Noise reduction filter system for a coriolis flowmeter
US5767665A (en) * 1994-09-13 1998-06-16 Fuji Electric Co. Ltd. Phase difference measuring apparatus and mass flowmeter thereof
US5555190A (en) * 1995-07-12 1996-09-10 Micro Motion, Inc. Method and apparatus for adaptive line enhancement in Coriolis mass flow meter measurement
DE19732605C2 (en) 1997-07-29 2001-12-06 Krohne Ag Basel Method for determining mass flow according to the Coriolis principle
GB2332519B (en) * 1997-12-19 2002-08-07 Abb Kent Taylor Ltd Coriolis flow meter
DE10322851A1 (en) * 2003-05-19 2004-12-16 Endress + Hauser Flowtec Ag, Reinach Coriolis flow meter
GB2402222B (en) * 2003-05-30 2007-04-25 Abb Ltd Phase measurement in measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006053829A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044431A (en) * 2018-01-16 2019-07-23 高准有限公司 Transmitter and flowmeter

Also Published As

Publication number Publication date
US20080156108A1 (en) 2008-07-03
DE102004055553A1 (en) 2006-05-18
WO2006053829A1 (en) 2006-05-26
US7469600B2 (en) 2008-12-30

Similar Documents

Publication Publication Date Title
EP1812775A1 (en) Measuring and operational circuit for a coriolis-mass flow meter comprising three measuring channels
DE102008046891B4 (en) Measuring device of the vibration type
EP3559609B1 (en) Mass flow meter according to the coriolis principle and method for determining a mass flow
EP3701232A1 (en) Coriolis mass flow meter comprising two measuring tube pairs, and method for determining a mass flow
WO2011072711A1 (en) Method for operating a coriolis mass flow rate meter and coriolis mass flow rate meter
DE102012011934B4 (en) Method for operating a resonance measuring system and related resonance measuring system
EP0980508B1 (en) Method and device for detecting and compensating zero point influences on coriolis-type mass flowmeters
DE102010039543A1 (en) Measuring system with a vibration-type transducer
EP1651931B1 (en) Mass flow meter
EP1317657B1 (en) Measuring and operating circuit for a coriolis-type mass flowmeter
DE10358663A1 (en) Coriolis mass flow density meter for measuring a value representing mass flow of a medium flowing in a pipe line allows a two- or multi-phase medium to flow through a measuring tube
EP1819988A2 (en) Method for determining the mass flow through a coriolis mass flowmeter
EP3721179B1 (en) Method for determining the viscosity of a medium by means of a coriolis mass flow meter and coriolis mass flow meter for performing the method
WO2003076879A1 (en) Coriolis mass flowmeter for measuring a concentration
WO2006128772A1 (en) Coriolis mass flowmeter and method for compensating for transmission errors in its input circuit
DE102012201592B3 (en) Coriolis mass flow measuring device for measuring mass flow of fluid, has vibration absorbers with linear variable hybrid coil having cores whose ends are coupled with measuring tubes such that coefficient Of coupling of coils varies
DE102012215282B3 (en) Coriolis mass flowmeter
DE102004007889A1 (en) Coriolis mass flow density meter for measuring a value representing mass flow of a medium flowing in a pipe line allows a two- or multi-phase medium to flow through a measuring tube
EP1197732B1 (en) Test device for a Coriolis mass flow meter
DE10132603A1 (en) Method for determining the mass flow rate of a Coriolis mass flow meter
DE10131858A1 (en) Coriolis flow rate sensor interpolates Fourier components
EP2896938A1 (en) Method for determining the runtime of the signals in the signal paths in a coriolis flow meter
DE10045537A1 (en) Measuring and operating circuit for Coriolis mass flowmeter uses digital processor for calculation of mass flow rate using one oscillation sensor signal and difference between oscillation sensor signals
WO2005057131A9 (en) Coriolis mass flowmeter
DE102010006863A1 (en) Coriolis flow meter for measuring mass flow rate of e.g. gas, has evaluating unit for controlling excitation assemblies during measuring operation such that torque exerted at measuring tubes around axis is controlled

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090514